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Abstract: Periodic patterns and symmetries are striking visual properties that have been

used decoratively around the world throughout human history. Periodic patterns can be

mathematically classi�ed into one of 17 differentWallpaper groups, and while computational

models have been developed which can extract an image's symmetry group, very little work

has been done on how humans perceive these patterns. This study presents the results from

a grouping experiment using stimuli from the different wallpaper groups. We �nd that while

different images from the same wallpaper group are perceived as similar to one another,

not all groups have the same degree of self-similarity. The similarity relationships between

wallpaper groups appear to be dominated by rotations.
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1. Introduction

Symmetry and tilings have been used in art and architecture throughout human history [1�3].

Two-dimensional periodic patterns can be classi�ed into 17 different wallpaper groups based on the

Euclidean plane isometries (translations, re�ections, rotations and glides) that they possess. Islamic,

Moorish and Egyptian architecture (see Figure 1) and the art of M. C. Escher are rich with ornate
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examples. The Alhambra palace contains examples of most, if not all, of the wallpaper groups [4,5].

These patterns are also used throughout everydayWestern architecture (see Figure 2 for some examples).

Figure 1. Some examples of ornate symmetrical patterns.

(a) P3M1 (b) P2 (c) P4G

Figure 2. Some examples of everyday symmetrical patterns.

(a) CMM (b) PGG (c) CM

The reasons why symmetries in repeating patterns present such compelling impressions to human

vision have been the subject of research over many decades. Gestalt theory recognised that

symmetry contributes to the �goodness� of a form, promoting its emergence through the grouping

of image elements. Subsequent experimental investigations have de�ned goodness (also termed

salience) behaviourally, in terms of accuracy and speed of discriminating symmetrical forms from

non-symmetrical ones, and resistance of discrimination to degradation of symmetry by noise. In dot

patterns and geometrical forms, key �ndings have been that mirror symmetry (around a re�ection axis)

is more quickly and accurately detected than either translation or rotational symmetry [6,7]. Mirror

symmetry is detected more quickly and accurately if a pattern is re�ected in a vertical axis than in a

horizontal one, and less well again if re�ected in oblique axes [7]. A variety of theories have been

proposed to explain these and other �ndings, in terms of the properties of either multiple processes of

symmetry detection, or the properties of the representations of images that they generate (for a review,

see [8], and for recent models see [9�12]).

In this paper, we will not address questions about the detection of symmetries in images, but instead

will investigate how symmetries affect the appearance of two-dimensional patterns. The measurement

of visual appearance is important in applied contexts as a means to determine how people describe and

classify objects, materials and surfaces. Our understanding of the physical basis of visual appearance is

greatest in the case of colour [13], whereas other properties have been less well explored. One of these is

texture; �ne-scale variation in surface height and re�ectance that has constant statistical properties from
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one patch of a surface to another. The main perceptual dimensions along which people classify images

of textures have been identi�ed [14,15], and include roughness, directionality and regularity. However,

progress has only been made in identifying the mathematical properties of surfaces that underlie these

dimensions in a few speci�c cases, such as roughness in random-phase surfaces [16], and the effects of

phase randomisation on the appearance of phase-rich surfaces [17].

Since the visual textures used in the creation or decoration of arti�cial surfaces often contain

periodically repeating elements, it is interesting to ask how the symmetries present in such textures

in�uence human perception of their appearance. Previous work on the appearance of patterns containing

symmetries has tested their effects on aesthetic impressions, showing that there is a correlation between

symmetric patterns and judgements of �beauty� in a pattern [18], or on perceived complexity. In the

second case, [19] used �band� (or �frieze�) patterns consisting of a simple geometric form repeated

(translated) along a single axis, with combinations of re�ections, rotations and glide re�ections de�ned

by the seven symmetry groups that are possible for such a pattern. They concluded that processes of

grouping these elements into larger perceived �motifs� partially overrode the effects of symmetry on

judgements of complexity.

Here, we aim to use two-dimensional periodic patterns made up from patches of random-dot noise

to measure the perceived similarity of exemplars from each of the wallpaper groups to other exemplars

of the same group, and to exemplars of the other groups. To this end, a free-sorting experiment will

be described in which observers were asked to sort a set of 85 patterns (i.e., 5 examples from each of

the 17 groups) into subsets of similar appearance. Similarity matrices obtained by this sorting method

have previously been used to identify the dimensions underlying human classi�cation of visual textures

(e.g., [14,15]). it is important to emphasise that observers in our experiment were not instructed to

classify the stimulus patterns into subsets according to the symmetries present in them, and nor was their

attention drawn to the fact that the patterns contained multiple symmetries or that they were relevant to

the experiment. Computer vision models that can extract a pattern's symmetry group from an image

have been developed [20�22], but this is likely to be a highly skilled task for humans, completely unlike

the judgements of visual similarity that we sought to obtain.

2. The 17 Wallpaper Groups

There are four Euclidean plane isometries: translation, rotation, re�ection and glide. A translation

involves shifting a plane by a displacement vector v. As we are dealing with periodic patterns, then

for each wallpaper group P , there exists a v 2 R
2 such that P is invariant under the translation Tv.

(Note: this is only strictly true for patterns that repeat in�nitely in two directions). A rotation, Rc;�,

involves rotating around a point c by an angle of � result and a re�ection FL involves re�ecting the

pattern in the line L (mirror symmetry). Finally a glide GL;d is a combination of a translation along the

line L by distance d, followed by FL. The 17 different wallpaper groups all possess different Euclidean

plane isometries, and a summary is given in Table 1. We use the standard Crystallographic notation for

wallpaper groups [23]. For more details, see [24,25].
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Table 1. A summary of the 17 possible wallpaper groups. Note, rotation centres lie on

re�ection axes except for groups CMM and P31M . If a group has n rotations, this means

that it is invariant under rotations of 2�=n.

Group #Re�ections #Rotations #Glides Notes

P1 0 1 0 -

P2 0 2 0 -

PM 1 1 0 -

PG 0 1 1 -

CM 2 1 2 Glides parallel to ref. axes

PMM 2 2 0 -

PMG 1 2 1 Glide perpendicular to ref. axes

PGG 0 2 2 -

CMM 2 2 0 Rotation centres do not lie on ref. axes

P4 - 4 0 -

P4M 4 4 0 -

P4G 2 4 2 -

P3 - 3 0 -

P3M1 3 3 3 -

P31M 3 3 3 Rotation centres do not lie on ref. axes

P6 - 6 0 -

P6M 6 6 6 -

3. Methods

3.1. Stimuli

Five exemplars of each wallpaper group were created by tiling patches of white noise patterns. This

gave a total of 85 textured stimuli. The white noise patches had an area A � 4096 pixels. Depending on

the symmetry class, these patches were square, rectangular or triangular. Tiles were then created from

the patches using re�ections, rotations and glides. The advantage of using noise rather than textons is

that it minimizes the role that patch (texton) similarity can have on the perceived similarity of the whole

pattern. It is likely that the relative importance of symmetry group (global structure) and textons (local

structure) will depend on other factors, such as spatial scale and contrast. Trying to investigate the effect

of all of these variables on perceived similarity at the same time would require a prohibitive number

of stimuli.

White noise was chosen as it allows us to create many equivalent instances of the same symmetry

group, and it avoids the problems of tiling discontinuities that would arise if coloured noise were

used. (For example, if coloured noise was used, there would be obvious edge discontinuities when a patch

was tiled with a copy of itself rotated 90�. As all the pixels in white noise are uncorrelated, this problem

as avoided.) For textures with 60� and 120� rotations, the white noise patches were �rst up-sampled by

a factor of eight. This was done as to minimise the loss of high frequencies due to bilinear interpolation
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when rotating the white noise patches. Once the tiled image had been created it was down-sampled back

to its original scale. Finally a Gaussian �lter (� = 1:5 pixels) was applied to all of the resulting tiled

images in order to remove any high frequency artifacts that may have been introduced by the rotation

operations. The standard deviation of pixel intensities was � 0:132 prior to printing.

These images were then printed onto card and cut into circles. This was done in order to encourage

observers to choose their own preferred orientation for each image. An example image from each group

is shown in Figures 11�27.

3.2. Participants

15 participants (10 male, 5 female), ranging in age between 23 and 58 years, took part in the

study. Some were familiar with experiments involving free sorting of textured images, but none with

experiments on symmetrical patterns. They did not receive payment for their participation.

3.3. Procedure

Participants were presented with all the 85 images laid out randomly on a large table, and were

instructed to classify them into as many subsets as they wished, by placing them into piles of any

size. They were free to take as long as they wished to complete the task, and to move images between

subsets until they were satis�ed with their classi�cation. They were not asked to group by symmetry,

only that their subsets should consist of similar images. The experiment was carried out in a corner

of a large of�ce, screened from natural light and illuminated by normal overhead room lighting (two

�uorescent tubes).

4. Results

Participants took between approximately 15 and 30 min to sort the images into subsets. Figure 3

shows the number of subsets made by different participants, and the distribution of the number of images

in subsets of different sizes. The overall similarity matrix is shown in Figure 4.

The �rst question we want to ask is whether participants classi�ed images from the same wallpaper

group as being similar to each other. Figure 5 shows how often images from a group were classed with

other images from the same group. This was further analysed as follows: for each image I , the similarity

matrix was used to retrieve the nth most similar images. A score, f(I; n) was given by the number of

images belonging to the same wallpaper group as I among the n most similar (with a maximum of 4 as

there were 5 instances of each wallpaper group in the set of images). The mean results for each wallpaper

group are shown in Figure 6. As can be seen, images from the same wallpaper group are retrieved more

often than would be expected by chance.
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Figure 3. Histograms showing (left) the number of subsets chosen by the participants;

(right) the size of the subsets made.
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Figure 4. Similarity matrix. Each row and column represents an image, and the colour of

the pixel at position (i; j) indicates the number of times image i was placed in a subset with

image j. Brighter colours indicate increasing similarity. The high values along the diagonal

are due to each image being classed as similar to itself. The images are grouped by symmetry

group, as indicated by the white lines.
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Figure 5. The degree of self-similarity for each of the 17 wallpaper groups.
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Figure 6. Mean number of retrievals from the same wallpaper group. The dotted line shows

the number of retrievals that would be expected by chance (hypergeometric distribution).

Each line represents a different symmetry group.
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However, we can clearly see from Figures 4 and 6 that the participants did not use only an image's

wallpaper group when making subsets, and there is considerable overlap between the different groups.

The perceived similarity between wallpaper groups is shown in Figure 7. This was constructed by

collapsing the similarity matrix to obtain a value for each group, rather than each individual image. A

group's self-similarity was calculated as the mean number of times that a participant classi�ed an image

from a group with other images from the same group, divided by 4, giving a value in the range 0�1. In

the �gure, a group's self-similarity is represented by the area of its shape symbol, with groups whose

exemplars were consistently classi�ed as similar to one another, such as P2 and P4M , represented by

large shapes. Groups with a low degree of self-similarity, such as PM and CMM , are represented by

small shapes. The similarity of one group to another was calculated as the mean number of times that

a participant classi�ed an image from one group with an image from another, divided by 5 (since each

image has �ve opportunities to be classi�ed with an image in another group). In Figure 7, similarities

between groups are represented by the thicknesses of the lines connecting their shape symbols. We can

see that images from P2, PM and PMG were perceived as very similar to one another. Likewise,

P3M1, P31M , P6 and P6M formed a coherent set of perceptually similar images.

The role of individual symmetries in determining perceived similarity was further explored with

a multi-linear regression model. Each symmetry group was described using a feature vector

Fi = fRoti; Refi; Gliig where Rot, Ref and Gli are the number of rotations, re�ections and glides

contained in the wallpaper group. These were then used to explore whether there is a link between

the number of symmetries in a wallpaper group and its degree of self similarity. The results from the

regression analysis suggest that this is not the case (R2 = 0:26, p = 0:26).

A separate regression was performed on each inter-group comparison, giving 136 data points, and the

dependent variables were�Roti;j = jRoti�Rotjj,�Refi;j = jRefi�Refjj and�Glii;j = jGlii�Glijj

for comparing wallpaper group i with group j. The results from this linear regression give a R2 of only

0.181 (F3;132 = 9:7, p < 0:001). Although the relationship is signi�cant, the low value of R2 implies

that human observers do not decide whether to classify two images together or apart simply on the basis

of the number of symmetries that they contain. Of the three independent variables, only �Roti;j was

found to have a signi�cant effect, with t = �0:375, p < 0:001.

5. Discussion

The aim of this study was to investigate the effect of symmetry on texture similarity judgements.

In order to minimise the effect of texton similarity, we used patches of white noise as textons. The

reasoning behind this was that any perceived structure arising from the properties of the wallpaper groups

would be more apparent in observers' classi�cations. The results show that images from the same

group were classi�ed together by human observers more often than would be expected by chance. The

similarity relationships shown in Figure 7, and the results of the regression analyses, further indicate

that the number of rotational symmetries in an image has a stronger in�uence on its classi�cation than

the numbers of either re�ections or glides that are present. However, it is also clear from the results

that images were not classi�ed by wallpaper group, or number of rotational symmetries, alone, and that

observers must have taken other visual properties into account in making classi�cations.
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Figure 7. Graph showing how similar the wallpaper groups are to each other. The different

shapes represent a group's rotations (circle = no rotations, rectangle = 1 rotation, square = 2

rotations, triangle = 3 rotations, hexagon = six rotations) and the colour represents the

number of re�ections (black = no re�ections, dark blue = 1 re�ection, light blue = two

re�ections, green = 3 re�ections, pink = 4 re�ections and red = 6 re�ections). The

size of the shapes represent how consistently participants grouped members from the same

wallpaper group together, and the thickness of the connecting lines represents how similar

the different wallpaper groups are to each other. Note: only the top quartile of inter-group

similarities are shown.
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An important question in interpreting these results is their possible sensitivity to the particular random

dot patterns that were repeated to create the images. It is well known that if stochastic patterns of

textons such as dots are re�ected around one or more two-fold symmetry axes, the groupings of textons

that are perceived depend strongly on their initial arrangement. Observers' classi�cations of symmetric

patterns of this kind by visual similarity would clearly be dominated by speci�c arrangements of textons.

However, the stimuli used here differed from those previously used in experiments on symmetry in

containing many more repetitions of a texton (the random dot patch used as a seed), and in the �ne scale

at which the random dot texture was viewed (see examples of stimuli in Figures 11�27). For two reasons,

we argue that the classi�cations of these patterns would be robust to variation in the random dot seeds.

First, the similarity matrix (see Figure 4) shows that values in the 5�5 blocks of cells lying along

the diagonal (ignoring cells representing self-similarities of single images) are higher than the average

similarity value for pairs of images, implying that images drawn from the same wallpaper group were

more often classi�ed together in the same subset than randomly chosen pairs of images. If similarity was

determined by random dot seeds alone, this pattern would not be observed.
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Second, inspection of the sets of images in each wallpaper group shows that similar large-scale

geometric structure emerges in all �ve exemplars, despite variations in detail caused by the random

seed. Figures 8, 9 and 10 show examples from groups P2, PMM and P6M . Particular groups are

characterised by structures such as grid patterns (e.g., PMM), striations (e.g., P2), or large geometric

forms with characteristic triangular, circular or elliptical shapes (e.g., P6M). These structures are

comparable to the �motifs� that [19] argued account in part for judgements of complexity in band patterns

with different symmetry properties. It is probable that the in�uence of wallpaper group on classi�cation

that we have observed does not operate directly through recognition of symmetries, but instead through

perceptual classi�cation of the characteristic scales and shapes of the motifs that each group generates

in images, whatever random dot seed is used.

The results obtained in our experiment cannot be compared directly to those in the literature on

symmetry detection, without knowing to what extent observers based their classi�cation of images on

their goodness, or salience, of the symmetries that they contained. This may well have been one factor

underlying similarity judgements but, as we have seen, the motifs perceived in images were probably

also important (cf. [19]). A further problem in comparing results is that observers had unlimited

time to make classi�cations, and were free to move images between subsets until they were satis�ed

with them. Measures of reaction time from symmetry detection experiments may be relevant to any

classi�cation decisions that were made quickly, but not to those made more slowly and deliberately. For

these reasons, the present data cannot be used to test models of symmetry detection. Even so, some

tentative comparisons can be made with existing data on the salience of different symmetries.

Strother et al. [19] found that glide symmetry in band patterns made little contribution to judgements

of complexity, and it appears also to have little effect on similarity judgements. The only difference

between groups P1 and PG is that the latter contains a glide symmetry (neither contains re�ection

or rotation symmetries), and images from the two groups are frequently classi�ed together (see Figure 7),

consistent with the hypothesis that glide symmetry is not readily visible. However, the relative

importance of re�ection and rotation in determining image classi�cation is not consistent with previous

results on the salience of symmetries. It is well established that re�ection is more salient in dot arrays or

geometrical forms than rotation (e.g., [7]), and the same difference is seen in the perceived complexity of

one-dimensional band patterns ([19]). However, we found that the self-similarity of P2 (which contains

only a rotation) is greater than that of PM (which contains only a re�ection). Furthermore, images

from these two groups were very frequently classi�ed together (see Figure 7). Treating the results

more globally, we have already noted above the negative correlation between similarity of images and

difference between them in number of rotation axes, and the absence of a correlation in the case of

similarity axes.

The effect of re�ection and rotation symmetries on the appearance of the images that we used

therefore cannot be predicted from their salience in simpler patterns, and we hypothesise instead that

they are based on the distinct types of large-scale motifs characteristic of groups with different numbers

of rotational symmetry axes. Those with none (P1, PM , PG, CM ) have the appearance of �ne meshes

or grids; those with one (PMM , PMG, PGG, CMM ) of more conspicuous grids, striations or zigzags;

those with two (P4, P4M , P4G) of larger, more conspicuous geometrical forms arranged in square

arrays; those with three (P3, P3M1, P31M ) of similar geometrical forms but in triangular arrays; and
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those with six (P6, P6M ) of arrays of conspicuously large circular or hexagonal forms. Varying the

number of re�ection axes does not have equally consistent effects on large-scale structure.

Figure 8. Examples of different instances of P2.

(a) (b) (c) (d) (e)

Figure 9. Examples of different instances of PMM.

(a) (b) (c) (d) (e)

Figure 10. Examples of different instances of P6M.

(a) (b) (c) (d) (e)

Another feature of our results is more consistent with previous data on salience of symmetries.

Wenderoth et al. [26] varied the number of re�ection symmetry axes in a pattern, and found that

symmetry in patterns with four axes was detected more quickly and accurately than in ones with two

or three axes, which in turn gave superior performance to patterns with a single axis. Although, as

noted above, we �nd an effect of number of rotation axes, our results are consistent with the more

general hypothesis that perceived similarity of patterns, like their salience, is in�uenced by the number

of symmetry axes present. It is interesting to note in this respect that if the total numbers of rotation and

re�ection axes in our images are considered, the �ve groups that contain six in all (i.e., P4M , P3M1,

P31M , P6 and P6M ) form a tightly interconnected subset in Figure 7.
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Figure 11. P1. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 12. P2. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 13. PM. (a) Example stimuli; (b) Cell structure.

(a) (b)
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Figure 14. PG. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 15. CM. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 16. PMM. (a) Example stimuli; (b) Cell structure.

(a) (b)
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Figure 17. PMG. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 18. PGG. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 19. CMM. (a) Example stimuli; (b) Cell structure.

(a) (b)
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Figure 20. P4. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 21. P4M. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 22. P4G. (a) Example stimuli; (b) Cell structure.

(a) (b)
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Figure 23. P3. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 24. P3M1. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 25. P31M. (a) Example stimuli; (b) Cell structure.

(a) (b)
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Figure 26. P6. (a) Example stimuli; (b) Cell structure.

(a) (b)

Figure 27. P6M. (a) Example stimuli; (b) Cell structure.

(a) (b)

The experiment reported here is the �rst to investigate the effect of symmetry properties on the

perceived appearance of patterns constructed from repeated patches of random dots, using all the

17 wallpaper groups that de�ne possible symmetries in two dimensional patterns. We have shown

that images with the same symmetry properties are classi�ed together as similar more often than would

be expected by chance, and therefore that these properties have an effect on the appearance of images.

We have also shown that the number of axes of rotational symmetry has a signi�cant effect on the

classi�cation of images, but the number of re�ection or glide axes does not. At this stage, it is not

possible to conclude to what extent the goodness, or salience, of the different symmetries in images like

these in�uences their perceptual classi�cation. Further experiments that controlled the presentation time

of images could resolve this question by restricting decisions to the most salient symmetries present.

It will also be interesting to explore the contribution of texton similarity and scale to the perceptual

classi�cation of symmetrical patterns.
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