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Abstract: Two-dimensional (2D) functions with wallpaper group symmetry can be written
as Fourier series displaying both translational and point-group symmetry. We elaborate
the symmetry-adapted Fourier series for each of the 17 wallpaper groups. The symmetry
manifests itself through constraints on and relations between the Fourier coefficients.
Visualising the equivalencies of Fourier coefficients by means of discrete 2D maps reveals
how direct-space symmetry is transformed into coefficient-space symmetry. Explicit
expressions are given for the Fourier series and Fourier coefficient maps of both real and
complex functions, readily applicable to the description of the properties of 2D materials
like graphene or boron-nitride.
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1. Introduction

The central concept for describing the structure of crystalline solids is that of the unit cell, the
periodic repetition of which results in a spatially extended crystal exhibiting particular symmetries.
For both three- and two-dimensional (3D and 2D) crystals, the enumeration of possible unit cell
symmetries was first carried out by E.S. Fedorov at the end of the nineteenth century [1-3]. Deriving the
possible (3D or 2D) unit cell symmetries requires combining a crystal’s possible point group symmetry
operations (rotations, rotation-inversions or reflections leaving one point of the crystal lattice invariant)
with translations. It is well known that for three dimensions, this results in 230 so-called “space

groups”. For two dimensions, only 17 planar groups, the so-called “wallpaper groups”, are possible.
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All information on space/wallpaper groups is nowadays collected in the many-volume International
Tables for Crystallography [4-8].

The information compiled in the “International Tables” [4-8] is particularly useful for interpreting
diffraction experiments: X-ray, neutron, and electron diffraction are the de facto methods for crystal
structure determination and provide access not only to a crystal’s space group but also to the contents of
its unit cell. In particular, the notion of extinctions (systematic absences of certain types of reflections
due to specific symmetries present in the structure) is often fundamental for correctly determining a
crystal’s space group.

The crystallinity—in other words, translational periodicity—of a solid is the essential starting-point in
solid-state physics. For example, the quantum theory of electrical conductivity, involving Bloch waves,
completely relies on the repetition of a unit cell for the concepts of reciprocal space and band structures
to be valid (see e.g., [9]). Surprisingly, while the translational periodicity of a solid is used extensively
in theory, considerations concerning the unit cell’s symmetry are far less frequently encountered.

Translational symmetry naturally leads to a Fourier series. Submitting a Fourier series to additional
symmetry constraints then results in relations between Fourier coefficients, or even in the vanishing of
certain terms of the Fourier series. In this paper, we revisit the symmetry-adapted Fourier series for the
planar wallpaper groups, and focus on the symmetry pattern formed by equivalent Fourier coefficients
in 2D discrete coefficient space. Apart from the explicit expressions for the symmetry-adapted Fourier
series and the symmetry relations between Fourier coefficients, we provide visualisations showing how
direct-space symmetry is transformed into coefficient-space symmetry.

In the first sections of the paper (Sections 2—4) we provide a pedestrian approach to the problem, work
out some examples in detail, and make the link with the information contained in the “International
Tables” [4-8] used by crystallographers. The bulk of the paper is formed by the 17 tables with detailed
information on the Fourier series and Fourier coefficients for each of the wallpaper groups (Section 5).
In Section 6, we discuss some points in more detail and summarise our results.

While the paper is hoped to have pedagogical merits, we also strive for completeness and applicability:
The information derived is relevant for present-day materials science. For example, graphene [10], a 2D
honeycomb network of carbon atoms, is at present one of the most extensively investigated materials.
Its equilibrium properties (e.g., electronic density) are expected to display the 2D symmetry of its

underlying atomic structure (wallpaper group p6mm, see below).

2. Two-Dimensional Translational Symmetry

We consider a scalar function f(7) = f(z,y) depending on the spatial coordinates ¥ = x€é, +
yée, = (x,y) of 2D coordinate space; €, = (1,0) and €, = (0, 1) are the basis vectors of the underlying
Cartesian axes system. It is well known that if f is periodic along two linearly independent vectors @

and d», it can be written as a Fourier series

+o0 +oo

0= 5 5 e .

k1=—00 ka=—00
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with
F(ky, k2) = kaby + kabs 2)
where l;l and 52 are obtained from @, = a;,€, + a1,€, and dy = a2,€, + ag,€, via
- 2m L L S o
by = 5 [(GQ : a2)a1 - (Cll ) G2) 2} (3)
- 2L L S
by = 5 [(CH < )dy — (- CL2)G1} 4)
§ = (51 : 51)(52 : 52) - (671 : 52)2 (5)
The Fourier coefficients c;; are obtained by integration,
1 —ikF 3
c,;:i/f(f’)e T i (6)
b

where we have introduced the shorthand notation k = k (k1, ko); X is the area spanned by the vectors @
and dy (most generally, d; and @, define a parallelogram).
In the context of the planar wallpaper groups, d; and d; are of course the (primitive) basis vectors of

a Bravais lattice and b; and b, the associated reciprocal basis vectors, satisfying the property

@i - b = 270 (7
For planar space groups, there are only 5 Bravais lattices. Their primitive basis vectors and reciprocal

basis vectors are summarized in Table 1.

Table 1. Basis vectors (@, @;) and reciprocal basis vectors (by, by) of the 5 planar Bravais
lattices. For the non-centered lattices, @; can always be chosen parallel to €, without loss of
generality. For the hexagonal lattice, the angle between the basis vectors is taken to be 60°
rather than 120°.

a, =a(1,0 by = (1, — %
oblique N L0 b R (L =55)

az = (a2xaa2y) by = é(O, 1)

a, = a(1,0) by = 22(1,0)
rectangular R -

Ao = b(O, 1) bg = f(O, 1)

= a _b 7 11

= -, — = _2 —. T

centered rectangular Cil (2’ . 2) - W(‘l" b)l

az = (5;5) 112 _QW(g;—g)

ay :a(l,O) by = %(170)
square . - o

g = (I(O, 1) bg = 7(0, 1)

a1 =a(l,0) b =2(1, -1
hexagonal Cil a(l )3 ! o ( RE )

dz = a3, y)  be=700,73)

It is easy to show that for f to be real, the condition
=c_g (8)

needs to be fulfilled.
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3. Full Wallpaper Group Symmetry

In addition to translational symmetry, each wallpaper group (except the pl group) displays additional
symmetry: invariance under rotations, reflections and/or glide reflections. Note that the latter are
neither point group nor translational group elements. (The planar crystallographic point groups are
1, 2, m, 2mm, 4, 4mm, 3, 3m, 6 and 6mm [4].) The purpose of the present paper is to derive
restrictions on the Fourier coefficients ¢;; for each of the 16 non-pl wallpaper groups. Indeed, a specific
symmetry requirement (i.e., invariance of f under a certain symmetry operation) must be reflected in
Fourier expansion Equation (1), which is only possible by having certain relations between its Fourier

coefficients [similar to the reality criterion—Equation (8)].

3.1. Rotations

A rotation over ¢ about the origin (or about the “virtual” z-axis) moves a point with coordinates

7= (x,y) to the point 7 with coordinates

F:<x/>:M¢F=<C.OS¢ —singb)(x) ©)
Y sing  cos ¢ Y

Rotating the function rather than the coordinates results in the transformed function f’, given by

f'(7) = f(M'7) (10)

For f to be invariant by the rotation, one must have f = f’ , SO that
PG —1
Z c,;e’k Z c-e* ™) (11)
E

By rewriting the scalar product & - (M7 as
k-(Mj'P) =K -7 (12)

and establishing the relationship between K=K 151 + Kggg and k = k:lgl + kzgg one obtains the
symmetry rule for the ¢;; coefficients associated with a rotation over ¢.

As an example, let us consider ¢ = <F—6-fold rotational symmetry. The matrix M reads
1 V3
Moze =\ ps | (13)
2 2

and the scalar product k - (M N 17 is obtained as

[k (z + V3y) + ky (=32 + )] (14)

l\Dll—

k- (M) =

where k = kye; + kyé,. For a hexagonal lattice—implied by the presence of 6-fold rotational
symmetry—we have (see Table 1) k, = 2T ki and ky, = 7r( %sk:l + %k’g) so that
2m

k- (M) = — (ki — ka)z + ﬁ(/ﬁ + ky)y (15)
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On the other hand, we have for K=K +€; + K, €, that

, 2
K 7=Kua+Ky= le+7( Ky + 2K,y (16)
CL

Equating i - (M;lf) and K - 7 for arbitrary 7 then leads to the system of equations

Ky =k — ko (17)
—K1+2K2 :k1+k2 (18)
from which the dependence K (k) follows:
Kl - kl —_ kg (19)
Ky =k (20)
Recalling Equation (11), we have
= 3 e 07 @
E
and since the range of both double summation indices k and K is the same (Z?), we can write
HGED I T (22)
K
CIR = CE(I?) (23)

with k ([? ) given by the inverse relations of Equations (19) and (20):

ki = Ko (24)
ko = Ky — K, (25)

We can change the notation for the double summation index from Ktokin Equation (22) so that
F) = Z cEeiE'F = Z C’Ee“;"? (26)
k k

Since Fourier coefficients are uniquely defined, we arrive at the following property for the coefficients c;:

. = i (27)

Explicitly:
Chy,—k1+ks = Chy ks (28)
If we perform a second rotation over =&, the function f remains invariant. Therefore, we can repeat

relation Equation (28) and put

C—k1+ka,—k1 = Cko,—k1+ko (29)



Symmetry 2012, 4 384

Continuing to repeat relation Equation (28) leads to the following sequence of equalities:

Chiky = Cha,—kiths = C—kitha,—k1 = C—ky—ky = C—koky—ks = Chi—ka,ky |PO] (30)

It turns out that after six repetitions we are back at c;;, which corresponds to the observation
that repeating rotation M,_ 2n 6 times is equivalent to the identity operation. Any index pair
k= (ki, ky) € Z?* (excluding (ki, k2) = (0,0)) belongs to a set S;; of 6 equivalent indices that cyclically
transform into one another via relation Equation (30).

As aresult, a hexagonal Bravais lattice with a 6-fold rotation axis at its center—i.e., the p6 wallpaper
group—implies that the scalar function f(7°) can be written as

f(f‘) = co0 + Z Chy ko |:6i [k151+k252] -F+ ei [k25’1+(*k1+k2)52} -7 + ei [(fk1+k2)g1fk152] 7 (31)
(kl,kz)GDG

L il mbihabe] 7 i ket —ko)be] 7 i (k)b

where Dg is a domain of (ki1, k) # (0,0) integer pairs that contains exactly one of the 6 equivalent
(k1, k2) pairs of each of the sets of double indices S; defined via Equation (30).

Figure 1. p6 wallpaper group. (a) Map of (ki, k2) points in domain D. Equivalent
points, having equal Fourier coefficients ¢y, j,, are assigned a same color and number. The
points in the top left and bottom right white zones have equivalent points falling outside the
(=5 < ky <5,—5 < ko < 5) range and are therefore not included in D. Note the “distorted”
hexagonal symmetry; (b) Domain Dg containing one representative point of each set Sk, x,.

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
4r 9 4 13 11 8 4 15 -4 4r 15 {4
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kl kl
(a) D (b) Ds

In Figure 1(a) we show the equivalence of (k1, ko) points in the range (—5 < k; < 5,5 < ky < 5)
(forming a domain D). The 6 points of each set Sy, i, are represented by squares with a same color and

number. One can nicely see how the 6-fold rotational symmetry in (x,y) coordinate space is mapped
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onto a “distorted” hexagonal symmetry in (kq, ko) index space. Figure 1(b) shows a possible choice
of Dg for the numbered points in Figure 1(a); the grey points all have an equivalent representative in
the triangle of colored points. The latter can be thought of as a kind of “asymmetric unit” for Fourier
coefficients. It is also reminiscent of the so-called “irreducible (wedge of the) Brillouin zone (IBZ)”,
a.k.a. “representation domain”, which contains only one vector of each star of k in the Brillouin zone
(see e.g., [5], Chapter 1.5 and [7], Chapter 2.2.7). Indeed, from knowledge of the values of the Fourier
coefficients with indices in the minimal domain Dg, the values of the Fourier coefficients with indices
from all coefficient space can be generated by using the symmetry property for Fourier coefficients,
Equation (30).

Fourier series Equation (32) can be elaborated into a more explicit form. The domain Dy shown
in Figure 1(b) contains the points in the range (0 < k1,0 < ko < k;). Combining exponentials with

opposite arguments and using the explicit expressions for 51 and 52 for the hexagonal lattice (see Table 1),

we obtain
Z Z 2 3kix + (k1 + 2k
f(F) — e ) Chon |:COS s [\/_ 1T ( 1 2)?/} (32)
% \/ga
1>0 ko
0<ko<ki
21 [V/3kow + (—2k1 + k2)y] 21 [V3(k1 — ka)z + (k1 + k)]
-+ cos —+ cos

V3a V3a

Interestingly, for the p6 wallpaper group, we see from Equation (30) that

C_p=¢C¢ (33)

from which it follows that the Fourier coefficients of a real p6 function must be real [see Equation (8)].
This is consistent with the explicit Fourier series [Equation (33)], where any imaginary contribution can

only come from imaginary components of the Fourier coefficients cy, g, .

Figure 2. Real function f(7) with p6 symmetry; the only non-zero Fourier coefficients are
crp = —% and c3; = i. Basis vectors of the p6 unit cell as well as the asymmetric unit

(bound by gray lines) are shown.

The power of establishing relation Equation (30) and the therefrom derived Fourier series

Equations (32) and (33) is the reduction of the number of Fourier coefficients. The non-constant part
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f(7¥) — copo can be characterised by 6 times less coefficients than for a “brute-force” approach without
using the analytic result. In Figure 2 we show contours of an exemplary (real) function f(7) with
hexagonal translation symmetry and 6-fold rotational symmetry with only two non-zero independent

Fourier coefficients (c;p = —% and c3; = }1). The hexagonal translation and the 6-fold rotational

symmetry are correctly observed.

3.2. Reflection Axes

A reflection about the d; axis (which can always be chosen parallel to the z-axis without loss of
generality, see Table 1) is achieved by the coordinate transformation

()G
Yy 0 -1 Y

Proceeding as for rotations, we put

ik-(RZ M7 iR (R)F s i
(7)) = f(R;!7T) = Z cpe PRy T ZcEe KB — () = Z cpe’ (35)
k E k
This leads to the following system of Equations:
k1bie + koboy = Kib1p + Kaboy (36)
—kib1y — kabyy = Kby + Kaby, (37)

Continuing with the case of a hexagonal Bravais lattice, we obtain

kv = Ky (38)
ko = K1 — Ky (39)

and the property
Chi ks = Chy k1 —ko (40)

Repeating the reflection results in the identity operation; this is consistent with property Equation (40)
displaying a cycle of 2. Combining this symmetry operation with the 6-fold rotational symmetry of the
preceding subsection results in the p6mm wallpaper group. The resulting restrictions on the Fourier
coefficients are obtained by applying relation Equation (30) to both ¢y, , and ¢, %, —k,, Which leads to

Chyky = Chy—ki+ky = C—kytha—k1 = C—ki,—ky = C—kyki—ky = Cki—ka by (41)

= Chyky—hy = Chi—ka—ky = Ckayhy = Cky—kythy = C—kythaks = Chyky [POMM]

At first sight, we can then write a “reduced” Fourier series for f (i) — ¢oo as in Equation (32) with
the indices running over a domain D, which now covers one-twelfth of the original (k;,ks) space
(excluding (0,0)). However, for some combinations of k; and ks, relation Equation (42) reduces to a
6-cycle. This can be seen in Figure 3(a) where we show the equivalence of (k, ko) points—according
to relation Equation (42)—in a domain D. The points with ks = 0 for example all belong to sets of

only 6 rather than 12 equivalent points. The domain containing representative (ki, ko) points, shown
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in Figure 3(b), can be divided into a subdomain Dg where points display a 6-cycle [Figure 3(c)] and
a subdomain D, where points display a 12-cycle [Figure 3(d)]. The resulting Fourier series therefore
needs to be formulated as

f(F) = ¢+ Z Chr ks |:6i [klgl‘FngZ} -77+ ei [k251+(*k1+k2)52} - + ei [(*lirkz)gl*klgz} T (42)
(k‘l,kz)EDG

+ei[—k151—k252:| ~F+ei|:—k251+(k‘1—k’2)52:| ~F+ ei |:(k1—k2)l;1+k152:| -7

+ E Ckl’k2 |:€i |:k1b1+k2b2j| R + ei |:k‘2b1+(7k1+k‘2)b2i| R + e’i |:(7k1+k2)b17k1b2j| R
(k1,k2)€D12

+ et [—k151—k252} ~F_|_ et [—k251+(k1—k2)52] -F+ et [(k1—k2)§1+k152] T
LB kb iU —ka)Bi—aBa] 7 o[ —habi ] 7

+ ei I:fklg]_+(fk1+k‘2)gg:| N + 6i |:(7k1+k2)51+k21_)‘2 e + ei |:k251+k:1§2:| e

In a way, the coefficients in domain Dy can be considered “doubly degenerate”. Note that technically,
the point (k1 = 0, ks = 0) has a cycle of 1 (identity operation) and forms a domain D; by itself.

The criterion for points (k1, k2) belonging to domain Dg can be easily obtained by realizing that for
(k1, ko) € Dg, the cycle of 6 [Equation (30)] must “intersect” the cyle of 2 [Equation (40)]. We are

therefore looking for solutions of the following 6 systems of Equations:

ky =k
1 1 (43)
k’l - k’g == kz
ki =—ks+k
1 2 + K1 (44)
kl - kg == ]fl
ky = —k
1 2 (45)
kl—kgz—k2+k1
ki = —k
1 1 (46)
kl - kg - —kg
ky =ke—k
1 2 1 (47)
kl - kg - —k’l
ky =k
1 2 (48)
]{Zl - ]{ZQ == kg - kl
The respective solutions are:
kl = 2]€2 (49)
ko = (50)
]{31 == —I{JQ (51)

ki = (52)
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ko = 2k,
]{71 = k’g

388

(53)
(54)

These 6 relations correspond to 6 lines of (k1, k2) points which are visually discernible in Figure 3(a).

Figure 3. p6mm wallpaper group. (a) Map of (k1, k2) points in domain D; equivalent points
are shown with a same color and number. Note the higher symmetry (less representative
points) than for the p6 wallpaper group [see Figure 2(a)]; (b) Domain Dg U D15 containing
representative points; (¢) Domain Dy containing representative points with a cycle of 6;

(d) Domain D5 containing representative points with a cycle of 12.
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The domain DgU D15 shown in Figure 3(b) is defined as the set of points (k1, k) for which 0 < k; and
0<ky < "’2—1 For Dg one has 0 < ky and ko = O or ky = ’“2—1;D12 is defined by 0 < k1 and 0 < ky < "’2—1
The explicit Fourier expansion for a function f(x,y) with p6mm wallpaper group symmetry then reads:

- 27T]€1.I' 27'(']{713/ 47T]€1y:|
r) =cop+2 Cry.0 |2 COS cos + cos
f( ) 0,0 Z k1,0 |: a \/ga \/ga

k1>0

k kiv3 2k
+ 2 Z ckh% |:2COS7T 1 COSTr 1;/_34 + cos T 130}

a a
k1>0
k1 even

2mkox 27 (ky + k2)y 2mkix 27 (k1 — 2ks)y
+4 E E Cly key | COS coS + cos oS
Lk { a V3a a V3a

(55)

k1>0 ko
0<ka< ]%1

27T<k’1 — k’g)l’ 27'('(2]{51 — ng)y:|
S COSs
a \/ga

This rather complicated expression reflects the high symmetry of the p6mm group. (In fact,

-+ co

pbmm has the highest number of symmetry operations of all wallpaper groups.) Note that from this
explicit expression, it follows that for f(7) to have no imaginary part, the coefficients c; need to be
real—consistent with reality criterion Equation (8).

In Figure 4 we have plotted the contours of a real function with one independent non-zero Fourier
coefficient from domain Dg (c2 = }1) and one non-zero coefficient from domain D;s (c2; = —1). The

honeycomb symmetry of the p6mm wallpaper group is nicely recovered.

Figure 4. Real function f(7) with p6mm symmetry; the only non-zero Fourier coefficients
are cp g = 411 and cp; = —1. Basis vectors of the p6mm unit cell as well as the asymmetric

unit (bound by gray lines) are shown.

We stress the importance of the foregoing symmetry analysis: A function displaying wallpaper group
symmetry can be characterised with only a few independent Fourier coefficients. The p6mm wallpaper
group is of particular interest because of the emergence of graphene [10] as a material with remarkable

physical properties and promising applications.

3.3. Glide Reflection Axes

The last category of possible symmetry operations consists of glide reflection axes, combining a

mirror operation about an axis with a translation parallel to that axis (the translation vector being half a
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lattice vector). Let us consider the glide reflection T, with = % = %é’z, transforming the point (z, y)

S0

Imposing invariance of f(z,y) under the transformation T implies

- —1 L
F(T4) = Z ™ = f(7) = Z cpe™ " (57)
k k

to (z/,y') according to

O NI

Because of the translational component of the symmetry operation J, it is insufficient to propose a
Fourier series > cze'® ¥ for f (T 17), equate the scalar products K (k) - 7 and k - (T 17, and solve

-

K (k) as we did for rotational and mirror operations. Instead, we have to introduce a phase factor Az,

FE) = e K0T (58)

k

and equate h,;e”? B and 7' for arbitrary 7. This leads to the following set of Equations:

ei(klblw+kzb2x)% — hE (59)

k1bie + koboy = Kib1, + Kaboy (60)

—kib1y — kabgy = Kibyy + Kaby, (61)

As an example, let us take the wallpaper group pg, which has a rectangular lattice (reciprocal basis
vectors by = 27’7 and by = %’T, see Table 1) and only a glide reflection axis (f = 5—21) as a non-trivial

symmetry operation. Equations (59)—(61) then reduce to

hp =™ = (=M (62)
ki = K, (63)
ky = — Ky (64)

from which the following condition for the Fourier coefficients c;; follows:

Chyiky = (_1)klck1,—k2 [pg] (65)

A function f(7) with pg wallpaper group symmetry can therefore be written as

f(F) _ 0070 + Z Ckhkzei |:k151+k21;2:| N
(k1,k2)eD?

+ Z Cky ko |:€i [k1g1+k252} g + (_1)k1 e’i [lﬂglfkggg} .7 (66)
(k1,k2)€D2

As before, not all points display a cycle of 2 when repeatedly applying the transformation K (15) given
by Equations (63) and (64). Points with k£, = 0 form a domain D; with cycle 1; the remaining points

(k2 # 0) can be mapped onto a domain D of representative points from which all coefficients Chg(DYUDs)
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can be calculated according to property Equation (65). In Equation (66) we have introduced the notation
DY for the domain of points with cycle 1 excluding (0,0): DY = D; \ {(0,0)}. From Equation (65) it
follows that for points in domain D?

o = (1) er, 0 (67)

which implies that ¢, o = 0 for k; odd.

In Figure 5, we visualize the domains D, D? U Dy, D? and D, and the equivalence of Fourier
coefficients. Equivalence through phase factors 1 and —1 is marked by squares and discs, respectively.
Necessarily vanishing Fourier coefficients [due to Equation (67)] are marked by the circle-in-square
symbol “0J”. It is again instructive to elaborate the Fourier expansion for f(z,y) into a more explicit
form (displaying the rectangular lattice parameters a and b and using the (ky, k2 ) ranges for domains D?
and D»). The result reads

2rkix . . 27wk
fla,y) =coot+ Y. ckl,o{cos = isin = } (68)
k1 even
k1#£0

2rk 2rk 2rk 2rk
—i—QZ{ Z ckth{cos T 1:Ccos T 2y+isin T 1xcos T 2y}

a b a b
ko>0 \ k1 even

. 2mkix | 2mkoy 2rkix . 27mkay
+k§d6khk2[ sin a sin b + 12 cos . sin b

Combining reality criterion Equation (8) with pg property Equation (65) results in the requirement
Criky = (— 1)*¢_y, 1,; this requirement indeed removes any imaginary part in expression Equation (69).
It also establishes relations between coefficients within the domain D? U D,. For example, cil = —Cc_11,
or ¢ o = Co,2 from which it follows that ¢, » must be real.

In Figure 6 we have plotted a real function with pg symmetry; the only non-vanishing independent
Fourier coefficients are ¢; ; = % and cz; = 1+ <. (The reality criterion then implies that c_; ; = —% and
c_91 = 1 — 4 are then also non-zero.)
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ko

ko

Figure 5. pg wallpaper group. (a) Map of (k, k2) points in domain D. Equivalent points

are shown with a same color and number; (b) Domain D{ U D, containing representative

points; (¢) Domain DY containing representative points with a cycle of 1, excluding (0, 0);

(d) Domain D, containing representative points with a cycle of 2. The equivalence relation

[Equation (65)] involves a phase factor hy, x, = (—1)*; points outside the representative

domain D} U D, for which hy, 4, =

1 and —1 are marked by squares and discs, respectively.

Vanishing Fourier coefficients are marked by the symbol “{J”.
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Figure 6. Real function f(7) with pg symmetry; the only non-zero independent Fourier
coefficients are ¢;; = % and cy; = 1 4 7. Basis vectors of the pg unit cell as well as the

asymmetric unit (bound by gray lines) are shown.

4. Derivation of Fourier Coefficient Relations

The foregoing examples show how to derive relations between the Fourier coefficients of a function
f(7) with a given wallpaper group symmetry. In particular, we have discussed how to deal with a
6-fold rotation axis, a reflection axis, and a glide reflection axis. In this section, we will elaborate the
symmetry properties of all other possible symmetry operations present in the wallpaper groups, and
provide a summary. The restrictions on the Fourier coefficients for a specific wallpaper group then
follow from combining symmetry properties (for example, the addition of a reflection axis to the group
p6 converts it into the group p6mm). Our goal is to arrive at a table with an entry for each of the 17
wallpaper groups, containing all necessary information, in formulas and in a visualised form, concerning
the Fourier expansion and the associated Fourier coefficients for the symmetry group.

4.1. Rotation Axes

Most wallpaper groups have a rotation axis at the origin of the unit cell. The transformation matrix

for a 2-fold rotation at the origin reads

A (69)
so that equating k - (M ') = K - 7leads to
k- F=K-F (70)
from which it follows that
ki =—-K; (71)
ko = — K> (72)

The Fourier coefficients then obey the following 2-cycle:

Chy ks = C—ky—ks (73)
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In Table 2 we quote this symmetry property (together with the properties of the other symmetry
operations). Note that this results does not depend on the lattice type, i.e., the lattice can be oblique,
rectangular, centered rectangular, square, or hexagonal. The presence of a 2-fold symmetry axis with a
square or hexagonal Bravais lattice implies a higher-order symmetry axis, however (4-fold and 6-fold,
respectively). We therefore only quote the oblique, rectangular and centered rectangular lattices in the
entry for ¢ in Table 2.

Table 2. Fourier coefficient properties for generating symmetry elements of the 16 non-

trivial wallpaper groups.

symmetry operation  Bravais lattice Fourier coefficients wallpaper groups
' oblique Chy ks = C—ky —ks p2
rectangular p2mm, p2mg, p2gg
centered rectangular c2mm
A hexagonal Chyky = C—kytko,—k: p3, p3ml, p3lm
= C—ko k1 —k2
4 square Chy ks = C—koky p4, pdmm, pdgm

= C—ky,—ky = Cko,—k1
® hexagonal Chy ko = Cho,—k1+ke p6, pbmm
= C—kitko,—k1 = C—ki1,—k2

= Cko,k1—ks = Chky—ko k1

reflection axis #1 rectangular Chy ks = Chy,—ko pm, p2mm
square pdmm
centered rectangular ¢y, 1, = Cpy iy cm, c2mm
hexagonal Chy ko = Chy ki —ko p3lm, pbmm

glide reflection axis #1 rectangular Chy ko = (= 1)Frer, g, Py

reflection axis #2 rectangular Chy ko = (—1)F2ck, g, p2mg

glide reflection axis #2 rectangular Chy by = (—1)Frtkae, p299
square pdgm

reflection axis #3 hexagonal Chyky = Choky p3ml

For a 3-fold rotation, the rotation matrix reads

1\
My =| 5 _1 (74)
2 2

The existence of a 3-fold rotation axis implies a hexagonal lattice. With the hexagonal basis vectors
given in Table 1, the equality of the scalar products k- (M n ') and K -Fresults in the following conditions:

k’l == —Kl + K2 (75)
ko = — K, (76)
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The symmetry property for the Fourier coefficients c; then becomes

Chyky = C—kytky,—k1 = C—kok1—ky (77)

displaying—as it should—a 3-cycle.
The 4-fold rotation matrix reads

0 —1
M, s = ( A ) (78)

For a square lattice, required for a 4-fold rotation axis, the relation between k and K reads

kl — _K2 (79)
kg - Kl (80)

which results in the following 4-cycle of Fourier coefficients:

Chiky = C—koky = C—k1,—ky = Cho,—k1 (81)

Note that the requirement for a 2-fold symmetry axis is also fulfilled [Equation (73)].

The case of a 6-fold rotation axis (hexagonal Bravais lattice) has been treated in the previous section
[Equation (30)]. It comprises both the 2-fold and 3-fold rotation axis conditions (and can in fact be
constructed from combining these two).

4.2. Reflection Axes

The wallpaper groups are not distinguishable by rotation axes alone, as shown by the example of the
p6 and p6mm groups in the previous section. Other symmetry operations have to be considered. A first
category is that of reflection axes. In the previous section we have treated the case when the z-axis is a
reflection axis (which we from now on call reflection axis #1), for a hexagonal lattice. Here we consider
the remaining possible lattices.

For a rectangular or a square lattice, Equations (36) and (37) lead to

ki = K, (82)
ky = — K, (83)

so that
Cki,—ky = Cky ko (84)

For a centered rectangular lattice, Equations (36) and (37) result in

ki = Ko (85)
]{32 == Kl (86)

Cko, k1 = Chky ko (87)
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Note that the combination of a rotation axis with a reflection axis can generate additional reflection
axes. For example, in the case of the rectangular lattice with a 2-fold rotation axis, the x-axis being
a reflection axis implies the y-axis also being a reflection axis. Only one of the two reflection axes
is a generating (independent) symmetry element. The choice of which one of the two to include as a
generating element is arbitrary, though. In Table 2, only (conveniently but otherwise arbitrarily chosen)
generating elements are listed.

A second independent reflection axis (labelled #2) is present in the p2mg group (rectangular Bravais
lattice). It is the line parallel to the x-axis and going through the point %2. The transformation law reads

L, (2N . (1 0 x 0
() ()0 (5)

In combination with a rectangular Bravais lattice, the phase factor /;; and the relations k (l? ) read

k= K, (89)
by = — K, (90)
hg = (—1)" (91)

The resulting Fourier symmetry property then reads

(_1)k2ck‘1,—k‘2 = Ck’1,k2 (92)

A third and final generating reflection axis (labelled #3) occurs in the p3m1 group (hexagonal Bravais
lattice). It is the line coinciding with the vector a; + d». The transformation has the same form as that of

x’ 1 x
A= =SFr=[ 2 93

Equating K-7and k - (S7) (no phase factor is required) gives

a rotation and reads

Ll
wl»—tww

[\
w

Ky =k (94)
Ky =k (95)

whence the symmetry property
Chy i1 = Chy ks (96)

4.3. Glide Reflection Axes

In Subsection 3.3 we considered the glide reflection axis encountered in the pg group (glide reflection
axis #1 in Table 2). A second, independent, type of glide reflection axis (labelled #2) is found in the
groups p2gg and p4gm: The line parallel to the z-axis going through the point %2 is the axis, the shift
vector is %1 The transformation reads

L, (2N . (1 0 x &
() () 6) (3
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implying (for rectangular and square lattices)

K=k (98)
Ky = —ks 99)
hi = (=1)k e (100)
so that
(=DM 2, gy = Chyg (101)

This completes our analysis of the Fourier symmetry properties resulting from symmetry operations
encountered in the wallpaper groups; all results are summarized in Table 2.

4.4. Combining Rotation Axes and (Glide) Reflection Axes

With the help of Table 2, the symmetry properties for the Fourier coefficients c; can be derived for all
wallpaper groups. The groups can be divided into two categories based on whether there is a rotation axis
at the origin or not. The groups without a rotation axis are pl (the trivial group), pm, cm and pg; their
symmetry properties can be directly read out from Table 2. (For pl there are no restrictions on c;.) The
groups exhibiting a rotation axis can be further subdivided into groups featuring additional symmetry
elements and groups only containing the rotation axis. The latter are p2, p3, p4 and p6; their symmetry
properties follow immediately from Table 2. The former groups are p2mm, p2mg, p2gg, c2mm, p3ml,
p3lm, pdmm, pdgm and p6mm; their Fourier coefficients obey conditions following from combining
the rotation-axis property with the condition implied by the second (independent) symmetry element.

In Subsection 3.2 we showed how to combine a 6-fold rotational axis with reflection axis #1
resulting in the p6mm wallpaper group of graphene. To illustrate the procedure once more,
we consider the wallpaper group p3ml. The presence of a three-fold rotation axis implies
Chy ks = C—kytho,—k1 = C—ky k1—ko» While reflection axis #3 implies ¢y, 1, = Cg, r,.- Combining these two

properties results in the identity of 6 Fourier coefficients:

Chiy ks = Ckytha,—ky = C—kgkyi—ks = Chaky = Chi—ka,—ky = C—kl,—ki+ko- [P3MI1] (102)

For certain values of (ki,k2) # (0,0), this property breaks down to the identity of only 3
Fourier coefficients (3-cycle). The remaining (k1, ko) combinations exhibit the full 6-cycle given by
Equation (102). It is easy to show that the coefficients with a 3-cycle must obey one of the following

3 equations:

ki = ko (103)
ki =0 (104)
ke =0 (105)
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As before, the presence of cycles allows to take only independent Fourier coefficients from minimal
domains (D3 and Dg, see Figure 7), and to write the general Fourier series for a function f(z,y) with

p3ml symmetry as

f(l‘, y) = coo + Z Chuko |:6i [k151+k252} T + e [(—k1+k2)51—k152} 7 + o [—k251+(k1—k2)52} 7 (106)
(k1,k2)€D3
n Z |:ei [k1B1-tkaba | -7 4 [(—k1+k2)Br—ki B2 -7 L [ kBt (k1 —ka)be ) -7
(kl,kQ)EDG

+ ei |:k251+k152:| - + ei [—k151+(—k’1+/€2)52} - + ei [(kl_k&)gl_k252:| o7

Realising that domain D3 contains the points for which &£, > 0 and ko = 0 or ko = k; (see Figure 7)
and that domain Dg consists of the points with k; > 0 and 0 < ko < k;, we arrive at the following

explicit expression for f(z,y):

27Tk1$ 27Tl€1y 47T]€1y
S COS

T,Y) = Copo + Cky.0 1 Cy k1) | 2 COS co + co
f(z,y) 0,0 Z{(k,o kk:)|: p Ja J3a

k1>0

. kx| 2mkyy 47Tk1y)]
+ i(Cry0 — Chy iy ) | —2cCOs sin + sin

(a0 = G )< a V3a V3a

(107)

2rk 2m(ky — 2k 2mk 2m(2k, — k
+2 Z Chy ko [cos T2 cos (ks 2)y + cos 12T cos (2 2)y
ko a \/g(l a \/g(l
0<ki1<ks

+ cos Ccos Sin

a V3a a V3a
27rk;2:1: . 27T(2]€1 — lfg)y 27T(]€1 — ]{2).73' . 27T(]€1 + kg)y):|
sin — COS Sin
a \/ga a \/ga

27T(k31 — k’g)l‘ 27T(k‘1 + k’g)y 4 (_ oS 27?]{311‘ . 27T(k’1 — 2k2)y

+ cos

For f(z,y) to be real, we combine the reality criterion [Equation (8)] with cg, k, = C_k, —k+k, (S€€
Table 2) and obtain

Czl,kg = Cky k1 —ks (108)

Note that this equation connects points in domain D3 U Dg. Indeed, taking (k1, k2) with k; > 0 and
0 < kg < ky results in cg, py—ky, = Ciy Ky = Cfy py» With (Ky = k1, Ky = k1 — ko) € (D3 U Dg). The
reality criterion for p3m1 therefore imposes further restrictions on the domain D3 U Dg of independent
Fourier coefficients. For example, the coefficient ¢y is equal to the complex conjugate of ¢ 5, and c3 ;
is equal to its own complex conjugate and hence real. In Figure 8, the function with ¢3¢ = ¢5 5 = }L +1

and cy; = ¢5; = —1 as only non-vanishing coefficients is shown.
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Figure 7. p3m1 wallpaper group. (a) Map of (k1, k) points in domain D; equivalent points
are shown with a same color and number; (b) Domain D3 U Dg containing representative

points; (¢) Domain D3 containing representative points with a cycle of 3; (d) Domain Dg

containing representative points with a cycle of 6.
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Figure 8. Real function f(7) with p3m1 symmetry; the only non-zero Fourier coefficients

are cp 9 = 411 +iand cg; = —1 [implying ¢y 5 = i — 1, see Equation (108)]. Basis vectors of

the p3m1 unit cell as well as the asymmetric unit (bound by gray lines) are shown.

4.5. Centering

When using the non-primitive basis for centered rectangular lattices, i.e., the rectangular

400

basis

(a@y; = aé€,, dy = be,), centering should be considered a symmetry operation of the unit cell and has to be

accounted for appropriately.

To distinguish from the case where we use the non-primitive basis vectors (see Table 1), we

write ¢ = (q1, ¢2) and Q= (Q1, Q2) for the Fourier summation indices and ¢; and cg for the Fourier

coefficients. It is easy to show that the relations between k and ¢’ read

@1 = k1 + ko
g2 = k1 — ko
and
¢1+q
by = 12 2
k2ZQ1;QQ

Clearly, the centering transformation law reads

() (1))

A phase factor hg is required for matching Fourier series:

N N
v

3 = S 907
q q
The result reads
@ =
¢ = Q2

hgrge = (=1)77%

(109)
(110)

(111)

(112)

(113)

(114)

(115)
(116)
(117)
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so that the centering symmetry property becomes
(=1)" g0, = Car 00 (118)

from which it immediately follows that coefficients with odd ¢; + ¢» have to vanish.

In Table 3 we list the Fourier coefficient properties for generating symmetry elements of the centered
rectangular wallpaper groups in the non-primitive description. By combining the appropriate symmetry
elements one obtains the Fourier properties for the Fourier coefficients cg:

Ca,q2 = Cqu,—q2 = (_1)Q1+q2cq1,q2 = <_1)q1+%cq17—qg [cm] (119)

_ _ _ _ (_1\a1t+q2
Cargz = C—q1—qo = Cq1,—qo = Cogqr.q0 = (—1) Cq1,q2

= (_1)q1+q2c—q1,—q2 = (_1)Q1+qchu—qz = (_1)Q1+q2c—q1,qz [c2mm)] (120)

Note that the cm and c¢2mm wallpaper groups are obtained by centering the pm and p2mm groups,
respectively. On the level of Fourier expansions, the cm and c2mm Fourier series are simply obtained by
taking the expressions for pm and c2mm, respectively, and excluding the terms for which ¢; + ¢5 is odd.
The c2mm wallpaper group and its Fourier series can also be generated from centering the p2gg group.

Table 3. Fourier coefficient properties for generating symmetry elements of the centered
rectangular wallpaper groups.

symmetry operation Bravais lattice Fourier coefficients wallpaper groups
. _ +

centering centered rectangular ¢, 4, = (—1)""%¢,, ,, cm, 2mm

' centered rectangular  cq, ¢, = C_g, —go c2mm

reflection axis #1 centered rectangular  cg, g, = Cg.01 cm, c2mm

4.6. Structure Factors in Crystallography

The implications of the foregoing mathematical considerations are widely used in crystallography and
crystal structure determination. The periodic function one considers is the electronic density p(r), the

Fourier coefficients of which are known as the structure factors F'(k). The central formula expressing
the space group (wallpaper group) symmetry reads [5,11]

F(k) = F(P~'k)e * (121)

with P and ¢ being the rotation and translation parts of the space group operations (P \f}, respectively.
Elaborating Equation (121) results in symmetry relations for the structure factors and is equivalent
to carrying out the procedures described above for the various types of wallpaper group symmetry
operations. In Vol. B of the “International Tables” [4-8], the functional forms of the Fourier expansions
of the electronic density p(7) are tabulated in a compact way in structure-factor tables for wallpaper
groups (Table A1.4.3.1 in [5]) and space groups (Tables A1.4.3.2-A1.4.3.7 in [5]). Note, however, that in
the “International Tables” [4-8] the 120° rather than the 60° convention for hexagonal lattices (see Table

1) is used. In a (single-crystal) diffraction experiment, the symmetry relations between structure factors
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manifest themselves in the extinction and/or the equal (non-zero) intensity (proportional to |F’ (/Z)\z) of
certain Bragg reflections. The Fourier coefficient maps, labeled “D”, shown throughout this paper and
in Tables 4-22 (see below) are complementary to the information in the “International Tables” [4-8],
and can be thought of as elementary diffraction patterns of functions (structures) with wallpaper group

symmetry.

5. Wallpaper Group Tables

In the preceding sections we have shown how wallpaper group symmetry can be used to construct
maximally-symmetric 2D Fourier series. The derivations and examples given contain many of the
mathematical issues involved. At this point, it should be clear how to proceed for obtaining symmetry
properties of Fourier coefficients and the Fourier series itself for a given wallpaper group.

We have made a systematical investigation of all wallpaper groups; in Tables 4-22 all relevant
wallpaper group information (Fourier coefficients symmetry property, independent Fourier coefficients
domains, Fourier series) is summarized visually and analytically. The upper part of each table contains
the wallpaper group’s label, the Bravais lattice type, the direct and the reciprocal basis vectors. Then,
an example (a contour plot spanning four unit cells of a real function f(x,y)) displaying translational
and point group symmetry is shown; the values of the non-vanishing Fourier coefficients used for the
example are indicated below the contour plot. Basis vectors and a possible choice for the asymmetric unit
are drawn on the figure. Next to the example, the domains showing equivalence of Fourier coefficients
are shown. The total domain D shows which coefficients in the range (—5 < k; < 5, =5 < ky < 5)
are equivalent (equal or opposite); (k1, k2) coordinates with equivalent Fourier coefficients cy, , are
given a same color and number. When not all equivalent (k1, k2) coordinates of a point lie in the range
(=5 < k1 < 5,-5 < ky < 5), that point is left blank and unnumbered. (This occurs only for the
hexagonal wallpaper groups.) To the right of the total domain D, the subdomain D, containing exactly
one independent representative (colored and numbered) of each set of equivalent points is shown; the
remaining points are now shown shaded gray and unnumbered. For D,;,, an infinite number of possible
choices exists; we recall that for a given cycle S;; of Fourier coefficient indices k generated by the
symmetry property for Fourier coefficients, only one pair of indices k should be contained within D
For, e.g., p2 (Table 5), one could equally well take (k1 > 0,ks), (0, ko > 0) rather than (k; > 0,0),
(k1, k2 > 0). Our choices for Dy, are simply based on convenience. In the case of subdomains with
different cycles, the decomposition is shown below D and Dy,. The origin (k1, k) = (0,0) is always
excluded from the subdomain D,,;, (but included in the total domain D), which is why the notation D(f
is used for subdomains with cycle 1 excluding (0, 0). Opposite Fourier coefficients are shown by discs
and squares of the same color and labeled with a same number in the total domain D. In the case of
necessarily vanishing Fourier coefficients, the symbol “{J” is used. Below the example and the domains,
the symmetry property for Fourier coefficients is given. To the right, if applicable, implications of the
symmetry rule on the vanishing of Fourier coefficients (“extinction rules”) are given. Next, an explicit,
symmetry-adapted, expression for the Fourier series of f(z,y) is given, containing only (apart from the
co 0 term) independent coefficients from the subdomain D,,. Finally, an elaborated version of the reality

criterion is given: The complex conjugate of ¢y, r, With (ki,k2) € D is equated to an expression
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involving the same or another coefficient in D,;,,. Implications on the reality of coefficients are given to

the right, if applicable.

For the centered rectangular wallpaper groups cm and c2mm, alternate (non-primitive) versions of
the tables are given as well, with Fourier indices labeled ¢; and ¢» (Tables 9 and 14).

It is interesting to see how for each group, the real-space (point-group) symmetry is converted into
coefficient-space symmetry. Indeed, the distribution of equivalent Fourier coefficients in domain D

also displays rotation axes and mirror axes. Particularly intriguing is how the hexagonal groups divide

coefficient space into 3-, 6- or 12-cycle domains.
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Table 5. p2.
P2 @ = a(1,0) b= Z(1, —22)
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Table 6. pm.
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-5

L S T - e S

MEEEE W e s

EEEEEEEREN

b2 23 20 2 2% 2 28 2 2 A B2

b1l 12 13 14 15 18 7 18 19 2 2

5 = N w & o

L S S - e e

T
S
T
L O

5 -4 -3 -2 -1 0 1 2 3 4 5

ke

5 -4 -3 -2 -1 0 1 2 3 4 5

ke

Dy D;
(k1 #0,0) (k1, ko > 0)
Cky,ky = Chky,—ko
flz,y) =coo+ Z Ch1.0 [cos 2mhye + 7sin 27r(ll<:1m
k170
+ 2 Z Z Chy ko [cos 27r;<:1x cos 27rf2y + 7sin QW;CM cos ZWZ:??J
ki k>0

sk
[R] C—kl,kz = Ckl,kg

€0,k eR
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Table 7. pg.
g a; = a(1,0) Z:):l 25(1,0)
rectangular a> =0(0,1) by = 27(0,1)
FrEEEEEEENEE S EEEEEEEEE

&

o

11 12 13 14 15 16 17 18 19 20 241

L OLIOIORNORIORNO

“ibn 12 18 14 15 16 7 18 19 20 (21

B

22 B (24 B 2 27 B 2B N A RH-2

LIy rs
-OHNOHOHOHOH®
BEHOHONOHONS:

7777777777777777

7777777777777777

(ky even #0,0)

11 12 13 14 15 16 17 18 19 20 21

B
©
O
o
:
O
o
©
o
©)
o
B
&)
5

7777777777777777

Dmin - D(l) U D2
(k1 even #0,0)

AEEEEEE
S

Chkyky = (_1)k1 Cly,—ko

f(x7y) = C0,0 + Z Ck1,0

k1 even
k17#£0

+2)°

k2>0

277']{?11' L. 271']?156]

+ 7s1n
a

2wk x 2rkay .
Cly ko | COS a cos +781n

b

a b

COi

2k x 27rk2y}
s
a b

a b

27k 2k 2k 27k
+ Z Chy ko {—sin e sin iy + 72 cos e sin T 2y}}

[R] Cki by = (_1)

Coky € R
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Table 8. cm.

cm

centered rectangular

-5
10
9
8
7
6
5
4
3

7 11
111—277(11,1,)
1 1
2—27T(a, b)
5
| K
. Y
2 CHEAEY
! (a2 (s =
£ 9 E E ==
g EEEEER
2| 30 31 3R 3B 34 B 3B
) EEEEEEE
- E B EE

ke

Dmin = D(l) U D2

ok B B 4

5 = N w s o

L

Con1 =Ly = _Zi é' (k1 # 0, k1)
C1,1 = C*—l,—l = % (]ﬁ,k‘g <k )
5k : > T * - : : 5 5’75 T 1 : " : : - ; 5
i . .
2k . —H2 2k .. 2
1k . —H1 1k .. 1
& off do o of .. o
Ar = i “f == -
’5 -5 -5 8 9 -5
-5 -4 -3 -2 -1 :1 1 2 3 4 5 -5 -4 -3 -2 1 :1 1 2 3 4 5
DY D,
(k1 # 0, k1) (K1, ko < k1)
Cky,ky = Chko,ky
47'(']451.% 47T]{71$
f(:l‘, y) = Co,0 + Z (& T 7 S1n T

k10

2D D s

k1

ko
kao<k1

|: 27‘((]{?1 + k’g)x
COS COS

a

+ 7 sin

27T(]€1 + ]{32)1‘

a

[R] Cky,—k1

S >k
= Cky ko
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Table 9. cm—non-primitive basis.

cm bl %Tﬂ-(]-?
rectangular by = 27(0,1

7
N

:
.
;
]
{ORIORIORIOEIOENO
fu @ s [@ s @ v @) e [Fah
LR OO IOORIORNO Y
)
;
.

Hoh b sk

Dipin = DY U Dy
cu=c,=—-t+L (q1 even, go even > 0) # (0,0)
C20 =C_9p9 = % (q1 0dd, g> odd > 0)

4 3 2 1 0 1 2 3 4 5

S = N w s o

.
L

L O

DY Dy
(q1 even # 0,0) (¢1 even, gz even > 0)
, (¢1 0dd, g5 odd > 0)

Car.e2 = Cq1,—q2 = (_I)QI+q20q1,q2 = (_1)q1+q2cq1,—q2 Con2m+1 = Cont1,2m = 0
2rquxr .. 2T
r,Y) = ¢ c cos —— +isin ——
f(x,y) 0,0 1+ g 01,0 u + 4
@170
q1 even
2mq 2mqey . . 2T 2Ty
+2 g E + E E Carqa | €08 —— €08 — + isin 08—,

q1 even g2>0 q1 odd g2>0
q2 even q2 odd

X
[R] C—a1,02 = Cqy40 Coq € R
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Table 10. p2mm.
p2mm a(1,0) by = #(1,0)
rectangular d> =0(0,1) by = 27(0,1)
%T”L—“J“— ‘IELJ?C# EEEENREEER EEEEER
BEEEEEEAEN | [ o
s EEEE - EEE . W)
HEs s s s
EEEENREEER
I — J,li Te s 4 s
D= Diin = Do U Dy

— 1
€10 =C1 0= 3

(k1 > 0,k; > 0) # (0,0)

1
C21 = Cy1 = =3
. ] .
4 . 4
2 0 . 2 3 4 540 2
5 3 2 1 kﬂl 1 2 3 5 -5 -4 -3 -2 -1 kOl 1 2 3 4 5
D2 D4
k1> 0,0
( ’ ) (k1>0,]€2>0)
(07 k? > O)
Ckiky = C—k1,—ky = Cki,—ks = C—k1 ko
271']{15[} 27Tk2y
flz,y) =coo+ 2 g Chy 0 €08 — +2 E Coka CO8 —
k1>0 ka>0
2mkyx 2mkoy
+4 E E Chy ky COS oS
a b
k1>0 k>0
*
[R] chy by = Chy iy Chik, € R
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Table 11. p2mg.

410

p2mg

rectangular

o
EEEE
@®® 6|
16 15 14 13
10 9 8 7
4 3 2 .
10 9 8 7
16 15 14 13
B ]
EEEE

.

D ={(0,0)} U Dy U Dy

| =
DN |

IS

.
s EEE

ko
-
T m e = =

L S

D,
(kl > 07 O)
(0, k3 even > 0)

5 = N w w

AR S

5 4 3 2 1 0 1 2 3 4 5
ke

Dmin - D2 U D4
(kl > 07 k2 > O)
(0, k2 even > 0)

-5 3 2 -1 0 1 2 3 4 5

(kl > 0, kz > 0)

Chiy = Cohyymhy = (= 1)y gy = (= 1)y iy

2rkix 21koy
= 2 E 2T L9 § : “nnh2d
f(z,y) €o,0 + Cky,0 COS 4 + C0,k, COS 5
k1>0 ko even
ko>0

co2n+1 =0

2k 2k 2k 27k
+4Z Z Chy ko COS ﬂalx cos 24 _ Z Chy kp SIDL T i 27720

b

k1>0 k2 even ko odd
ko>0 ko>0

a b

[R] Ck17k2 = czl,kg

Chiky € R
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Table 12. p2gg.

p299 a, = a(1,0)
rectangular as =0(0,1)

-

: = ‘

o

oEoHOEEEEEE
u

@ @ [ (=) 1
®

P EHONONEHEEHE

vw
umgs77ssmu1

u
EEEEEEeEe -
o

rrrrgoe:
. o -

7777777777777777

Dmin = D2 U D4
(ky even > 0,0)

C = C* =
bl L (0, k2 even > 0)

)

1
2
1
4

_ k
C12 = C19 =

7777777777777777

7777777777777777

(k1 even > 0,0)
(0, kg even > 0)

(1{31 > 0, ko > 0)

_ _ k1+k _ k1+k _ _
Clyko = C—ky,—ko = (_1) ! 20k1,—k2 - (_1) ! 2C—k1,k2 Co.2n+1 = Con+1,0 = 0
2wk x 2mkay
flz,y) =coo+2 E Chy 0 CO8 —— +2 E Coky CO8 —
k1 even ko even
k1>0 ko>0
+4 E E C cos 2k cos 2mhay E c sin 2mhy e sin 2mhay
K1,k - K1,k
1,R2 a b 1,R2 a b
k1 even \ k2 even ko odd
k1>0 ko>0 ko>0
. 21k | 2mhkoy 2wkix 2mkoy
+4 E — E Chy iy SIIN sin + E Chy ko COS coS
a b a b
k1 odd ko even ko odd
k1>0 ko>0 ko>0

_ >k
[R] Chkyika = Ckl,kg Cly ko eR
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Table 13. c2mm.

) b _ 1
c2mm a = (5,—3) by =27(;, %)
> __ (a b o 1 1
centered rectangular dy = (5,3) by =2m(;, —¢)
af . 4
of = BB
o BB
1k 7 13 . 1
2 of 2 6 12 20 0
al . s (u [. A
Dmin - D2 U D4
1
Co1 = Co1 = 3
*’ (kl > O, |]€2| < kl)
C].,l . Cl,l - _]_
o . da af 4
i T J4 mE
2| 8 42 20 4 . 2
e 3 H1 1+ 7 B . 1
< o ~0 2 of 2 6 2 2 0
b . Ha af 5 u |1 A
T 5 4 3 2 1 0 2 3 4 75 T 5 4 3 2 0 1 2 3 4 5 h
77777 ki S ky
Dy Dy
(kl > 0, :Ekl) (kl > 0, |k2| < kl)
Chkiky = C—ki,—ky = Choky = C—ko,—ky
47'(']{3137 47Tk1y
flz,y) =coo+2 E Chy by COS + Cpy —ky COS 2
k1>0
27?'(]{?1 + ]CQ)iL' 271'(]61 — kg)y
+2 g Cky ko COS oS
a b
ko
|ka|<k1

. >k
[R] Chky ke = Cpy ko Chy ke € R
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Table 14. c2mm—non-primitive basis.
c2mm l;l =
rectangular by =
D: {(0,0)}UD2UD4 Dmin:DQUD4
ci=c¢, =3 (¢1 even > 0, gy even > 0) # (0,0)
Cop=Cho=1 (¢1 0dd > 0, ¢ odd > 0)

=
°
ST

q
nA
R R

,
S

—
NP

CIEGIE

D
(¢1 even > 0,0)

(0,¢2 even > 0) (q1

L S

Dy

(¢1 even > 0, ¢z even > 0)

odd > 0,¢; odd > 0)

=Cqi,—q2 = Cq1,—qp0 = Cqi,q0 = (_1)q1+q20q1,q2
= (_1)q1+q2c—q1,—qz = (_1)q1+q20q1,—q2 = (_1)q1+q26—q1,q2

2rqix 2
flz,y) = coo+2 Z Cgy1,0 COS T +2 Z €045 COS 2Ty

a b
q1>0 g2>0
g1 even g2 even

+4 Z Z + Z Z Chy iy COS 27r§1x oS 27rll)<;2y

@1>0 ¢q2>0 q1>0 ¢2>0
g1 even gz even g odd go odd

Cq1,2

Con2m+1 = Cont1,2m = 0

[R] Cqi,g0 = €

*
q1,92

Coge ER
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Table 15. p4.
N
2
by = 7(1,0)
7z 2
by = ?(07 1)
-5 -4 -3 -2 -1 0 1 2 3 4 5
B Sk s
A | HEEEE
: 4 ol
2 2+ 1 12 13 14 1542
1 1+ 6 7 8 9 1041
o o o ol . 2 3 4 5o
= ~1f -1
2 o 2
B f a
4 f "
s | B
B4 5 2 1 o 1 2 s 4 s
k
Dmin — D4

% 1
€20 =C0 = 74

(k1 > 0,ky > 0)

ok
C21 —62,1 =1

Cky,ky = C—kg k1 = C—ky,—ky = Cko,—k1

k k 2m(—k k
flz,y) = cao+ZZchlk2[cos m(kz + 2y)+cos m(=hor + k1)

a a
k1>0 k2>0

*
R Cky by = Gy by Chik, €R
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Table 16. pdmm.
pdmm a; = a(1,0) by = 2(1,0)
square dy = a(0,1) by = 22(0,1)
EE o & &
EE o B & &
2 B o o B E -
3 4 2 o 1 2 3 a4 5 40
EE :
EE -
EE .
Dmin = D4 U D8
1
Co0 = Co0 =17
i,O 4 1 (k1>0,0§]€2§]€1)
C2,1 = Co1 = —3

af B af 4

o E B E &

2F 11 ~q2 2r .. 2

2 o 1 2 3 4 5 40 2 o 0

-5 -4 -3 -2 -1 kOl 1 2 3 4 5 -5 -4 -3 -2 -1 I: 1 2 3 4 5

D4 D8
kl > 0,0
( 0) (k1> 0,0 < ky < ky)
(k’l > 0, k’l)

Cki,ks = C—kokr = C—ki,—kas = Cko,—k1 = Chki,—ka = Ckok1 = C—ki,ko = C—ko,—k1

21k 21k 2wk 27k
f(m, Z/) = copo+ 2 Z Ck1,0 [cos e + cos T 1y] + 2¢y, 1, COS URAEC Ccos ™Y
k1>0 a a a a

2k 2rk 2rk 2k
+2 Z Chy ko [cos T s =8 2y+cos AT o 1Y

a a a a
ko

0<ko<ky

*
[R] Chkyky = Cpy ko Cyi by € R
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Table 17. p4dgm.
pdgm dy = a(1,0) b = %(1,0)
square a> = a(0,1) by = 2(0,1)
EEE

6 7 8 9 10

4
3
-
,

ko
L S S e S

5 4 8 2 1 0 1 2 3 4 5
ke

Dmin - D4 U D8

cip=cf, = % (ky even > 0,0)
ok 1
Cl2 = Cio 1 (kl > 0, 0< l{,’g < kl)
3 . 13 3t 6 173
2 1 ~42 2r 12 .mz
20 U 2 U 4 0 2 o 0
EEE R RN
D4 D8
ki even > 0,0
( 0) (k1 > 0,0 < ko < ky)
(kl > O, kl)
Cki,ky = C—ka k1 = C—k1,—ky = Cka,—k1 €0,2n+1 = Con41,0 = 0
— k1+k _ k1+k
= (=" 0k, = (1) ey

= (_1)k1+k2c—k1,k2 = (_1)k1+k26—k27—k1

2k 2wk 2k 2k
flx,y) = coo+ 2 ckocosﬂ—lx—l—cosw—ly +4 Cley ky COS 7Tlxcos Ty
) 1, a 1,~F1

a a a
kieven k1>0
k1>0
2wkix 2mkoy
+4 E g + E E Chy ks | COS oS
a a
k1 even ko even k1 odd ko odd

k1>0 0<ko<k: k1>0 0<ko<k:

2mkox 21kyy
-+ cos Ccos
a a

+4 Z Z + Z Z Chy sy | — SIDL 2mhy e sin 2mhzy

a a
k1 even ko odd k1 odd ko even
k1>0 0<ko<ki k1>0 0<ko<k:

. 2mhkox | 27kyy
4+ sin sin
a a

*
(R Chy ks = Chy Chik, € R
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Table 18. p3.

p3
hexagonal

1 1;

C2 = C* = —= + St

,0 2,2 4 8 (kl > O, k2 > 0)
€21 = Cy 9 8

Cky,ky = C—ki+ko,—k1 = C—ko,k1—ko

.f(xv y) = CO,O
2T [\/gk'lﬂf —+ (—k’l —+ 2k2)y]
+ Chy ko [cos
]ijzzjo - T
2m [\/5(—/61 + ko)x — (k1 + kg)y} 27r[—\/§k2:v + (2ky — kg)y}
+ cos + cos
V3a V3a
. A 27'(' [\/§k1$ + (—k‘l -+ 2]€2)y] . 27’(’ [\/g(—kl + ]{?2)1’ — (lﬁ -+ kg)y]
-+ 2 sin —+ sin
V3a V3a
n sin 2 I:—\/gk?gl' + (2]{31 — kg)y} )“
V3a

[R] Ck1—k2,k1 - C]:l,kQ
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Table 19. p3m1.
p3ml @ = a(1,0) b =2(1,— )
hexagonal > = a(3, ‘/7?:) by = (0, \/lg
T (1] " T RN
ot o o o [H [ s s ot 18| (1014
o HE - IEEEE o EEE-
L EE e . "
c WEEEE - BE e ] T
EEsEEEEEE - ] I
*3}'-93512151517 -3 -3r -3
-ar10 4 9.151319 -4 —af -4
D = {(070)}UD3 Dmin :D3UD6
Cog=Chyg=1++1
202 (k1 > 0,0 < ky < ky)
627126271:_1
i 18 i T
Dy Dg
k> 0,0
(k1 0) (k1 > 0,0 < ko < ky)
(k:1>07k1)

Chkiky = C—ki+ko,—k1 = C—kaki—ka = Ckok1 = C—k1,—ki1+kos = Cki—ko,—ko

f(z,y) = coo + Z (Cki.0 + Chy k) [2 cos

k1>0

omhyz 2wk Ak
coS cos ——2Z
a V3a V3a
2k 27Tk1y+ : 47rk;1y)]
sSin sin ——
a \/ga \/ga
21k 21 (k1 — 2k 21k 21 (2k; — k
+2 Z Cy ko [COS ﬂalx CoS m( 1\/5 2)y+cos Waﬂ CoS ( \;5 2)Y
a a

27 (ky — ko) . 27 (ky + ka)y e (_ cos 2k . 2m(ky — 2ko)y

+i(Cky.0 — Chyky) (—2 Ccos

ko
0<ki<ka

+ cos co Sin

a \/ga a \/ga

2rkox | 27(2k1 — ko)y 2m(ky — ko) . 2mw(ky + kg)y)]
S sin — cos sin
a V3a a V3a

+ co

*
[R] Chyk1—ks = Ciy ko Coky ky € R
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Table 20. p31m.
= 7 27 1
p31m ap (1(1, 0) bl 7(1, _Tg)
— 1 V3 T om 2
hexagonal as CL(E, 7> bg = 7(0, —3)
o .sauua.;:i; o s 1s
:  EET:E: T EB o w HE:
2 o5 4 3 2 1 0 1 2 3 4 5 40 2 o 1 2 3 4 540
AT R . s 4 [ e af "
griid | LI . R
kg ki
D = D3 U Dy Dpin = D3 U Dg
1 k
62,0—630—4—1 (kl >O,O§k’2§?1)
Co1 = 612 = -1 %Z (k‘l > 0, k’g Z 2]{31)
A4 5 T A B
Ds Dg

(ki even >0,4)
(ky even > 0,2k)

(kieven >0,0 <k, < &)

(kp even > 0, ky > 2k;)

Chkiky = C—ki+ko,~k1 = C—koki—ks = Cki,k1—ks = C—ko,—k1 = C—Fki+koko

k kiv/3 21k k ki3
f(@,y) = coo + Z Cry 1 {2608 T cos = 13y 1 cog 2T Z'(—28111 T s T 13y
b2 a a a a a
k1>0
k1 even
2k 47k 2k 2mki1vV3
a 0 a a a
( . 27T]€1£L’ 27T]€1\/§’y . 47Tk‘1$):|
+ 1| 2sin Cos —sin ——
a a a
2k x 21 (ky — 2ks)y
+2 Z Z + Z Chy ko [cos oS
k1>0 ko ko a V3a
0<ko<®L  h2>2k
27T(k1 — kg).ﬁl? 27T<k1 + kg)y 27T]€21’ 27T(2k1 — kQ)y
+ cos CcOS cos CcOoS
a V3a a V3a
( . 2tk 27 (k1 — 2ks)y
+ 1| sin cos
a a
. 27T<k1 — kg)l' 271'(]{)1 + kg)y 27Tk21' 27T(2k1 — kg)y>“
— sin COS — sin CcoS
a V3a a V3a

[R] Clo,ky = Czl,kg

Ck1,0 eR
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Table 21. p6.
6 a 1,0 by = 25(1,—-L)
p ai a( ) ) 1= 7 ( T3

> _ (1 V3 7 2 2

hexagonal dy = a(3, %) by = 2(0, 73)
I ;i;,;z;;js f ‘ J
o 9« BEe - 4 o 4
o EE - EE: Bl o T I
o TR T8 o HEE-
1t . 13 . 6 1 1 6 7 8 9 1 1 6 7 8 9 -1
< 0oF 5 4 3 2 1 0 1 2 3 a 5 0 2 o 1 2 3 4 5 -0
-17 9 8 7 6 1 1 6 . 13 . -1 -1k —4-1
T 1 R T
-EE: B EE
74F « o H8 48 J-a -l J-a
o8 L L L NN | SIS N

ke ky
D ={(0,0)} U Ds Diin = Dy
1
Cl,O =c —5
2 (k1> 0,0 < ky < ky)
€31 =C1 =3

Cky,ky = Cho,—k1+ko = C—kitko,~k1 = C—ki,~ks

= Cky,k1—ky = Cki—ko,k1

[\/gkll’ + (—]{31 + ka)y}

2
f(l', y) = CO,O + 2 Z Z Ck1,k2 |:COS
k1>0 ko
0<ka<ky

—+ cos

—+ cos

V3a

21 [V/3kox + (—2k1 + k2)y]

V3a
2 [\/g(kl — k2)$ + (kl + k2)y}

V3a

(R Chy ks = Chy

Chiky € R
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Table 22. p6mm.
> P 2 1
pbmm a; = a(1,0) by = (L — %)
> 1 V3 T2« 2
hexagonal dy = a(3, %) by = 220, %
I TEEEEE- i ‘ T
ab o [« B s e e e ab 4
o EE:EHH: .=T o 1s
; HEH:® : BEB o |
1t 9.. 6 1 1 6.. 9 1 1 5.. 9 1
2 oF 5 4 3 2 1 0 1 2 3 a 5 40 2 o 1 2 3 a4 5 0
-15 9 .. 6 1 1 6 .. 9 -1 -1F -1
.2':=m.zaz.m. " "
JEE AR BE . B
s [« B E e s -4 4| -
55 s u o Z s -sf s
ki

4

D = {(0,0} U Dg U D3

5 4 3 2 -1 0 1 2 3 4 5

ke

Diin = Dg U D12

(k1> 0,0 <hky < &)

ko
L S S e
w
IS
@«

5 4 3 2 1 0 1 2 3 4 5
ki

Dy
(kl > 0, 0)
(ki even >0,4)

D12

(k1>0,0<ky <)

Chki,ky = Cko,—k1+ke = C—ki+ko,—k1 = C—k1,—ka = C—ko,ki—ks = Chki—ko k1

= Cky,k1—ky = Chi—ko,—ky — C—kg,—k1 = C—ki,~k1+ks — C—ki+ko ks = Chko.ky

2k 2k 4k
T,Yy) = coo+ 2 Cry 0|2 cCOS 7T1xcos 7le—l—cos Yy
f(x,y) = co, > e,

k1>0 a \/ga \/ga

k kiv'3 2k
+2 E C, K ZCOSW 1xcosw 1\/—y—l—cosﬂ
k]_, a

2 a a
k1>0
k1 even
2mkix 27 (ky — 2ks)y
+4 E E Chy ko | COS oS 73
a
k1>0 ko 3(1
0<kz<’%1

+ co

S 27TkQ$ 271'(2]61 — k‘g)y

COS

a V3a

27'('(]{31 — kg)(l? 277(k'1 + k2)y

V3a

*
[R] Ckl,k2 = Ck‘l,k‘Q

Cky ko € R
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6. Discussion and Conclusions

Having established Tables 4-22, it is useful to consider some points in more detail.

A first issue is the reality criterion. Trivially, for all wallpaper groups, for f(x,y) to be real, ¢y o must
be real. Considering general coefficients cy, 1, 7 co 0, it follows from Equation (8) and the p2 symmetry
property (Table 5) that for wallpaper groups having a 2-fold rotation axis at the origin, all coefficients
Cr, k, Must be real for f(z,y) to be real. Since in two dimensions a 2-fold rotation axis is equivalent to
an inversion center, we can speak of centrosymmetric and non-centrosymmetric wallpaper groups. The
reality criteria for the non-centrosymmetric groups are summarized in Table 23. As indicated already
when discussing examples in the preceding sections, for a non-centrosymmetric wallpaper group, the
reality criterion imposes further restrictions on the coefficients in the subdomain D,,;,. In general,
a coefficient in D, needs to be equal to the complex conjugate of another coefficient in Dy;,; in
some special cases, this results in the reality of Fourier coefficients (see Table 23). It is important to
note, however, that the definition in terms of matrices of the inversion operation used throughout the
“International Tables” [4—8] is not only that the inversion matrix is the negative of the identity matrix
but also that its determinant is negative. In that sense, there can be no inversion in two dimensions, and
centrosymmetric and non-centrosymmetric wallpaper groups should rather be referred to as displaying

and lacking 2-fold rotational symmetry, respectively.

Table 23. Non-centrosymmetric wallpaper groups and their reality criteria.

Bravais lattice wallpaper group reality criterion
general special
oblique pl Chy kg = C—k1,—ks
rectangular pm Chy kg = C—ky ko cok, €R
bg Clthkg - <_1)klc—k17k2 Co,ky € R
centered rectangular cm Chy kg = Cka—ky Chy—ky €ER
hexagonal 3 Chy ks = Chi—ka k1
p3m1 Clt:l,kg = Ckyk1—ko Coka ks € R
p3lm Chy ks = Cha by Cro €R

A second point is the necessary vanishing of certain Fourier coefficients. As demonstrated in
Section 2, a glide reflection axis introduces a phase factor in the symmetry property for the Fourier
coefficients, which in turn leads to certain Fourier coefficients having to be zero. This occurs for the
groups pg, p2mg, p2gg and p4dgm (all containing a “g” in their label). Observed rules for vanishing
coefficients are ¢y, 11,0 = 0 or ¢p 2,41 = 0, with n € Z. These are analogous to the diffraction extinction
rules associated with the presence of glide reflection axes [4-8]. The centering operation discussed in
Subsection 4.5 also implies Fourier coefficients to be zero (cop 2m+1 = Canti2m = 0, n,m € Z)—in

analogy with the diffraction extinction rules for centered unit cells [4-8].
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Figure 9. Incomplete realisations of the p2gg wallpaper group: (a) cop = 1; (b) co2 = 1;
(¢) c20 = 2c02 = 1; (d) c1,1 = 1. The general asymmetric unit is shown with dashed lines,
the actual asymmetric unit with full lines.

A next issue is that of the notion of a “minimal” Fourier series. To correctly represent a given
wallpaper group symmetry, a Fourier series must indeed contain sufficient non-vanishing Fourier
coefficients resulting in the correct z- and y-dependence. Let us for example consider the group p2gg
(Table 12). Trivially, if we take only the term ¢, o we have no (z, y)-dependence. If we take only cs or
co o different from zero (p2gg symmetry implies ¢; o = cp1 = c_19 = ¢p,—1 = 0) we create a function
with only x- or y-dependence, respectively. This is illustrated in Figure 9(a,b). If we assign, however,
simultaneously both to ¢y and c2 non-zero values, we have a (x,y)-dependent function, but its
periodicity in both x- and y-direction is half that of the intended lattice, and the symmetry of the reduced
unit cell is p2mm [Figure 9(c)]. The series with only c¢;; “switched on” results in a function with the
right translational symmetry, and does indeed have p2gg symmetry, but its asymmetric unit has half the
size of the general p2gg asymmetric unit [Figure 9(d)]: The wallpaper group is actually c2mm (compare
Tables 12 and 14). While independence on x and/or y and periodicity reduction can be relatively easily
avoided by inspecting the explicit expression of the Fourier expansion and including necessary (low-k;
and low-k5) Fourier coefficients, the last observation (a p2g¢g Fourier series displaying c2mm symmetry)
involves more subtle considerations. It can be understood by realising that the p2gg group is a subgroup
of the c2mm group. A rectangular lattice Fourier series with ¢;; = c_;; = c_; -1 = ¢;—1 (and
all other Fourier coefficients equal to zero) fulfills both the symmetry properties of p2gg and c2mm,

which can be clearly seen by comparing the domains D of Tables 12 and 14. Even more, it also
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complies with the symmetry of the p2mm wallpaper group (Table 10), which is also a subgroup of
c2mm (see also Subsection 4.5). The net symmetry will therefore be that of the higher-symmetry group,
c2mm. To have a Fourier series with true p2¢gg (or p2mm) symmetry, it is necessary to include non-zero
coefficients ¢, », with k; 4+ k2 odd, as in the example in Table 12 where both c¢; ; and c¢; » have been
assigned non-zero values. Hence, to avoid apparent higher symmetry, a wallpaper group should be
compared with any supergroup of which it is a subgroup; its pattern of non-zero and equivalent Fourier
coefficients should distinguish itself from that of the supergroup. As a further illustration, let us consider
the wallpaper groups p6 and p6mm (Tables 21 and 22, respectively). The former is a subgroup of the
latter. If the expression for the Fourier expansion for a p6 function contains only Fourier coefficients
that belong to the Dy subdomain of the p6mm group, this will result in a function displaying p6mm
symmetry. A true p6 function therefore needs to contain at least one non-zero Fourier coefficient from the
pbmm-D15 subdomain. The example functions in the preceding sections and in Tables 4-22 have been
selected carefully to yield true wallpaper group symmetry with a small number of non-vanishing Fourier
coefficients (in every example, only two independent coefficients were assigned non-zero values).

A more formal approach for deriving minimal symmetry-adapted functions for the wallpaper groups
involves group theory; each wallpaper group should be decomposed into irreducible representations
(IRREPs) [12]. The terms of the Fourier series developed in this work should then be rearranged
into linear combinations g;(x,y) that belong to the different IRREPs of the wallpaper group. The
linear combinations belonging to the unit representation then display the full wallpaper group symmetry
without apparent higher symmetry [13]. The situation is similar to the decomposition of (planar)
point groups. For example, the lowest-order function displaying 4mm point group symmetry is
G(z,y) = x* + y* or, in polar coordinates, G(r,0) = r*(1 — 2cos? #sin*#). A decomposition of the
wallpaper groups into IRREPs is beyond the scope of the present paper.

Finally, a few suggestions on how to use the Fourier series developed in this work. Our motivation
came from the need of a continuous and infinitely differentiable function with the symmetry of the
graphene lattice—i.e., the p6mm wallpaper group. In the context of solid-state physics, the 2D functions
f(x,y) with wallpaper group symmetry that naturally come to mind are (complex) electronic wave
functions ¢ (x, y) or (real) electronic densities p(z,y) of the new family of 2D materials like graphene
or boron-nitride. Electronic densities can nowadays be calculated from ab-initio principles; a first
application of our calculations could therefore be the fit of an ab-intio obtained electronic density to the
symmetry-adapted Fourier series. By limiting the number of fitted coefficients [calculated numerically
via Equation (6)], one obtains a handy, analytical expression for p(z, y), which can then subsequently be
used in further calculations. If necessary, the extension of the density above and below the atomic plane
can be taken into account by making the Fourier coefficients z-dependent.

Another situation where symmetry-adapted Fourier series could be used is when fitting X-ray
diffraction data to a structural model. Rather than putting atoms in the unit cell and adjusting their
positions and the unit cell’s parameters, one could conceive an approach where a limited number
of Fourier coefficients of the electronic density p(x,y)—responsible for the scattering of X-rays—is
taken as the adjustable parameter set (together with the unit cell’s dimensions), after which an atomic
distribution matching the electronic density p(x,y) can be sought.
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Note that the results obtained here can also be used for identifying or discriminating wallpaper groups
(see e.g., [14]): A numerical calculation of the Fourier coefficients of a given function f(x,y) and
testing for Fourier coefficient symmetry properties can indeed help to distinguish the planar symmetry
of f(z,y).

Planar wallpaper groups are not only relevant for describing 2D crystals but also useful for analysing
surfaces of three-dimensionally periodic crystals, and they can be a tool for studying crystal growth [15].

In summary, it is hoped that the symmetry-adapted Fourier series presented in this paper will turn out

to be useful for dealing with periodic functions in two dimensions in various situations.
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