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Abstract: The language of gene expression displays topological symmetry. An important 

step during gene expression is the binding of transcriptional proteins to DNA promoters 

adjacent to a gene. Some proteins bind to many promoters in a genome, defining a regulon 

of genes wherein each promoter might vary in DNA sequence relative to the average 

consensus. Here we examine the linguistic organization of gene promoter networks, 

wherein each node in the network represents a promoter and links between nodes represent 

the extent of base pair-sharing. Prior work revealed a fractal nucleus in several σ-factor 

regulons from Escherichia coli. We extend these findings to show fractal nuclei in gene 

promoter networks from three bacterial species, E. coli, Bacillus subtilis, and Pseudomonas 

aeruginosa. We surveyed several non-σ transcription factors from these species and found 

that many contain a nucleus that is both visually and numerically fractal. Promoter 

footprint size scaled as a negative power-law with both information entropy and fractal 

dimension, while the latter two parameters scaled positively and linearly. The fractal 

dimension of the diffuse networks (dB = ~1.7) was close to that expected of a diffusion 

limited aggregation process, confirming prior predictions as to a possible mechanism for 

development of this structure. 
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1. Introduction  

Genomes display symmetry on several levels of organization. On the most basic level, the DNA 

double helix is symmetric about its central axis [1]. There is also self-similarity distributed along the 

length of a DNA molecule as 1/f correlations and power-law scaling in nucleotide base composition 

and in the abundance of genome components including gene types [2–7]. Several studies now show a 

fractal organization of chromatin [8–10] and fractal folding and compaction of whole genomes [11]. In 

medicine, the fractal dimension of nuclear chromatin has been examined for the prognosis of  

cancer [12–14].  

While many of these examples of symmetry derive from studies of structural genomics, others draw 

from functional genomics–cases in which genome behavior is symmetric as revealed by Gene 

Regulatory Networks (GRNs; [15–17]). In a GRN, nodes represent genes and arcs or arrows represent 

regulatory relationships between genes. Typically there are a few highly connected genes, or global 

regulators, that organize much of the transcription in a genome; most regulators control only one or a 

few genes. This highly skewed distribution of control linkages across genes tends to follow a  

power-law relationship [18,19], showing that there is symmetry in the rate at which regulatory work is 

partitioned across the genome.  

These fractal genetic systems are embedded within other levels of self-similarity in living systems. 

Many cellular interaction networks also exhibit scale-free architectures including protein-protein 

interaction and metabolic networks [18,20–23]. There is fractal structure found at the level of tissue 

organization [24], as well as whole-organism physiology [25] and development [26], and there are 

patterns of allometric scaling that explain biological pattern ranging from biochemistry to ecosystem 

organization [27–29].  

In the present study we consider symmetry at the interface between structural and functional 

genomics–at the DNA-protein binding event that initiates transcription. A critical stage of gene 

expression is the binding of RNA polymerase and its helper proteins during transcription [30]. 

Typically there is a promoter region slightly upstream of the transcription start site that is recognized 

by one or more regulatory proteins, or transcription factors; these proteins aid in the positioning and 

activation of RNA polymerase so that binding is both efficient and specific [31–33]. Many of the 

regulatory proteins are dimers and bind to symmetric palindromic sequences in the promoter  

region [30,34]. Some transcription factors bind to more than one place in the genome and some bind to 

hundreds–the latter being an example of a global regulator. These global regulators define a regulon of 

genes that may be turned on or off in concert in response to a given cellular need [33,35]. In bacteria, 

the sigma factors (σ) are important global regulators that mediate responses such as heat shock and 

nitrogen response.  

Gene Promoter Networks (GPNs)–as opposed to Gene Regulatory Networks (GRNs)–are  

systems-level representations of the DNA-based language used to initiate gene expression [36]. More 

literally, a GPN is a network-based rendering of base pair-sharing among the promoter elements within 

a genome, typically promoters within a regulon. Consider the hypothetical GPN comprised of nodes A, 

B, and C. Each node represents a promoter sequence bound by the same DNA-binding protein. Links 

or edges form between nodes (promoters) in the GPN based on the number of base pairs shared by 

promoter pairs. For example, given promoters A (AATA), B (AATT), and C (GCTA), there would be 
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the following weighted edges formed between node pairs: A – B (w = 3 base pairs), A – C (w = 2 bp), 

and B – C (w = 1 bp)(see Supplementary Figures).  

GPN analysis was first applied to -factor regulons in the bacterium Escherichia coli [36]. The 

promoters in these GPNs displayed considerable sequence variation and were not well-represented by 

a single consensus motif. Given this, and that the regulons contained numerous promoters, the full 

GPNs were exceedingly dense and contained numerous weak links representing the sharing of few 

bases between promoters. In order to detect fine topological structure it was necessary to apply a 

thresholding method, removing a subset of the edges and retaining only those within a certain interval. 

Such thresholding is standard procedure in studies ranging from protein interaction networks [37] to 

neurological networks in the brain [38] and social networks [39]. The thresholding of the GPNs at the 

phase transition (break up of the giant component) revealed nuclei of high-weight edges that represented 

high bp-sharing among promoters. These GPN nuclei displayed a strong fractal structure [36]. In 

general, fractal structures display a self-similar symmetry across spatial scales [40], and the presence 

of a fractal core in the GNP suggested a self-organizing complexity interfacing the evolution of 

genome regulatory elements and the grammar of transcriptional regulation.  

More recent work on GPNs [41] involved in silico simulations intended to identify mechanisms that 

could produce a fractal nucleus. Evolutionary factors that contributed to the development of fractal 

topology in modeled GPNs included promoter duplication and attractive forces arising from  

DNA-protein binding chemistry; repulsive forces due to binding chemistry were ruled out as 

unimportant under the conditions examined. However, random evolution of the promoter set 

introduces an intrinsic repulsion among promoters–in that most random promoters differ considerably 

in sequence composition from any optimal consensus promoter. These findings were notable since it is 

thought that repulsion is a critical causal agent in the development of fractality in most networks [42]. 

Collectively these patterns supported a weak version of the diffusion limited aggregation model first 

posed to explain the fractal nuclei in GPNs [36], positing that fractality arises by the random accretion 

of promoters around the periphery of a GPN, and repulsive forces increase the fractal signal.  

These studies of GPNs prompt certain questions about the evolution of gene regulation. Why is it 

that a given protein regulator binds a multiplicity of promoter sequences in large regulons as opposed 

to one or a few sequences presenting an optimal binding chemistry? A partial answer is that 

suboptimal binding events present the opportunity to fine-tune gene expression using additional 

transcription factors that aid the binding, transcription factors that may be responsive to other 

conditions in the cell [30]. But is this selective advantage of flexibility the driving force of promoter 

evolution, or simply a response to a stochastically driven promoter evolution in which promoters blink 

on and off all across the genome? While it is likely that promoters arise by either random mutation or 

duplication events, it is unclear to what extent natural selection directly controls the frequency of 

promoters in a population or species. Instead of a presence/absence of a simple consensus promoter, it 

is likely we must consider the extended promoter phenotype that must be evaluated in the context of 

whether or not the cell can form an adequate transcription factor set that will facilitate RNA 

polymerase function. This loosens the selective forces on the promoter bases, and allows a more 

diffuse and random process of accretion into a GPN, compared to natural selection rigidly maintaining 

base composition near an optimal consensus sequence.  
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This plasticity of the language controlling gene expression, a lack of simple 1:1 mappings, is also 

found in human languages. While linguists [43] have held for some time that language must be 

functional but not overly rigid, recent studies [44,45] suggest that human languages emerge abruptly at 

the phase transition between referentially useless systems and overly indexed systems. Here the 

explanation entails consideration of the balance between the opposing interests of the listener and the 

speaker in a communicative exchange. The listener attempts to get as much information as possible, 

which is best achieved when there is a 1:1 mapping between words and objects. The approach employs 

mutual information, a metric from Shannon’s information theory [46], to measure this mapping. By 

contrast, the speaker seeks to minimize his effort in forming sentences, which is more difficult to do 

when there are many words to choose from. Here, information entropy can be used to quantify the 

lexical diversity. Large studies of semantic networks [47] support this view of language evolution by 

showing that synonym sets display some of the topological features we have found in bacterial gene 

regulatory systems.  

Our current work tests the generality of prior findings on fractality in GPNs, and evaluates pattern 

within the context of information theory. Specifically we address the following: (a) Do other regulons 

(other than -factors) contain fractal nuclei in their GPNs? (b) Do other species (other than E. coli) 

contain fractal nuclei in their GPNs? (c) Is there a quantitative relationship between information 

entropy of the promoter signals in a regulon and the fractal dimension of a GPN nucleus? Do these 

factors co-vary with promoter footprint size? (d) In addition to addressing these questions, we offer 

greater detail in the methods used to study GPNs in this fashion (see Supplementary Information).  

2. Materials and Methods  

2.1. Predicted Promoters  

Promoter sequences were obtained from Virtual Footprint [48,49] which offers promoter prediction 

tools that interface with several prokaryotic genome libraries including Prodoric [48] and RegulonDB [50]. 

We used the Regulon Analysis option, downloading several non-σ factor predictions for  

Escherichia coli (strain K12), Bacillus subtilis (strain 168), and Pseudomonas aeruginosa (strain 

ATCC 15692/PAO1). Default settings were used, though sensitivities were varied (0.5–1.0). The 

single pattern option (rather than bipartite) was used yielding single block promoter footprints  

(~10–20 bp) without a spacer. Alignments used were as provided by Virtual Footprint. Regulons were 

sampled haphazardly with a preference for those that included >100 genes and exhibited some type of 

visually non-random structure.  

2.2. GPNs and Thresholding  

Perl script was used to extract and process promoter sequence information from the Virtual 

Footprint flat files. Pairwise similarities between promoter sequences i and j (Aij) were evaluated as the 

number of bp shared. These weighted edge values were used to form the adjacency matrix, A.  

A network or graph G was generated based on the matrix A (see Supplementary Figure 1). Networks 

were visualized using Pajek [51,52], a program used to work with large networks. Projections were 

rendered with the Kamada and Kawai [53] algorithm.  
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Thresholding was achieved through serial x-sections [39] in which only edges with value x are 

retained, all others are removed (see Supplementary Figure 1). For our purposes x was a positive 

integer no larger than F (footprint size). Separate subgraphs (G’) were formed from the total graph (G) 

based on a sliding x-threshold (see Supplementary Figure 2). In each subgraph, the largest connected 

component was extracted from G and evaluated for the number of nodes (graph size) and number of 

edges. The largest (maximal) connected component (LCC) is the subgraph G’ containing all nodes still 

interconnected in the largest group after removal of edges not meeting the threshold criterion. An LCC 

is a giant component when it contains at least half the nodes present in the full graph G. Note that for 

these regulons taking m-slices (retaining edges above a certain threshold) at the upper phase transition 

returned comparable LCC sizes (node counts) as did x-sections, so we somewhat arbitrarily chose to 

report x-sections.  

We report the LCC at the upper phase transition of these serial extractions. The phase transition in 

graph size occurs around the threshold that fractures the giant component into numerous smaller 

connected components (see Supplementary Figure 2).  

2.3. Assessment of Fractal Structure  

Python script was written to implement the renormalization method of Song et al. [54,55]  

and evaluate the fractal dimension of the LCCs extracted from the GPNs. The program utilized  

NetworkX [56,57], an open source Python package for the analysis of complex networks. The 

renormalization method is a graph coloring exercise founded on the traditional box-covering method of 

fractal measurement. In brief, for a given box length (lB), or shortest path length between nodes, each 

node is colored in a fashion such that neighbors of like color are no further away than the current box 

length. Then the network is renormalized by collapsing adjacent nodes into a single node if they share 

the same color (see Supplementary Figure 3). This enforces the graph coloring rule that no two 

adjacent nodes can share the same color. The value NB then gives the minimum number of boxes of 

length lB required to cover the graph of NB nodes, and is equal to the graph size (node count) following 

renormalization. Considering a range of box lengths, a plot of lB versus NB on a log-log scale will be 

linear for networks with a fractal topology (see Supplementary Figure 3). On a normalized series of 

graphs with minimum size N, the fractal dimension dB is obtained from linear regression of the log-log 

transformation of the general scaling relation:  
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The coefficient of determination (R2
d) was used to assess the fit of the renormalization data to this 

fractal model.  

2.4. Information Entropy  

Base conservation was evaluated using Shannon’s information entropy [36] as described for DNA 

sequences [58,59]:  
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where H(l) is the entropy or the amount of uncertainty regarding base composition (b: A, C, G, T) at 

position l in the promoter sequence. The frequency of each base at position l is denoted by pb,l and is 

calculated across the set of promoter sequences within a GPN or regulon. RSequence represents the 

amount of information present at position l, and is calculated as the observed uncertainty minus the 

maximum possible uncertainty (2) under a 2-bit system:  

ܴௌ௘௤௨௘௡௖௘ሺ݈ሻ ൌ 2 െ  ሺ݈ሻܪ

In our analyses, the value IRMean denotes the arithmetic mean of RSequence(l) across the l positions in 

the promoter footprint. We used the entropy calculator from the HCV database website [60] 

maintained by the Los Alamos National Laboratory to obtain summary estimates of RSequence for each 

regulon, and WebLogo [61] to obtain figures of the sequence logos [59]. 

2.5. Footprint Size, Information Entropy, and Fractal Dimension  

We explored the correspondence between footprint size (F), information entropy (IRMean), and 

fractal dimension (dB) using regression. MATLAB (The MathWorks Inc., Natick, MA, USA) was used 

to fit the linear model Y = βX + A + ε in which x and y were the independent and dependent variables, 

respectively. All three pair-wise relationships were explored, separately, given the three parameters F, 

IRMean, and dB. We examined relationships in which neither variable was transformed and in which both 

variables were log10-transformed; a linear fit in the latter circumstance indicates a power-law 

relationship, and this type of association has been found among numerous genome properties [4]. The 

fit was judged by the coefficient of determination (R2), and the corresponding correlation coefficient 

(r) is also reported.  

3. Results  

3.1. Visual Pattern  

Symmetric patterns were visually evident at upper phase transitions in several of the GPNs studied 

(Figure 1). There were other GPNs that showed no obvious visual structure and we do not consider 

these any further in the present study. The type of symmetry varied across GPNs. Several of the large 

networks (containing many nodes) displayed radial symmetry around an open center (e.g., Figure 1A, K). 

Others, typically smaller GPNs, displayed bilateral symmetry along a linear axis (e.g., Figure 1L, M), 

while some showed a combination of bilateral and radial symmetry (e.g., Figure 1I, N). A few of the 

GPNs were very dense with numerous links between closely related node pairs (e.g., Figure 1G, J).  
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Figure 1. The nuclei of fourteen gene promoter networks (GPNs) representing in each case 

the promoter footprint of a transcription factor binding in the genome of one of three 

bacterial species: Bacillus subtilis (BS), Escherichia coli (EC), and Pseudomonas 

aeruginosa (PA). Each network is an x-section taken from the upper phase transition of a 

serial extraction. Promoter predictions were obtained from the Virtual Footprint  

database [48]. The transcription factors defining each regulon are as follows: (A) DegU, 

BS; (B) Anr-Dnr(37), PA; (C) ArgR, EC; (D) Hpr, BS; (E) ResD, BS; (F) SigB(n14), BS; 

(G) AlgU, PA; (H) FleQ, PA; (I) Fur, PA; (J) PvdS, PA; (K) DeoR, EC; (L) CpxR, EC; 

(M) Crp, EC; (N) MarA, EC. See Table 1 for more details. 
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3.2. Fractal Dimensions  

Most of the GPN x-sections taken from phase transitions exhibited a strong self-similarity as 

measured by the method of Song et al. [55], as seen in the fractal dimension (dB, Table 1). The average 

fractal dimension was dB = 2.118. The lowest observed was dB = 1.534 (Figure 1M) for a long linear 

symmetry; the highest observed was dB = 3.415 (Figure 1J) for a highly dense network. The fit of the 

fractal relationship was generally high for these (R2
d = 0.906–0.978).  

Table 1. Promoter prediction settings for Virtual Footprint downloads along with footprint 

size, information entropy, and the outcome of fractal analyses.  

Image Regulon Species Library S X F IRMean dB R2
d 

A DegU BS Prod 0.8 17 21 1.032 1.837 0.921 
B Anr-Dnr(37) PA Prod 1.0 13 14 1.295 1.953 0.921 
C ArgR EC Prod 0.7 13 14 1.175 1.640 0.978 
D Hpr BS Prod 0.8 16 19 1.081 2.120 0.914 
E ResD BS Prod 0.2 12 13 1.551 2.599 0.960 
F SigB(n14) BS Prod 0.8 20 32 0.967 1.831 0.945 
G AlgU(-35) PA Prod 0.5 9 10 1.557 3.064 0.959 
H FleQ PA Prod 0.5 10 11 1.410 2.669 0.965 
I Fur PA Prod 0.9 15 19 0.927 1.665 0.972 
J PvdS PA Prod 0.3 8 9 1.541 3.415 0.938 
K DeoR EC Reg 1.0 14 16 1.109 2.040 0.906 
L CpxR EC Prod 1.0 14 16 1.192 1.561 0.966 
M Crp EC Prod 0.6 17 22 0.964 1.534 0.977 
N MarA EC Reg 1.0 16 21 1.084 1.719 0.938 

Image, visual representation of this network in Figure 1 produced using program PAJEK; Regulon, 
regulatory protein that binds this set of promoters thereby defining this regulon of genes; Species, 
BS, Bacillus subtilis; EC, Escherichia coli; PA, Pseudomonas aeruginosa; Library, database of 
promoter predictions from Virtual Footprint database [48] (Prod, Prodoric [48]; Reg, RegulonDB [50]); 
S, sensitivity setting on Virtual Footprint; X, x-section critical value for thresholding; for example, 
X = 17 implies that all edges were removed from the network except those of weight 17 bp shared 
between promoter pairs; F, footprint size of promoter in base pairs; IRMean, arithmetic mean across 
base positions of the position-specific information (RSequence) for a regulon of promoters; dB, fractal 
dimension of GPN for upper phase transition x-section as calculated by method of Song et al. [55]; 
R2

d, coefficient of determination for regression of log-log transformed plot of lB versus NB. 

3.3. Footprint Symmetry and Information Entropy  

Many of the promoter binding sites displayed palindromic symmetry. Some were mirror 

palindromes such as 5'-TAAAT-3' (Figure 2A, Pvds), and some were inverted repeats (Figure 2N; 

Crp), such as the sequence 5'-GTGA(n6)TCAC-3' and complementary strand 3'-CACT(n6)AGTG-5'.  

The promoter sequences were highly variable and departed from the consensus sequence 

considerably in many but not all regulons. Sequence-level information, IRMean, ranged between 0.927 

(Fur) and 1.557 (−35 box of AlgU).  
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Figure 2. Sequence logos [59] for the fourteen regulons examined in this study. Each row 

of letters was rendered using WebLogos [61] and represents the sequence conservation 

across the set of promoters within a GPN. The height of each letter denotes the  

position-specific information entropy (RSequence). Regulon id’s are as follows: (A) PvdS;  

(B) AlgU(-35); (C) FleQ; (D) ResD; (E) Hpr; (F) DeoR; (G) Anr-Dnr(37); (H) DegU;  

(I) SigB(n14); (J) MarA; (K) Fur; (L) ArgR; (M) CpxR; and (N) Crp. The order from 

bottom to top represents GPNs ranked according to increasing fractal dimension (dB) of 

their phase transition LCC x-section. 
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3.4. Scaling of Footprint Size, Information (IRMean), and Fractal Dimension  

Fractal dimension (dB) scaled negatively with footprint size (F) (Figures 2, 3; Table 2). The  

power-law relationship (log-log transformation) was strongest (R2 = 0.569) and significant (P = 0.002). 

The relation can be seen in Figure 2 in that the sequences near the base are generally longer than near 

the top. The smallest footprints ranged in size from 9–13 bp and displayed the highest fractal 

dimensions (group mean dB = 2.937), and these were topologically densest, containing numerous edges 

between very similar promoters (Figure 1). This contrasted with the larger footprint GPNs which 

generally had lower fractal dimensions (group mean dB = 1.790) and a greater likelihood of visually 

evident bilateral or radial symmetry.  

Figure 3. Relationships between footprint size, information entropy, and fractal dimension 

across fourteen nuclei of GPNs from three bacterial species.  
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Table 2. Relationships between footprint size, information (IRMean), and fractal dimension 

across nuclei of fourteen GPNs from three bacterial species based on linear regression of 

original data and log-log transformations of data.  

x y β A R2 r Fstat P 
F dB –0.064 3.205 0.431 –0.656 9.079 0.010 

log10(F) log10(dB) –0.560 0.986 0.569 –0.754 15.821 0.002 
F IRMean –0.031 1.726 0.669 –0.818 24.245 <0.001 

log10(F) log10(IRMean) –0.472 0.643 0.795 –0.892 46.551 <0.001 
IRMean dB 2.236 –0.579 0.734 0.857 33.088 <0.001 

log10(IRMean) log(dB) 1.168 0.225 0.696 0.834 27.463 <0.001 
Linear regression model: y = βx + A + ε; x, independent variable; y, dependent variable;  
F, footprint size of promoter in base pairs; dB, fractal dimension of GPN for upper phase 
transition x-section; IRMean, average Shannon’s Information index based on measures of 
sequence entropy; β, slope of regression line (power-law coefficient for log-log scaling);  
A, intercept of regression line; R2, coefficient of determination for regression; r, correlation 
coefficient; Fstat, F statistic for regression; P, P-value for regression. 

Information entropy (IRMean) also scaled negatively with footprint size (Figure 2, 3; Table 2). Again, 

the power-law relationship gave the best and significant fit (R2 = 0.795; P = 0.001). The relationship 

can be seen in Figure 2 whereby the smaller promoter motifs tend to have greater sequence 

conservation overall.  

Information entropy scaled positively, not negatively, with fractal dimension (dB). Moreover, the 

scaling was best described by a simple linear model (R2 = 0.734; P = 0.001), not the log-log 

transformed model (Figure 3, Table 2).  

4. Discussion  

Our findings demonstrate that a fractal symmetry is present in the nucleus of GPNs of bacteria 

including but not limited to E. coli. We have expanded the scope of the first study of E. coli GPNs [36] 

to include two other species, B. subtilis and P. aeruginosa. This taxonomic coverage spans 

considerable diversity within the bacteria. Bacillus represents the phylum Firmicutes whereas both 

Escherichia and Pseudomonas are in the Proteobacteria, each representing orders Enterobacteriales 

and Pseudomonadales, respectively [62].  

Our results also show that fractal organization is not limited to the σ-factors. Several, though not all, 

of the GPNs we examined displayed strong visual self-similar structure including bilateral and radial 

symmetry, and these displayed a good fit to the power-law relation expected for fractal  

networks [54,55]. It should be noted, though, that ours was not a quantitative survey across all 

regulons available through the Virtual Footprint database. A principle challenge to estimating the 

frequency of fractal nuclei relates to the fact that the algorithm used by the Virtual Footprint site to 

detect promoters is adjustable by sensitivity. This is a desirable property given the complexity of 

transcription [33,63], but it leads to a variety of possible GPN outcomes for any given regulon defined 

by a DNA-binding protein. Thus, we took it as our task simply to determine if fractal nuclei are present 

beyond the domain of the original study [36], outside of the E. coli σ-factor system.  
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On a very general level, fewer than half of the regulons considered showed visually obvious fractal 

structure in the LCC taken from the upper phase transition of their GPN (we have not shown all of 

them here). Yet, it is not clear that different processes are necessarily at play in the fractal versus  

non-fractal GPNs since many of the regulons lacking an obvious visual symmetry contained fairly few 

promoters to begin with, and network size poses an inherent constraint on fractal complexity. Our 

results are in keeping with the first study [36] which was small in scope but found that several but not 

all (3 of 4) of the -factor regulons had a fractal nucleus.  

The data on the fourteen fractal nuclei revealed several scaling relationships which offer insights 

into dynamics that might yield symmetry in the grammar of transcription. Although further research is 

warranted, some reasonable patterns emerged. Footprint sizes of the DNA-binding proteins scaled 

negatively as a power-law with both fractal dimension and information, and the latter two attributes 

scaled directly and positively.  

The scaling of footprint with information shows that small footprints exhibit more sequence 

conservation and so are more likely to be uniformly constrained by natural selection. Larger footprints 

often contain spacer regions in which DNA base composition varies more widely across promoters 

compared to the distal portions of the footprint. Indeed, the promoter data used in the first study of  

σ-factors [36] had been provided by RegulonDB [50] as a two block footprint with spacer size 

information. Putative spacer regions are evident in sequence logos of several of the larger regulons 

shown in Figure 2. Bases in these spacer regions might be constrained by natural selection though 

perhaps under diversifying selection in which some promoters within a regulon demand one base at a 

given position while other promoters within the regulon require another base. It also is likely that some 

of these bases are free to vary and are neutral to selection. Given that the DNA double helix undergoes 

a complete turn in roughly ten base pairs [1], it is noteworthy that many of the conserved sites in 

Figure 2 are separated by spacers of ten or twenty bases (one or two full turns around the double 

helix), suggesting that the binding sites occur on the same side of the DNA. Such patterns have been 

noted in other DNA-protein binding studies [58,64,65] and argue that the spacer positions may be less 

accessible to the binding of the protein.  

The fractal dimensions of the GPN nuclei had a significant negative power-law correspondence 

with footprint size and a simple linear scaling with information. Before addressing these relationships 

it is perhaps useful to consider in greater detail what fractal dimension means in this context.  

In general, fractal dimension gives a quantitative measure of self-similarity, that is, how many 

smaller parts are revealed as one rescales the graininess or magnification with which an object is 

viewed [66]. In the method we used to appraise fractal dimension [55], the fractal scaling coefficient 

(dB) implies the rate at which the network changes in size (log10 of the number of nodes) with each 

change of box length (log10 of the relevant scale in number of edges). Thus a GPN with dB = 3.0 (i.e., 

line with slope = −3.0) drops in size much more quickly as box length is increased compared to one 

with dB = 2.0. Those with dB = 3.0 (e.g., Figure 1G and J) contain dense groups of highly related 

promoters, and on renormalization the size of the groups changes rapidly whereas change on 

renormalization is more gradual for the GPNs with dB = 2.0 (e.g., Figure 1A).  

The fractal dimension gives us some indication of how rapidly mappings amplify or condense at the 

phase transition x-section. We focused on the x-section positioned at the phase transition which is the 

part of the sectional series at which the giant component experiences the greatest change in size 
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(number of nodes). If there is a correspondence between human language and cellular DNA-based 

communication, this phase transition represents the point at which mappings between symbols and 

objects changes from overly general (many diffuse connections) to overly specific (few but specific 

connections).  

Promoters with small footprints are generally highly conserved in their sequence and their GPNs 

scale rapidly under renormalization during the fractal analysis. This is because there are numerous 

connections amongst highly related promoters in these higher x-sections, and renormalizing across 

larger and larger scales (number of edge steps between promoter nodes in a GPN) serves to collapse 

the graph rapidly (see Supplementary Figures) resulting in a higher scaling exponent. For regulons 

involving promoters with a larger footprint, these tend to be less conserved in their sequence. Thus 

each promoter node is connected to fewer other nodes of high sequence similarity in these higher  

x-sections, and renormalization collapses the network more slowly, leading to a smaller scaling 

exponent; these GPNs are more diffuse and spread out, yet fractal nonetheless.  

5. Conclusion  

The fractal symmetry of these bacterial GPNs supports the view that natural communicative 

systems emerge as a self-organizing form of complexity. For some time it has been known that DNA 

contains a self-similarity [3,5] comparable to Zipf’s scaling law first observed in human textual 

corpora [67]. And there is continued interest in understanding functional aspects of self-organizing 

complexity as it pertains to behavior in the cell and the genome [68–71]. In the present study we have 

probed the generality of the observation that there exists a symmetric interface between the signals 

used to initiate gene expression. The GPN permits visualization of this grammatical context of 

transcription events within a regulon. Linguists have found with human language that words are 

embedded within a wider context of usages which support and give form to meanings [43,44], and in 

bacterial gene regulation this contextual framework is also present, symmetric, and self-organizing.  
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