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1. Introduction

The study of N = 2 supersymmetric (SUSY) extensions of nonlinear evolution equations has been
largely studied in the past [1–8] in terms of integrability conditions and solutions. Such extensions are
given as a Grassmann-valued partial differential equation with one dependent variable A(x, t; θ1, θ2)

which is assumed to be bosonic to get nontrivial extensions. The independent variables are given as a
set of even (commuting) space x and time t variables and a set of odd (anticommuting) variables θ1, θ2.
Since the odd variables satisfy θ21 = θ22 = {θ1, θ2} = 0, the dependent variable A admits the following
finite Taylor expansion

A(x, t; θ1, θ2) = u(x, t) + θ1ξ1(x, t) + θ2ξ2(x, t) + θ1θ2v(x, t) (1)
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where u and v are bosonic complex valued functions and ξ1 and ξ2 are fermionic complex valued
functions. In this paper, we show that some of these extensions can be related to a linear partial
differential equation (PDE) by assuming that A is a chiral superfield [9]. Proving the integrability of
an equation by linearization has been largely studied in the classical case [10,11] and has found new
developments in the N = 1 formalism [12]. We propose a similar development in the N = 2 formalism.
In N = 2 SUSY, we consider a pair of supercovariant derivatives defined as

D1 = ∂θ1 + θ1∂x, D2 = ∂θ2 + θ2∂x (2)

which satisfy the anticommutation relations {D1, D1} = {D2, D2} = 2∂x and {D1, D2} = 0. We
consider also the complex supercovariant derivatives

D± =
1

2
(D1 ± iD2) (3)

which satisfy {D±, D±} = 0 and {D+, D−} = ∂x. In terms of the complex Grassmann variables
θ± = 1√

2
(θ1 ± iθ2), the derivatives Equation (3) admits the following representation

D± =
1√
2
(∂θ∓ + θ±∂x) (4)

and the superfield A given in Equation (1) writes

A(x, t; θ+, θ−) = u(x, t) + θ+ρ−(x, t) + θ−ρ+(x, t) + iθ+θ−v(x, t) (5)

The fermionic complex valued functions ρ± are defined as ρ± = 1√
2
(ξ1 ± iξ2).

Chiral superfields are superfields of type Equation (5) satisfying D+A = 0. In terms of components,
we get

A(x, t; θ+, θ−) = u(x, t) + θ+ρ−(x, t) + θ+θ−ux(x, t) (6)

or equivalently ξ2 = iξ1 and v = −iux.
In the subsequent sections, we produce solutions of N = 2 SUSY extensions of the Korteweg–de

Vries [1] (SKdVa), modified Korteweg–de Vries [6] (SmKdV) and Burgers [5] (SB) equations from
a chiral superfield point of view. In this instance, the equations, in terms of the complex covariant
derivatives Equation (3), reads, respectively, as

At = (−Axx + i(a+ 2)A[D+, D−]A+ i(a− 1)[D+A,D−A] + aA3)x (7)

At = −Axxx − 2A3
x − 6([D+, D−]A)

2Ax (8)

At = (i[D+, D−]A+ 2A2)x (9)

where [X, Y ] = XY − Y X is the commutator. In Equation (7), a is an arbitrary parameter but we will
consider only the integrable cases [1] where a = −2, 1, 4.

In this paper, we start by presenting a general reduction procedure of these equations using chiral
superfields (Section II). We thus treat SKdV−2 and SmKdV together and construct classical N super
soliton solutions [4,7,8,13] and an infinite set of similarity solutions [7]. In Section IV, we demonstrate
the existence of special N super soliton solutions, called virtual solitons [5], for the SUSY extensions
of the KdV equation with a = 1, 4 and the Burgers equation using a related linear partial differential
equation. The last section is devoted to a N = 4 extension of the KdV equation [6] in an attempt to
construct a general N super virtual soliton solution.
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2. General Approach and Chiral Solutions

Here, we propose a general approach for the construction of chiral solutions of SUSY extensions.
This approach avoids treating SUSY extensions in terms of components of the bosonic field A given in
Equation (1). Assuming D+A = 0, we get the chiral property {D+, D−}A = D+D−A = Ax and the
Equations (7–9) reduce to

At + (Axx − i(a+ 2)AAx − aA3)x = 0 (10)

At + Axxx + 8A3
x = 0 (11)

At − (iAx + 2A2)x = 0 (12)

Note that these equations may be evidently treated as classical [14] PDE’s, but remains SUSY
extensions due to the Grassmannian dependence of the bosonic field A.

The absence of the Grassmannian variables θ+ and θ− derivatives in Equations (10–12) indicates
that the odd sectors of chiral solutions should be free from fermionic constraint. This property is in
accordance with the integrability of these extensions due to arbitrary bosonization of the fermionic
components [15] of the bosonic superfield A.

From the classical case, we know that the methods of resolution of all these equations are similar. The
same could be said for the SUSY case. Indeed, if we assume the introduction of a potential Ã such that
A = Ãx in Equation (10) and after one integration with respect to x, we get

Ãt + Ãxxx − i(a+ 2)ÃxÃxx − aÃ3
x = 0 (13)

where the constant of integration is set to zero. The same is done on Equation (12) and leads to

Ãt − iÃxx − 2Ã2
x = 0 (14)

We thus observe that the Equations (11,13,14) are now on an equal footing, i.e., the order of the
equation in x is equal to the number of appearance of ∂x in the nonlinear terms. This is standard in
Hirota formalism. The choice a = −2 in Equation (13) gives, up to a slight change of variable, the
SmKdV Equation (11). This means that the known [7] N super soliton solutions and similarity solutions
of SKdV−2 will lead to similar types of solutions for the SmKdV Equation (11).

Now setting
Ã(x, t; θ+, θ−) = βa logHa(x, t; θ+, θ−) (15)

in Equation (13), we obtain

H2
a(Ha,t +Ha,xxx)− (3 + i(2 + a)βa)HaHa,xHa,xx − (βa − i)(aβa − 2i)H3

a,x = 0 (16)

The above equation reduces to the linear dispersive equation [14]

Ha,t +Ha,xxx = 0 (17)

for the special and only values a = 1 with β1 = i and a = 4 with β4 = i
2
. For a = −2, Equation (16)

writes
H2

−2(H−2,t +H−2,xxx)− 3H−2H−2,xH−2,xx + 2(β2
−2 + 1)H3

−2,x = 0 (18)
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which does not linearize but can be bilinearized taking β−2 = i. It is discussed in the next Section.
A similar change of variable as in Equation (15) but with Ã = βB logHB and βB = i

2
in Equation (14)

is assumed and leads to the linear Schrödinger Equation

HB,t − iHB,xx = 0 (19)

3. SKdV−2 and SmKdV Equations

It is well known [13,14,16–19] that we can generate via the Hirota bilinear formalism N soliton and
similarity solutions in the classical case and in SUSY N = 1 extensions. Recently, the formalism was
adapted to N = 2 extensions [4,7,8] by splitting the equation into two N = 1 equations, one fermionic
and one bosonic. Our approach consists of treating the equation as a N = 2 extension without splitting
it, but imposing chirality conditions.

Equation (11) can be bilinearized using the Hirota derivative defined as

Dn
x(f · g) = (∂x1 − ∂x2)

nf(x1)g(x2)|x=x1=x2 (20)

Indeed, we take Ã as in Equation (15) with β−2 = i and H = τ1
τ2

, where τi = τi(x, t; θ+, θ−) are bosonic
chiral superfields for i = 1, 2. Equation (11) leads to the set of bilinear equations

(Dt +D3
x)(τ1· τ2) = 0 (21)

D2
x(τ1· τ2) = 0 (22)

This set is analogous to the corresponding bilinear equations in the classical mKdV equation [14] but
we deal with superfields τ1 and τ2.

In order to get chiral solutions, we have to solve the set of bilinear equations with the additional chiral
property D+τi = 0 for i = 1, 2. It will lead to new solutions of the SmKdV equation which are related
to our recent contribution [7].

3.1. N Super Soliton Solutions

The one soliton solution is easily retrieved. Indeed, we cast

τ1 = 1 + a1 e
Ψ1 , τ2 = 1− a1 e

Ψ1 (23)

where a1 is an even parameter. Ψ1 is a N = 2 chiral bosonic superfield defined as

Ψ1 = κ1x− κ3
1t+ θ+ζ1 + θ+θ−κ1 (24)

and never appears on this form in other approaches of N = 2 SUSY. The parameters κ1 and ζ1 are,
respectively, even and odd. The τ -functions Equation (23) together with Equation (24) solve the set of
bilinear Equations (21,22) and give rise to a one super soliton solution. Since D+Ψ1 = 0, the resulting
traveling wave solution is chiral.
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Since we exhibit the three super soliton solution of the SmKdV equation in Figures 1 and 2, we give
the general expressions of τ1 and τ2:

τ1(x, t; θ+, θ−) = 1 +
3∑

i=1

aie
Ψi +

∑
i<j

aiajAije
Ψi+Ψj + a1a2a3A12A13A23e

Ψ1+Ψ2+Ψ3 (25)

τ2(x, t; θ+, θ−) = 1−
3∑

i=1

aie
Ψi +

∑
i<j

aiajAije
Ψi+Ψj − a1a2a3A12A13A23e

Ψ1+Ψ2+Ψ3 (26)

where Aij =
(

κi−κj

κi+κj

)2

and the Ψi’s are defined as in Equation (24). The functions τ1 and τ2 solves
the bilinear Equations (21) and (22) and are such that D+τi = 0 for i = 1, 2. The generalization to a
N super soliton solution is direct using the τ -functions expressed above. The forms of the τ -functions
given above are new representations of super soliton solutions and have never been introduced before.

Figure 1. The function Im(v) of the three soliton solution of the SmKdV equation where
κ1 =

4
3
κ2 = 2κ3 =

4
3

and t = −20, 0, 20.
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Figure 2. The density plots of the functions f1, f2 and f3, respectively from left to right, of
the three soliton solution of the SmKdV equation where κ1 =

4
3
κ2 = 2κ3 =

4
3
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In Figure 1, we may enjoy the three soliton solution Im(v) of the SmKdV equation given by

v(x, t) =
1

2
∂x log

(
τ1(x, t; 0, 0)

τ2(x, t; 0, 0)

)
(27)
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as a function of x, for the special values κ1 = 4
3
κ2 = 2κ3 = 4

3
, ai = i in Equations (25) and (26) and

t = −20, 0, 20. In Figure 2, we explore the behavior of the fermionic component ρ− of the superfield A

for the same special values. To achieve this, we write ρ− as

ρ−(x, t) = ζ1 f1(x, t) + ζ2 f2(x, t) + ζ3 f3(x, t) (28)

and trace out the bosonic functions f1, f2 and f3.

3.2. Similarity Solutions

In a recent paper [7], we have proven the existence of an infinite set of rational similarity solutions
of the SKdV−2 using a SUSY version of the Yablonskii–Vorob’ev polynomials [16–18]. We propose in
this subsection to retrieve those solutions and find an infinite set of similarity solution for the SmKdV
equation. To give us a hint into what change of variables we have to cast, we have used the symmetry
reduction method associated to a dilatation invariance [2].

Let us define the following τ -functions [7]

τ1,n(z̃, t) = t
n(n+1)

6 Qn(z̃) (29)

where z̃ = t−
1
3 (x + θ+ζ + θ+θ−) and the functions Qn(z̃) are the Yablonskii–Vorob’ev polynomials

defined by the recurrence relation

3
1
3Qn+1Qn−1 = z̃Q2

n − 12(QnQn,z̃z̃ −Q2
n,z̃) (30)

with Q0(z̃) = 3−
1
3 and Q1(z̃) = z̃. We would like to insist that z̃ is a N = 2 bosonic superfield (as it is

the case for the Ψi in the preceding subsection). Using the fact that the Yablonskii–Vorob’ev polynomials
satisfy the following bilinear equations [17](

D3
z̃ −

1

3
z̃Dz̃ −

n+ 1

3

)
(Qn ·Qn+1) = 0 (31)

D2
z̃(Qn ·Qn+1) = 0 (32)

we have that the pair of bilinear Equations (21) and (22) are such that [7,16–18]

(Dt +D3
x)(τ1,n · τ1,n+1) = 0 (33)

D2
x(τ1,n · τ1,n+1) = 0 (34)

From the choice of the variable z̃, we also have D+τi,n = 0 for all integers n. Taking τ2,n = τ1,n+1,
we have an infinite set of similarity solutions of the SmKdV Equation given by

Ãn(z̃, t) =
i

2
log

(
τ1,n(z̃, t)

τ1,n+1(z̃, t)

)
(35)

for all integers n ≥ 0 and τ1,n defined as in Equation (29). To get similarity solutions An of the SKdV−2,
we use the above solution with An = 2t−

1
3∂z̃Ãn. Plots of some similarity solutions are given in our

recent contribution [7].
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4. SKdV1, SKdV4 and SB Equations and Virtual Solitons

In this section, we exhibit N super soliton solutions, called N super virtual solitons, for the three
equations SKdV1, SKdV4 and SB. Virtual solitons are soliton-like solutions which exhibit no phase shifts
in nonlinear interactions. In terms of classical N soliton solutions [3–5,7,14,16,19], this is equivalent to
say that the interaction coefficients Aij between soliton i and soliton j are zero, ∀i ̸= j. They manifest
as traveling wave solutions for negative time t ≪ 0 and decrease spontaneously at time t = 0 to split
into a N soliton profile which exhibit no phase shifts. It is often said that the traveling wave solution was
charged with N − 1 soliton, called virtual solitons [5].

Using the change of variable Equation (15) for the unknown bosonic field Ã, we have seen that the
bosonic field Ha must be a chiral superfield and solve the linear dispersive Equation (17) when a = 1

and a = 4. For the Burgers equation, the bosonic field HB had to be chiral and solves Equation (19).
It is easy to show that they admit the following solution

H(x, t; θ+, θ−) = 1 +
N∑
i=1

aie
Ψi (36)

where the bosonic superfields Ψi are given as

Ψi = κix+ ω(κi)t+ θ+ζi + θ+θ−κi (37)

The frequencies ω(κi) are such that ω(κi) = −κ3
i for SKdVa and ω(κi) = i κ2

i for SB. It looks like a
typical KdV type soliton solution where all the interaction coefficients Aij are set to zero.

We see that the virtual soliton solutions of the SKdV1 and SKdV4 equations are completely similar
due to the form of Ã which differs only by the constant value of βa. The expression of the original
bosonic field is obtained from

A = β
Hx

H
(38)

where β = βa for the SKdVa equation and β = βB for the SB equation. Thus, we can give the explicit
forms of the superfield components u and ρ−. Indeed, we have

u(x, t) = β

∑N
i=1 aiκie

ηi

1 +
∑N

i=1 aie
ηi
, ρ−(x, t) = β

N∑
i=1

ζi fi(x, t) (39)

where ηi = κix+ ω(κi)t and the bosonic functions fi(x, t) are defined as

fi(x, t) =
aiκie

ηi +
∑N

j=1 aiaj(κi − κj)e
ηi+ηj(

1 +
∑N

j=1 aje
ηj

)2 (40)

In Figure 3, we may enjoy the three virtual soliton solution Im(u) of the SKdV1 Equation for
κ1 = 4

3
κ2 = 2κ3 = 4

3
and ai = 1 in Equation (36) and t = 0, 10, 20. In Figure 4, we observe the

behavior of the function v where v = −iux, κ1 = 4
3
κ2 = 2κ3 = 4

3
and ai = 1 in Equation (36) and

t = −20, 0, 20. For the same special values, Figure 5 gives the density plots of the bosonic functions f1,
f2 and f3 as given in Equation (40).
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Figure 3. The function Im(u) of the three virtual soliton solution of the SKdV1 equation
where κ1 =

4
3
κ2 = 2κ3 =

4
3

and t = 0, 10, 20.
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Figure 4. The function v of the three virtual soliton solution of the SKdV1 equation where
κ1 =

4
3
κ2 = 2κ3 =

4
3

and t = −20, 0, 20.
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Figure 5. The density plots of the functions f1, f2 and f3, respectively from left to right, of
the three virtual soliton solution of the SKdV1 equation where κ1 =
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κ2 = 2κ3 =

4
3
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5. SUSY N = 4 KdV Equation and Virtual Solitons

The SUSY N = 4 KdV equation, as proposed by Popowicz in [6], reads

Γt + Γxxx + 4Γ3
x + 6[Ď+, Ď−](Γx[D̂+, D̂−]Γ) + 12([D̂+, D̂−]Γ)

2Γx = 0 (41)

where Γ is a bosonic superfield and the complex supercovariant derivatives are defined as

D̂± =
1

2
(D1 ± iD2), Ď± =

1

2
(D3 ± iD4) (42)
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where Di = ∂θi + θi∂x for i = 1, 2, 3, 4. Using the relations {Di, Dj} = 2 δij ∂x, where
δij is the Kronecker delta, we have that the supercovariant derivatives Equation (42) satisfy the
anticommutation rules

{D̂µ, Ďν} = 0, {D̂µ, D̂ν} = {Ďµ, Ďν} = (1− δµν)∂x (43)

where µ, ν ∈ {+,−}. Equation (41) can easily be viewed as a generalization of a N = 2 equation.
Indeed, setting θ3 = θ4 = 0 and Γ = 1√

2
A in Equation (41), we retrieve the SmKdV Equation (8).

To construct virtual solitons of N = 2 SUSY extensions, we have considered chiral superfields.
Here, we propose a generalization of this concept. Indeed, we impose the following constraints on the
superfield Γ

D̂+ Γ = 0, Ď+ Γ = 0 (44)

A bosonic superfield Ξ satisfying the chiral conditions Equation (44) has the following general form

Ξ(x, t; θ̂µ, θ̌µ) = u+ θ̂+ ξ + θ̌+ η + θ̂+θ̂− ux + θ̌+θ̌− ux + θ̂+θ̌+ w (45)

+ θ̂+θ̂−θ̌+ ηx + θ̂+θ̌+θ̌− ξx + θ̂−θ̂+θ̌−θ̌+ uxx

where u = u(x, t) and w = w(x, t) are complex valued bosonic functions and ξ = ξ(x, t) and
η = η(x, t) are complex valued fermionic functions. The Grassmann variables in Equation (45) are
defined as θ̂± = 1√

2
(θ1 ± iθ2) and θ̌± = 1√

2
(θ3 ± iθ4). Now, using the chirality conditions Equation (44),

we have D̂+D̂− Γ = Ď+Ď− Γ = Γx and Equation (41) reduces to the classical nonlinear PDE

Γt + Γxxx + 12ΓxΓxx + 16Γ3
x = 0 (46)

Equation (46) is, up to a slight change of variable, similar to Equation (13) for the integrable cases
a = 1, 4. Indeed, we retrieve Equation (13) for a = 1, 4 by casting Γ = − i

12
(a+ 2)Ã in Equation (46).

The above equation can be linearized into the linear dispersive Equation (17) by the change of variable

Γ(x, t; θ̂µ, θ̌µ) =
1

4
log Υ(x, t; θ̂µ, θ̌µ) (47)

Thus to obtain solutions of Equation (41), the superfield Υ must satisfy the constraints

Υt +Υxxx = 0, D̂+Υ = Ď+Υ = 0 (48)

A solution to this system is
Υ = 1 + eΨ1 = 1 + eκ1x−κ3

1t+φ1(θ̂µ,θ̌µ) (49)

where φ is a N = 4 chiral bosonic superfield of the form

φ1 = θ̂+ ζ̂1 + θ̌+ ζ̌1 + (θ̂+θ̂− + θ̌+θ̌−)κ1 + θ̂+θ̌+ λ1 (50)

with ζ̂21 = ζ̌21 = 0 and λ1 is an even constant. This result can thus be generalized to give a N super
virtual soliton solution of the SUSY N = 4 KdV Equation (41) by taking

Υ = 1 +
N∑
i=1

eκix−κ3
i t+φi(θ̂µ,θ̌µ) (51)

where the superfields φi are defined as in Equation (50) for i = 1, ..., N .
It is interesting to note that by setting θ̌+ = 0 in Equation (50), one recovers the superfields

Equation (24).
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6. Concluding Remarks and Future Outlook

In this paper, we have studied special solutions of supersymmetric extensions of the Burgers, KdV
and mKdV equations in a unified way and using a chirality of the superfield A.

We have recovered interacting super soliton solutions (often called KdV type solitons) and an infinite
set of rational similarity solutions. To produce such rational solutions, we have used an SUSY extension
of the Yablonskii–Vorob’ev polynomials. We have introduce a new representation of the τ -functions to
solve the bilinear equations. These τ -functions are N = 2 extensions of classical τ -functions of the
mKdV equation. Till now, in the literature, only N = 1 extensions of the τ -functions were given.

We have shown the existence of non-interacting super soliton solutions, called virtual solitons, for
the Burgers and SKdVa (a = 1, 4). These special solutions are a direct generalization of the solutions
obtained in a recent contribution [5] where N super virtual solitons have been found by setting to zero the
fermionic contributions ξ1 and ξ2 in the bosonic superfield A given as in Equation (1). We retrieve those
solutions by setting ζi = 0 in the exponent terms Equation (37). Thus the chirality property, exposed
in this paper, has produced a nontrivial fermionic sector for a N super virtual soliton. Furthermore, to
obtain such solutions we have related the SUSY equations to linear PDE’s showing the true origin of
those special solutions.

A N = 4 extension of the KdV equation has been shown to produce a N super virtual soliton solution.
The study of N = 4 extensions is quite new to us and we hope in the future to produce a N super soliton
solution with interaction terms.
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