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Abstract: Do there exist circular and spherical copulas in Rd? That is, do there exist
circularly symmetric distributions on the unit disk in R2 and spherically symmetric
distributions on the unit ball in Rd, d ≥ 3, whose one-dimensional marginal distributions
are uniform? The answer is yes for d = 2 and 3, where the circular and spherical copulas
are unique and can be determined explicitly, but no for d ≥ 4. A one-parameter family
of elliptical bivariate copulas is obtained from the unique circular copula in R2 by oblique
coordinate transformations. Copulas obtained by a non-linear transformation of a uniform
distribution on the unit ball in Rd are also described, and determined explicitly for d = 2.
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1. Introduction

Do there exist spherically symmetric distributions on the closed unit ball Bd in Rd that have uniform
one-dimensional marginal distributions on [−1, 1]? A distribution on Bd with this property may be said
to “square the circle” when d = 2 and to “cube the sphere” when d ≥ 3.

The cumulative distribution function (cdf) of a multivariate distribution on the unit cube [0, 1]d whose
marginal distributions are uniform [0, 1] is commonly called a copula; see Nelsen [1] for an accessible
introduction to this topic. However, although it is customary to confine attention to distributions on the
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unit cube, our interest is in spherically symmetric (= orthogonally invariant) distributions on Bd with
uniform marginal distributions. Therefore we take “copula” to mean a multivariate cdf on the centered
cube Cd := [−1, 1]d with uniform [−1, 1] marginals.

For d = 2 (resp., d ≥ 3), such a copula, if it exists, will be called a circular copula (resp., spherical
copula) if it is the cdf of a circularly symmetric (resp., spherically symmetric) distribution on the unit
disk B2 (resp., unit ball Bd).

It will be noted in Sections 2 and 3 that circular and spherical copulas are unique if they exist, but
exist only for dimensions d = 2 and d = 3. The proof of non-existence for d ≥ 4 is remarkably simple.
Explicit expressions for these copulas are given in Sections 3 and 4 respectively.

In Section 5, a new one-parameter family of bivariate copulas called elliptical copulas is obtained from
the unique circular copula in R2 by oblique coordinate transformations. Finally, in Section 6, copulas
obtained by a non-linear transformation of a uniform distribution on the unit ball in Rd are described,
and determined explicitly for d = 2.

2. Uniqueness and Existence of Circular and Spherical Copulas

Proposition 2.1. Circular and spherical copulas are unique if they exist. (This result is well-known
(e.g., Feller [2], pp. 31–33, who uses “random direction” to indicate the uniform distribution of
U ∈ ∂B3), and reappears frequently (e.g., Arellano-Valle [3], Theorem 3.1). The essence of the result
goes back at least to Schoenberg [4].)

Proof. If a circular or spherical copula exists on Cd, it is the cdf of a random vector Z ≡ (Z1, . . . , Zd)

with a spherically symmetric distribution on Bd and with each Zi ∼ uniform[−1, 1]. The latter implies
that Z has no atom at the origin, i.e., P [Z = 0] = 0, so we may consider the “polar coordinates”
representation Z = R · U , where R = ‖Z‖ ≤ 1 and U = Z/‖Z‖. It is well known
(e.g., Cambanis et al. [5], Lemmas 1 and 2) that the random unit vector U ≡ (U1, . . . , Ud) is independent
of R and is uniformly distributed on the unit sphere ∂Bd, which implies that each
U2
i ∼ Beta(1/2, (d− 1)/2). Since Zi = RUi, we have that

log(Z2
i ) = log(R2) + log(U2

i ). (1)

Because R and Ui are independent, it follows that the characteristic function of log(R2) is the quotient
of the characteristic functions of log(Z2

i ) and log(U2
1 ). Thus the distribution of log(R2), and therefore

that of R, is uniquely determined by the distributions of Z2
i and U2

i , which are already specified above.
Thus the the joint distribution of (R,U) is uniquely determined, hence so is the distribution of Z, hence
so its cdf = copula.

The existence of spherical copulas is easy to determine in three or more dimensions:

Proposition 2.2. Spherical copulas do not exist for d ≥ 4. For d = 3, the unique spherical copula is
generated by the uniform distribution on the unit sphere ∂B3 := {(x1, x2, x3) | x21 + x22 + x23 = 1}.

Proof. Let Z be as in the proof of Proposition 2.1. Then

1

3
= E(Z2

i ) = E(R2)E(U2
i ) ≤ 1

d
(2)
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since Zi ∼ uniform[−1, 1], 0 ≤ R ≤ 1, and U2
i ∼ Beta(1/2, (d − 1)/2). Thus d ≤ 3, so a spherical

copula cannot exist when d ≥ 4.
Furthermore, if a spherical copula is to exist for d = 3, it follows from (2) that its generating random

vector Z ∈ B3 must satisfy E(R2) = 1, hence R = 1 with probability one. This can occur only if Z is
uniformly distributed on the unit sphere ∂B3. But it is well known (this follows from the fact that the area
of a spherical zone is proportion to its altitude—cf. Feller [2], Proposition (i), p. 30) that this distribution
does indeed have uniform marginal distributions on [−1, 1], hence generates the unique spherical copula
for d = 3.

3. The Bivariate Case: The Unique Circular Copula

The following three questions constitute an engaging classroom exercise.

Question 1. Let (X, Y ) be a random vector uniformly distributed on the unit disk (= ball) B2 in R2.
Find the marginal probability distributions of X and Y .

Answer: One can easily show that X has the “semi-circular” probability density function (pdf) given by

f(x) =
2

π

√
1− x2, −1 ≤ x ≤ 1. (3)

(See Figure 1.) By symmetry, Y has the same pdf as X .

Question 2. Let (X, Y ) be a random vector uniformly distributed on the unit circle ∂B2 in R2. Find the
marginal probability distributions of X and Y .

Answer: We can represent (X, Y ) as (cos Θ, sin Θ) where Θ ∼ uniform[0, 2π). It follows readily that
X has pdf

f(x) =
1

π
√

1− x2
, −1 < x < 1. (4)

(See Figure 1.) By symmetry, Y has the same pdf as X .

Figure 1. The densities (3) (lower, blue) and (4) (upper, purple).
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In both cases, the joint distribution of (X, Y ) is circularly symmetric, that is, invariant under all
orthogonal transformations of R2. A comparison of the shapes of the pdfs in Figure 1 suggest a third
question:
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Question 3. Does a circularly symmetric bivariate distribution with uniform [−1, 1] marginals exist on
B2? If so, it determines a circular copula on C2, which is unique by Proposition 2.1. This also follows
from uniqueness results for the Abel transform; see, e.g., Bracewell [6].

Answer: Optimistically, let’s seek an absolutely continuous solution. That is, we seek a bivariate pdf on
B2 of the form

f(x, y) = g(x2 + y2)

such that the marginal pdf

f(x) ≡
∫ √1−x2
−
√
1−x2

f(x, y)dy, −1 < x < 1

is constant in x. Here g is a nonnegative function on (0, 1) that must satisfy

2π

∫ 1

0

rg(r2)dr = 1 (5)

in order that
∫∫

B2
f(x, y)dxdy = 1 (transform to polar coordinates: (x, y)→ (r, θ)).

To determine a suitable g, first set h(t) = g(1− t), then let u = y/
√

1− x2 to obtain

f(x) =

∫ √1−x2
−
√
1−x2

h(1− x2 − y2)dy =
√

1− x2
∫ 1

−1
h((1− u2)(1− x2))du

= 2
√

1− x2
∫ 1

0

h((1− u2)(1− x2))du.

If we take h(t) = c t−1/2 then clearly f(x) does not depend on x, and choosing c = 1/2π satisfies (5).
Thus the bivariate pdf (see Figure 2)

f(x, y) =
1

2π
√

1− x2 − y2
, x2 + y2 < 1 (6)

determines a circularly symmetric bivariate distribution on B2 and yields the desired circular copula.

Question 4. Having determined the unique circularly symmetric distribution (6) on B2 with uniform
marginals, what is the corresponding cdf F (x, y), that is, what is the corresponding
circular copula?

Answer (see Theorem 3.1): The circular symmetry of (X, Y ) implies that its distribution is invariant
under sign changes, i.e., (X, Y )

d
= (±X, ±Y ). By the following lemma, the cdf

F (x, y) ≡ P [X ≤ x, Y ≤ y] on C2 ≡ [−1, 1]2 can be expressed in terms of F0(x, y), its truncation to
the first quadrant:

F0(x, y) ≡ P [0 ≤ X ≤ x, 0 ≤ Y ≤ y] (7)

for 0 ≤ x, y ≤ 1, and also in terms of the complementary cdf F̄ (x, y) ≡ P [X > x, Y > y] for
0 ≤ x, y ≤ 1. Because (X, Y )

d
= (±X, ±Y ) and has uniform [−1, 1] marginals,

F0(x, y) = P [0 ≤ X ≤ 1, 0 ≤ Y ≤ 1]− P [X > x, 0 ≤ Y ≤ 1]

−P [0 ≤ X ≤ 1, Y > y] + P [X > x, Y > y]

=
1

4
−
(

1− x
4

)
−
(

1− y
4

)
+ F̄ (x, y)

=
x+ y − 1

4
+ F̄ (x, y), 0 ≤ x, y ≤ 1. (8)
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Figure 2. Circularly symmetric bivariate density (6) on B2.
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Lemma 3.1. Let (X, Y ) be a bivariate random vector on C2 with uniform [−1, 1] marginal distributions
and sign-change invariance, i.e., (X, Y )

d
= (±X, ±Y ). Then for (x, y) ∈ C2,

F (x, y) =
x+ y + 1

4
+ σ(xy)F0(|x|, |y|) (9)

=
x+ y + 1

4
+ σ(xy)

[
|x|+ |y| − 1

4
+ F̄ (|x|, |y|)

]
(10)

where σ(w) = sign(w) if w 6= 0 and σ(0) = 0.

Proof. To obtain (9), consider four cases:

Case 1: 0 ≤ x, y ≤ 1. Because (X, Y ) is sign-change invariant and has uniform [−1, 1] marginals,

F (x, y) = P [0 < X ≤ x, 0 < Y ≤ y] + P [0 < X ≤ x, Y ≤ 0]

+P [X ≤ 0, 0 < Y ≤ y] + P [X ≤ 0, Y ≤ 0]

= F0(x, y) +
x

4
+
y

4
+

1

4

=
x+ y + 1

4
+ σ(xy)F0(|x|, |y|).

Case 2: −1 ≤ x ≤ 0 ≤ y ≤ 1. Similarly,

F (x, y) = P [X ≤ 0, 0 < Y ≤ y]− P [x < X ≤ 0, 0 ≤ Y ≤ y]

+ P [X ≤ 0, Y ≤ 0]− P [x < X ≤ 0, Y ≤ 0]

=
y

4
− F0(−x, y) +

1

4
− (−x)

4

=
x+ y + 1

4
+ σ(xy)F0(|x|, |y|).
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Case 3: −1 ≤ y ≤ 0 ≤ x ≤ 1. Similarly,

F (x, y) = P [0 < X ≤ x, Y ≤ 0]− P [0 ≤ X ≤ x, y < Y ≤ 0]

+ P [X ≤ 0, Y ≤ 0]− P [X ≤ 0, y < Y ≤ 0]

=
x

4
− F0(x,−y) +

1

4
− (−y)

4

=
x+ y + 1

4
+ σ(xy)F0(|x|, |y|).

Case 4: −1 ≤ x, y ≤ 0. Similarly,

F (x, y ) = P [X ≤ 0, Y ≤ 0]− P [x < X ≤ 0, Y ≤ 0]

− P [X ≤ 0, y < Y ≤ 0] + P [x < X ≤ 0, y < Y ≤ 0]

=
1

4
− (−x)

4
− (−y)

4
+ F0(−x,−y)

=
x+ y + 1

4
+ σ(xy)F0(|x|, |y|).

Finally, (10) follows from (9) by (8).

Thus, to determine the circular copulaF (x, y) for the pdf (6), it suffices to determine the complementary
cdf F̄ (x, y) for 0 ≤ x, y ≤ 1 and apply (10). Because F̄ (x, y) = 0 when x2 + y2 ≥ 1, we need only
consider the case where x2 + y2 < 1.

First approach: When 0 ≤ x, y ≤ 1 and x2 + y2 < 1, F̄ (x, y) can be expressed as follows. By using
Figure 3 we find that

F̄ (x, y) =
1

2π

∫ √1−y2

x

{∫ √1−s2
y

1√
1− s2 − t2

dt

}
ds

=
1

2π

∫ √1−y2

x


∫ √1−s2
y

1√
(1− t2

1−s2 )

dt√
1− s2

 ds

=
1

2π

∫ √1−y2

x


∫ 1

y√
1−s2

dv√
1− v2

 ds

=
1

2π

∫ √1−y2

x

[
π

2
− arcsin

(
y√

1− s2

)]
ds. (11)

However, we were unable to evaluate this integral directly.
Second approach: Fortunately, we have found a solution in the molecular biology and optics literatures,
where the problem of finding the area of the intersection of two spherical caps on the unit sphere ∂B3 has
been addressed. The following general result is due to Tovchigrechko and Vakser [7] and also appears
in Oat and Sander [8].
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Figure 3. Region of integration, 2-dimensional case.

x s

1 - s2

1 - y2

y

1

t

s

Lemma 3.2. Let S1 and S2 be spherical caps on ∂B3. Let r1 and r2 denote their angular radii and let
d denote the angular distance between their centers (0 < d ≤ π). Assume that 0 < r1, r2 ≤ π/2 and
d ≤ r1+r2, so that the intersection S1∩S2 6= ∅ and consists of a single “diangle”; (see Figures 4 and 5.)
Then Area(S1 ∩ S2) is given by

A(r1, r2; d) = 2π − 2π cos(r1)− 2π cos(r2)− 2 arccos

(
cos(d)− cos(r1) cos(r2)

sin(r1) sin(r2)

)
+ 2 cos(r1) arccos

(
cos(d) cos(r1)− cos(r2)

sin(d) sin(r1)

)
+ 2 cos(r2) arccos

(
cos(d) cos(r2)− cos(r1)

sin(d) sin(r2)

)
. (12)

This result can be applied to obtain our desired circular copula as follows.
If (X, Y, Z) is uniformly distributed on ∂B3, then the event {X > x, Y > y} corresponds to the

intersection of the two spherical caps {X > x} and {Y > y}, so P [X > x, Y > y] is given by the area
A(x, y) of this intersection divided by the total area of ∂B3, i.e., by 4π. (See Figures 4 and 5.) Also,
the joint distribution of (X, Y ) is circularly symmetric on the unit disk B2 and has uniform marginals,
so must be the unique such bivariate distribution, namely the distribution with pdf (6).
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Figure 4. Intersection of two spherical caps.

Figure 5. Intersection of two spherical caps, circular representation (modified from
Tovchigrechko and Vakser [7]).

d

r2r1

Thus, for 0 ≤ x, y ≤ 1 and x2 + y2 < 1, our desired complementary cdf is given by

F̄ (x, y) =
1

4π
A(x, y) (13)

=
1

4π
A(arccos(x), arccos(y); π/2) (14)

=
1

2
− x

2
− y

2
− 1

2π
arccos

(
− xy√

(1− x2)(1− y2)

)

+
x

2π
arccos

(
−y√
1− x2

)
+

y

2π
arccos

(
−x√
1− y2

)
≡ 1− x− y

4
+ α(x, y) (15)
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where for 0 ≤ x, y ≤ 1 and x2 + y2 < 1,

α(x, y) =
1

2π

[
x arcsin

(
y√

1− x2

)
+ y arcsin

(
x√

1− y2

)

− arcsin

(
xy√

(1− x2)(1− y2)

)]
. (16)

Theorem 3.1. The unique circular copula on C2 is given by

F (x, y) =
x+ y + 1

4
+ α(x, y) (17)

where α(x, y) is defined by (16) for x2 + y2 < 1 and by

α(x, y) = σ(xy) ·
(
|x|+ |y| − 1

4

)
(18)

for x2 + y2 ≥ 1. Note that Equations (16) and (18) agree when x2 + y2 = 1 and both are sign-change
equivariant on C2: for all (x, y) ∈ C2 and all ε, δ = ±1,

α(εx, δy) = εδ · α(x, y). (19)

Proof. From Equations (10) and (15), when x2 + y2 < 1 we have

F (x, y) =
x+ y + 1

4
+ σ(xy)α(|x|, |y|) (20)

=
x+ y + 1

4
+ α(x, y) (21)

by (19). When x2 + y2 ≥ 1, F̄ (|x|, |y|) = 0 so (17) again holds by (10) and (18).

See Figure 6 for a plot of the resulting copula (on [−1, 1]2).
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Figure 6. The copula (17) in Theorem 3.1.
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4. The Trivariate Case: the Unique Spherical Copula

Question 5. Having determined the unique spherically symmetric distribution on B3 with uniform
marginals, namely, the uniform distribution on the unit sphere ∂B3, what is the corresponding cdf
F (x, y, z) on C3, i.e., the unique spherical copula?

Answer: As in Section 3, let (X, Y, Z) be uniformly distributed on ∂B3, so that F (x, y, z) = P [X ≤ x,

Y ≤ y, Z ≤ z]. Again we first determine the complementary cdf F̄ (x, y, z) ≡ P [X > x, Y > y,

Z > z] for 0 ≤ x, y, z ≤ 1 and x2 +y2 +z2 < 1, the intersection of the first octant of C3 with the interior
of B3. Here the event {X > x, Y > y, Z > z} corresponds to the intersection of the three spherical
caps {X > x}, {Y > y}, and {Z > z} on ∂B3, so F̄ (x, y, z) is the area A(x, y, z) of this intersection
divided by the total area 4π of ∂B3.

Recall that two approaches were proposed in Section 3 to obtain the area A(x, y) of the intersection
of two circular caps {X > x} and {Y > y}. The first approach led to the integral (11) that we were
unable to evaluate explicitly, so we adopted a second approach based on the geometric Lemma 3.2
of Tovchigrechko and Vakser [7]. Andrey Tovchigrechko has kindly suggested a method for extending
Lemma 3.2 to the case of three spherical caps in general position, which if carried out would yield an
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explicit expression for A(x, y, z). However, we have found that because the axes of our three caps are
mutually orthogonal, the two approaches just mentioned for the bivariate case can be combined to obtain
F̄ (x, y, z) ≡ 1

4π
A(x, y, z) directly for the trivariate case, as now described.

We begin by extending (11) to obtain an integral expression for F̄ (x, y, z) when
0 ≤ x, y, z ≤ 1 and x2 + y2 + z2 < 1. We require the fact that

0 ≤ a, b ≤ 1 and a2 + b2 = 1 implies arcsin(a) + arcsin(b) = π/2. (22)

Lemma 4.1. If 0 ≤ x, y, z ≤ 1 and x2 + y2 + z2 < 1, then

F̄ (x, y, z) =
1

4π

∫ √1−y2−z2

x

[
π

2
− arcsin

(
y√

1− s2

)
− arcsin

(
z√

1− s2

)]
ds. (23)

Because (X, Y, Z) is exchangeable, (23) remains valid under any permutation of x, y, z on the right-hand
side.

Proof. Since X2 +Y 2 +Z2 = 1 and (X, Y, Z)
d
= (X, Y,−Z), it follows from (6) by using Figure 7 that

P [X > x, Y > y, Z > z]

=
1

2
P [X > x, Y > y, X2 + Y 2 < 1− z2]

=
1

4π

∫ √1−y2−z2

x

{∫ √1−s2−z2
y

1√
1− s2 − t2

dt

}
ds

=
1

4π

∫ √1−y2−z2

x


∫ √1−s2−z2
y

1√
(1− t2

1−s2 )

dt√
1− s2

 ds

=
1

4π

∫ √1−y2−z2

x


∫ √

1−s2−z2
1−s2

y√
1−s2

dv√
1− v2

 ds

=
1

4π

∫ √1−y2−z2

x

[
arcsin

(√
1− s2 − z2

1− s2

)
− arcsin

(
y√

1− s2

)]
ds.

Now apply (22) to obtain (23).
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Figure 7. Region of integration, 3-dimensional case, Lemma 4.1.
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As noted above, the integral in (23) appears difficult to evaluate explicitly but the following indirect
argument succeeds. Recall from (11) and (15) that when 0 ≤ x, y ≤ 1 and x2 + y2 < 1,

F̄ (x, y) =
1

2π

∫ √1−y2

x

[
π

2
− arcsin

(
y√

1− s2

)]
ds

=
1− x− y

4
+ α(x, y)

where α(x, y) is given by (16). Because z ≤
√

1− x2 − y2 ≤
√

1− y2 when 0 ≤ x, y, z ≤ 1 and
x2 + y2 + z2 < 1, it follows that

1

2π

∫ √1−x2−y2

z

[
π

2
− arcsin

(
y√

1− s2

)]
ds

=

√
1− x2 − y2 − z

4
+ α(z, y)− α(

√
1− x2 − y2, y). (24)



Symmetry 2011, 3 586

Therefore from (23) and (24), if 0 ≤ x, y, z ≤ 1 and x2 + y2 + z2 < 1 then

4πF̄ (x, y, z)

=

∫ √1−x2−y2

z

[
π

2
− arcsin

(
x√

1− s2

)]
ds

+

∫ √1−x2−y2

z

[
π

2
− arcsin

(
y√

1− s2

)]
ds− π

2

[√
1− x2 − y2 − z

]
=

π

2
(
√

1− x2 − y2 − z) + 2π
[
α(z, x)− α(

√
1− x2 − y2, x)

]
+
π

2
(
√

1− x2 − y2 − z) + 2π
[
α(z, y)− α(

√
1− x2 − y2, y)

]
− π

2
(
√

1− x2 − y2 − z)

=
π

2
(
√

1− x2 − y2 − z)

+ 2π
[
α(z, x) + α(z, y)− α(

√
1− x2 − y2, x)− α(

√
1− x2 − y2, y)

]
=

π

2
(
√

1− x2 − y2 − z)

+ x arcsin

(
z√

1− x2

)
+ z arcsin

(
x√

1− z2

)
− arcsin

(
xz√

(1− x2)(1− z2)

)

+ y arcsin

(
z√

1− y2

)
+ z arcsin

(
y√

1− z2

)
− arcsin

(
yz√

(1− y2)(1− z2)

)

− x arcsin

(√
1− x2 − y2√

1− x2

)
−
√

1− x2 − y2 arcsin

(
x√

x2 + y2

)

+ arcsin

(
x
√

1− x2 − y2√
(1− x2)(x2 + y2)

)
− y arcsin

(√
1− x2 − y2√

1− y2

)

−
√

1− x2 − y2 arcsin

(
y√

x2 + y2

)
+ arcsin

(
y
√

1− x2 − y2√
(1− y2)(x2 + y2)

)
.

By (22), however,

√
1− x2 − y2 arcsin

(
x√

x2 + y2

)
+

√
1− x2 − y2 arcsin

(
y√

x2 + y2

)
=

√
1− x2 − y2

(π
2

)
,

so if we define h(x, y) by

h(x, y) = arcsin

(
xy√

(1− x2)(1− y2)

)
+ arcsin

(
x
√

1− x2 − y2
√

1− x2
√
x2 + y2

)

+ arcsin

(
y
√

1− x2 − y2√
1− y2

√
x2 + y2

)
(25)
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for 0 ≤ x, y ≤ 1 and x2 + y2 < 1, then

4πF̄ (x, y, z)

= − π

2
z + h(x, y)− arcsin

(
xy√

(1− x2)(1− y2)

)

+ x arcsin

(
z√

1− x2

)
+ z arcsin

(
x√

1− z2

)
− arcsin

(
xz√

(1− x2)(1− z2)

)

+ y arcsin

(
z√

1− y2

)
+ z arcsin

(
y√

1− z2

)
− arcsin

(
yz√

(1− y2)(1− z2)

)

− x arcsin

(√
1− x2 − y2√

1− x2

)
− y arcsin

(√
1− x2 − y2√

1− y2

)
= − π

2
z + h(x, y) + α(x, y)

− x arcsin

(
y√

1− x2

)
− y arcsin

(
x√

1− y2

)

+ x arcsin

(
z√

1− x2

)
+ z arcsin

(
x√

1− z2

)
− arcsin

(
xz√

(1− x2)(1− z2)

)

+ y arcsin

(
z√

1− y2

)
+ z arcsin

(
y√

1− z2

)
− arcsin

(
yz√

(1− y2)(1− z2)

)

− x arcsin

(√
1− x2 − y2√

1− x2

)
− y arcsin

(√
1− x2 − y2√

1− y2

)
where α(x, y) is given by (16). Now (22) gives

x arcsin

(
y√

1− x2

)
+ x arcsin

(√
1− x2 − y2√

1− x2

)
= x

(π
2

)
y arcsin

(
x√

1− y2

)
+ y arcsin

(√
1− x2 − y2√

1− y2

)
= y

(π
2

)
so the above simplifies to

4πF̄ (x, y, z) = −π
2

(x+ y + z) + h(x, y) + 2π∆(x, y, z) (26)

where
∆(x, y, z) = α(x, y) + α(x, z) + α(y, z) (27)

a symmetric function of (x, y, z). By (22), however,

h(x, y) =
π

2
− arcsin

( √
1− x2 − y2√

(1− x2)(1− y2)

)
+ arcsin

(
x
√

1− x2 − y2
√

1− x2
√
x2 + y2

)

+ arcsin

(
y
√

1− x2 − y2√
1− y2

√
x2 + y2

)
≡ π

2
− γ + α + β
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and

sin(α + β)

= sinα cos β + cosα sin β

=
x
√

1− x2 − y2
√

1− x2
√
x2 + y2

x√
1− y2

√
x2 + y2

+
y

√
1− x2

√
x2 + y2

y
√

1− x2 − y2√
1− y2

√
x2 + y2

=

√
1− x2 − y2√

(1− x2)(1− y2)
= sin γ

so α + β = γ, hence h(x, y) ≡ π
2

identically in (x, y). Therefore we conclude that

F̄ (x, y, z) =
1− x− y − z

8
+

∆(x, y, z)

2
(28)

for 0 ≤ x, y, z ≤ 1 and x2 + y2 + z2 < 1.

We now apply (28) to obtain the cdf F (x, y, z) for all (x, y, z) ∈ C3. For this, extend the definition of
∆ in (27) to all (x, y, z) ∈ C3 by means of (16) and (18).

Theorem 4.1. The unique spherical copula F (x, y, z) on C3 is given as follows:

for x2 + y2 + z2 < 1,

F (x, y, z) =


1 + x+ y + z

8 +
∆(x, y, z)

2 , if x2 + y2 + z2 < 1

1 + x+ y + z
8 +

∆(x, y, z)
2

+ σ(xyz)

[
1− |x| − |y| − |z|

8 +
∆(|x|, |y|, |z|)

2

]
, if x2 + y2 + z2 ≥ 1.

Proof. See [9].

5. A One-Parameter Family of Elliptical Copulas

Let (X, Y ) ∼ f(x, y) in (6), the unique circularly symmetric distribution on the unit disk B2 with
uniform [−1, 1] marginals. For any angle γ ∈ (−π/2, π/2), consider the transformed variables

U = X, Vγ = X sin γ + Y cos γ. (29)

By the circular symmetry of (X, Y ), Vγ
d
= Y ∼ uniform[−1, 1], so the random vector (U, Vγ) again

generates a copula on the centered square C2. Denote the pdf and cdf of (U, Vγ) by fγ(u, v) and Fγ(u, v)

respectively. Then {Fγ | γ ∈ (−π/2, π/2)} is a one-parameter family of elliptical copulas, so-called
because the support of (U, Vγ) is the ellipse

Eγ := {(u, v) | u2 + v2 − 2uv sin γ ≤ cos2 γ}. (30)

(Note that E0 = B2.) From (29), the correlation coefficient of U and Vγ is given simply by

ρ(U, Vγ) = sin γ (31)

so γ indicates the degree of linear dependence between U and Vγ .
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Proposition 5.1. The pdf of (U, Vγ) is given by

fγ(u, v) =
1

2π
√

cos2 γ − u2 − v2 + 2uv sin γ
1Eγ (u, v). (32)

Proof. The pdf can be obtained by a standard Jacobian computation. From (29),

x(u, v) = u, y(u, v) =
v − u sin γ

cos(γ)
(33)

so
∂x(u, v)
∂u

= 1,
∂x(u, v)
∂v

= 0,

∂y(u, v)
∂u

= − tan γ,
∂y(u, v)
∂v

= 1
cos γ .

Thus the Jacobian of the transformation is J = 1/ cos γ, so from (6) we obtain

fγ(u, v) = f(x(u, v), y(u, v)) · J

=
1

2π
√

1− u2 − (v − u sin γ)2/ cos2 γ
1B2(x(u, v), y(u, v)) · 1

cos γ

=
cos γ

2π
√

(1− u2) cos2 γ − (v − u sin γ)2
1

cos γ
· 1B2(x(u, v), y(u, v))

=
1

2π
√

cos2 γ − u2 − v2 + 2uv sin γ
1Eγ (u, v).

Figure 8 shows the density fγ(u, v) with γ = π/4.

Figure 8. The density fγ(u, v) in (32) (with γ = π/4).
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To describe the family of elliptical copulas Fγ , we extend the definitions (16) and (18) as follows.
First, for (u, v) ∈ Eγ define

αγ(u, v) =
1

2π

[
u arcsin

(
v − u sin γ

cos γ
√

1− u2

)
+ v arcsin

(
u− v sin γ

cos γ
√

1− v2

)
− arcsin

(
uv − sin γ√

(1− u2)(1− v2)

)]
. (34)
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Note that αγ reduces to α in (16) when γ = 0, i.e., when Vγ = Y . From (12),

A(arccosu, arccos v;
π

2
− γ) = (1− u− v)π + 4παγ(u, v). (35)

Next, extend the definition of αγ(u, v) to C2 \ Eγ as follows (see Figure 9):

αγ(u, v) =



u+ v − 1
4 if (u, v) ∈ R5(γ) := (C2 \ Eγ) ∩ {(u, v) | u+ v > 1 + sin γ},

u− v + 1
4 if (u, v) ∈ R6(γ) := (C2 \ Eγ) ∩ {(u, v) | v − u > 1− sin γ},

−u+ v + 1
4 if (u, v) ∈ R7(γ) := (C2 \ Eγ) ∩ {(u, v) | v − u < sin γ − 1},

−u− v − 1
4 if (u, v) ∈ R8(γ) := (C2 \ Eγ) ∩ {(u, v) | u+ v < − sin γ − 1}.

(36)

Figure 9. Eight regions R1(γ)−R8(γ) for an elliptical copula (with γ = π/8).
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Note that (34) and (36) agree on ∂Eγ , i.e., when u2 + v2 − 2uv sin γ = cos2 γ. Also note that (36)
reduces to α in (18) when γ = 0. The following lemma will be useful for the proof of Theorem 5.1.

Lemma 5.1. Let (U, V ) be a bivariate random vector in C2 with uniform [−1, 1] marginals that satisfies
(U, V )

d
= (−U,−V ). Then the cdf F (u, v) satisfies

F (u, v) =
u+ v

2
+ F (−u,−v), (u, v) ∈ C2. (37)

Proof. By the symmetry condition,

F (u, v) = P [−U ≤ u, −V ≤ v] = P [U ≥ −u, V ≥ −v]

= 1− P [U < −u]− P [V < −v] + P [U < −u, V < −v]

= 1−
(
−u+ 1

2

)
+

(
−v + 1

2

)
+ P [U ≤ −u, V ≤ −v]

=
u+ v

2
+ F (−u, −v).
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Theorem 5.1. The cdf ≡ copula of (U, Vγ) is given by (see Figure 12)

Fγ(u, v) =
u+ v + 1

4
+ αγ(u, v), (u, v) ∈ C2. (38)

Proof. To find Fγ(u, v) we again use the formula (12) for the area of the intersection of two spherical
caps on ∂B3. Here, unlike (14), the axes of the two caps are not necessarily perpendicular. The single
formula (38) is obtained by considering the partition C2 = ∪8i=1Ri(γ), where R5(γ)−R8(γ) are defined
in (36) and (see Figure 9)

R1(γ) = Eγ ∩ {(u, v) | 0 ≤ u, v ≤ 1},
R2(γ) = Eγ ∩ {(u, v) | −1 ≤ u ≤ 0 ≤ v ≤ 1},
R3(γ) = Eγ ∩ {(u, v) | −1 ≤ v ≤ 0 ≤ u ≤ 1},
R4(γ) = Eγ ∩ {(u, v) | −1 ≤ u, v ≤ 0}.

Case 1: (u, v) ∈ R1(γ). By using Figure 10,

Fγ(u, v) = P [U ≤ u, Vγ ≤ v]

= 1− P [U > u]− P [Vγ > v] + P [U > u, Vγ > v]

= 1−
(

1− u
2

)
−
(

1− v
2

)
+ P [X > u, X sin γ + Y cos γ > v]

=
u+ v

2
+

1

4π
A(arccosu, arccos v; π/2− γ)

=
u+ v + 1

4
+ αγ(u, v) [by (35)].

Figure 10. The region [X > u,X sin(γ) + Y cos(γ) > v] for Case 1 (with γ = π/8).
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Case 2: (u, v)) ∈ R2(γ). Because (X, Y )
d
= (−X, Y ) and using Figure 11

Fγ(u, v) = P [U ≤ u]− P [U ≤ u, Vγ > v]

=
u+ 1

2
− P [X ≤ u, X sin γ + Y cos γ > v]

=
u+ 1

2
− P [−X ≤ u, −X sin γ + Y cos γ > v]

=
u+ 1

2
− P [X ≥ −u, X sin(−γ) + Y cos(−γ) > v]

=
u+ 1

2
− 1

4π
A(arccos(−u), arccos v; π/2 + γ)

=
u+ v + 1

4
− α−γ(−u, v) [by (35)]

=
u+ v + 1

4
+ αγ(u, v) [by (34)].

Figure 11. The region [X < u,X sin(γ) + Y cos(γ) > v] for Case 2 (with γ = π/8).
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Case 3: (u, v) ∈ R3(γ). Then (−u,−v) ∈ R2(γ), so by Lemma 5.1 and Case 2,

Fγ(u, v) =
u+ v

2
+ Fγ(−u,−v)

=
u+ v

2
+
−u− v + 1

4
+ αγ(−u,−v)

=
u+ v + 1

4
+ αγ(u, v) [by (34)].

Case 4: (u, v) ∈ R4(γ). Then (−u,−v) ∈ R1(γ), so by Lemma 5.1 and Case 1, the argument for Case
3 applies verbatim.
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Case 5: (u, v) ∈ R5(γ).

Fγ(u, v) = 1− P [U > u]− P [Vγ > v]

= 1−
(

1− u
2

)
−
(

1− v
2

)
=

u+ v + 1

4
+ αγ(u, v) [by (36)].

Case 6: (u, v) ∈ R6(γ).

Fγ(u, v) = P [U ≤ u]

=
u+ 1

2

=
u+ v + 1

4
+ αγ(u, v) [by (36)].

Case 7: (u, v) ∈ R7(γ). Then (−u,−v) ∈ R6(γ), so by Lemma 5.1 and Case 6, the argument for Case
3 applies verbatim.

Case 8: (u, v) ∈ R8(γ). Then (−u,−v) ∈ R5(γ), so by Lemma 5.1 and Case 5, the argument for Case
3 applies verbatim.

Figure 12. The copula Fγ(u, v) in (38) (with γ = π/4).
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6. Copulas Derived from the Uniform Distribution on the Unit Ball

Up to now we have addressed the question of whether copulas can be generated by means of linear
functions of a circularly symmetric or spherically symmetric random vector. Now we ask whether
non-linear functions of such random vectors can generate copulas. We shall restrict attention to random
vectors uniformly distributed over the unit ball Bd and produce relatively simple non-linear functions
that generate copulas on Cd.

We begin with the bivariate case. Suppose that (X, Y ) is distributed uniformly on the unit disk
B2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}. Because

X | Y ∼ uniform[−
√

1− Y 2,
√

1− Y 2]

and Y | X ∼ uniform[−
√

1−X2,
√

1−X2]

it follows that the random variables

U :=
X√

1− Y 2
, V :=

Y√
1−X2

(39)

satisfy

U | Y ∼ uniform[−1, 1]

V | X ∼ uniform[−1, 1].

Thus, U and Y are independent, V and X are independent, and unconditionally,

U ∼ uniform[−1, 1]

V ∼ uniform[−1, 1]

so the joint distribution of (U, V ) generates a copula F(u, v) on the centered cube C2 ≡ [−1, 1]2. Note
that U and V are not linear functions of (X, Y ).

Question 6: Are U and V independent, and if not, what is the nature of their dependence?

Answer: Clearly U and V are uncorrelated, since E(U) = E(V ) = 0 and

E(UV ) = E

(
XY√

(1−X2)(1− Y 2)

)
= 0

all by the circular symmetry of (X, Y ). However, the joint pdf and cdf of (U, V ) derived below show
that they are not independent.

Proposition 6.1. The joint density of (U, V ) is given by (see Figure 13)

f(u, v) =
1

π

√
(1− u2)(1− v2)
(1− u2v2)2

1C2(u, v). (40)
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Figure 13. Joint density f(u, v) of (U, V ) in (40).

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

0.0

0.2

0.4

Proof. This pdf is again obtained via the Jacobian method. It follows from (39) that

u2(1− y2) = x2, and v2(1− x2) = y2.

Substitution of the second expression for y2 into the left side of the first relation and vice versa yields

x2 =
u2(1− v2)
1− u2v2

, y2 =
v2(1− u2)
1− u2v2

so, since x and u (y and v) have the same signs by (39), we obtain

x ≡ x(u, v) =
u
√

1− v2√
1− u2v2

, y ≡ y(u, v) =
v
√

1− u2√
1− u2v2

. (41)

Thus
∂x

∂u
=
√

1− v2
[

1√
1− u2v2

+ u(1− u2v2)−3/2(uv2)
]

=

√
1− v2√

1− u2v2

{
1 +

u2v2

1− u2v2

}
=

√
1− v2

(1− u2v2)3/2
,

∂x

∂v
= u

[
(1− v2)−1/2(−v)√

1− u2v2
+
√

1− v2(1− u2v2)−3/2(u2v)

]
=

uv√
1− v2

√
1− u2v2

{
−1 +

u2(1− v2)
1− u2v2

}
= − uv(1− u2)√

1− v2(1− u2v2)3/2
.

By symmetry it follows that the Jacobian is given by

J =


√

1− v2
(1− u2v2)3/2

− uv(1− u2)√
1− v2(1− u2v2)3/2

− uv(1− v2)√
1− u2(1− u2v2)3/2

√
1− u2

(1− u2v2)3/2


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and hence the determinant of J is given by

|J | =
√

(1− u2)(1− v2)
(1− u2v2)2

.

Because the pdf of (X, Y ) is f(x, y) = 1
π
1B2(x, y), the result (40) follows.

For 0 ≤ u, v ≤ 1, (u, v) 6= (1, 1), let E1(u) and E2(v) be the ellipses

E1(u) =

{
(x, y)

∣∣∣ x2
u2

+ y2 ≤ 1

}
(42)

E2(v) =

{
(x, y)

∣∣∣ x2 +
y2

v2
≤ 1

}
. (43)

The next lemma leads to the cdf F (u, v) corresponding to the pdf (40).

Lemma 6.1.

Area(E1(u) ∩ E2(v)) = 2u arcsin

(
v
√

1− u2√
1− u2v2

)
+ 2v arcsin

(
u
√

1− v2√
1− u2v2

)
.

Proof. Define the points o, a, b, c, d, d, f, g as follows: see Figure 14,

o = (0, 0)

a = (x(u, v), y(u, v)) =

(
u
√

1− v2√
1− u2v2

,
v
√

1− u2√
1− u2v2

)
b = (u, 0)

c = (0, v)

d = (
√

1− y2(u, v), y(u, v))

e = (x(u, v),
√

1− x2(u, v))

f = (1, 0)

g = (0, 1).

Then

1

4
Area(E1(u) ∩ E2(v)) = Area(oab) + Area(oac)

= uArea(odf) + vArea(oeg)

=
u

2
arcsin(y(u, v)) +

v

2
arcsin(x(u, v))

from which the result follows.
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Figure 14. Integration regions for Lemma 6.2.
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Theorem 6.1. The copula (= cdf) corresponding to the pdf (40) is given by (see Figure 15)

F (u, v) =
u+ v + 1

4
+

u

2π
arcsin

(
v
√

1− u2√
1− u2v2

)
+

v

2π
arcsin

(
u
√

1− v2√
1− u2v2

)
, (u, v) ∈ C2.

Proof. Because (U, V ) is sign-change invariant and has uniform [−1, 1] marginals, it follows from (7)
and (9) in Lemma 3.1 and from (39) that for (u, v) ∈ C2,

F (u, v) =
u+ v + 1

4
+ σ(uv)P [0 ≤ U ≤ |u|, 0 ≤ V ≤ |v|]

=
u+ v + 1

4
+
σ(uv)

4
P [U2 ≤ u2, V 2 ≤ v2]

=
u+ v + 1

4
+
σ(uv)

4
P [(X, Y ) ∈ E1(u) ∩ E2(v)]

=
u+ v + 1

4
+
σ(uv)

4π
Area(E1(|u|) ∩ E2(|v|)).

The result now follows from Lemma 6.1.

Remark: The construction (39) extends readily to generate a copula on Cd. For d = 3, for example, let
(X, Y, Z) be uniformly distributed on the unit ball B3 and define

U :=
X√

1− Y 2 − Z2
, V :=

Y√
1−X2 − Z2

, W :=
Z√

1−X2 − Y 2
.
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Figure 15. Nonlinear transformation copula F (u, v) in Theorem 6.1.

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

Then the marginal distributions of U , V , andW are each uniform [−1, 1] so the cdfG(u, v, w) is a copula
on C3. To find this copula one would need to determine Volume(E1(u) ∩ E2(v) ∩ E3(w)), where now,
for 0 ≤ u, v, w ≤ 1, E1(u), E2(v), and E3(w) are the ellipsoids

E1(u) =

{
(x, y, z)

∣∣∣ x2
u2

+ y2 + z2 ≤ 1

}
E2(v) =

{
(x, y, z)

∣∣∣ x2 +
y2

v2
+ z2 ≤ 1

}
E3(w) =

{
(x, y, z)

∣∣∣ x2 + y2 +
y2

w2
≤ 1

}
.
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