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1. Introduction

Polyominoes and polyiamonds and their tiling properties have been the subject of computational
geometry research that investigated which polyominoes can tile the plane isohedrally and which can
tile by translations alone [4,5]. In earlier papers [1,2], we gave algorithms to create polyominoes and
polyiamonds that were fundamental domains for isohedral tilings having p3, p4, or p6 symmetry groups.
In this article, we consider the expanded task of producing polyomino and polyiamond tiles that generate
isohedral tilings of types p3, p3m1, p31m, p4, p4m, p4g, p6 or p6m and for which the tiles are
fundamental domains of the tiling. Recently an extension of this study was published as a separate
paper [3] in which we carried out these investigations for symmetry groups of types pmm, pmg, pgg,
and cmm.

The following definitions are noted in [3], and are included here for completeness. A polyomino (or
n-omino) is a tile homeomorphic to a disk, made up of n unit squares that are connected at their edges;
that is, the intersection of two unit squares in the polyomino is either empty or an edge of both squares.
Similarly a polyiamond (or n-iamond) is a tile homeomorphic to a disk, made up of n unit equilateral
triangles that are connected at their edges; the intersection of two unit triangles in the polyiamond is
either empty or an edge of both triangles.

An isohedral tiling of the plane is a tiling by congruent tiles in which the symmetry group of the
tiling acts transitively on the tiles. A fundamental domain (sometimes called a generating region) for an
isohedral tiling is a region of least area that generates the whole tiling when acted on by the symmetry
group of the tiling. Thus a fundamental domain for an isohedral tiling must not contain two points that
are identical under the action of the symmetry group of the tiling. This implies the following fact that is
important for our algorithm.

Lemma 1. In an isohedral tiling in which each tile is a fundamental domain, no tile can contain a
rotation center or axis of reflection for the whole tiling except on its boundary.

We note that while an isohedral tiling may have fundamental domains of many different shapes,
all have the same area. The simplest fundamental domains have triangle or quadrilateral shapes [6].
Lemma 1 and the definitions of polyomino and polyiamond immediately exclude several symmetry
groups from our consideration.

Theorem 1. There are no p3, p31m, p3m1, p6, or p6m isohedral tilings by polyominoes. There are no
p4, p4g, or p4m isohedral tilings by polyiamonds.

Proof. Isohedral tilings of types p3, p31m, p3m1, p6, or p6m all have 3-fold centers, and by Lemma 1,
if the tiles are fundamental domains, these centers must lie on the boundaries of the tiles. But if the tiles
are polyominoes, a 120◦ rotation about such a center cannot map a tile fully onto another tile (since unit
squares will not be mapped to unit squares). Thus such a tiling is impossible. Similarly, a 4-fold center
is impossible in an isohedral tiling by polyiamonds (since a 90◦ rotation cannot map unit triangles to unit
triangles), so there can be no such tilings of types p4, p4g, or p4m.

In each of the sections that follow, we begin with a fixed lattice of symmetry elements for a symmetry
group G (that is, a fixed array of rotation centers, reflection axes and glide-reflection axes for elements
of G) and give a backtracking procedure to produce a complete set of polyominoes (or polyiamonds)
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that are fundamental domains for G. A polyomino or polyiamond tile T is a fundamental domain for
a symmetry group G if the action of G on T produces an isohedral tiling and T is a region of minimal
area for which G can generate that tiling. G will be contained in (or equal to) the full symmetry group
of the tiling.

As we consider symmetries of our isohedral tilings, the following theorem will be useful [3].

Theorem 2. Let G be one of the 17 two-dimensional symmetry groups and T an isohedral tiling
generated by G acting on a tile T that is a fundamental domain for G. Let G′ be the full symmetry
group of T . If G is a proper subgroup of G′, there is an element of G′ (other than the identity) that
leaves T invariant. In this case, a fundamental domain for G′ has area smaller than T .

2. p4

2.1. Creating Polyominoes as Fundamental Domains for p4 Symmetry Groups

We begin with a lattice of unit squares as shown in Figure 1. Our n-omino tiles that are fundamental
domains for a p4 group G will be built from these unit squares. By Lemma 1, the 4-fold rotation centers
for G must be located on the boundary of the polyomino tiles that are fundamental domains for G. A
4-fold center can only occur at a lattice point that is a “corner” of the polyomino tile, that is, only one
unit square of the polyomino contains that point.

Figure 1. A lattice of unit squares with black and white 4-fold rotation centers that generate
a p4 group G. At left, a simple triangular fundamental domain (shaded) for G; at right,
a polyomino fundamental domain (shaded) for G. Here x = 1, y = 3; the area of each
fundamental domain is 5 square units.

v

u

(a)

v

u

(b)

So, first we place a 4-fold rotation center, (a black circle) at a lattice point and call this the origin. We
then place orthogonal unit vectors u and v at the origin (see Figure 1). Next we place a second 4-fold
rotation center, the white circle in Figure 1, at xu+ yv, where x and y are nonnegative integers, not both
0. These two choices of 4-fold rotation centers determine a whole p4 lattice of rotation centers; rotations
about the two placed black and white centers generate a p4 group G.

The area S of a fundamental domain for this p4 group G is given by [1,2]

S =
x2 + y2

2
(1)
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taking the area of a unit square as 1. Since we want our n-omino to be a fundamental domain, n = S

and S must be an integer. Therefore, x and y must have the same parity, and

n = 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, . . . (2)

where two pairs (x, y), namely, (5, 5) and (7, 1) correspond to n = 25. All unit squares in the lattice are
classified into n equivalence classes by the action of the p4 group G. We denote the equivalence class of
a unit square e as C(e).

We construct a set Tn of n-ominoes that are fundamental domains for the p4 group G and a given n

by following Procedure 1 below, using these definitions:

• T is a set of unit squares; B(T ) is a set of unit squares that are edge-adjacent to the squares in T ;
Tn is a set of n-ominoes.
• When T is the empty set, we define B(∅) as the set of four squares around the origin (the four unit

squares at the lower left in Figure 1.)
• We define E(T ), the Boolean function of T , which is true if #T = n and a white circle is on the

boundary of T . Otherwise E(T ) is false.
• B′(T ) = {e|e ∈ B(T ), C(e) 6= C(f), for allf ∈ T}. This is the set of all unit squares that are

edge-adjacent to those in T , but not equivalent to any unit squares in T .

Procedure 1 creates a sequence of pairs of sets (T, UT ), in which UT is the set of unit squares that can
be added to T to create the next set T in the sequence. The sets T are built up, one element at a time,
until a set T is achieved for which E(T ) is true, at which time T is added to the collection Tn. When
this takes place, the procedure backtracks to the most recent previous pair (T, UT ) for which UT 6= ∅,
and repeats the process.

Procedure 1.

1. Fix n (from the list in (2) above). Begin with Tn empty.
2. Make T empty. Make UT = B′(T ) = B(∅). Make k = 0. Make Sk = {(T, UT )}.
3. For (T, UT ) in Sk, if UT 6= ∅, choose an element e (a unit square) of UT . Remove e from UT and

save the pair (T, UT ) in Sk.
4. Increase k by 1. Add e (from step 3) to T to create a new k + 1-omino T , and let UT = B′(T ) for

the new T . Add the new pair (T, UT ) to Sk.
5. If T = ∅ and UT = ∅, quit the procedure.
6. If E(T ) is true, an n-omino tile is completed and add T to Tn provided there is no equivalent tile

in Tn. We regard two n-ominoes equivalent if conditions (a) and (b) below are satisfied.

(a) The tiles are congruent (including mirror reflection).
(b) When the tiles are superimposed, the positions of m-fold rotational centers on the boundaries

of the tiles are the same. If there are several m-fold rotation centers for the same m, they can
be permuted appropriately before comparison.

7. If UT = ∅, decrease k by 1.
8. Go back to step 3.
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Figure 2 shows the set of inequivalent n-ominoes in Tn for n ≤ 8. From each of these n-ominoes
we can obtain the associated p4 tiling by using the black and white circles as 4-fold rotation centers.
Figure 3 shows the corresponding isohedral tilings produced by n-ominoes in Figure 2 for n ≤ 5.

Figure 2. List of n-ominoes produced by the procedure in Section 2.1 for n ≤ 8 [2]. The
tiles are fundamental domains for the p4 group used to construct them. The labels indicate
n followed by the tile number for that n. Parentheses indicate that the tiles produce tilings
having more symmetries than the p4 group that generates the tilings.

             

(1-1) (2-1)   4-1   4-2 (4-3) 5-1 5-1-2 (5-2)   (5-2-2) 5-2-3 (5-3)     5-4        5-5       5-6        5-7     5-7-2 

     

5-8          8-1          8-2 8-3  (8-4)   8-5      (8-6)        (8-7) 8-8   (8-9)    8-10      8-11

          

8-12         8-13      8-14           8-15       8-16      8-17        8-18          8-19 8-20    8-21     8-22        8-23        8-24

           

(8-25)  (8-26)     8-27      8-28          8-29           8-30  8-31    8-32          (8-33)     8-34       8-35     8-36

   

8-37         8-38 8-39         8-40        8-41       8-42        8-43         8-44            8-45

1

Figure 3. List of p4 isohedral tilings by n-ominoes in Figure 2, for n ≤ 5, generated by a
given p4 group. Labels correspond to those in Figure 2. The symmetry group of each tiling
is the given p4 group, except for tilings whose labels are in parentheses.

     
        (1-1)             (2-1)   4-1      4-2 

    
(4-3)             5-1             5-1-2     (5-2)    

    
      (5-2-2)           5-2-3              (5-3)      5-4 

    
       5-5              5-6    5-7             5-7-2       

 
5-8 
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Figure 3. Cont.

     
        (1-1)             (2-1)   4-1      4-2 

    
(4-3)             5-1             5-1-2     (5-2)    

    
      (5-2-2)           5-2-3              (5-3)      5-4 

    
       5-5              5-6    5-7             5-7-2       

 
5-8 

2.2. Symmetries of Tiles

The list of isohedral tilings corresponding to tiles in Figure 2 includes some tilings having symmetry
group larger than the p4 group G generated by 4-fold rotations about the black and white rotation centers.
By Theorem 2, in every case where this occurs, the n-omino that generates the tiling must have reflection
and/or rotation symmetry.

We outline below how to identify polyominoes whose corresponding isohedral tilings have symmetry
groups larger than the group G that generated the tiling. Such tiles in Figure 2 and their tilings in Figure 3
are identified by parentheses around their labels.

• Select a polyomino that has rotation and/or reflection symmetry, and examine its tiling T generated
by G.
• Look at all vertices and centers of unit squares in a polyomino in T except for the original 4-fold

centers we have chosen (black and white centers), and determine whether or not T is invariant under
a 4-fold rotation about such a point. If so, then it is a new 4-fold center for T , and this symmetry
is not in G. For example, in Figure 3, tilings (5-2) and (5-2-2), while generated differently, are
the same tiling and have 4-fold centers at every vertex where 4 tiles meet. Tiling (5-3) has 4-fold
rotation centers at the centers of the “cross” tiles and at every vertex where 4 tiles meet. These
tilings have full symmetry groups of type p4, with G as a proper subgroup.
• Other new symmetry elements of T can be sought by using Chart 2 in [6]. If the line joining the

black and white 4-fold centers we placed is an axis of mirror reflection for T , then T is type p4m.
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For example, in Figure 3, tilings (1-1) and (4-3) are type p4m. If this line is not a mirror reflection
axis, but the line connecting two adjacent (nearest) 2-fold centers for T is a mirror reflection axis
for T , then T is type p4g. For example, in Figure 3, tiling (2-1) is type p4g.

In Sections 3 and 4 that follow, we indicate how to modify our Procedure 1 so as to produce directly
polyominoes that are fundamental domains for p4g or p4m symmetry groups.

3. p4g

3.1. Creating Polyominoes as Fundamental Domains for p4g Symmetry Groups

A p4g symmetry group contains 4-fold rotations, reflections, and glide-reflections; the subgroup
generated by its 4-fold rotations is type p4. Thus we begin as in Section 2 with a lattice of unit squares
and place a 4-fold rotation center (a black circle) at a lattice point and call this the origin. Orthogonal
unit vectors u and v are then placed at the origin (see Figure 4(a)). Next, we place a reflection axis
nearest to the origin; this must lie along the edges of unit squares according to Lemma 1, so we place
it at xu or xv, where x is a positive integer. The placement of the origin and choice of x determine the
whole p4g lattice of rotation centers, reflection axes and glide-reflection axes since the p4g group G is
generated by 4-fold rotations about the origin and reflections in the placed axis (see Figure 4(b)).

Figure 4. (a) A lattice of unit squares with a 4-fold rotation center (black circle, the origin)
and reflection axis (thick line) at xu that generate a p4g symmetry group G. The shaded
triangle is a fundamental domain for G; (b) The lattice of all symmetry elements for G:
4-fold centers are black circles, 2-fold centers are white circles, reflection axes are thick
solid lines, glide-reflection axes are dotted lines. The shaded square region is a polyomino
fundamental domain for G. Here x = 2; the area of each fundamental domain for G is 4.

u

v

(a)

v

u

(b)

The area S of a fundamental domain for the group G is given by

S = x2 (3)

where the area of a unit square is 1. Since we want our n-omino to be a fundamental domain, n = S.
Therefore,

n = 1, 4, 9, 16, 25, 36, 49, 64, . . . . (4)

Action by the group G partitions the unit squares into n equivalence classes; as before, we denote the
equivalence class of a unit square e as C(e). We construct the set Tn of n-ominoes that are fundamental
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domains for G using Procedure 1 in Section 2, with n chosen from the list in (4) and the additional
constraint that unit squares in the set T must be in the region bounded by the mirror reflection axes
nearest to the origin.

Figure 5 shows the set of inequivalent tiles in Tn for n ≤ 9. We can obtain the associated p4g tilings
by using the origin as a 4-fold rotation center to fill out the square bounded by the reflection axes nearest
the origin, then reflecting this square in its edges. Figure 6 shows the corresponding isohedral tilings
produced by polyominoes in Figure 5.

Figure 5. List of n-ominoes produced as described in Section 3.1 for n ≤ 9; these are
fundamental domains for the p4g group used to construct them. The labels indicate n

followed by the tile number for that n. Parentheses indicate that the tiles produce tilings
having more symmetries than the p4g group that generates the tilings.

 1

 

(1-1) 4-1  (4-2)  4-3   9-1     9-2    9-3   9-4  9-5 9-6   9-7      9-8   9-9    9-10    9-11     9-12       9-13 

 

  9-14    (9-15)  9-16   9-17    9-18   9-19   9-20    9-21   9-22    9-23   9-24   9-25    9-26 

Figure 6. List of p4g isohedral tilings by n-ominoes in Figure 5, generated by a given p4g
group. Labels correspond to those in Figure 5. The symmetry group of each tiling is the
given p4g group, except for tilings whose labels are in parentheses.

    
(1-1)             4-1        (4-2)            4-3 

    
    9-1              9-2   9-3            9-4 

    
   9-5             9-6          9-7           9-8 

    
   9-9            9-10         9-11           9-12 

    
   9-13           9-14               (9-15)          9-16 

    
  9-17            9-18         9-19          9-20 
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Figure 6. Cont.

    
(1-1)             4-1        (4-2)            4-3 

    
    9-1              9-2   9-3            9-4 

    
   9-5             9-6          9-7           9-8 

    
   9-9            9-10         9-11           9-12 

    
   9-13           9-14               (9-15)          9-16 

    
  9-17            9-18         9-19          9-20 

    
   9-21            9-22         9-23           9-24 

  
9-25           9-26 

3.2. Symmetries of Tiles

The only tilings in Figure 6 having symmetry group larger than the p4g group G that generated them
are tilings with square polyomino tiles. In fact, this is always true.

Theorem 3. Every tiling by a polyomino T produced by our algorithm in Section 3.1 has as its full
symmetry group the p4g group that generated it and T is a fundamental domain for the tiling, except in
the case when the shape of T is square. In that case, the tiling has symmetry group p4m and T is not a
fundamental domain.

Proof. Let G′ be the full symmetry group of a tiling T produced by a p4g group G acting on a polyomino
T that is a fundamental domain for G, constructed as described in Section 3.1. If G is a proper subgroup
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of G′, then by Theorem 2, there is a 2-fold or 4-fold rotation or reflection symmetry g in G′ that is also
a symmetry of T . By its construction, one corner of T is a 4-fold center for G at the origin; without loss
of generality, we may assume that T contains the unit square shown in black in Figure 7.

Figure 7. (a)–(c) The derivation of polyomino fundamental domains T for a p4g group
G by removing unit squares from and adding equivalent unit squares to the original x × x

square polyomino fundamental domain in (a). Here x = 2; (d) The polyomino T in (b) has
reflection symmetry with mirror axis M , but this is not a symmetry of the tiling T having
T as fundamental domain, since T ′, the image of T by a 90◦ rotation about the origin, is
mapped by a reflection in M to a tile that crosses a reflection axis for G.

(a) (b) (c)

T'

T

M

(d)

T can also be obtained by beginning with an x × x square polyomino fundamental domain for G
as in Figure 7(a), then removing unit squares (except for the black unit square) and adding other unit
squares equivalent (by a rotation of 90◦ or 270◦ about the origin) to these, always keeping the new tile
homeomorphic to a disc. Figure 7(b,c) illustrates this for x = 2. Unit squares of T that abut one reflection
axis for G are equivalent to unit squares along an adjacent reflection axis, and so T has on its boundary
at least x unit squares in a straight row. Since g maps T onto itself, g maps the longest straight edge on
the boundary of T to a congruent edge on the boundary of T .

If g is a rotation, the image of the longest edge of T is distinct from that edge. Since T cannot have
two different straight edges on its boundary formed by more than x unit squares, the only possibility is
that T is an x× x square polyomino.

If g is a reflection, and T is not an x×x square polyomino, then g must map the longest straight edge
on the boundary of T onto itself. The reflection axis M for g is the perpendicular bisector of the edge
of T that it leaves fixed. Since the length of this edge is greater than x and less than 2x, M cannot have
distance x/2 from the origin, and M cannot go through the origin. Let T ′ and T ′′ be the images of T
under 90◦ and 270◦ rotations about the origin. Then the reflections of T ′ and T ′′ in M are not tiles in
T —these images partially overlap T ′ and T ′′ and one of these images crosses a reflection axis of G. A
simple example is illustrated in Figure 7(d). Thus the only possibility for g to be a reflection symmetry
for T is that T be an x× x square polyomino.

4. p4m

The rotation and reflection symmetry elements of a p4m group are shown in Figure 8. Black circles
are 4-fold centers, white circles are 2-fold centers, and solid lines are mirror reflection axes. The shaded
region is a fundamental domain for the p4m group. A polyomino that is a fundamental domain for the
tiling must have its edges on the reflection axes, by Lemma 1. But this is clearly impossible.
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Theorem 4. There are no p4m isohedral tilings having polyominoes as fundamental domains.

Figure 8. The rotation and reflection symmetry elements of a p4m group G. Black circles are
4-fold centers, white circles are 2-fold centers, and lines are reflection axes. (Glide-reflection
axes are not shown.) The shaded area is a fundamental domain for G.

5. p3

5.1. Creating Polyiamonds as Fundamental Domains for p3 Symmetry Groups

To build our n-iamond tiles that will be fundamental domains for a p3 isohedral tiling, we begin with
a lattice of unit equilateral triangles. By Lemma 1, the 3-fold rotation centers for a p3 symmetry group
must be located on the boundary of the tile, and in addition, these centers must be located at a lattice
point that is a “corner” of the tile at which no more than two unit triangles meet. So first we place a
3-fold rotation center, a black circle, at a lattice point and call this the origin, then place vectors u and v

at the origin along edges of a unit triangle. Next we place a second 3-fold rotation center, a white circle,
at xu + yv, where x and y are nonnegative integers, not both zero. See Figure 9(a). These two choices
of 3-fold rotation centers determine the whole p3 lattice of rotation centers; 3-fold rotations about the
black and white centers generate the whole p3 symmetry group.

Figure 9. (a) A lattice of unit triangles with two 3-fold rotation centers that generate a
p3 group G; (b) A simple rhombic fundamental domain (shaded) for G; (c) A polyiamond
fundamental domain (shaded) for G. Here x = 2, y = 1; the area of each fundamental
domain is 14 triangular units.

u

v

(a) (b) (c)

Figure 9(b,c) shows two fundamental domains for the p3 group G generated by the black and white
3-fold centers: a simple rhombic shape, and a polyiamond tile. Note that both fundamental domains
contain the black and white 3-fold centers. The other two circles (shown in gray) that are on the
boundaries of these fundamental domains are also 3-fold centers for G.
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The area S of a fundamental domain for G is given by [2]

S = 2(x2 + y2 + xy) (5)

taking the area of a unit triangle as 1. Since we want our n-iamond to be a fundamental domain, n = S.
Therefore,

n = 2, 6, 8, 14, 18, 24, 26, 32, 38, 42, 50, 54, 56, 62, 72, 74, 78, 86, 96, 98, 98, . . . , (6)

where two pairs (x, y), namely, (5, 3) and (7, 0) correspond to n = 98.
All unit triangles are classified into n equivalence classes by the action of G, and we denote the

equivalence class of a unit triangle e as C(e).
We construct a set Tn of n-iamonds that are fundamental domains for G by modifying Procedure 1

in Section 2, choosing n from the list in (6), and replacing definitions in Section 2 with these:

1. T is a set of unit triangles; B(T ) is a set of unit triangles that are edge-adjacent to the triangles in
T ; Tn is a set of n-iamonds.

2. When T is the empty set, we define B(∅) as the set of six triangles around the origin in Figure 9(a).
3. We define E(T ), the Boolean function of T , which is true if #T = n and a white circle is on the

boundary of T . Otherwise E(T ) is false.
4. B′(T ) = {e|e ∈ B(T ), C(e) 6= C(f), for allf ∈ T}. This is the set of all unit triangles that are

edge-adjacent to those in T , but not equivalent to any unit triangles in T .

The procedure creates a sequence of pairs of sets (T, UT ), in which UT is the set of unit triangles that
can be added to T to create the next set T in the sequence.

Figure 10 shows the set of inequivalent n-iamonds in Tn for n ≤ 8. From each of these we can obtain
the associated p3 tiling by using the black and white circles as 3-fold rotation centers. Figure 11 shows
the corresponding isohedral tilings produced by n-iamonds in Figure 10.

Figure 10. List of n-iamonds produced as described in Section 5.1 for n ≤ 8 [2]. The
tiles are fundamental domains for the p3 group used to construct them. The labels indicate
n followed by the tile number for that n. Parentheses indicate that the tiles produce tilings
having more symmetries than the p3 group that generates the tilings.

       

(2-1)     (6-1)       (6-2)         6-3        (6-4)         8-1 

     

     8-2  8-3        (8-4)           8-5          8-6         8-7 
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Figure 11. List of p3 isohedral tilings by n-iamonds in Figure 10, generated by a given p3
group. Labels correspond to those in Figure 10. The symmetry group of each tiling is the p3
group that generated it, except for tilings whose labels are in parentheses.

     
        (2-1)            (6-1)  (6-2)             6-3              

         

     
        (6-4)            8-1   8-2     8-3                       

 

    
        (8-4)     8-5               8-6        8-7 

 

We note that the discussion in this section amplifies that in Section 3 in [2], and obtains the same list
of polyomino fundamental domains for isohedral tilings with p3 symmetry. However, here we analyze
the symmetries of those tilings, and lay the groundwork for our investigation in Section 5.1 of tilings by
polyiamonds that are fundamental domains for symmetry groups of types p31m and p3m1. In our older
article [1], we constructed p3 isohedral tilings by polyiamonds that were built up from units that were
60◦ rhombuses, and so the list in [1] of such p3 tilings is a proper subset of our present results.

5.2. Symmetries of Tiles

The list of isohedral tilings in Figure 11 includes some tilings having symmetry group larger than the
p3 group G generated by 3-fold rotations about the black and white rotation centers. By Theorem 2,
when this occurs, the n-iamond that generates the tiling must have reflection and/or 3-fold rotation
symmetry. The full symmetry group of the tiling could be of any of these types: p3, p3m1, p31m, p6,
or p6m. The tilings in Figure 11 that have additional symmetries, and the n-iamonds in Figure 10
that generate them are indicated by parentheses in their labels. We outline below how to identify
these polyiamonds.
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• Select a polyiamond T that has rotation and/or reflection symmetry, and examine its tiling T
generated by G.
• Look at all vertices and centers of unit triangles in T except for those centers of rotation in G

(black, white and gray centers), and determine whether or not any can be new 3-fold centers for
T . If a new 3-fold center is found, then the full symmetry group G′ of T contains G as a proper
subgroup and T is not a fundamental domain for T . If a new 3-fold center is a 6-fold center, G′ is
type p6m if there is a reflection axis joining it to any nearest 3-fold center; otherwise, G′ is type
p6. Tiling (6-4) in Figure 11 is type p6m, and has a 6-fold center at the center of the hexagonal
6-iamond. If there are new 3-fold centers but none are 6-fold centers, then G′ is type p3.
• If the tiling contains only 3-fold centers for G, we seek new symmetry elements by using Chart 2

in [6].

1. If some 3-fold center for G is a 6-fold center, the tiling T will have p6m symmetry if the line
joining a 6-fold center to a nearest 3-fold center is a reflection axis for T , otherwise it will have
p6 symmetry. In Figure 11, tilings (2-1) and (8-4) have p6m symmetry, and tiling (6-1) has
p6 symmetry.

2. Otherwise, if the line connecting a pair of adjacent 3-fold centers of the same kind (black-black,
white-white, or gray-gray) is a reflection axis, T has p31m symmetry. In Figure 11, tiling (6-2)
has p31m symmetry. We will show in Section 7 that it is impossible for T to have
p3m1 symmetry.

6. p31m

6.1. Creating Polyiamonds as Fundamental Domains for p31m Symmetry Groups

We begin with a lattice of unit triangles as in Section 5.1, since a p31m symmetry group contains
3-fold rotations, reflections, and glide-reflections; the subgroup generated by its 3-fold rotations is type
p3. To build an n-iamond tile that is a fundamental domain for a p31m isohedral tiling, we first place a
3-fold rotation center, a black circle, at a lattice point and call this the origin. Then we place vectors u
and v at the origin along edges of a unit triangle (see Figure 12(a)).

Next, we place a reflection axis that is nearest the origin; this must lie along the edges of unit
triangles according to Lemma 1 (Figure 12(a)). Applying 120◦ rotations to this reflection axis produces
three reflection axes that intersect at the points x(u + v), x(−2u + v), and x(u − 2v), where x is a
positive integer; their intersections are equivalent 3-fold rotation centers (shown as a white circles in
Figure 12(b)). The placement of the origin and choice of x determine the whole p31m lattice of rotation
centers, reflection axes and glide-reflection axes since the p31m group G is generated by 3-fold rotations
about the origin and reflections in one of the three reflection axes.
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Figure 12. (a) A lattice of unit triangles with a 3-fold rotation center at the origin (black
circle) and reflection axis (solid line); together these generate a p31m group G; (b) Repeated
3-fold rotations about the origin and reflections about the axis in (a) generate the whole
lattice of symmetry elements for G, which includes reflection axes (solid heavy lines), 3-fold
rotation centers (black and white circles), and glide-reflection axes (dashed lines). A shaded
triangular fundamental domain for G is shown in (a), and a shaded trapezoidal polyiamond
fundamental domain for G is shown in (b). Here x = 2; the area of each fundamental domain
is 12 triangular units.

u

v

u

v

(a) (b)

The area S of a fundamental domain for the tiling is one-third the area enclosed by the three reflection
axes closest to the origin, which is

S = 3x2 (7)

where the area of a unit triangle is 1. Since we want our n-iamond to be a fundamental domain, n = S.
Therefore,

n = 3, 12, 27, 48, 75, 108, 147, 192, 243, . . . . (8)

The action of G classifies all unit triangles into n equivalence classes and we denote the equivalence
class of a unit triangle e as C(e). We construct a set Tn of n-iamonds that are fundamental domains for
G as described in Section 5.1, choosing n from the list in (8) and having the additional constraint that the
unit triangles in the set T must be in the region bounded by the mirror reflection axes in Figure 12(b).

Figure 13 shows the set of inequivalent n-iamonds in Tn for n ≤ 12. Figure 14 shows the
corresponding p31m tilings obtained by performing a 3-fold rotation about the origin (black circle)
to fill out the triangle bounded by reflection axes (Figure 12(b)), then reflecting this triangle in its edges.

Figure 13. List of n-iamonds produced as described in Section 6.1 for n ≤ 12. The tiles
are fundamental domains for the p31m group used to construct them. The labels indicate n

followed by the tile number for that n.

 

 3-1  12-1   12-2     12-3      12-4     12-5  12-6     12-7      12-8       12-9  12-10        

 

12-11    12-12      12-13     12-14       12-15     12-16     12-17  12-18    12-19 12-20 
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Figure 14. List of p31m isohedral tilings by n-iamonds in Figure 13, generated by a given
p31m group, for n ≤ 12. Labels correspond to those in Figure 13. Every n-iamond in
Figure 13 is a fundamental domain for its tiling in Figure 14.

    

    

    

    

    
 

   

 3-1              12-1   12-2             12-3 

 12-4              12-5   12-6             12-7 

 12-8              12-9  12-10             12-11 

 12-12             12-13  12-14             12-15 

 12-16             12-17  12-18             12-19 

 12-20 
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6.2. Symmetries of Tiles

Theorem 5. Every isohedral tiling by a polyiamond T produced by our algorithm in Section 6.1 has as
its symmetry group the p31m group that generated it and T is a fundamental domain for the tiling.

Proof. Our proof is analogous to that for Theorem 3. Let G′ be the full symmetry group of a tiling
T produced by a p31m group G acting on a polyiamond T that is a fundamental domain for G, as
described in Section 6.1. If G is a proper subgroup of G′, then by Theorem 2, there is a reflection
symmetry or 3-fold rotation symmetry in G′ that is also a symmetry of T . T can be obtained from the
shaded fundamental domain shown in Figure 12(b) by removing unit triangles and adding unit triangles
equivalent to these (by a 120◦ rotation about the origin), always keeping the new tile homeomorphic to a
disc and bounded by reflection axes as in Figure 12(b). This process shows that one edge of T that lies
on a reflection axis will have length at least b(3x + 1)/2c|u|, and at most one other edge of T (lying on
an adjacent reflection axis of G) will have this same length (see Figure 13). From this, it follows that T
cannot have 3-fold rotation symmetry.

Suppose that T has reflection symmetry. If the two straight edges of T that lie on reflection axes for
G have the same length, then the reflection that leaves T fixed must map these edges to each other. But
this reflection cannot leave T invariant, since the other edges of T are related by a 3-fold rotation about
the origin (see, for example, tiles 12-1, 12-2, 12-3 in Figure 13). If the two straight edges of T that lie
on reflection axes for G have different lengths, then a reflection that fixes T must leave the longer edge
fixed, and so is perpendicular to that edge. This can only happen if T is the rhombic fundamental domain
in Figure 12(b), and in this case, the reflection symmetry for T is not a symmetry for the tiling T (see
tiling 12-4 in Figure 14).

7. p3m1

The lattice of reflection axes and 3-fold rotation centers of a p3m1 symmetry group is shown in
Figure 15; black, white, and grey circles denote three inequivalent 3-fold rotation centers. Here, unlike
the p31m case, all 3-fold centers lie on reflection axes. The shaded region bounded by reflection axes
is a fundamental domain for the p3m1 group that generates the tiling by reflections in those axes. By
Lemma 1, this is the only polyiamond tile possible having the area of a fundamental domain. But the
full symmetry group of this tiling is type p6m, which has a fundamental domain with area 1/6 that of the
shaded tile. Thus,

Theorem 6. There are no p3m1 isohedral tilings having polyiamonds as fundamental domains.

We note that if the shaded region in Figure 15 is decorated with an asymmetric motif then there are
n-iamonds (where n = k2, k a positive integer) having the shape of an equilateral triangle, for which the
decorated triangle is a fundamental domain for a p3m1 isohedral tiling.
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Figure 15. The lattice of reflection axes and 3-fold rotation centers of a p3m1 group (glide-
reflection axes are not shown). Three inequivalent 3-fold centers are black, grey, and white
circles. Lines are reflection axes. The shaded region is a fundamental domain for the p3m1
group generated by reflections in the axes surrounding the region.

 

 

 

8. p6

8.1. Creating Polyiamonds as Fundamental Domains for p6 Symmetry Groups

A p6 symmetry group G contains 6-fold, 3-fold, and 2-fold rotations; the subgroup generated by its
3-fold rotations is type p3. Thus we begin as in Section 5.1, with a lattice of equilateral triangles, to
build n-iamond tiles that are fundamental domains for G. By Lemma 1, 6-fold and 3-fold centers for
G are located on the boundaries of tiles, and we have seen that 3-fold centers can only occur at lattice
points that are “corners” of the tiles where at most two unit triangles meet. Clearly 6-fold centers can
only occur at lattice points that are “corners” where just one unit triangle in the tile meets that point.

So first we place a 6-fold rotation center, a black circle, at a lattice point and call this the origin, then
place vectors u and v at the origin, along edges of a unit triangle. Next we place a 3-fold rotation center,
a white circle, at xu + yv, where x and y are nonnegative integers, not both 0. See Figure 16(a). These
choices of 6-fold and 3-fold rotation centers determine the whole p6 lattice of rotation centers; rotations
about the two chosen black and white centers generate G.

Figure 16. (a) A lattice of unit triangles with a black 6-fold rotation center and white 3-fold
rotation center that generate a p6 group G; (b) A triangular fundamental domain (shaded)
for G; (c) A polyiamond fundamental domain (shaded) for G. Here x = 2, y = 1; the area
of each fundamental domain is 7 triangular units.

v

u

(a) (b) (c)

Figure 16(b) shows a simple triangular fundamental domain (shaded) for G, and Figure 16(c) shows
a polyiamond fundamental domain (shaded) for G. The area of a fundamental domain for this p6 group
is given by [2]

S = x2 + y2 + xy (9)
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taking the area of a unit triangle as 1. Since we want our n-iamond to be a fundamental domain, n = S.
Therefore,

n = 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 49, 49, . . . , (10)

where two pairs of (x, y), namely, (5, 3) and (7, 0) correspond to n = 49.
The action of the p6 group classifies all unit triangles into n equivalence classes and we denote

the equivalence class of a unit triangle e as C(e). We construct a set Tn of n-iamonds that are
fundamental domains for the given p6 group as in Section 5.1, with n chosen from the list in (10).
Figure 17 shows the set of inequivalent n-iamonds in Tn for n ≤ 9. From each of these n-iamonds we
obtain the associated p6 tiling by using the black circles as 6-fold rotation centers and white circles as
3-fold rotation centers. Figure 18 shows the corresponding isohedral tilings produced by n-iamonds in
Figure 17.

Figure 17. List of n-iamonds produced as described in Section 8.1 for n ≤ 9 [2]. The
tiles are fundamental domains for the p6 group used to construct them. The labels indicate
n followed by the tile number for that n. Parentheses indicate that the tiles produce tilings
having more symmetries than the p6 group that generates the tilings.

                

(1-1)       3-1           (4-1)             4-2              4-3            (7-1)              7-1-2                7-2                  7-3               7-3-2                 7-4                 7-5                 7-5-2                 7-6                  

          

   7-7 7-8                  7-9                7-10                  7-11                7-12            7-12-2              7-13                 7-14                    7-15                    7-16                  9-1                            

          

     9-2 9-3          (9-4)        9-5                      9-6                 9-6-2                    9-7                      9-8                    9-9                      9-10                   9-11               

          

    9-11-2         9-12                 9-13                 9-14                   9-15                    9-16                   9-17                     9-18                     9-19                       9-20                        

     

     9-21                      9-22  9-23               9-24                   9-25                 9-26                      9-27

Figure 18. List of p6 isohedral tilings by n-iamonds in Figure 17 for n ≤ 7, generated by a
given p6 group. Labels correspond to those in Figure 17. The symmetry group of each tiling
is the given p6 group, except for tilings whose labels are in parentheses.

    
      (1-1)               3-1              (4-1)              4-2 

    
      4-3               (7-1)             7-1-2              7-2  

    
      7-3   7-3-2        7-4              7-5 

    
      7-5-2    7-6         7-7            7-8 

      
       7-9     7-10   7-11           7-12 
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Figure 18. Cont.    
      (1-1)               3-1              (4-1)              4-2 

    
      4-3               (7-1)             7-1-2              7-2  

    
      7-3   7-3-2        7-4              7-5 

    
      7-5-2    7-6         7-7            7-8 

      
       7-9     7-10   7-11           7-12 

 

                              

     
      7-12-2          7-13       7-14   7-15 

 
7-16 
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We note that the discussion in this section amplifies that in Section 3 in [2], and obtains the same
list of polyomino fundamental domains for isohedral tilings with p6 symmetry. However, in our next
Section 8.2 we analyze the symmetries of those tilings. In our older article [1], we presented a list of
polyiamond tiles for p6 isohedral tilings constructed from 60◦ rhombic units. Every tile in that list can
be obtained by performing a half-turn about the 2-fold center on the boundary of a tile in our list here in
Figure 17.

8.2. Symmetries of Tiles

Some tilings in Figure 18 have symmetries in addition to those in the p6 group G that generated them.
These tilings and their polyiamond tiles in Figure 17 are indicated by parentheses in their labels. We can
identify these polyiamonds as follows.

• Select a polyiamond that has rotation and/or reflection symmetry, and examine its tiling T
generated by G.
• If the line connecting adjacent 6-fold and 3-fold centers (black to white) is a reflection axis for T ,

the tiling has p6m symmetry. Tilings (1-1) and (4-1) in Figure 18 have p6m symmetry. These
tilings also have 3-fold centers for the tiling at the centers of the polyiamond tiles.
• Otherwise, look at all vertices and centers of unit triangles in a polyiamond in T except for those

black and white rotation centers in the p6 group we have generated and determine whether or not
they can be new 3-fold centers for T . If new 3-fold centers are found, the full symmetry group
of the tiling contains G as a proper subgroup. Tiling (7-1) in Figure 18 has a larger p6 symmetry
group than G since there are 3-fold rotation centers for T at the centers of the rotor-like polyiamond
tiles. Note that the same tiles appear in tiling 7-1-2, but in this tiling, the centers of the tiles are not
3-fold centers of rotation for T .

9. p6m

Figure 19 shows the rotation and reflection symmetry elements of a p6m group. Black, white, and
gray circles are the 6-, 3-, and 2-fold centers, respectively. Solid lines are reflection axes. The shaded
30◦- 60◦- 90◦-triangle is a fundamental domain. A polyiamond that is a fundamental domain for the
tiling must have its edges on the reflection axes, by Lemma 1. But this is clearly impossible. Thus,

Theorem 7. There are no p6m isohedral tilings having polyiamonds as fundamental domains.
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Figure 19. The lattice of rotation and reflection symmetry elements for a p6m group G.
Solid lines are reflection axes, black, white, and gray circles are 6-, 3-, and 2-fold centers
respectively. (Glide-reflection axes are not shown.) The shaded region is a fundamental
domain for G.

10. Enumeration Tables

Tables 1–3 give the number of tiles and isohedral tilings that we have generated in Section 2 through
Section 9. Nn is the number of inequivalent tiles T in Tn for a given symmetry group G of type
p3, p31m, p3m1, p4, p4m, p4g, p6, or p6m that generate an isohedral tiling having the n-omino or
n-iamond tiles as fundamental domain. Tiles are equivalent only if they generate the same tiling by the
action of the group G when each tile is marked with an asymmetric motif. For example, the tiles 5-2
and 5-2-2 in Figure 3 are congruent and their corresponding tilings are the same, but the placement of
their 4-fold centers is different, and so if the tiles are marked with an asymmetric motif, they generate
different isohedral tilings.

Table 1. The number of isohedral tilings of types p3, p31m and p3m1 having n-ominoes or
n-iamonds as fundamental domains.

p3 n-iamonds

n 2 6 8 14

Nn 1 4 7 306
Sn 0 1 6 294
N ′n 1 4 7 288
S ′n 0 1 6 277

p31m n-iamonds

n 3 12

Nn 1 20
Sn 1 20
N ′n 1 20
S ′n 1 20

p3m1 n-iamonds

n 1 4 9 . . .

Nn 1 1 1 . . .

Sn 0 0 0 . . .

N ′n 1 1 1 . . .

S ′n 0 0 0 . . .

Table 2. The number of isohedral tilings of types p4, p4g and p4m having n-ominoes or
n-iamonds as fundamental domains.

p4 n-ominoes

n 1 2 4 5 8 9 10

Nn 1 1 3 12 45 82 300
Sn 0 0 2 9 38 77 296
N ′n 1 1 3 8 45 80 277
S ′n 0 0 2 7 38 76 275

p4g n-ominoes

n 1 4 9 16

Nn 1 3 26 596
Sn 0 2 25 595
N ′n 1 3 26 596
S ′n 0 2 25 595

p4m n-ominoes

n 1 2 . . .

Nn 0 0 . . .

Sn 0 0 . . .

N ′n 0 0 . . .

S ′n 0 0 . . .
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Table 3. The number of isohedral tilings of types p6 and p6m having n-ominoes or
n-iamonds as fundamental domains.

p6 n-iamonds

n 1 3 4 7 9 12

Nn 1 1 3 20 29 195
Sn 0 1 2 19 28 194
N ′n 1 1 3 16 27 191
S ′n 0 1 2 16 26 190

p6m n-iamonds

n 1 2 3 . . .

Nn 0 0 0 . . .

Sn 0 0 0 . . .

N ′n 0 0 0 . . .

S ′n 0 0 0 . . .

Marking each tile with an asymmetric motif also guarantees that the group that generates the tiling
is the full symmetry group of the tiling. So Nn is also the number of isohedral tilings having G as full
symmetry group and having n-omino or n-iamond tiles as fundamental domain, when each tile is marked
with an asymmetric motif.

Sn is the corresponding number of the Nn tilings when the asymmetric motif of each tile is removed.
That is, Sn is the number of isohedral tilings having full symmetry group G and having (unmarked)
n-ominoes or n-iamonds as fundamental domains. In our figures that depict the isohedral tilings for
small values of n, these tilings do not have parentheses around their labels. These are the most important
“counting” results in this article. N ′n is the number of non-congruent tiles in the Nn tilings, counted
by ignoring rotation centers attached to tiles; similarly, S ′n is the number of non-congruent tiles in the
Sn tilings.

For example, for symmetry group p6 and n = 7, there are 20 tiles in Figure 17, with corresponding
isohedral tilings in Figure 18, so N7 = 20. Since tiling 7-1 of Figure 18 has parentheses around its label,
S7 = 19. From Figure 17, we can see that four pairs of tiles are congruent: 7-1 and 7-1-2; 7-3 and 7-3-2;
7-5 and 7-5-2; 7-12 and 7-12-2. Thus N ′7 = 20 − 4 = 16. Among the 19 tiles counted for S7, there are
also 16 non-congruent tiles, so S ′7 = 16.

11. Summary

We have described computer algorithms that can enumerate and display isohedral tilings by n-omino
or n-iamond tiles for given n in which the tiles are fundamental domains and the tilings have 3-, 4-,
or 6-fold rotational symmetry. Their symmetry groups are of types p3, p31m, p4, p4g, and p6. We
have shown that there are no isohedral tilings with symmetry groups of types p3m1, p4m, or p6m that
have polyominoes or polyiamonds as fundamental domains. For symmetry groups of types p3, p31m,
p4, p4g, and p6 we used the backtracking Procedure 1 to obtain a set Tn of n-omino or n-iamond tiles
where each tile produced one isohedral tiling, generated by a given symmetry group G of one of these
five types. We can denote Tn(G) as the set Tn for that symmetry group G and T ∗

n (G) the corresponding
set of isohedral tilings.

We investigated the symmetries of tilings in the set T ∗
n (G) and noted those tilings that satisfy the

following two conditions: (1) the full symmetry group of the tiling is G; and (2) the tiles are fundamental
domains for G. We denote the subset of T ∗

n (G) that satisfies (1) and (2) as S ∗
n (G) and the corresponding
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set of tiles as Sn(G). (For small values of n, these tiles and their tilings were displayed with labels
without parentheses.) The enumeration of S ∗

n (G) is the main counting result of this article. Although
the n-omino or n-iamond tiles produced by our algorithm are not always fundamental domains for the
isohedral tilings they generate, if we mark these tiles with an asymmetric motif, then the set T ∗

n (G) is
the set of all isohedral tilings with symmetry group G in which the corresponding tiles in Tn(G) are
fundamental domains. The set T ∗

n (G) can then also include a marked fundamental domain for a p3m1
symmetry group. In Tables 1–3 of Section 10, we used the notation Nn = #T ∗

n (G) and Sn = #S ∗
n (G).
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