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Abstract

:

Two-dimensional (2D) functions with wallpaper group symmetry can be written as Fourier series displaying both translational and point-group symmetry. We elaborate the symmetry-adapted Fourier series for each of the 17 wallpaper groups. The symmetry manifests itself through constraints on and relations between the Fourier coefficients. Visualising the equivalencies of Fourier coefficients by means of discrete 2D maps reveals how direct-space symmetry is transformed into coefficient-space symmetry. Explicit expressions are given for the Fourier series and Fourier coefficient maps of both real and complex functions, readily applicable to the description of the properties of 2D materials like graphene or boron-nitride.
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1. Introduction


The central concept for describing the structure of crystalline solids is that of the unit cell, the periodic repetition of which results in a spatially extended crystal exhibiting particular symmetries. For both three- and two-dimensional (3D and 2D) crystals, the enumeration of possible unit cell symmetries was first carried out by E.S. Fedorov at the end of the nineteenth century [1,2,3]. Deriving the possible (3D or 2D) unit cell symmetries requires combining a crystal’s possible point group symmetry operations (rotations, rotation-inversions or reflections leaving one point of the crystal lattice invariant) with translations. It is well known that for three dimensions, this results in 230 so-called “space groups”. For two dimensions, only 17 planar groups, the so-called “wallpaper groups”, are possible. All information on space/wallpaper groups is nowadays collected in the many-volume International Tables for Crystallography [4,5,6,7,8].



The information compiled in the “International Tables” [4,5,6,7,8] is particularly useful for interpreting diffraction experiments: X-ray, neutron, and electron diffraction are the de facto methods for crystal structure determination and provide access not only to a crystal’s space group but also to the contents of its unit cell. In particular, the notion of extinctions (systematic absences of certain types of reflections due to specific symmetries present in the structure) is often fundamental for correctly determining a crystal’s space group.



The crystallinity—in other words, translational periodicity—of a solid is the essential starting-point in solid-state physics. For example, the quantum theory of electrical conductivity, involving Bloch waves, completely relies on the repetition of a unit cell for the concepts of reciprocal space and band structures to be valid (see e.g., [9]). Surprisingly, while the translational periodicity of a solid is used extensively in theory, considerations concerning the unit cell’s symmetry are far less frequently encountered.



Translational symmetry naturally leads to a Fourier series. Submitting a Fourier series to additional symmetry constraints then results in relations between Fourier coefficients, or even in the vanishing of certain terms of the Fourier series. In this paper, we revisit the symmetry-adapted Fourier series for the planar wallpaper groups, and focus on the symmetry pattern formed by equivalent Fourier coefficients in 2D discrete coefficient space. Apart from the explicit expressions for the symmetry-adapted Fourier series and the symmetry relations between Fourier coefficients, we provide visualisations showing how direct-space symmetry is transformed into coefficient-space symmetry.



In the first sections of the paper (Section 2, Section 3 and Section 4) we provide a pedestrian approach to the problem, work out some examples in detail, and make the link with the information contained in the “International Tables” [4,5,6,7,8] used by crystallographers. The bulk of the paper is formed by the 17 tables with detailed information on the Fourier series and Fourier coefficients for each of the wallpaper groups (Section 5). In Section 6, we discuss some points in more detail and summarise our results.



While the paper is hoped to have pedagogical merits, we also strive for completeness and applicability: The information derived is relevant for present-day materials science. For example, graphene [10], a 2D honeycomb network of carbon atoms, is at present one of the most extensively investigated materials. Its equilibrium properties (e.g., electronic density) are expected to display the 2D symmetry of its underlying atomic structure (wallpaper group p6mm, see below).




2. Two-Dimensional Translational Symmetry


We consider a scalar function f(r→)≡f(x,y) depending on the spatial coordinates r→=xe→x+ye→y≡(x,y) of 2D coordinate space; e→x≡(1,0) and e→y≡(0,1) are the basis vectors of the underlying Cartesian axes system. It is well known that if f is periodic along two linearly independent vectors a→1 and a→2, it can be written as a Fourier series


f(r→)=∑k1=−∞+∞∑k2=−∞+∞ck→(k1,k2)eik→(k1,k2)·r→



(1)




with


k→(k1,k2)=k1b→1+k2b→2



(2)




where b→1 and b→2 are obtained from a→1=a1xe→x+a1ye→y and a→2=a2xe→x+a2ye→y via


b→1=2πs(a→2·a→2)a→1−(a→1·a→2)a→2



(3)






b→2=2πs(a→1·a→1)a→2−(a→1·a→2)a→1



(4)






s=(a→1·a→1)(a→2·a→2)−(a→1·a→2)2



(5)




The Fourier coefficients ck→ are obtained by integration,


ck→=1Σ∫Σf(r→)e−ik→·r→dr→



(6)




where we have introduced the shorthand notation k→≡k→(k1,k2); Σ is the area spanned by the vectors a→1 and a→2 (most generally, a→1 and a→2 define a parallelogram).



In the context of the planar wallpaper groups, a→1 and a→2 are of course the (primitive) basis vectors of a Bravais lattice and b→1 and b→2 the associated reciprocal basis vectors, satisfying the property




a→l·b→m=2πδlm



(7)





For planar space groups, there are only 5 Bravais lattices. Their primitive basis vectors and reciprocal basis vectors are summarized in Table 1.



It is easy to show that for f to be real, the condition


ck→*=c−k→



(8)




needs to be fulfilled.




3. Full Wallpaper Group Symmetry


In addition to translational symmetry, each wallpaper group (except the p1 group) displays additional symmetry: invariance under rotations, reflections and/or glide reflections. Note that the latter are neither point group nor translational group elements. (The planar crystallographic point groups are 1, 2, m, 2mm, 4, 4mm, 3, 3m, 6 and 6mm [4].) The purpose of the present paper is to derive restrictions on the Fourier coefficients ck→ for each of the 16 non-p1 wallpaper groups. Indeed, a specific symmetry requirement (i.e., invariance of f under a certain symmetry operation) must be reflected in Fourier expansion Equation (1), which is only possible by having certain relations between its Fourier coefficients [similar to the reality criterion—Equation (8)].



3.1. Rotations


A rotation over ϕ about the origin (or about the “virtual” z-axis) moves a point with coordinates r→=(x,y) to the point r→′ with coordinates


r→′=x′y′=Mϕr→=cosϕ−sinϕsinϕcosϕxy



(9)




Rotating the function rather than the coordinates results in the transformed function f′, given by


f′(r→)=f(Mϕ−1r→)



(10)




For f to be invariant by the rotation, one must have f=f′, so that


∑k→ck→eik→·r→=∑k→ck→eik→·(Mϕ−1r→)



(11)




By rewriting the scalar product k→·(Mϕ−1r→) as


k→·(Mϕ−1r→)=K→·r→



(12)




and establishing the relationship between K→=K1b→1+K2b→2 and k→=k1b→1+k2b→2 one obtains the symmetry rule for the ck→ coefficients associated with a rotation over ϕ.



As an example, let us consider ϕ=2π6—6-fold rotational symmetry. The matrix Mϕ reads


Mϕ=2π6=12−323212



(13)




and the scalar product k→·(Mϕ−1r→) is obtained as


k→·(Mϕ−1r→)=12kx(x+3y)+ky(−3x+y)



(14)




where k→=kxe→x+kye→y. For a hexagonal lattice—implied by the presence of 6-fold rotational symmetry—we have (see Table 1) kx=2πak1 and ky=2πa(−13k1+23k2), so that


k→·(Mϕ−1r→)=2πa(k1−k2)x+2π3a(k1+k2)y



(15)




On the other hand, we have for K→=Kxe→x+Kye→y that


K→·r→=Kxx+Kyy=2πaK1x+2π3a(−K1+2K2)y



(16)




Equating k→·(Mϕ−1r→) and K→·r→ for arbitrary r→ then leads to the system of equations


K1=k1−k2



(17)






−K1+2K2=k1+k2



(18)




from which the dependence K→(k→) follows:


K1=k1−k2



(19)






K2=k1



(20)




Recalling Equation (11), we have


f(r→)=∑k→ck→eiK→(k→)·r→



(21)




and since the range of both double summation indices k→ and K→ is the same (Z2), we can write


f(r→)=∑K→cK→′eiK→·r→



(22)






cK→′=ck→(K→)



(23)




with k→(K→) given by the inverse relations of Equations (19) and (20):


k1=K2



(24)






k2=K2−K1



(25)




We can change the notation for the double summation index from K→ to k→ in Equation (22) so that


f(r→)=∑k→ck→eik→·r→=∑k→ck→′eik→·r→



(26)




Since Fourier coefficients are uniquely defined, we arrive at the following property for the coefficients ck→:


ck→′=ck→



(27)




Explicitly:


ck2,−k1+k2=ck1,k2



(28)




If we perform a second rotation over 2π6, the function f remains invariant. Therefore, we can repeat relation Equation (28) and put


c−k1+k2,−k1=ck2,−k1+k2



(29)




Continuing to repeat relation Equation (28) leads to the following sequence of equalities:


ck1,k2=ck2,−k1+k2=c−k1+k2,−k1=c−k1,−k2=c−k2,k1−k2=ck1−k2,k1[p6]



(30)







It turns out that after six repetitions we are back at ck→, which corresponds to the observation that repeating rotation Mϕ=2π6 6 times is equivalent to the identity operation. Any index pair k→=(k1,k2)∈Z2 (excluding (k1,k2)=(0,0)) belongs to a set Sk→ of 6 equivalent indices that cyclically transform into one another via relation Equation (30).



As a result, a hexagonal Bravais lattice with a 6-fold rotation axis at its center—i.e., the p6 wallpaper group—implies that the scalar function f(r→) can be written as


f(r→)=c0,0+∑(k1,k2)∈D6ck1,k2[eik1b→1+k2b→2·r→+eik2b→1+(−k1+k2)b→2·r→+ei(−k1+k2)b→1−k1b→2·r→+ei−k1b→1−k2b→2·r→+ei−k2b→1+(k1−k2)b→2·r→+ei(k1−k2)b→1+k1b→2·r→]



(31)




where D6 is a domain of (k1,k2)≠(0,0) integer pairs that contains exactly one of the 6 equivalent (k1,k2) pairs of each of the sets of double indices Sk→ defined via Equation (30).



In Figure 1(a) we show the equivalence of (k1,k2) points in the range (−5≤k1≤5,−5≤k2≤5) (forming a domain D). The 6 points of each set Sk1,k2 are represented by squares with a same color and number. One can nicely see how the 6-fold rotational symmetry in (x,y) coordinate space is mapped onto a “distorted” hexagonal symmetry in (k1,k2) index space. Figure 1(b) shows a possible choice of D6 for the numbered points in Figure 1(a); the grey points all have an equivalent representative in the triangle of colored points. The latter can be thought of as a kind of “asymmetric unit” for Fourier coefficients. It is also reminiscent of the so-called “irreducible (wedge of the) Brillouin zone (IBZ)”, a.k.a. “representation domain”, which contains only one vector of each star of k→ in the Brillouin zone (see e.g., [5], Chapter 1.5 and [7], Chapter 2.2.7). Indeed, from knowledge of the values of the Fourier coefficients with indices in the minimal domain D6, the values of the Fourier coefficients with indices from all coefficient space can be generated by using the symmetry property for Fourier coefficients, Equation (30).



Fourier series Equation (32) can be elaborated into a more explicit form. The domain D6 shown in Figure 1(b) contains the points in the range (0<k1,0≤k2<k1). Combining exponentials with opposite arguments and using the explicit expressions for b→1 and b→2 for the hexagonal lattice (see Table 1), we obtain


f(r→)=c0,0+2∑k1>0∑k20≤k2<k1ck1,k2[cos2π3k1x+(−k1+2k2)y3a+cos2π3k2x+(−2k1+k2)y3a+cos2π3(k1−k2)x+(k1+k2)y3a]



(32)




Interestingly, for the p6 wallpaper group, we see from Equation (30) that


c−k→=ck→



(33)




from which it follows that the Fourier coefficients of a real p6 function must be real [see Equation (8)]. This is consistent with the explicit Fourier series [Equation (33)], where any imaginary contribution can only come from imaginary components of the Fourier coefficients ck1,k2.



The power of establishing relation Equation (30) and the therefrom derived Fourier series Equations (32) and (33) is the reduction of the number of Fourier coefficients. The non-constant part f(r→)−c0,0 can be characterised by 6 times less coefficients than for a “brute-force” approach without using the analytic result. In Figure 2 we show contours of an exemplary (real) function f(r→) with hexagonal translation symmetry and 6-fold rotational symmetry with only two non-zero independent Fourier coefficients (c1,0=−12 and c3,1=14). The hexagonal translation and the 6-fold rotational symmetry are correctly observed.




3.2. Reflection Axes


A reflection about the a→1 axis (which can always be chosen parallel to the x-axis without loss of generality, see Table 1) is achieved by the coordinate transformation


r→′=x′y′=Ra→1r→=100−1xy



(34)




Proceeding as for rotations, we put


f′(r→)=f(Ra→1−1r→)=∑k→ck→eik→·(Ra→1−1r→)=∑k→ck→eiK→(k→)·r→=f(r→)=∑k→ck→eik→·r→



(35)




This leads to the following system of Equations:


k1b1x+k2b2x=K1b1x+K2b2x



(36)






−k1b1y−k2b2y=K1b1y+K2b2y



(37)




Continuing with the case of a hexagonal Bravais lattice, we obtain


k1=K1



(38)






k2=K1−K2



(39)




and the property


ck1,k2=ck1,k1−k2



(40)







Repeating the reflection results in the identity operation; this is consistent with property Equation (40) displaying a cycle of 2. Combining this symmetry operation with the 6-fold rotational symmetry of the preceding subsection results in the p6mm wallpaper group. The resulting restrictions on the Fourier coefficients are obtained by applying relation Equation (30) to both ck1,k2 and ck1,k1−k2, which leads to


ck1,k2=ck2,−k1+k2=c−k1+k2,−k1=c−k1,−k2=c−k2,k1−k2=ck1−k2,k1=ck1,k1−k2=ck1−k2,−k2=c−k2,−k1=c−k1,−k1+k2=c−k1+k2,k2=ck2,k1[p6mm]



(41)







At first sight, we can then write a “reduced” Fourier series for f(r→)−c0,0 as in Equation (32) with the indices running over a domain D12 which now covers one-twelfth of the original (k1,k2) space (excluding (0,0)). However, for some combinations of k1 and k2, relation Equation (42) reduces to a 6-cycle. This can be seen in Figure 3(a) where we show the equivalence of (k1,k2) points—according to relation Equation (42)—in a domain D. The points with k2=0 for example all belong to sets of only 6 rather than 12 equivalent points. The domain containing representative (k1,k2) points, shown in Figure 3(b), can be divided into a subdomain D6 where points display a 6-cycle [Figure 3(c)] and a subdomain D12 where points display a 12-cycle [Figure 3(d)]. The resulting Fourier series therefore needs to be formulated as


f(r→)=c0,0+∑(k1,k2)∈D6ck1,k2[eik1b→1+k2b→2·r→+eik2b→1+(−k1+k2)b→2·r→+ei(−k1+k2)b→1−k1b→2·r→+ei−k1b→1−k2b→2·r→+ei−k2b→1+(k1−k2)b→2·r→+ei(k1−k2)b→1+k1b→2·r→]+∑(k1,k2)∈D12ck1,k2[eik1b→1+k2b→2·r→+eik2b→1+(−k1+k2)b→2·r→+ei(−k1+k2)b→1−k1b→2·r→+ei−k1b→1−k2b→2·r→+ei−k2b→1+(k1−k2)b→2·r→+ei(k1−k2)b→1+k1b→2·r→+eik1b→1+(k1−k2)b→2·r→+ei(k1−k2)b→1−k2b→2·r→+ei−k2b→1−k1b→2·r→+ei−k1b→1+(−k1+k2)b→2·r→+ei(−k1+k2)b→1+k2b→2·r→+eik2b→1+k1b→2·r→]



(42)







In a way, the coefficients in domain D6 can be considered “doubly degenerate”. Note that technically, the point (k1=0,k2=0) has a cycle of 1 (identity operation) and forms a domain D1 by itself.



The criterion for points (k1,k2) belonging to domain D6 can be easily obtained by realizing that for (k1,k2)∈D6, the cycle of 6 [Equation (30)] must “intersect” the cyle of 2 [Equation (40)]. We are therefore looking for solutions of the following 6 systems of Equations:


k1=k1k1−k2=k2



(43)






k1=−k2+k1k1−k2=k1



(44)






k1=−k2k1−k2=−k2+k1



(45)






k1=−k1k1−k2=−k2



(46)






k1=k2−k1k1−k2=−k1



(47)






k1=k2k1−k2=k2−k1



(48)




The respective solutions are:


k1=2k2



(49)






k2=0



(50)






k1=−k2



(51)






k1=0



(52)






k2=2k1



(53)






k1=k2



(54)




These 6 relations correspond to 6 lines of (k1,k2) points which are visually discernible in Figure 3(a).



The domain D6∪D12 shown in Figure 3(b) is defined as the set of points (k1,k2) for which 0<k1 and 0≤k2≤k12. For D6 one has 0<k1 and k2=0ork2=k12; D12 is defined by 0<k1 and 0<k2<k12. The explicit Fourier expansion for a function f(x,y) with p6mm wallpaper group symmetry then reads:


f(r→)=c0,0+2∑k1>0ck1,02cos2πk1xacos2πk1y3a+cos4πk1y3a+2∑k1>0k1evenck1,k122cosπk1xacosπk13ya+cos2πk1xa+4∑k1>0∑k20<k2<k12ck1,k2[cos2πk2xacos2π(k1+k2)y3a+cos2πk1xacos2π(k1−2k2)y3a+cos2π(k1−k2)xacos2π(2k1−2k2)y3a]



(55)







This rather complicated expression reflects the high symmetry of the p6mm group. (In fact, p6mm has the highest number of symmetry operations of all wallpaper groups.) Note that from this explicit expression, it follows that for f(r→) to have no imaginary part, the coefficients ck→ need to be real—consistent with reality criterion Equation (8).



In Figure 4 we have plotted the contours of a real function with one independent non-zero Fourier coefficient from domain D6 (c2,0=14) and one non-zero coefficient from domain D12 (c2,1=−1). The honeycomb symmetry of the p6mm wallpaper group is nicely recovered.



We stress the importance of the foregoing symmetry analysis: A function displaying wallpaper group symmetry can be characterised with only a few independent Fourier coefficients. The p6mm wallpaper group is of particular interest because of the emergence of graphene [10] as a material with remarkable physical properties and promising applications.




3.3. Glide Reflection Axes


The last category of possible symmetry operations consists of glide reflection axes, combining a mirror operation about an axis with a translation parallel to that axis (the translation vector being half a lattice vector). Let us consider the glide reflection Tt→, with t→=a→12=a2e→x, transforming the point (x,y) to (x′,y′) according to


r→′=x′y′=Tt→r→=100−1xy+a20



(56)




Imposing invariance of f(x,y) under the transformation Tt→ implies


f(Tt→−1r→)=∑k→ck→eik→·(Tt→−1r→)=f(r→)=∑k→ck→eik→·r→



(57)







Because of the translational component of the symmetry operation Tt→, it is insufficient to propose a Fourier series ∑k→ck→eiK→(k→)·r→ for f(Tt→−1r→), equate the scalar products K→(k→)·r→ and k→·(Tt→−1r→), and solve K→(k→) as we did for rotational and mirror operations. Instead, we have to introduce a phase factor hk→,


f(Tt→−1r→)=∑k→ck→hk→eiK→(k→)·r→



(58)




and equate hk→eiK→(k→)·r→ and eik→·(Tt→−1r→) for arbitrary r→. This leads to the following set of Equations:


ei(k1b1x+k2b2x)a2=hk→



(59)






k1b1x+k2b2x=K1b1x+K2b2x



(60)






−k1b1y−k2b2y=K1b1y+K2b2y



(61)







As an example, let us take the wallpaper group pg, which has a rectangular lattice (reciprocal basis vectors b→1=2πa and b→2=2πb, see Table 1) and only a glide reflection axis (t→=a→12) as a non-trivial symmetry operation. Equations (59)–(61) then reduce to


hk→=eik1π=(−1)k1



(62)






k1=K1



(63)






k2=−K2



(64)




from which the following condition for the Fourier coefficients ck→ follows:


ck1,k2=(−1)k1ck1,−k2[pg]



(65)







A function f(r→) with pg wallpaper group symmetry can therefore be written as


f(r→)=c0,0+∑(k1,k2)∈D10ck1,k2eik1b→1+k2b→2·r→+∑(k1,k2)∈D2ck1,k2eik1b→1+k2b→2·r→+(−1)k1eik1b→1−k2b→2·r→



(66)







As before, not all points display a cycle of 2 when repeatedly applying the transformation K→(k)→ given by Equations (63) and (64). Points with k2=0 form a domain D1 with cycle 1; the remaining points (k2≠0) can be mapped onto a domain D2 of representative points from which all coefficients ck→∉(D10∪D2) can be calculated according to property Equation (65). In Equation (66) we have introduced the notation D10 for the domain of points with cycle 1 excluding (0,0): D10=D1\{(0,0)}. From Equation (65) it follows that for points in domain D10


ck1,0=(−1)k1ck1,0



(67)




which implies that ck1,0=0 for k1 odd.



In Figure 5, we visualize the domains D, D10∪D2, D10 and D2 and the equivalence of Fourier coefficients. Equivalence through phase factors 1 and −1 is marked by squares and discs, respectively. Necessarily vanishing Fourier coefficients [due to Equation (67)] are marked by the circle-in-square symbol “⌼”. It is again instructive to elaborate the Fourier expansion for f(x,y) into a more explicit form (displaying the rectangular lattice parameters a and b and using the (k1,k2) ranges for domains D10 and D2). The result reads


f(x,y)=c0,0+∑k1evenk1≠0ck1,0[cos2πk1xa+isin2πk1xa]+2∑k2>0{∑k1evenck1,k2cos2πk1xacos2πk2yb+isin2πk1xacos2πk2yb+∑k1oddck1,k2−sin2πk1xasin2πk2yb+icos2πk1xasin2πk2yb}



(68)







Combining reality criterion Equation (8) with pg property Equation (65) results in the requirement ck1,k2*=(−1)k1c−k1,k2; this requirement indeed removes any imaginary part in expression Equation (69). It also establishes relations between coefficients within the domain D10∪D2. For example, c1,1*=−c−1,1, or c0,2*=c0,2 from which it follows that c0,2 must be real.



In Figure 6 we have plotted a real function with pg symmetry; the only non-vanishing independent Fourier coefficients are c1,1=12 and c2,1=1+i. (The reality criterion then implies that c−1,1=−12 and c−2,1=1−i are then also non-zero.)





4. Derivation of Fourier Coefficient Relations


The foregoing examples show how to derive relations between the Fourier coefficients of a function f(r→) with a given wallpaper group symmetry. In particular, we have discussed how to deal with a 6-fold rotation axis, a reflection axis, and a glide reflection axis. In this section, we will elaborate the symmetry properties of all other possible symmetry operations present in the wallpaper groups, and provide a summary. The restrictions on the Fourier coefficients for a specific wallpaper group then follow from combining symmetry properties (for example, the addition of a reflection axis to the group p6 converts it into the group p6mm). Our goal is to arrive at a table with an entry for each of the 17 wallpaper groups, containing all necessary information, in formulas and in a visualised form, concerning the Fourier expansion and the associated Fourier coefficients for the symmetry group.



4.1. Rotation Axes


Most wallpaper groups have a rotation axis at the origin of the unit cell. The transformation matrix for a 2-fold rotation at the origin reads


Mϕ=2π2=−100−1



(69)




so that equating k→·(Mϕ−1r→)=K→·r→ leads to


−k→·r→=K→·r→



(70)




from which it follows that


k1=−K1



(71)






k2=−K2



(72)







The Fourier coefficients then obey the following 2-cycle:


ck1,k2=c−k1,−k2



(73)







In Table 2 we quote this symmetry property (together with the properties of the other symmetry operations). Note that this results does not depend on the lattice type, i.e., the lattice can be oblique, rectangular, centered rectangular, square, or hexagonal. The presence of a 2-fold symmetry axis with a square or hexagonal Bravais lattice implies a higher-order symmetry axis, however (4-fold and 6-fold, respectively). We therefore only quote the oblique, rectangular and centered rectangular lattices in the entry for ⬮ in Table 2.



For a 3-fold rotation, the rotation matrix reads


Mϕ=2π3=−12−3232−12



(74)







The existence of a 3-fold rotation axis implies a hexagonal lattice. With the hexagonal basis vectors given in Table 1, the equality of the scalar products k→·(Mϕ−1r→) and K→·r→ results in the following conditions:


k1=−K1+K2



(75)






k2=−K1



(76)




The symmetry property for the Fourier coefficients ck→ then becomes


ck1,k2=c−k1+k2,−k1=c−k2,k1−k2



(77)




displaying—as it should—a 3-cycle.



The 4-fold rotation matrix reads


Mϕ=2π4=0−110



(78)




For a square lattice, required for a 4-fold rotation axis, the relation between k→ and K→ reads


k1=−K2



(79)






k2=K1



(80)




which results in the following 4-cycle of Fourier coefficients:


ck1,k2=c−k2,k1=c−k1,−k2=ck2,−k1



(81)




Note that the requirement for a 2-fold symmetry axis is also fulfilled [Equation (73)].



The case of a 6-fold rotation axis (hexagonal Bravais lattice) has been treated in the previous section [Equation (30)]. It comprises both the 2-fold and 3-fold rotation axis conditions (and can in fact be constructed from combining these two).




4.2. Reflection Axes


The wallpaper groups are not distinguishable by rotation axes alone, as shown by the example of the p6 and p6mm groups in the previous section. Other symmetry operations have to be considered. A first category is that of reflection axes. In the previous section we have treated the case when the x-axis is a reflection axis (which we from now on call reflection axis #1), for a hexagonal lattice. Here we consider the remaining possible lattices.



For a rectangular or a square lattice, Equations (36) and (37) lead to


k1=K1



(82)






k2=−K2



(83)




so that


ck1,−k2=ck1,k2



(84)




For a centered rectangular lattice, Equations (36) and (37) result in


k1=K2



(85)






k2=K1



(86)






ck2,k1=ck1,k2



(87)







Note that the combination of a rotation axis with a reflection axis can generate additional reflection axes. For example, in the case of the rectangular lattice with a 2-fold rotation axis, the x-axis being a reflection axis implies the y-axis also being a reflection axis. Only one of the two reflection axes is a generating (independent) symmetry element. The choice of which one of the two to include as a generating element is arbitrary, though. In Table 2, only (conveniently but otherwise arbitrarily chosen) generating elements are listed.



A second independent reflection axis (labelled #2) is present in the p2mg group (rectangular Bravais lattice). It is the line parallel to the x-axis and going through the point a→24. The transformation law reads


r→′=x′y′=Tt→r→=100−1xy+0a22



(88)




In combination with a rectangular Bravais lattice, the phase factor hk→ and the relations k→(K→) read


k1=K1



(89)






k2=−K2



(90)






hk→=(−1)k2



(91)




The resulting Fourier symmetry property then reads


(−1)k2ck1,−k2=ck1,k2



(92)







A third and final generating reflection axis (labelled #3) occurs in the p3m1 group (hexagonal Bravais lattice). It is the line coinciding with the vector a→1+a→2. The transformation has the same form as that of a rotation and reads


r→′=x′y′=Sr→=123232−12xy



(93)




Equating K→·r→ and k→·(Sr→) (no phase factor is required) gives


K1=k2



(94)






K2=k1



(95)




whence the symmetry property


ck2,k1=ck1,k2



(96)








4.3. Glide Reflection Axes


In SubSection 3.3 we considered the glide reflection axis encountered in the pg group (glide reflection axis #1 in Table 2). A second, independent, type of glide reflection axis (labelled #2) is found in the groups p2gg and p4gm: The line parallel to the x-axis going through the point a→24 is the axis, the shift vector is a→12. The transformation reads


r→′=x′y′=Tt→r→=100−1xy+a12a22



(97)




implying (for rectangular and square lattices)


K1=k1



(98)






K2=−k2



(99)






hk→=(−1)k1+k2



(100)




so that


(−1)k1+k2ck1,−k2=ck1,k2



(101)







This completes our analysis of the Fourier symmetry properties resulting from symmetry operations encountered in the wallpaper groups; all results are summarized in Table 2.




4.4. Combining Rotation Axes and (Glide) Reflection Axes


With the help of Table 2, the symmetry properties for the Fourier coefficients ck→ can be derived for all wallpaper groups. The groups can be divided into two categories based on whether there is a rotation axis at the origin or not. The groups without a rotation axis are p1 (the trivial group), pm, cm and pg; their symmetry properties can be directly read out from Table 2. (For p1 there are no restrictions on ck→.) The groups exhibiting a rotation axis can be further subdivided into groups featuring additional symmetry elements and groups only containing the rotation axis. The latter are p2, p3, p4 and p6; their symmetry properties follow immediately from Table 2. The former groups are p2mm, p2mg, p2gg, c2mm, p3m1, p31m, p4mm, p4gm and p6mm; their Fourier coefficients obey conditions following from combining the rotation-axis property with the condition implied by the second (independent) symmetry element.



In SubSection 3.2 we showed how to combine a 6-fold rotational axis with reflection axis #1 resulting in the p6mm wallpaper group of graphene. To illustrate the procedure once more, we consider the wallpaper group p3m1. The presence of a three-fold rotation axis implies ck1,k2=c−k1+k2,−k1=c−k2,k1−k2, while reflection axis #3 implies ck1,k2=ck2,k1. Combining these two properties results in the identity of 6 Fourier coefficients:


ck1,k2=c−k1+k2,−k1=c−k2,k1−k2=ck2,k1=ck1−k2,−k2=c−k1,−k1+k2.[p3m1]



(102)







For certain values of (k1,k2)≠(0,0), this property breaks down to the identity of only 3 Fourier coefficients (3-cycle). The remaining (k1,k2) combinations exhibit the full 6-cycle given by Equation (102). It is easy to show that the coefficients with a 3-cycle must obey one of the following 3 equations:


k1=k2



(103)






k1=0



(104)






k2=0



(105)







As before, the presence of cycles allows to take only independent Fourier coefficients from minimal domains (D3 and D6, see Figure 7), and to write the general Fourier series for a function f(x,y) with p3m1 symmetry as


f(x,y)=c0,0+∑(k1,k2)∈D3ck1,k2eik1b→1+k2b→2·r→+ei(−k1+k2)b→1−k1b→2·r→+ei−k2b→1+(k1−k2)b→2·r→+∑(k1,k2)∈D6[eik1b→1+k2b→2·r→+ei(−k1+k2)b→1−k1b→2·r→+ei−k2b→1+(k1−k2)b→2·r→+eik2b→1+k1b→2·r→+ei−k1b→1+(−k1+k2)b→2·r→+ei(k1−k2)b→1−k2b→2·r→]



(106)







Realising that domain D3 contains the points for which k1>0 and k2=0ork2=k1 (see Figure 7) and that domain D6 consists of the points with k1>0 and 0<k2<k1, we arrive at the following explicit expression for f(x,y):


f(x,y)=c0,0+∑k1>0{(ck1,0+ck1,k1)[2cos2πk1xacos2πk1y3a+cos4πk1y3a+i(ck1,0−ck1,k1)−2cos2πk1xasin2πk1y3a+sin4πk1y3a]+2∑k20<k1<k2ck1,k2[cos2πk1xacos2π(k1−2k2)y3a+cos2πk2xacos2π(2k1−k2)y3a+cos2π(k1−k2)xacos2π(k1+k2)y3a+i(−cos2πk1xasin2π(k1−2k2)y3a+cos2πk2xasin2π(2k1−k2)y3a−cos2π(k1−k2)xasin2π(k1+k2)y3a)]}



(107)







For f(x,y) to be real, we combine the reality criterion [Equation (8)] with ck1,k2=c−k1,−k1+k2 (see Table 2) and obtain


ck1,k2*=ck1,k1−k2



(108)







Note that this equation connects points in domain D3∪D6. Indeed, taking (k1,k2) with k1>0 and 0≤k2≤k1 results in ck1,k1−k2≡cK1,K2=ck1,k2*, with (K1=k1,K2=k1−k2)∈(D3∪D6). The reality criterion for p3m1 therefore imposes further restrictions on the domain D3∪D6 of independent Fourier coefficients. For example, the coefficient c2,0 is equal to the complex conjugate of c2,2, and c2,1 is equal to its own complex conjugate and hence real. In Figure 8, the function with c2,0=c2,2*=14+i and c2,1=c2,1*=−1 as only non-vanishing coefficients is shown.




4.5. Centering


When using the non-primitive basis for centered rectangular lattices, i.e., the rectangular basis (a→1=ae→x,a→2=be→y), centering should be considered a symmetry operation of the unit cell and has to be accounted for appropriately.



To distinguish from the case where we use the non-primitive basis vectors (see Table 1), we write q→=(q1,q2) and Q→=(Q1,Q2) for the Fourier summation indices and cq→ and cQ→ for the Fourier coefficients. It is easy to show that the relations between k→ and q→ read


q1=k1+k2



(109)






q2=k1−k2



(110)




and


k1=q1+q22



(111)






k2=q1−q22



(112)







Clearly, the centering transformation law reads


r→′=x′y′=Cr→=1001xy+a2b2



(113)




A phase factor hq→ is required for matching Fourier series:


∑q→cq→eiq→·(C−1r→)=∑q→cq→hq→eiQ→(q→)·r→



(114)




The result reads


q1=Q1



(115)






q2=Q2



(116)






hq1,q2=(−1)q1+q2



(117)




so that the centering symmetry property becomes


(−1)q1+q2cq1,q2=cq1,q2



(118)




from which it immediately follows that coefficients with odd q1+q2 have to vanish.



In Table 3 we list the Fourier coefficient properties for generating symmetry elements of the centered rectangular wallpaper groups in the non-primitive description. By combining the appropriate symmetry elements one obtains the Fourier properties for the Fourier coefficients cq→:


cq1,q2=cq1,−q2=(−1)q1+q2cq1,q2=(−1)q1+q2cq1,−q2[cm]



(119)






cq1,q2=c−q1,−q2=cq1,−q2=c−q1,q2=(−1)q1+q2cq1,q2=(−1)q1+q2c−q1,−q2=(−1)q1+q2cq1,−q2=(−1)q1+q2c−q1,q2[c2mm]



(120)







Note that the cm and c2mm wallpaper groups are obtained by centering the pm and p2mm groups, respectively. On the level of Fourier expansions, the cm and c2mm Fourier series are simply obtained by taking the expressions for pm and c2mm, respectively, and excluding the terms for which q1+q2 is odd. The c2mm wallpaper group and its Fourier series can also be generated from centering the p2gg group.




4.6. Structure Factors in Crystallography


The implications of the foregoing mathematical considerations are widely used in crystallography and crystal structure determination. The periodic function one considers is the electronic density ρ(r→), the Fourier coefficients of which are known as the structure factors F(k→). The central formula expressing the space group (wallpaper group) symmetry reads [5,11]


F(k→)=F(P−1k→)e−ik→·t→



(121)




with P and t→ being the rotation and translation parts of the space group operations (P|t→), respectively. Elaborating Equation (121) results in symmetry relations for the structure factors and is equivalent to carrying out the procedures described above for the various types of wallpaper group symmetry operations. In Vol. B of the “International Tables” [4,5,6,7,8], the functional forms of the Fourier expansions of the electronic density ρ(r→) are tabulated in a compact way in structure-factor tables for wallpaper groups (Table A1.4.3.1 in [5]) and space groups (Tables A1.4.3.2–A1.4.3.7 in [5]). Note, however, that in the “International Tables” [4,5,6,7,8] the 120∘ rather than the 60∘ convention for hexagonal lattices (see Table 1) is used. In a (single-crystal) diffraction experiment, the symmetry relations between structure factors manifest themselves in the extinction and/or the equal (non-zero) intensity (proportional to |F(k→)|2) of certain Bragg reflections. The Fourier coefficient maps, labeled “D”, shown throughout this paper and in Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21 and Table 22 (see below) are complementary to the information in the “International Tables” [4,5,6,7,8], and can be thought of as elementary diffraction patterns of functions (structures) with wallpaper group symmetry.





5. Wallpaper Group Tables


In the preceding sections we have shown how wallpaper group symmetry can be used to construct maximally-symmetric 2D Fourier series. The derivations and examples given contain many of the mathematical issues involved. At this point, it should be clear how to proceed for obtaining symmetry properties of Fourier coefficients and the Fourier series itself for a given wallpaper group.



We have made a systematical investigation of all wallpaper groups; in Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21 and Table 22 all relevant wallpaper group information (Fourier coefficients symmetry property, independent Fourier coefficients domains, Fourier series) is summarized visually and analytically. The upper part of each table contains the wallpaper group’s label, the Bravais lattice type, the direct and the reciprocal basis vectors. Then, an example (a contour plot spanning four unit cells of a real function f(x,y)) displaying translational and point group symmetry is shown; the values of the non-vanishing Fourier coefficients used for the example are indicated below the contour plot. Basis vectors and a possible choice for the asymmetric unit are drawn on the figure. Next to the example, the domains showing equivalence of Fourier coefficients are shown. The total domain D shows which coefficients in the range (−5≤k1≤5,−5≤k2≤5) are equivalent (equal or opposite); (k1,k2) coordinates with equivalent Fourier coefficients ck1,k2 are given a same color and number. When not all equivalent (k1,k2) coordinates of a point lie in the range (−5≤k1≤5,−5≤k2≤5), that point is left blank and unnumbered. (This occurs only for the hexagonal wallpaper groups.) To the right of the total domain D, the subdomain Dmin containing exactly one independent representative (colored and numbered) of each set of equivalent points is shown; the remaining points are now shown shaded gray and unnumbered. For Dmin, an infinite number of possible choices exists; we recall that for a given cycle Sk→ of Fourier coefficient indices k→ generated by the symmetry property for Fourier coefficients, only one pair of indices k→ should be contained within Dmin. For, e.g., p2 (Table 5), one could equally well take (k1>0,k2), (0,k2>0) rather than (k1>0,0), (k1,k2>0). Our choices for Dmin are simply based on convenience. In the case of subdomains with different cycles, the decomposition is shown below D and Dmin. The origin (k1,k2)=(0,0) is always excluded from the subdomain Dmin (but included in the total domain D), which is why the notation D10 is used for subdomains with cycle 1 excluding (0,0). Opposite Fourier coefficients are shown by discs and squares of the same color and labeled with a same number in the total domain D. In the case of necessarily vanishing Fourier coefficients, the symbol “⌼” is used. Below the example and the domains, the symmetry property for Fourier coefficients is given. To the right, if applicable, implications of the symmetry rule on the vanishing of Fourier coefficients (“extinction rules”) are given. Next, an explicit, symmetry-adapted, expression for the Fourier series of f(x,y) is given, containing only (apart from the c0,0 term) independent coefficients from the subdomain Dmin. Finally, an elaborated version of the reality criterion is given: The complex conjugate of ck1,k2 with (k1,k2)∈Dmin is equated to an expression involving the same or another coefficient in Dmin. Implications on the reality of coefficients are given to the right, if applicable.



For the centered rectangular wallpaper groups cm and c2mm, alternate (non-primitive) versions of the tables are given as well, with Fourier indices labeled q1 and q2 (Table 9 and Table 14).



It is interesting to see how for each group, the real-space (point-group) symmetry is converted into coefficient-space symmetry. Indeed, the distribution of equivalent Fourier coefficients in domain D also displays rotation axes and mirror axes. Particularly intriguing is how the hexagonal groups divide coefficient space into 3-, 6- or 12-cycle domains.




6. Discussion and Conclusions


Having established Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21 and Table 22, it is useful to consider some points in more detail.



A first issue is the reality criterion. Trivially, for all wallpaper groups, for f(x,y) to be real, c0,0 must be real. Considering general coefficients ck1,k2≠c0,0, it follows from Equation (8) and the p2 symmetry property (Table 5) that for wallpaper groups having a 2-fold rotation axis at the origin, all coefficients ck1,k2 must be real for f(x,y) to be real. Since in two dimensions a 2-fold rotation axis is equivalent to an inversion center, we can speak of centrosymmetric and non-centrosymmetric wallpaper groups. The reality criteria for the non-centrosymmetric groups are summarized in Table 23. As indicated already when discussing examples in the preceding sections, for a non-centrosymmetric wallpaper group, the reality criterion imposes further restrictions on the coefficients in the subdomain Dmin. In general, a coefficient in Dmin needs to be equal to the complex conjugate of another coefficient in Dmin; in some special cases, this results in the reality of Fourier coefficients (see Table 23). It is important to note, however, that the definition in terms of matrices of the inversion operation used throughout the “International Tables” [4,5,6,7,8] is not only that the inversion matrix is the negative of the identity matrix but also that its determinant is negative. In that sense, there can be no inversion in two dimensions, and centrosymmetric and non-centrosymmetric wallpaper groups should rather be referred to as displaying and lacking 2-fold rotational symmetry, respectively.



A second point is the necessary vanishing of certain Fourier coefficients. As demonstrated in Section 2, a glide reflection axis introduces a phase factor in the symmetry property for the Fourier coefficients, which in turn leads to certain Fourier coefficients having to be zero. This occurs for the groups pg, p2mg, p2gg and p4gm (all containing a “g” in their label). Observed rules for vanishing coefficients are c2n+1,0=0 or c0,2n+1=0, with n∈Z. These are analogous to the diffraction extinction rules associated with the presence of glide reflection axes [4,5,6,7,8]. The centering operation discussed in SubSection 4.5 also implies Fourier coefficients to be zero (c2n,2m+1=c2n+1,2m=0, n,m∈Z)—in analogy with the diffraction extinction rules for centered unit cells [4,5,6,7,8].



A next issue is that of the notion of a “minimal” Fourier series. To correctly represent a given wallpaper group symmetry, a Fourier series must indeed contain sufficient non-vanishing Fourier coefficients resulting in the correct x- and y-dependence. Let us for example consider the group p2gg (Table 12). Trivially, if we take only the term c0,0 we have no (x,y)-dependence. If we take only c2,0 or c0,2 different from zero (p2gg symmetry implies c1,0=c0,1=c−1,0=c0,−1=0) we create a function with only x- or y-dependence, respectively. This is illustrated in Figure 9(a,b). If we assign, however, simultaneously both to c2,0 and c0,2 non-zero values, we have a (x,y)-dependent function, but its periodicity in both x- and y-direction is half that of the intended lattice, and the symmetry of the reduced unit cell is p2mm [Figure 9(c)]. The series with only c1,1 “switched on” results in a function with the right translational symmetry, and does indeed have p2gg symmetry, but its asymmetric unit has half the size of the general p2gg asymmetric unit [Figure 9(d)]: The wallpaper group is actually c2mm (compare Table 12 and Table 14). While independence on x and/or y and periodicity reduction can be relatively easily avoided by inspecting the explicit expression of the Fourier expansion and including necessary (low-k1 and low-k2) Fourier coefficients, the last observation (a p2gg Fourier series displaying c2mm symmetry) involves more subtle considerations. It can be understood by realising that the p2gg group is a subgroup of the c2mm group. A rectangular lattice Fourier series with c1,1=c−1,1=c−1,−1=c1,−1 (and all other Fourier coefficients equal to zero) fulfills both the symmetry properties of p2gg and c2mm, which can be clearly seen by comparing the domains D of Table 12 and Table 14. Even more, it also complies with the symmetry of the p2mm wallpaper group (Table 10), which is also a subgroup of c2mm (see also SubSection 4.5). The net symmetry will therefore be that of the higher-symmetry group, c2mm. To have a Fourier series with true p2gg (or p2mm) symmetry, it is necessary to include non-zero coefficients ck1,k2 with k1+k2 odd, as in the example in Table 12 where both c1,1 and c1,2 have been assigned non-zero values. Hence, to avoid apparent higher symmetry, a wallpaper group should be compared with any supergroup of which it is a subgroup; its pattern of non-zero and equivalent Fourier coefficients should distinguish itself from that of the supergroup. As a further illustration, let us consider the wallpaper groups p6 and p6mm (Table 21 and Table 22, respectively). The former is a subgroup of the latter. If the expression for the Fourier expansion for a p6 function contains only Fourier coefficients that belong to the D6 subdomain of the p6mm group, this will result in a function displaying p6mm symmetry. A true p6 function therefore needs to contain at least one non-zero Fourier coefficient from the p6mm-D12 subdomain. The example functions in the preceding sections and in Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21 and Table 22 have been selected carefully to yield true wallpaper group symmetry with a small number of non-vanishing Fourier coefficients (in every example, only two independent coefficients were assigned non-zero values).



A more formal approach for deriving minimal symmetry-adapted functions for the wallpaper groups involves group theory; each wallpaper group should be decomposed into irreducible representations (IRREPs) [12]. The terms of the Fourier series developed in this work should then be rearranged into linear combinations gk→(x,y) that belong to the different IRREPs of the wallpaper group. The linear combinations belonging to the unit representation then display the full wallpaper group symmetry without apparent higher symmetry [13]. The situation is similar to the decomposition of (planar) point groups. For example, the lowest-order function displaying 4mm point group symmetry is G(x,y)=x4+y4 or, in polar coordinates, G(r,θ)=r4(1−2cos2θsin2θ). A decomposition of the wallpaper groups into IRREPs is beyond the scope of the present paper.



Finally, a few suggestions on how to use the Fourier series developed in this work. Our motivation came from the need of a continuous and infinitely differentiable function with the symmetry of the graphene lattice—i.e., the p6mm wallpaper group. In the context of solid-state physics, the 2D functions f(x,y) with wallpaper group symmetry that naturally come to mind are (complex) electronic wave functions ψ(x,y) or (real) electronic densities ρ(x,y) of the new family of 2D materials like graphene or boron-nitride. Electronic densities can nowadays be calculated from ab-initio principles; a first application of our calculations could therefore be the fit of an ab-intio obtained electronic density to the symmetry-adapted Fourier series. By limiting the number of fitted coefficients [calculated numerically via Equation (6)], one obtains a handy, analytical expression for ρ(x,y), which can then subsequently be used in further calculations. If necessary, the extension of the density above and below the atomic plane can be taken into account by making the Fourier coefficients z-dependent.



Another situation where symmetry-adapted Fourier series could be used is when fitting X-ray diffraction data to a structural model. Rather than putting atoms in the unit cell and adjusting their positions and the unit cell’s parameters, one could conceive an approach where a limited number of Fourier coefficients of the electronic density ρ(x,y)—responsible for the scattering of X-rays—is taken as the adjustable parameter set (together with the unit cell’s dimensions), after which an atomic distribution matching the electronic density ρ(x,y) can be sought.



Note that the results obtained here can also be used for identifying or discriminating wallpaper groups (see e.g., [14]): A numerical calculation of the Fourier coefficients of a given function f(x,y) and testing for Fourier coefficient symmetry properties can indeed help to distinguish the planar symmetry of f(x,y).



Planar wallpaper groups are not only relevant for describing 2D crystals but also useful for analysing surfaces of three-dimensionally periodic crystals, and they can be a tool for studying crystal growth [15].



In summary, it is hoped that the symmetry-adapted Fourier series presented in this paper will turn out to be useful for dealing with periodic functions in two dimensions in various situations.
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Figure 1. p6 wallpaper group. (a) Map of (k1,k2) points in domain D. Equivalent points, having equal Fourier coefficients ck1,k2, are assigned a same color and number. The points in the top left and bottom right white zones have equivalent points falling outside the (−5≤k1≤5,−5≤k2≤5) range and are therefore not included in D. Note the “distorted” hexagonal symmetry; (b) Domain D6 containing one representative point of each set Sk1,k2. 
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Figure 2. Real function f(r→) with p6 symmetry; the only non-zero Fourier coefficients are c1,0=−12 and c3,1=14. Basis vectors of the p6 unit cell as well as the asymmetric unit (bound by gray lines) are shown. 






Figure 2. Real function f(r→) with p6 symmetry; the only non-zero Fourier coefficients are c1,0=−12 and c3,1=14. Basis vectors of the p6 unit cell as well as the asymmetric unit (bound by gray lines) are shown.
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Figure 3. p6mm wallpaper group. (a) Map of (k1,k2) points in domain D; equivalent points are shown with a same color and number. Note the higher symmetry (less representative points) than for the p6 wallpaper group [see Figure 2(a)]; (b) Domain D6∪D12 containing representative points; (c) Domain D6 containing representative points with a cycle of 6; (d) Domain D12 containing representative points with a cycle of 12. 






Figure 3. p6mm wallpaper group. (a) Map of (k1,k2) points in domain D; equivalent points are shown with a same color and number. Note the higher symmetry (less representative points) than for the p6 wallpaper group [see Figure 2(a)]; (b) Domain D6∪D12 containing representative points; (c) Domain D6 containing representative points with a cycle of 6; (d) Domain D12 containing representative points with a cycle of 12.
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Figure 4. Real function f(r→) with p6mm symmetry; the only non-zero Fourier coefficients are c2,0=14 and c2,1=−1. Basis vectors of the p6mm unit cell as well as the asymmetric unit (bound by gray lines) are shown. 






Figure 4. Real function f(r→) with p6mm symmetry; the only non-zero Fourier coefficients are c2,0=14 and c2,1=−1. Basis vectors of the p6mm unit cell as well as the asymmetric unit (bound by gray lines) are shown.
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Figure 5. pg wallpaper group. (a) Map of (k1,k2) points in domain D. Equivalent points are shown with a same color and number; (b) Domain D10∪D2 containing representative points; (c) Domain D10 containing representative points with a cycle of 1, excluding (0,0); (d) Domain D2 containing representative points with a cycle of 2. The equivalence relation [Equation (65)] involves a phase factor hk1,k2=(−1)k1; points outside the representative domain D10∪D2 for which hk1,k2=1 and −1 are marked by squares and discs, respectively. Vanishing Fourier coefficients are marked by the symbol “⌼”. 






Figure 5. pg wallpaper group. (a) Map of (k1,k2) points in domain D. Equivalent points are shown with a same color and number; (b) Domain D10∪D2 containing representative points; (c) Domain D10 containing representative points with a cycle of 1, excluding (0,0); (d) Domain D2 containing representative points with a cycle of 2. The equivalence relation [Equation (65)] involves a phase factor hk1,k2=(−1)k1; points outside the representative domain D10∪D2 for which hk1,k2=1 and −1 are marked by squares and discs, respectively. Vanishing Fourier coefficients are marked by the symbol “⌼”.
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Figure 6. Real function f(r→) with pg symmetry; the only non-zero independent Fourier coefficients are c1,1=12 and c2,1=1+i. Basis vectors of the pg unit cell as well as the asymmetric unit (bound by gray lines) are shown. 






Figure 6. Real function f(r→) with pg symmetry; the only non-zero independent Fourier coefficients are c1,1=12 and c2,1=1+i. Basis vectors of the pg unit cell as well as the asymmetric unit (bound by gray lines) are shown.
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Figure 7. p3m1 wallpaper group. (a) Map of (k1,k2) points in domain D; equivalent points are shown with a same color and number; (b) Domain D3∪D6 containing representative points; (c) Domain D3 containing representative points with a cycle of 3; (d) Domain D6 containing representative points with a cycle of 6. 






Figure 7. p3m1 wallpaper group. (a) Map of (k1,k2) points in domain D; equivalent points are shown with a same color and number; (b) Domain D3∪D6 containing representative points; (c) Domain D3 containing representative points with a cycle of 3; (d) Domain D6 containing representative points with a cycle of 6.
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Figure 8. Real function f(r→) with p3m1 symmetry; the only non-zero Fourier coefficients are c2,0=14+i and c2,1=−1 [implying c2,2=14−i, see Equation (108)]. Basis vectors of the p3m1 unit cell as well as the asymmetric unit (bound by gray lines) are shown. 






Figure 8. Real function f(r→) with p3m1 symmetry; the only non-zero Fourier coefficients are c2,0=14+i and c2,1=−1 [implying c2,2=14−i, see Equation (108)]. Basis vectors of the p3m1 unit cell as well as the asymmetric unit (bound by gray lines) are shown.
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Figure 9. Incomplete realisations of the p2gg wallpaper group: (a) c2,0=1; (b) c0,2=1; (c) c2,0=2c0,2=1; (d) c1,1=1. The general asymmetric unit is shown with dashed lines, the actual asymmetric unit with full lines. 






Figure 9. Incomplete realisations of the p2gg wallpaper group: (a) c2,0=1; (b) c0,2=1; (c) c2,0=2c0,2=1; (d) c1,1=1. The general asymmetric unit is shown with dashed lines, the actual asymmetric unit with full lines.
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Table 1. Basis vectors (a→1,a→2) and reciprocal basis vectors (b→2,b→2) of the 5 planar Bravais lattices. For the non-centered lattices, a→1 can always be chosen parallel to e→x without loss of generality. For the hexagonal lattice, the angle between the basis vectors is taken to be 60∘ rather than 120∘.






Table 1. Basis vectors (a→1,a→2) and reciprocal basis vectors (b→2,b→2) of the 5 planar Bravais lattices. For the non-centered lattices, a→1 can always be chosen parallel to e→x without loss of generality. For the hexagonal lattice, the angle between the basis vectors is taken to be 60∘ rather than 120∘.





	
oblique

	
a→1=a(1,0)

	
b→1=2πa(1,−a2xa2y)




	
a→2=(a2x,a2y)

	
b→2=2πa2y(0,1)




	
rectangular

	
a→1=a(1,0)

	
b→1=2πa(1,0)




	
a→2=b(0,1)

	
b→2=2πb(0,1)




	
centered rectangular

	
a→1=(a2,−b2)

	
b→1=2π(1a,1b)




	
a→2=(a2,b2)

	
b→2=2π(1a,−1b)




	
square

	
a→1=a(1,0)

	
b→1=2πa(1,0)




	
a→2=a(0,1)

	
b→2=2πa(0,1)




	
hexagonal

	
a→1=a(1,0)

	
b→1=2πa(1,−13)




	
a→2=a(12,32)

	
b→2=2πa(0,23)
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Table 2. Fourier coefficient properties for generating symmetry elements of the 16 non-trivial wallpaper groups.






Table 2. Fourier coefficient properties for generating symmetry elements of the 16 non-trivial wallpaper groups.











	symmetry operation
	Bravais lattice
	Fourier coefficients
	wallpaper groups





	⬮
	oblique
	ck1,k2=c−k1,−k2
	p2



	
	rectangular
	
	p2mm, p2mg, p2gg



	
	centered rectangular
	
	c2mm



	▲
	hexagonal
	ck1,k2=c−k1+k2,−k1
	p3, p3m1, p31m



	
	
	ck1,k2=c−k2,k1−k2
	



	◆
	square
	ck1,k2=c−k2,k1
	p4, p4mm, p4gm



	
	
	ck1,k2=c−k1,−k2=ck2,−k1
	



	⬢
	hexagonal
	ck1,k2=ck2,−k1+k2
	p6, p6mm



	
	
	ck1,k2=c−k1+k2,−k1=c−k1,−k2
	



	
	
	ck1,k2=c−k2,k1−k2=ck1−k2,k1
	



	reflection axis #1
	rectangular
	ck1,k2=ck1,−k2
	pm, p2mm



	
	square
	
	p4mm



	
	centered rectangular
	ck1,k2=ck2,k1
	cm, c2mm



	
	hexagonal
	ck1,k2=ck1,k1−k2
	p31m, p6mm



	glide reflection axis #1
	rectangular
	ck1,k2=(−1)k1ck1,−k2
	pg



	reflection axis #2
	rectangular
	ck1,k2=(−1)k2ck1,−k2
	p2mg



	glide reflection axis #2
	rectangular
	ck1,k2=(−1)k1+k2ck1,−k2
	p2gg



	
	square
	
	p4gm



	reflection axis #3
	hexagonal
	ck1,k2=ck2,k1
	p3m1
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Table 3. Fourier coefficient properties for generating symmetry elements of the centered rectangular wallpaper groups.






Table 3. Fourier coefficient properties for generating symmetry elements of the centered rectangular wallpaper groups.





	symmetry operation
	Bravais lattice
	Fourier coefficients
	wallpaper groups





	centering
	centered rectangular
	cq1,q2=(−1)q1+q2cq1,q2
	cm, c2mm



	⬮
	centered rectangular
	cq1,q2=c−q1,−q2
	c2mm



	reflection axis #1
	centered rectangular
	cq1,q2=cq2,q1
	cm, c2mm
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Table 4. p1.






Table 4. p1.





	
p1

oblique

	
a→1=a(1,0)a→2=(a2x,a2y)

	
b→1=2πa(1,−a2xa2y)b→2=2πa2y(0,1)




	
 [image: Symmetry 04 00379 i001]

	
 [image: Symmetry 04 00379 i002]

	
 [image: Symmetry 04 00379 i003]




	

	
D={(0,0)}∪D10

	
Dmin=D10




	
c0,1=c0,−1*=−2+4ic1,0=c−1,0*=1−12i

	

	
(k1,k2)≠(0,0)




	
ck1,k2




	
f(x,y)=c0,0+∑(k1,k2)≠(0,0)ck1,k2[cos2πk1a2yx+(−k1a2x+k2a)yaa2y




	
f(x,y)=c0,0+∑(k1,k2)≠(0,0)ck1,k2[+isin2πk1a2yx+(−k1a2x+k2a)yaa2y]




	
[R]c−k1,−k2=ck1,k2*
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Table 5. p2.






Table 5. p2.





	
p2

oblique

	
a→1=a(1,0)a→2=(a2x,a2y)

	
b→1=2πa(1,−a2xa2y)b→2=2πa2y(0,1)




	
 [image: Symmetry 04 00379 i004]

	
 [image: Symmetry 04 00379 i005]

	
 [image: Symmetry 04 00379 i006]




	

	
D={(0,0)}∪D2

	
Dmin=D2




	
c0,1=c0,1*=−14c1,1=c1,1*=1

	

	
(k1>0,0)(k1,k2>0)




	
ck1,k2=c−k1,−k2




	
f(x,y)=c0,0+2∑k1>0ck1,0cos2πk1(a2yx−a2xy)aa2y




	
f(x,y)=c0,0+2∑k1∑k2>0ck1,k2cos2πk1a2yx+(−k1a2x+k2a)yaa2y




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R
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Table 6. pm.






Table 6. pm.





	
pm

rectangular

	
a→1=a(1,0)a→2=b(0,1)

	
b→1=2πa(1,0)b→2=2πb(0,1)




	
 [image: Symmetry 04 00379 i007]

	
 [image: Symmetry 04 00379 i008]

	
 [image: Symmetry 04 00379 i009]




	

	
D={(0,0)}∪D10∪D2

	
Dmin=D10∪D2




	
c1,0=c−1,0*=−14+18ic1,1=c−1,1*=1−14i

	

	
(k1≠0,0)(k1,k2>0)




	

	
 [image: Symmetry 04 00379 i010]

	
 [image: Symmetry 04 00379 i011]




	

	
D10

	
D2




	

	
(k1≠0,0)

	
(k1,k2>0)




	
ck1,k2=ck1,−k2




	
f(x,y)=c0,0+∑k1≠0ck1,0cos2πk1xa+isin2πk1xa




	
f(x,y)=c0,0+2∑k1∑k2>0ck1,k2cos2πk1xacos2πk2yb+isin2πk1xacos2πk2yb




	
[R]c−k1,k2=ck1,k2*

	
c0,k2∈R
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Table 7. pg.






Table 7. pg.





	
pg

rectangular

	
a→1=a(1,0)a→2=b(0,1)

	
b→1=2πa(1,0)b→2=2πb(0,1)




	
 [image: Symmetry 04 00379 i012]

	
 [image: Symmetry 04 00379 i013]

	
 [image: Symmetry 04 00379 i014]




	

	
D={(0,0)}∪D10∪D2

	
Dmin=D10∪D2




	
c1,1=−c−1,1*=12c2,1=c−2,1*=1+i

	

	
(k1even≠0,0)(k1,k2>0)




	

	
 [image: Symmetry 04 00379 i015]

	
 [image: Symmetry 04 00379 i016]




	

	
D10

	
D2




	

	
(k1even≠0,0)

	
(k1,k2>0)




	
ck1,k2=(−1)k1ck1,−k2

	
c2n+1,0=0




	
f(x,y)=c0,0+∑k1evenk1≠0ck1,0[cos2πk1xa+isin2πk1xa]




	
f(x,y)=c0,0+2∑k2>0{∑k1evenck1,k2cos2πk1xacos2πk2yb+isin2πk1xacos2πk2yb




	
f(x,y)=c0,0+2∑k2>0{+∑k1oddck1,k2−sin2πk1xasin2πk2yb+icos2πk1xasin2πk2yb}




	
[R]c−k1,k2=(−1)k1ck1,k2*

	
c0,k2∈R
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Table 8. cm.






Table 8. cm.





	
cm

centered rectangular

	
a→1=(a2,−b2)a→2=(a2,b2)

	
b→1=2π(1a,1b)b→2=2π(1a,−1b)




	
 [image: Symmetry 04 00379 i017]

	
 [image: Symmetry 04 00379 i018]

	
 [image: Symmetry 04 00379 i019]




	

	
D={(0,0)}∪D10∪D2

	
Dmin=D10∪D2




	
c0,1=c−1,0*=−14+18ic1,1=c−1,−1*=18

	

	
(k1≠0,k1)(k1,k2<k1)




	

	
 [image: Symmetry 04 00379 i020]

	
 [image: Symmetry 04 00379 i021]




	

	
D10

	
D2




	

	
(k1≠0,k1)

	
(k1,k2<k1)




	
ck1,k2=ck2,k1




	
f(x,y)=c0,0+∑k1≠0ck1,k1[cos4πk1xa+isin4πk1xa]




	
f(x,y)=c0,0+2∑k1∑k2k2<k1ck1,k2[cos2π(k1+k2)xacos2π(−k1+k2)yb




	
f(x,y)=c0,0+2∑k1∑k2k2<k1ck1,k2[+isin2π(k1+k2)xacos2π(−k1+k2)yb]




	
[R]c−k2,−k1=ck1,k2*

	
ck1,−k1∈R
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Table 9. cm—non-primitive basis.






Table 9. cm—non-primitive basis.





	
cm

rectangular

	
a→1=a(1,0)a→2=b(0,1)

	
b→1=2πa(1,0)b→2=2πb(0,1)




	
 [image: Symmetry 04 00379 i022]

	
 [image: Symmetry 04 00379 i023]

	
 [image: Symmetry 04 00379 i024]




	

	
D={(0,0)}∪D10∪D2

	
Dmin=D10∪D2




	
c1,1=c−1,1*=−14+18ic2,0=c−2,0*=18

	

	
(q1even,q2even≥0)≠(0,0)(q1odd,q2odd>0)




	

	
 [image: Symmetry 04 00379 i025]

	
 [image: Symmetry 04 00379 i026]




	

	
D10

	
D2




	

	
(q1even≠0,0)

	
(q1even,q2even>0)(q1odd,q2odd>0)




	
cq1,q2=cq1,−q2=(−1)q1+q2cq1,q2=(−1)q1+q2cq1,−q2

	
c2n,2m+1=c2n+1,2m=0




	
f(x,y)=c0,0+∑q1≠0q1evencq1,0cos2πq1xa+isin2πq1xa




	
f(x,y)=c0,0+2∑q1even∑q2>0q2even+∑q1odd∑q2>0q2oddcq1,q2cos2πq1xacos2πq2yb+isin2πq1xacos2πq2yb




	
[R]c−q1,q2=cq1,q2*

	
c0,q2∈R
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Table 10. p2mm.






Table 10. p2mm.





	
p2mm

rectangular

	
a→1=a(1,0)a→2=b(0,1)

	
b→1=2πa(1,0)b→2=2πb(0,1)




	
 [image: Symmetry 04 00379 i027]

	
 [image: Symmetry 04 00379 i028]

	
 [image: Symmetry 04 00379 i029]




	

	
D={(0,0)}∪D2∪D4

	
Dmin=D2∪D4




	
c1,0=c1,0*=14c2,1=c2,1*=−12

	

	
(k1≥0,k2≥0)≠(0,0)




	

	
 [image: Symmetry 04 00379 i030]

	
 [image: Symmetry 04 00379 i031]




	

	
D2

	
D4




	

	
(k1>0,0)(0,k2>0)

	
(k1>0,k2>0)




	
ck1,k2=c−k1,−k2=ck1,−k2=c−k1,k2




	
f(x,y)=c0,0+2∑k1>0ck1,0cos2πk1xa+2∑k2>0c0,k2cos2πk2yb




	
f(x,y)=c0,0+4∑k1>0∑k2>0ck1,k2cos2πk1xacos2πk2yb




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R
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Table 11. p2mg.






Table 11. p2mg.





	
p2mg

rectangular

	
a→1=a(1,0)a→2=b(0,1)

	
b→1=2πa(1,0)b→2=2πb(0,1)




	
 [image: Symmetry 04 00379 i032]

	
 [image: Symmetry 04 00379 i033]

	
 [image: Symmetry 04 00379 i034]




	

	
D={(0,0)}∪D2∪D4

	
Dmin=D2∪D4




	
c2,0=c2,0*=14c2,1=c2,1*=−12

	

	
(k1>0,k2≥0)(0,k2even>0)




	

	
 [image: Symmetry 04 00379 i035]

	
 [image: Symmetry 04 00379 i036]




	

	
D2

	
D4




	

	
(k1>0,0)(0,k2even>0)

	
(k1>0,k2>0)




	
ck1,k2=c−k1,−k2=(−1)k2ck1,−k2=(−1)k2c−k1,k2

	
c0,2n+1=0




	
f(x,y)=c0,0+2∑k1>0ck1,0cos2πk1xa+2∑k2evenk2>0c0,k2cos2πk2yb




	
f(x,y)=c0,0+4∑k1>0∑k2evenk2>0ck1,k2cos2πk1xacos2πk2yb−∑k2oddk2>0ck1,k2sin2πk1xasin2πk2yb




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 12. p2gg.






Table 12. p2gg.





	
p2gg

rectangular

	
a→1=a(1,0)a→2=b(0,1)

	
b→1=2πa(1,0)b→2=2πb(0,1)




	
 [image: Symmetry 04 00379 i037]

	
 [image: Symmetry 04 00379 i038]

	
 [image: Symmetry 04 00379 i039]




	

	
D={(0,0)}∪D2∪D4

	
Dmin=D2∪D4




	
c1,1=c1,1*=12c1,2=c1,2*=14

	

	
(k1even>0,0)(0,k2even>0)(k1>0,k2>0)




	

	
 [image: Symmetry 04 00379 i040]

	
 [image: Symmetry 04 00379 i041]




	

	
D2

	
D4




	

	
(k1even>0,0)(0,k2even>0)

	
(k1>0,k2>0)




	
ck1,k2=c−k1,−k2=(−1)k1+k2ck1,−k2=(−1)k1+k2c−k1,k2

	
c0,2n+1=c2n+1,0=0




	
f(x,y)=c0,0+2∑k1evenk1>0ck1,0cos2πk1xa+2∑k2evenk2>0c0,k2cos2πk2yb




	
f(x,y)=c0,0+4∑k1evenk1>0∑k2evenk2>0ck1,k2cos2πk1xacos2πk2yb−∑k2oddk2>0ck1,k2sin2πk1xasin2πk2yb




	
f(x,y)=c0,0+4∑k1oddk1>0−∑k2evenk2>0ck1,k2sin2πk1xasin2πk2yb+∑k2oddk2>0ck1,k2cos2πk1xacos2πk2yb




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 13. c2mm.






Table 13. c2mm.





	
c2mm

centered rectangular

	
a→1=(a2,−b2)a→2=(a2,b2)

	
b→1=2π(1a,1b)b→2=2π(1a,−1b)




	
 [image: Symmetry 04 00379 i042]

	
 [image: Symmetry 04 00379 i043]

	
 [image: Symmetry 04 00379 i044]




	

	
D={(0,0)}∪D2∪D4

	
Dmin=D2∪D4




	
c0,1=c0,1*=14c1,1=c1,1*=−1

	

	
(k1>0,|k2|≤k1)




	

	
 [image: Symmetry 04 00379 i045]

	
 [image: Symmetry 04 00379 i046]




	

	
D2

	
D4




	

	
(k1>0,±k1)

	
(k1>0,|k2|<k1)




	
ck1,k2=c−k1,−k2=ck2,k1=c−k2,−k1




	
f(x,y)=c0,0+2∑k1>0{ck1,k1cos4πk1xa+ck1,−k1cos4πk1yb




	
f(x,y)=c0,0+2∑k2|k2|<k1ck1,k2cos2π(k1+k2)xacos2π(k1−k2)yb}




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 14. c2mm—non-primitive basis.






Table 14. c2mm—non-primitive basis.





	
c2mm

rectangular

	
a→1=a(1,0)a→2=b(0,1)

	
b→1=2πa(1,0)b→2=2πb(0,1)




	
 [image: Symmetry 04 00379 i047]

	
 [image: Symmetry 04 00379 i048]

	
 [image: Symmetry 04 00379 i049]




	

	
D={(0,0)}∪D2∪D4

	
Dmin=D2∪D4




	
c1,1=c1,1*=14c2,0=c2,0*=1

	

	
(q1even≥0,q2even≥0)≠(0,0)(q1odd>0,q2odd>0)




	

	
 [image: Symmetry 04 00379 i050]

	
 [image: Symmetry 04 00379 i051]




	

	
D2

	
D4




	

	
(q1even>0,0)(0,q2even>0)

	
(q1even>0,q2even>0)(q1odd>0,q2odd>0)




	
cq1,q2=c−q1,−q2=cq1,−q2=c−q1,q2=(−1)q1+q2cq1,q2

	
c2n,2m+1=c2n+1,2m=0




	
cq1,q2=(−1)q1+q2c−q1,−q2=(−1)q1+q2cq1,−q2=(−1)q1+q2c−q1,q2




	
f(x,y)=c0,0+2∑q1>0q1evencq1,0cos2πq1xa+2∑q2>0q2evenc0,q2cos2πq2yb




	
f(x,y)=c0,0+4∑q1>0q1even∑q2>0q2even+∑q1>0q1odd∑q2>0q2oddck1,k2cos2πk1xacos2πk2yb




	
[R]cq1,q2=cq1,q2*

	
cq1,q2∈R











[image: Table]





Table 15. p4.






Table 15. p4.





	
p4

square

	
a→1=a(1,0)a→2=a(0,1)

	
b→1=2πa(1,0)b→2=2πa(0,1)




	
 [image: Symmetry 04 00379 i052]

	
 [image: Symmetry 04 00379 i053]

	
 [image: Symmetry 04 00379 i054]




	

	
D={(0,0)}∪D4

	
Dmin=D4




	
c2,0=c2,0*=−14c2,1=c2,1*=1

	

	
(k1>0,k2≥0)




	
ck1,k2=c−k2,k1=c−k1,−k2=ck2,−k1




	
f(x,y)=c0,0+2∑k1>0∑k2≥0ck1,k2cos2π(k1x+k2y)a+cos2π(−k2x+k1y)a




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 16. p4mm.






Table 16. p4mm.





	
p4mm

square

	
a→1=a(1,0)a→2=a(0,1)

	
b→1=2πa(1,0)b→2=2πa(0,1)




	
 [image: Symmetry 04 00379 i055]

	
 [image: Symmetry 04 00379 i056]

	
 [image: Symmetry 04 00379 i057]




	

	
D={(0,0)}∪D4∪D8

	
Dmin=D4∪D8




	
c2,0=c2,0*=14c2,1=c2,1*=−12

	

	
(k1>0,0≤k2≤k1)




	

	
 [image: Symmetry 04 00379 i058]

	
 [image: Symmetry 04 00379 i059]




	

	
D4

	
D8




	

	
(k1>0,0)(k1>0,k1)

	
(k1>0,0<k2<k1)




	
ck1,k2=c−k2,k1=c−k1,−k2=ck2,−k1=ck1,−k2=ck2,k1=c−k1,k2=c−k2,−k1




	
f(x,y)=c0,0+2∑k1>0{ck1,0cos2πk1xa+cos2πk1ya+2ck1,k1cos2πk1xacos2πk1ya




	
f(x,y)=c0,0+2∑k1>0{+2∑k20<k2<k1ck1,k2cos2πk1xacos2πk2ya+cos2πk2xacos2πk1ya}




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 17. p4gm.






Table 17. p4gm.





	
p4gm

square

	
a→1=a(1,0)a→2=a(0,1)

	
b→1=2πa(1,0)b→2=2πa(0,1)




	
 [image: Symmetry 04 00379 i060]

	
 [image: Symmetry 04 00379 i061]

	
 [image: Symmetry 04 00379 i062]




	

	
D={(0,0)}∪D4∪D8

	
Dmin=D4∪D8




	
c1,1=c1,1*=12c1,2=c1,2*=14

	

	
(k1even>0,0)(k1>0,0<k2≤k1)




	

	
 [image: Symmetry 04 00379 i063]

	
 [image: Symmetry 04 00379 i064]




	

	
D4

	
D8




	

	
(k1even>0,0)(k1>0,k1)

	
(k1>0,0<k2<k1)




	
ck1,k2=c−k2,k1=c−k1,−k2=ck2,−k1

	
c0,2n+1=c2n+1,0=0




	
ck1,k2=(−1)k1+k2ck1,−k2=(−1)k1+k2ck2,k1




	
ck1,k2=(−1)k1+k2c−k1,k2=(−1)k1+k2c−k2,−k1




	
f(x,y)=c0,0+2∑k1evenk1>0ck1,0cos2πk1xa+cos2πk1ya+4∑k1>0ck1,k1cos2πk1xacos2πk1ya




	
f(x,y)=+4∑k1evenk1>0∑k2even0<k2<k1+∑k1oddk1>0∑k2odd0<k2<k1ck1,k2[cos2πk1xacos2πk2ya




	
f(x,y)=+4∑k1evenk1>0∑k2even0<k2<k1+∑k1oddk1>0∑k2odd0<k2<k1ck1,k2[+cos2πk2xacos2πk1ya]}




	
f(x,y)=+4∑k1evenk1>0∑k2odd0<k2<k1+∑k1oddk1>0∑k2even0<k2<k1ck1,k2[−sin2πk1xasin2πk2ya




	
f(x,y)=+4∑k1evenk1>0∑k2odd0<k2<k1+∑k1oddk1>0∑k2even0<k2<k1ck1,k2[+sin2πk2xasin2πk1ya]}




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 18. p3.






Table 18. p3.





	
p3

hexagonal

	
a→1=a(1,0)a→2=a(12,32)

	
b→1=2πa(1,−13)b→2=2πa(0,23)




	
 [image: Symmetry 04 00379 i065]

	
 [image: Symmetry 04 00379 i066]

	
 [image: Symmetry 04 00379 i067]




	

	
D={(0,0)}∪D3

	
Dmin=D3




	
c2,0=c2,2*=−14+18ic2,1=c1,2*=1−18i

	

	
(k1>0,k2≥0)




	
ck1,k2=c−k1+k2,−k1=c−k2,k1−k2




	
f(x,y)=c0,0




	
f(x,y)=+∑k1>0∑k2≥0ck1,k2[cos2π3k1x+(−k1+2k2)y3a




	
f(x,y)=+cos2π3(−k1+k2)x−(k1+k2)y3a+cos2π−3k2x+(2k1−k2)y3a




	
f(x,y)=+i(sin2π3k1x+(−k1+2k2)y3a+sin2π3(−k1+k2)x−(k1+k2)y3a




	
f(x,y)=+sin2π−3k2x+(2k1−k2)y3a)]




	
[R]ck1−k2,k1=ck1,k2*











[image: Table]





Table 19. p3m1.






Table 19. p3m1.





	
p3m1

hexagonal

	
a→1=a(1,0)a→2=a(12,32)

	
b→1=2πa(1,−13)b→2=2πa(0,23)




	
 [image: Symmetry 04 00379 i068]

	
 [image: Symmetry 04 00379 i069]

	
 [image: Symmetry 04 00379 i070]




	

	
D={(0,0)}∪D3

	
Dmin=D3∪D6




	
c2,0=c2,2*=14+ic2,1=c2,1*=−1

	

	
(k1>0,0≤k2≤k1)




	

	
 [image: Symmetry 04 00379 i071]

	
 [image: Symmetry 04 00379 i072]




	

	
D3

	
D6




	

	
(k1>0,0)(k1>0,k1)

	
(k1>0,0<k2<k1)




	
ck1,k2=c−k1+k2,−k1=c−k2,k1−k2=ck2,k1=c−k1,−k1+k2=ck1−k2,−k2




	
f(x,y)=c0,0+∑k1>0{(ck1,0+ck1,k1)[2cos2πk1xacos2πk1y3a+cos4πk1y3a




	
f(x,y)=c0,0+∑k1>0{+i(ck1,0−ck1,k1)−2cos2πk1xasin2πk1y3a+sin4πk1y3a]




	
f(x,y)=+2∑k20<k1<k2ck1,k2[cos2πk1xacos2π(k1−2k2)y3a+cos2πk2xacos2π(2k1−k2)y3a




	
f(x,y)=+2∑k20<k1<k2+cos2π(k1−k2)xacos2π(k1+k2)y3a+i(−cos2πk1xasin2π(k1−2k2)y3a




	
f(x,y)=+2∑k20<k1<k2+cos2πk2xasin2π(2k1−k2)y3a−cos2π(k1−k2)xasin2π(k1+k2)y3a)]}




	
[R]ck1,k1−k2=ck1,k2*

	
c2k2,k2∈R











[image: Table]





Table 20. p31m.






Table 20. p31m.





	
p31m

hexagonal

	
a→1=a(1,0)a→2=a(12,32)

	
b→1=2πa(1,−13)b→2=2πa(0,23)




	
 [image: Symmetry 04 00379 i073]

	
 [image: Symmetry 04 00379 i074]

	
 [image: Symmetry 04 00379 i075]




	

	
D=D3∪D6

	
Dmin=D3∪D6




	
c2,0=c2,0*=14c2,1=c1,2*=−1−12i

	

	
(k1>0,0≤k2≤k12)(k1>0,k2≥2k1)




	

	
 [image: Symmetry 04 00379 i076]

	
 [image: Symmetry 04 00379 i077]




	

	
D3

	
D6




	

	
(k1even>0,k12)(k1even>0,2k1)

	
(k1even>0,0≤k2<k12)(k1even>0,k2>2k1)




	
ck1,k2=c−k1+k2,−k1=c−k2,k1−k2=ck1,k1−k2=c−k2,−k1=c−k1+k2,k2




	
f(x,y)=c0,0+∑k1>0k1evenck1,k12[2cosπk1xacosπk13ya+cos2πk1xa+i(−2sinπk1xacosπk13ya




	
f(x,y)=+sin2πk1xa)]+∑k1>0ck1,2k1[cos4πk1xa+2cos2πk1xacos2πk13y)a




	
f(x,y)=+i2sin2πk1xacos2πk13ya−sin4πk1xa]




	
f(x,y)=+2∑k1>0∑k20≤k2<k12+∑k2k2>2k1ck1,k2[cos2πk1xacos2π(k1−2k2)y3a




	
f(x,y)=+cos2π(k1−k2)xacos2π(k1+k2)y3a+cos2πk2xacos2π(2k1−k2)y3a




	
f(x,y)=+i(sin2πk1xacos2π(k1−2k2)ya




	
f(x,y)=−sin2π(k1−k2)xacos2π(k1+k2)y3a−sin2πk2xacos2π(2k1−k2)y3a)]




	
[R]ck2,k1=ck1,k2*

	
ck1,0∈R











[image: Table]





Table 21. p6.






Table 21. p6.





	
p6

hexagonal

	
a→1=a(1,0)a→2=a(12,32)

	
b→1=2πa(1,−13)b→2=2πa(0,23)




	
 [image: Symmetry 04 00379 i078]

	
 [image: Symmetry 04 00379 i079]

	
 [image: Symmetry 04 00379 i080]




	

	
D={(0,0)}∪D6

	
Dmin=D6




	
c1,0=c1,0*=−12c3,1=c3,1*=14

	

	
(k1>0,0≤k2<k1)




	
ck1,k2=ck2,−k1+k2=c−k1+k2,−k1=c−k1,−k2=c−k2,k1−k2=ck1−k2,k1




	
f(x,y)=c0,0+2∑k1>0∑k20≤k2<k1ck1,k2[cos2π3k1x+(−k1+2k2)y3a




	
f(x,y)=c0,0+2∑k1>0∑k20≤k2<k1ck1,k2[+cos2π3k2x+(−2k1+k2)y3a




	
f(x,y)=c0,0+2∑k1>0∑k20≤k2<k1ck1,k2[+cos2π3(k1−k2)x+(k1+k2)y3a]




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 22. p6mm.






Table 22. p6mm.





	
p6mm

hexagonal

	
a→1=a(1,0)a→2=a(12,32)

	
b→1=2πa(1,−13)b→2=2πa(0,23)




	
 [image: Symmetry 04 00379 i081]

	
 [image: Symmetry 04 00379 i082]

	
 [image: Symmetry 04 00379 i083]




	

	
D={(0,0}∪D6∪D12

	
Dmin=D6∪D12




	
c2,0=c2,0*=14c2,1=c2,1*=−1

	

	
(k1>0,0≤k2≤k12)




	

	
 [image: Symmetry 04 00379 i084]

	
 [image: Symmetry 04 00379 i085]




	

	
D6

	
D12




	

	
(k1>0,0)(k1even>0,k12)

	
(k1>0,0<k2<k12)




	
ck1,k2=ck2,−k1+k2=c−k1+k2,−k1=c−k1,−k2=c−k2,k1−k2=ck1−k2,k1




	
ck1,k2=ck1,k1−k2=ck1−k2,−k2=c−k2,−k1=c−k1,−k1+k2=c−k1+k2,k2=ck2,k1




	
f(x,y)=c0,0+2∑k1>0ck1,02cos2πk1xacos2πk1y3a+cos4πk1y3a




	
f(x,y)=c0,0+2∑k1>0k1evenck1,k122cosπk1xacosπk13ya+cos2πk1xa




	
f(x,y)=c0,0+4∑k1>0∑k20<k2<k12ck1,k2[cos2πk1xacos2π(k1−2k2)y3a




	
f(x,y)=c0,0+2∑k1>0∑k20<k2<k12ck1,k2[+cos2πk2xacos2π(2k1−k2)y3a




	
f(x,y)=c0,0+2∑k1>0∑k20<k2<k12ck1,k2[+cos2π(k1−k2)xacos2π(k1+k2)y3a]




	
[R]ck1,k2=ck1,k2*

	
ck1,k2∈R











[image: Table]





Table 23. Non-centrosymmetric wallpaper groups and their reality criteria.






Table 23. Non-centrosymmetric wallpaper groups and their reality criteria.





	
Bravais lattice

	
wallpaper group

	
reality criterion




	

	

	
general

	
special






	
oblique

	
p1

	
ck1,k2*=c−k1,−k2

	




	
rectangular

	
pm

	
ck1,k2*=c−k1,k2

	
c0,k2∈R




	

	
pg

	
ck1,k2*=(−1)k1c−k1,k2

	
c0,k2∈R




	
centered rectangular

	
cm

	
ck1,k2*=c−k2,−k1

	
ck1,−k1∈R




	
hexagonal

	
p3

	
ck1,k2*=ck1−k2,k1

	




	

	
p3m1

	
ck1,k2*=ck1,k1−k2

	
c2k2,k2∈R




	

	
p31m

	
ck1,k2*=ck2,k1

	
ck1,0∈R












© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
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