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Abstract: Results from the theory of the generalized hypergeometric functions of matrix
argument, and the related zonal polynomials, are used to develop a new approach to study
the asymptotic distributions of linear functions of uniformly distributed random matrices
from the classical compact matrix groups. In particular, we provide a new approach for
proving the following result of D’Aristotile, Diaconis, and Newman: Let the random matrix
Hn be uniformly distributed according to Haar measure on the group of n × n orthogonal
matrices, and let An be a non-random n × n real matrix such that tr (A′nAn) = 1. Then, as
n→∞,

√
n trAnHn converges in distribution to the standard normal distribution.
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1. Introduction

The study of high-dimensional random orthogonal and unitary matrices can be traced to a famous
paper of E. Borel [1] in which the following result is proved: Let X1,n denote the first coordinate of Xn,
a n-dimensional random vector that is uniformly distributed on the unit sphere Sn−1; then, as n → ∞,
the random variable

√
nX1,n converges in distribution to Z, a standard normal random variable.
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Subsequent to Borel’s paper, there has ensued a literature of substantial size. We mention, as
only a few of the papers in this area, the articles of Weingarten [2], Diaconis and Freedman [3],
Diaconis, Eaton and Lauritzen [4], Diaconis and Shahshahani [5], Johansson [6], Rains [7], Diaconis and
Evans [8], D’Aristotile, Diaconis and Newman [9], Pastur and Vasilchuk [10], Collins and Śniady [11],
Meckes [12], Fulman [13], and Jiang [14]. A reader interested in exploring the field further may obtain
from those papers many references to the area.

In a survey of the literature, we were especially intrigued by a result of D’Aristotile, Diaconis and
Newman [9]. We denote by O(n) the group of n×n orthogonal matrices, and by the uniform distribution
on O(n) we mean the Haar measure, normalized to be a probability distribution. Further, we let N(0, 1)

denote the standard normal distribution. Then the result is as follows:

Theorem 1.1. (D’Aristotile et al. [9]) Let {An : n = 1, 2, 3, . . .} be a sequence of real matrices such
that An is n × n and tr (A′nAn) = 1, and let Hn be a random orthogonal matrix that is uniformly
distributed on O(n). Then

√
n tr (AnHn)

L→ N(0, 1) as n→∞.

The proof given by D’Aristotile, et al. [9] is based on classical probabilistic methods involving
tightness. Their result was later studied by Meckes [12] who obtained a bound on the distance, in the
total variation metric on the set of probability distributions, between the distribution of

√
n tr (AnHn)

and the standard normal distribution; as a consequence, Meckes obtained an explicit formula for the rate
of convergence to normality.

It was particularly striking to us that, throughout the existing literature on high-dimensional random
matrices from the classical compact matrix groups, the theory of generalized hypergeometric functions
of matrix argument appears not to have played an explicit role. We found this absence intriguing because
it has been known since the work of Herz [15] that the characteristic function of a uniformly distributed
random orthogonal matrix can be expressed in terms of the Bessel functions of matrix argument; indeed,
a primary motivation for the invention of those Bessel functions was the study of random matrices which
are uniformly distributed on O(n).

In this paper, we provide a heuristic derivation of Theorem 1.1. To that end, we will present crucial
features of the theory of the zonal polynomials and a generalized hypergeometric function of matrix
argument as necessary to make the paper self-contained. It is also noteworthy that the approach given
here applies with ease, mutatis mutandis, to cases in which the matrix Hn is uniformly distributed on the
unitary group or the symplectic group, and to cases in whichHn is a rectangular random matrix on Stiefel
manifolds corresponding to the classical compact matrix groups. In short, the theory of the generalized
hypergeometric functions of matrix argument lends itself readily to the study of linear functions of
high-dimensional random matrices from the classical compact matrix groups.

Conversely, the study of high-dimensional orthogonal and unitary matrices also yields new results for
the Bessel functions of matrix argument. By application of a result of Johansson [6], we will obtain an
upper bound on the distance, in the supremum norm on R, between a certain generalized hypergeometric
function of scalar matrix argument and the Gaussian quantity, exp(−t2/2), t ∈ R.
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2. Zonal Polynomials and a Generalized Hypergeometric Function of Matrix Argument

Throughout the paper, we denote the determinant and trace of a square matrixA by det(A) and tr (A),
respectively. We also denote by In the identity matrix of order n. We denote by E the generic operation
of expectation with respect to a probability distribution which, on all occasions, will be explicit from the
context.

A partition is a vector κ = (κ1, . . . , κn) of non-negative integers that are weakly decreasing:
κ1 ≥ · · · ≥ κn. The entries κ1, . . . , κn are called the parts of κ; the length of µ is the number of
non-zero κj; and the weight of κ is |κ| := κ1 + · · ·+ κn.

The set of partitions may be ordered lexicographically: If λ = (λ1, . . . , λn) and κ = (κ1, . . . , κn) are
partitions then we write λ < κ if λj < κj for the first index j such that corresponding parts are unequal.

We shall encounter in the sequel the quantity,

ρκ =
n∑
j=1

κj(κj − i) (2.1)

Perhaps coincidentally, the term ρκ has appeared before now in the theory of zonal polynomials.
James [16], in proving that the zonal polynomial Zκ is an eigenfunction of the Laplace–Beltrami operator
on the cone of positive definite matrices, shows that ρκ appears in the expression for the corresponding
eigenvalue; see also Muirhead [17] (p. 229, Equation (5)) and Richards [18].

We will also need the following monotonicity property of ρκ.

Lemma 2.1. In the lexicographic ordering on the set of partitions of weight k, ρκ is a strictly increasing
function: ρλ < ρκ for λ < κ. In particular,

|ρκ| ≤ k(k − 1) (2.2)

Proof. We shall use induction on λ in the lexicographic ordering on the set of partitions. For the top two
partitions, (k) and (k − 1, 1), we find that ρ(k) − ρ(k−1,1) = 2k − 1 > 0.

As inductive hypothesis, suppose that the result has been proved for all partitions from (k) down to a
partition κ = (κ1, . . . , κn). Then the partition which is immediately below κ is of the form

λ = (κ1, . . . , κj−1, κj − 1, κj+1, . . . , κl−1, κl + 1, κl+1, . . . , κn)

for some j and l with j < l. By comparing the jth and lth parts of λ we also find that, necessarily,
κj − 1 ≥ κl + 1.

By cancelling common terms in the sums that define ρκ and ρλ, we obtain

ρκ − ρλ = κj(κj − j) + κl(κl − l)− (κj − 1)(κj − 1− j)− (κl + 1)(κl + 1− l)
= (κj − 1)− (κl − 1) + (κj − j)− (κl − l).

We have seen already that κj − 1 ≥ κl + 1. Further, since the sequence {κj} is weakly decreasing then
the sequence {κj − j} is strictly decreasing, and hence (κj − j)− (κl − l) > 0 for j < l. Therefore, we
obtain ρκ − ρλ > 0; consequently, by induction, the strictly-increasing property holds for all partitions
of weight k.
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Because the set of partitions of weight k is totally ordered with respect to the lexicographic ordering,
with minimal element (1k) = ( 1, . . . , 1︸ ︷︷ ︸

k

) and maximal element (k), it follows from the monotonicity

property of ρκ that
−1

2
k(k − 1) = ρ(1k) ≤ ρκ ≤ ρ(k) = k(k − 1)

for all partitions κ of weight k. Thus, we obtain Equation (2.2).

For a ∈ C and any nonnegative integer j, the rising factorial, (a)j is defined as

(a)j =
Γ(a+ j)

Γ(a)
= a(a+ 1)(a+ 2) · · · (a+ j − 1) (2.3)

Corresponding to each partition κ, the partitional rising factorial, (a)κ is defined as

(a)κ =
n∏
j=1

(
a− 1

2
(j − 1)

)
κj

(2.4)

Let S be a real symmetric n×nmatrix. For each partition κ, we denote byZκ(S) the zonal polynomial
of the matrix S. A complete description of the zonal polynomials may be obtained from James [19],
Muirhead [17], or Gross and Richards [20]. Noting that the present paper deals directly with aspects of
integration over the orthogonal group O(n), we remark that a direct definition of the zonal polynomials
may be obtained as follows: For any symmetric n×n matrix S, and for j = 1, . . . , n, denote by detj(S)

the principal minor of order j of S. Let

pκ(S) = (detS)κn
n−1∏
j=1

(
detj(S)

)κj−κj+1 (2.5)

be the power function corresponding to the partition κ. Denote by dHn the Haar measure on O(n),
normalized to be a probability measure. Then Zκ(S), the zonal polynomial corresponding to the
partition κ, may be defined by

Zκ(S) = cκ

∫
O(n)

pκ(H
′
nSHn) dHn (2.6)

where the normalizing constants cκ are positive and are chosen uniquely so that∑
|κ|=k

Zκ(S) = ( trS)k (2.7)

Integral representations of the type given in Equation (2.6) have played a crucial role in earlier studies
of central limit theorems for positive definite random matrices (Richards [22]).

We now introduce a generalized hypergeometric function of matrix argument. Let a ∈ C be such that
−a+ 1

2
(j − 1) is not a non-negative integer for all j = 1, . . . , n. For any symmetric n× n matrix S, we

define a generalized hypergeometric function of matrix argument,

0F1(a;S) =
∞∑
k=0

1

k!

∑
|κ|=k

Zκ(S)

(a)κ
(2.8)
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where the inner summation is over all partitions κ = (κ1, . . . , κn) of weight k.
By a result of Gross and Richards [20], Theorem 6.3, the series Equation (2.8) converges absolutely

for all S. With i ≡
√
−1, it is a result of Herz [15], (p. 423, see also James [19]) that for any n × n

matrix A, there holds the integral formula,∫
O(n)

exp
(
2i trAHn

)
dHn = 0F1

(
n/2;−A′A

)
(2.9)

This result generalizes a well-known formula that expresses a classical Bessel function as an integral
over the unit circle; for this reason, the function 0F1(n/2;−S) also is viewed as a Bessel function of
matrix argument.

3. The Case of the Stiefel Manifold

We regard this section as preparatory for the ensuing new approach to Theorem 1.1, for the method
of hypergeometric functions of matrix argument very easily yields the high-dimensional asymptotic
behavior of random matrices taking values in Stiefel manifolds.

Denote by Vn,m the Stiefel manifold of all m-tuples of orthonormal n-dimensional vectors. As
a homogeneous space, Vn,m ' O(n)/O(n − m), hence is compact. An explicit description of the
unique O(n)-invariant uniform distribution on Vn,m is given by Herz [15]. The following result is both a
generalization of Borel’s result for the unit sphere and an analog of Theorem 1.1 for the Stiefel manifold.

Theorem 3.1. Let m be a fixed positive integer, and let {An : n ≥ m} be a sequence of real matrices
such that An is n ×m and tr (A′nAn) = 1. For each n ≥ m, let Hn be a n ×m random matrix that is
uniformly distributed on Vn,m. Then

√
n tr (AnHn)

L→ N(0, 1) as n→∞.

To see how this result is obtained, we apply Equation (2.9) to obtain, for t ∈ R,

E exp
(
it
√
n trA′nHn

)
= 0F1(n/2;−t2nA′nAn/4)

=
∞∑
k=0

(−1)knkt2k

k! 4k

∑
|κ|=k

Zκ(A
′
nAn)

(n/2)κ

Because A′nAn is an m×m matrix then, by Equation (2.6), Zκ(A′nAn) = 0 if κ has length greater than
m; therefore, in this case, the zonal polynomial expansion involves partitions of length at most m only.

By Equation (2.4), we obtain for any partition κ of weight k,

nk

(n/2)κ
= nk

m∏
j=1

κj∏
l=1

(
1
2
n− 1

2
j + l − 1

2

)−1
= nk

m∏
j=1

(1
2
n)−κj

κj∏
l=1

(
1− j − 2l + 1

n

)−1
= 2k

m∏
j=1

κj∏
l=1

(
1− j − 2l + 1

n

)−1
(3.1)

Therefore, nk/(n/2)κ ∼ 2k for large n, and so we obtain

nk
∑
|κ|=k

Zκ(A
′
nAn)

(n/2)κ
∼ 2k

∑
|κ|=k

Zκ(A
′
nAn) = 2k( trA′nAn)k = 2k
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Thus, as n→∞,

E exp
(
it
√
n trA′nHn

)
→

∞∑
k=0

(−1)kt2k

k! 2k
= exp(−t2/2)

which establishes that
√
n tr (A′nHn) converges in distribution to N(0, 1).

For general An, the argument given above also leads to the conclusion,

E exp(i
√
n trA′nHn) ∼ exp(−1

2
trA′nAn)

We deduce, by applying the standard Cramér–Wold device, that for large n the entries of the matrix
√
nHn are asymptotically multivariate normally distributed with mean 0 and identity covariance matrix

In. We note also that a similar conclusion may be obtained for the results to follow.

4. The Case of the Orthogonal Group

We now present a new approach to Theorem 1.1. In this setting, An is an n× n real matrix satisfying
the condition trA′nAn = 1, and the random matrix Hn ∈ O(n) is uniformly distributed. Then, for
t ∈ R, we again apply Equation (2.9) to deduce that the characteristic function of the random variable
√
n tr (AnHn) is

E exp
(
it
√
n trAnHn

)
=

∫
O(n)

exp
(
it
√
n trAnHn

)
dHn

= 0F1

(
n/2;−t2nA′nAn/4

)
On expanding the 0F1 function in a series of zonal polynomials, we obtain a generating function for the
moments of the random variable

√
n tr (AnHn):

∞∑
k=0

tk

k!
E
(
i
√
n trAnHn

)k
= E

∞∑
k=0

1

k!

(
it
√
n trAnHn

)k
= E exp

(
it
√
n trAnHn

)
= 0F1

(
n/2;−t2nA′nAn/4

)
=

∞∑
k=0

(−1)knkt2k

k! 4k

∑
|κ|=k

Zκ(A
′
nAn)

(n/2)κ

On comparing the coefficients of like powers of t we deduce that, for k = 0, 1, 2, . . .

E
(√

n trAnHn

)2k+1
= 0

and

E
(√

n trAnHn

)2k
=

(2k)!

k! 4k
nk
∑
|κ|=k

Zκ(A
′
nAn)

(n/2)κ
(4.1)

We now examine the asymptotic behavior of the kth moment of
√
n tr (AnHn) as n → ∞. For a

partition κ of weight k, the same argument used at Equation (3.1) shows that

nk

(n/2)κ
= 2k

n∏
j=1

κj∏
l=1

(
1− j − 2l + 1

n

)−1
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Substituting this result into Equation (4.1), we obtain

E
(√

n trAnHn

)2k
=

(2k)!

k! 2k

∑
|κ|=k

[ n∏
j=1

κj∏
l=1

(
1− j − 2l + 1

n

)−1]
Zκ(A

′
nAn)

By a Taylor–Maclaurin expansion, we obtain

n∏
j=1

κj∏
l=1

(
1− j − 2l + 1

n

)−1
∼ 1− n−1ρκ

as n→∞, where

ρκ = −
n∑
j=1

κj∑
l=1

(j − 2l + 1) ≡
n∑
j=1

κj(κj − j)

is the quantity first encountered at Equation (2.1).
On applying Equation (2.7), we obtain

E
(√

n trAnHn

)2k ∼ (2k)!

k! 2k

∑
|κ|=k

(1− n−1ρκ)Zκ(A′nAn)

=
(2k)!

k! 2k

[
( trA′nAn)k − n−1

∑
|κ|=k

ρκZκ(A
′
nAn)

]
By Equation (2.6), it follows that Zκ(A′nAn) ≥ 0. Hence, by applying Equation (2.2), we obtain∣∣∣ ∑

|κ|=k

ρκZκ(A
′
nAn)

∣∣∣ ≤ ∑
|κ|=k

|ρκ|Zκ(A′nAn)

≤ k(k − 1)
∑
|κ|=k

Zκ(A
′
nAn)

= k(k − 1)( trA′nAn)k = k(k − 1)

an upper bound which is not dependent on n. Therefore,

E
(√

n trAnHn

)2k ∼ (2k)!

k! 2k
[
1 +O(n−1)

]
and we conclude that for fixed k,

E
(√

n trAnHn

)2k → (2k)!

k! 2k
≡ E(Z2k)

as n → ∞, where Z ∼ N(0, 1). Finally, we apply the moment problem (Loéve [23], p. 185) to deduce
that
√
n tr (AnHn) converges in distribution to N(0, 1).

We remark that the condition tr (A′nAn) = 1 can be weakened to require only that tr (A′nAn) → 1,
with a sufficiently fast rate of convergence, as n→∞.

It is also interesting to discover that the study of high-dimensional random orthogonal matrices yields
a new inequality for the generalized hypergeometric function, 0F1, of scalar matrix argument.

Proposition 4.1. There exist positive constants c and d such that, for all n ≥ 1 and t ∈ R,∣∣
0F1(n/2;−t2In/4)− exp(−t2/2)

∣∣ ≤ ce−dn
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Proof. Define the random variable Y = trHn, where Hn is uniformly distributed on U(n). Denote
by gY and φ the probability density functions of Y and the N(0, 1) random variable, respectively. By
Johansson [6], Theorem 3.7(b) there exist positive constants c and d such that∫ ∞

−∞
|gY (x)− φ(x)| dx ≤ ce−dn

for all n. Therefore, for t ∈ R,∣∣
0F1(n/2;−t2In/4)− exp(−t2/2)

∣∣ =
∣∣∣ ∫ ∞
−∞

eitx
(
gY (x)− φ(x)

)
dx
∣∣∣

≤
∫ ∞
−∞

∣∣eitx(gY (x)− φ(x)
)∣∣ dx

=

∫ ∞
−∞

∣∣gY (x)− φ(x)
∣∣ dx ≤ ce−dn

The proof is complete.

5. The Case of the Unitary Group

As we noted in the introduction, the method used in Section 4 produces similar results in the case of
the unitary and symplectic groups. We shall present the details in the unitary case; and as regards the
symplectic case, which we leave to the reader, we note that necessary details on the zonal polynomials
and generalized hypergeometric function may be obtained from the paper of Gross and Richards [20].

In the sequel, we denote by A∗ the adjoint of a complex matrix: A∗ = Ā′. The analog of Theorem 1.1
in the unitary case, due to Meckes [12], is the following:

Theorem 5.1. (Meckes [12]) Let {An : n = 1, 2, 3, . . .} be a sequence of complex matrices such thatAn
is n× n and tr (A∗nAn) = 1 for all n. Let Hn be a random unitary matrix which is uniformly distributed
on U(n). Then

√
2nRe tr (AnHn)

L→ N(0, 1) as n→∞.

In this setting, we will need the analogs of the partitional rising factorial, the zonal polynomial, and
the generalized hypergeometric function of matrix argument that pertain to the “complex” case; see
James [19] or Gross and Richards [20,21]. Specifically, the partitional rising factorial is now defined as

[a]κ =
n∏
j=1

(a− j + 1)κj (5.1)

where each (a)κj is a classical rising factorial as defined in Equation (2.3); the zonal polynomial is
defined for any Hermitian n× n matrix S as

Z̃κ(S) = c̃κ

∫
U(n)

pκ(H
∗
nSHn) dHn (5.2)

where the power function pκ is defined in Equation (2.5), and the normalizing constants c̃κ are positive
and are chosen uniquely so that ∑

|κ|=k

Z̃κ(S) = ( trS)k (5.3)
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and for any a ∈ C such that−a+ j− 1 is not a non-negative integer for all j = 1, . . . , n, the generalized
hypergeometric function of matrix argument is defined as

0F̃1(a;S) =
∞∑
k=0

1

k!

∑
|κ|=k

Z̃κ(S)

[a]κ
(5.4)

Similar to the orthogonal case, the characteristic function of the random variable
√

2nRe tr (AnHn) is

E exp
(
it
√

2nRe trAnHn

)
=

∫
U(n)

exp
(
it
√

2nRe trAnHn

)
dHn

= 0F̃1

(
n;−t2nA∗nAn/2

)
where 0F̃1 is a generalized hypergeometric function of Hermitian matrix argument.

By expanding the 0F̃1 function in a series of complex zonal polynomials, we obtain a generating
function for the moments of the random variable

√
2nRe trAnHn:

∞∑
k=0

tk

k!
E
(
i
√

2nRe trAnHn

)k
= E

∞∑
k=0

1

k!

(
it
√

2nRe trAnHn

)k
= E exp

(
it
√

2nRe trAnHn

)
= 0F̃1

(
n;−t2nA∗nAn/2

)
=

∞∑
k=0

(−1)knkt2k

k! 2k

∑
|κ|=k

Z̃κ(A
′
nAn)

[n]κ

By comparing powers of t, we deduce that, for k = 0, 1, 2, . . .

E
(√

2nRe trAnHn

)2k+1
= 0

and

E
(√

2nRe trAnHn

)2k
=

(2k)!

k! 2k
nk
∑
|κ|=k

Z̃κ(A
′
nAn)

[n]κ

By Equation (5.1),
nk

[n]κ
=

n∏
j=1

κj∏
l=1

(
1− j − l

n

)−1
∼ 1− n−1ρ̃κ

as n→∞, where

ρ̃κ = −
n∑
j=1

κj∑
l=1

(j − l) = 1
2

n∑
j=1

κj(κj − 2j + 1)

We can prove by means of an argument similar to that given in the proof of Lemma 2.1 that the
coefficients ρ̃κ are strictly increasing in the lexicographic ordering on the set of partitions of weight
κ; therefore,

−1
2
k(k − 1) = ρ̃(1k) ≤ ρ̃κ ≤ ρ̃(k) = 1

2
k(k − 1)
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so we obtain ∣∣∣ ∑
|κ|=k

ρ̃κZ̃κ(A
∗
nAn)

∣∣∣ ≤ ∑
|κ|=k

|ρ̃κ|Z̃κ(A∗nAn)

≤ 1
2
k(k − 1)

∑
|κ|=k

Z̃κ(A
∗
nAn)

= 1
2
k(k − 1)( trA∗nAn)k = 1

2
k(k − 1)

which is not dependent on n. Therefore,

E
(√

2nRe trAnHn

)2k ∼ (2k)!

k! 2k

∑
|κ|=k

(1− n−1ρ̃κ)Z̃κ(A∗nAn)

=
(2k)!

k! 2k

[
( trA∗nAn)k − n−1

∑
|κ|=k

ρ̃κZ̃κ(A
∗
nAn)

]
=

(2k)!

k! 2k
[
1 +O(n−1)

]
We conclude that for fixed k,

E
(√

2nRe trAnHn

)2k → (2k)!

k! 2k
≡ E(Z2k)

as n → ∞, where Z ∼ N(0, 1). Finally, we apply the moment problem to deduce that√
2nRe tr (AnHn) converges in distribution to N(0, 1).

We can also obtain an upper bound on the difference between the 0F̃1 function of scalar matrix
argument and the Gaussian quantity, exp(−t2/2). The proof is similar to that of Proposition 4.1 and
rests on an inequality of Johansson [6], Theorem 2.6(b).

Proposition 5.2. There exist positive constants c and d such that, for all n ≥ 1 and t ∈ R,∣∣
0F̃1(n;−t2In/2)− exp(−t2/2)

∣∣ ≤ cn−dn
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23. Loève, M. Probability Theory; van Nostrand: New York, NY, USA, 1955.

c© 2011 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)


	Introduction
	Zonal Polynomials and a Generalized Hypergeometric Function of Matrix Argument
	The Case of the Stiefel Manifold
	The Case of the Orthogonal Group
	The Case of the Unitary Group

