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Abstract: In this paper, we analyze a few interrelated concepts about graphs, such as their 
degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the 
study of different types of Systems, and particularly, in the analysis of Complex Networks. 
A System can be defined as any set of components functioning together as a whole. A 
systemic point of view allows us to isolate a part of the world, and so, we can focus on those 
aspects that interact more closely than others. Network Science analyzes the 
interconnections among diverse networks from different domains: physics, engineering, 
biology, semantics, and so on. Current developments in the quantitative analysis of Complex 
Networks, based on graph theory, have been rapidly translated to studies of brain network 
organization. The brain's systems have complex network features—such as the small-world 
topology, highly connected hubs and modularity. These networks are not random. The 
topology of many different networks shows striking similarities, such as the scale-free 
structure, with the degree distribution following a Power Law. How can very different 
systems have the same underlying topological features? Modeling and characterizing these 
networks, looking for their governing laws, are the current lines of research. So, we will 
dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and 
highlight their close relation with measures of information and entropy. 
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1. Some Previous Concepts 

A graph [1] may be defined as a pair, G = (V, E), where V = V(G) is the node set, and E = E(G) is 
the edge set, i.e., the set of 2-element subsets of V. 

Given an edge {i, j}∈E, we say that the nodes i and j are adjacent; and we denote i ∼ j. 
The neighborhood of i will be: 

N(i) = {j∈V: j ∼  i} 

And the degree of i can be expressed as: 

deg(i) = d(i)= card {N(i)} 

A graph, G, is finite, if the set of its nodes, V(G), is finite.  
And it is locally finite, if all of its nodes have finite degrees. 
Two very important results may be considered now: 
Handshaking Lemma

In any graph, the sum of the degrees of all nodes (or “total degree”) 

 (or Theorem).  

is equal to twice the number of edges. 

In any graph there is an even number of nodes with an odd degree. 

Degree Theorem. 

The adjacency matrix is a convenient representation of the interaction between nodes. Several 
Complex Networks measures can be defined over adjacency matrices; for instance: clustering 
coefficient (local or global), diameter, average degree of the network, and so on. All of them play a 
key role in network theory. 

The distance between two nodes is defined as the length of the shortest path connecting them. 
The diameter of a network is the maximal distance between any pair of their nodes. 
The average path length is the average of the distance over all pairs of nodes. Thus, it determines 

the “size” of the network. 
An automorphism of a graph, G, is any bijection: 

a: V(G) → V(G) 

that applies edges onto edges, and non-edges onto non-edges. 
The set of all automorphisms of a graph, G, is denoted by Aut (G). It is the automorphism group of 

G. We will come back later to this concept. 
Succinctly, the more symmetry a graph has the larger its automorphism group will be, and vice versa. 

2. Symmetry and Networks 

Pierre Curie stated [2]: 

It is asymmetry that creates a phenomenon. 

Paul Renaud generalized Curie’s idea and stated [3]:  

If an ensemble of causes is invariant with respect to any transformation, 
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the ensemble of their effects is invariant with respect to the same transformation. 

Joe Rosen has stated the Symmetry Principle as [4]:  

The symmetry group of the cause is a subgroup of the symmetry group of the effect. 

Or less precisely:  

The effect is at least as symmetric as the cause (and might be greater). 

Also from Joe Rosen is the quote:  

Recognized causal relations in nature are expressed as laws. 
Laws impose equivalence relations in the state sets of causes and of effects. 

So, 

Equivalent states of a cause are mapped to (i.e., correlated with) 
equivalent states of its effect. 

This is the Equivalence Principle.  
Somewhat less precisely, this principle may be expressed as:  

Equivalent causes are associated with equivalent effects. 

Concerning the Equivalence Principle for Processes on isolated physical systems, we can say that:  

Equivalent initial states must evolve into equivalent states 
(while inequivalent states may evolve into equivalent states). 

And the General Symmetry Evolution Principle:  

The “initial” symmetry group is a subgroup of the “final” symmetry group. 

This assertion can also be stated as:  

For an isolated physical system the degree of symmetry 
cannot decrease as the system evolves; instead, 

it either remains constant or increases. 

Finally, we have the Special Symmetry Evolution Principle: 

As an isolated system evolves, the populations of the equivalence 
classes of the sequence of states through which it passes cannot 

decrease, but either remain constant or increase. 

Equivalently,  

The degree of symmetry of the state of an isolated system 
cannot decrease during evolution; instead, it either 

remains constant or increases. 

As a further implication, Joe Rosen proposes this general theorem:  

The degree of symmetry of a macrostate of stable equilibrium must be relatively high. 
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In the following, we will draw on the concepts and intuitions by Prof. Rosen, summarized in his 
paper “The Symmetry Principle” [4]. 

According to the traditional viewpoint, higher symmetry is related to higher order, less entropy and 
less stability.  

In Prigogine’s theory, symmetry has been regarded as order, or reduction of entropy. But this idea is 
incorrect. Rosen’s Principle of Symmetry is the opposite of such theory.  

Shu-Kun Lin [5] has proved both: the Symmetry Principle, around a continuous higher similarity-
higher entropy relation; and the Rosen’s Symmetry Principle, around a higher symmetry-higher 
stability relation. He proposed that entropy is the degree of symmetry and information is the degree of 
asymmetry of a structure. 

According to Shu-Kun Lin [5], “symmetry is in principle ugly, because it is related to entropy and 
information loss” 

With the motto:  

Ugly Symmetry-Beautiful Diversity 

This contradicts the more usual and commonplace vision of symmetry as a concept equivalent to 
desirable beauty, proportion and harmony. This can be surprising, but Shu-Kun Lin’s arguments are 
really strong and convincing: Symmetric structure is stable but not necessarily beautiful. All 
spontaneous processes lead to the highest symmetry, which is the equilibrium or a state of “death”.  

“Life is beautiful but full of asymmetry” 

It concludes [6] that  

Beauty = Stability + Information 

Intuitively, symmetry, like perfection or beauty, up to a certain level, is precious, but above that—
apart from inexistent in the real world—would mean an end to the human thing, which is by  
nature- and fortunately- imperfect. 

3. Symmetry as Invariance  

Symmetry [1,6,7] in a system means invariance of its elements under a group of transformations, 
i.e., the mathematical definition of symmetry of a graph is the set of transformations that leave the 
properties of the graph unchanged. When we focus on Network Structures, it means invariance of 
adjacency of nodes under the permutations on the node set [8,11]. 

A graph isomorphism is an equivalence, or equality, as relation on the set of graphs. Therefore, it 
partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that 
some objects have the same structure, if we omit some individual characteristics of their components. 
A set of graphs isomorphic to each other is called an isomorphism class of graphs [1,8,10]. 

An automorphism of a graph, G = (V, E), is an isomorphism from G onto itself. The family of all 
automorphisms of a graph, G, is a permutation group on V (G). The inner operation of such a group is 
the composition of permutations. Its name is very well-known, the Automorphism Group of G, denoted 
by Aut (G). And conversely, all groups may be represented as the automorphism group of some  
connected graph. 
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The automorphism group is an algebraic invariant of a graph. So, we can say that an automorphism 
of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the  
edge-node connectivity. Such an automorphic tool may be applied both on Directed Graphs (DGs), and 
on Undirected Graphs (UGs), or Mixed Graphs. 

Graphs are discrete mathematical constructs. Also, they are topological objects, not geometrical 
entities. And they may exhibit symmetries under transformations that are not node permutations: 
e.g., by scale invariance on fractals [31]. 

Another interesting concept in mathematics, the word “genus”, has different, but strongly related, 
meanings. So, in Topology it depends on whether we consider orientable or non-orientable. In the case 
of connected and orientable surfaces, it is an integer that represents the maximum number of cuttings, 
along closed simple curves, without rendering the resultant manifold disconnected. Visually, we can 
imagine that it is the number of “handles” on the manifold. Usually, it is denoted by the letter g. 

It is also definable through the Euler number, or Euler Characteristic, denoted χ. Such a 
relationship will be expressed, for closed surfaces, by χ = 2 − 2g. When the surface has b  
boundary components, this equation transforms to χ = 2 − 2g − b, which obviously generalizes the 
above equation. For example, a sphere, an annulus, or a disc have genus g = 0. Instead of this, a  
torus has g = 1. 

In the case of non-orientable surfaces, the genus of a closed and connected surface will be a positive 
integer, representing the number of cross-caps attached to a sphere.  

Recall that a cross-cap is a two-dimensional surface that is topologically equivalent to a  
Möbius string.  

As in the precedent analysis, it can be expressed in terms of the Euler characteristic, by χ = 2 – 2 k, 
where k is the non-orientable genus. For example, a projective plane has a non-orientable genus k = 1. 
And a Klein bottle has a non-orientable genus k = 2. 

Turning to graphs [1], the corresponding genus will be the minimal integer, n, such that the graph 
can be drawn without crossing itself on a sphere with n handles. So, a planar graph has genus n = 0, 
because it can be drawn on a sphere without self-crossing. 

In the non-orientable case, the genus will be the minimal integer, n, such that the graph can be 
drawn without crossing itself on a sphere with n cross-caps.  

Moving on to topological graph theory, we will define as genus of a group, G, the minimum genus 
of any of the undirected and connected Cayley graphs for G.  

From the viewpoint of Computational Complexity, the problem of “graph genus” is NP-complete. 
Recall that a problem, L, is NP-complete if it has two properties: It is in the set of NP 
(nondeterministic polynomial time) problems, i.e., any given solution to L can be verified quickly (in 
polynomial time); and it is also in the set of NP-hard problems, i.e., any NP problem can be converted 
into L by a transformation of the inputs in polynomial time. 

A graph invariant, or graph property, is a property that depends only on the abstract structure of the 
graph, not on its representations, such as a particular labeling or drawing of the graph. So, we may 
define a graph property as any property that is preserved under all possible isomorphisms of the graph. 
Therefore, it is a property of the graph itself, independent of the representation of the graph. 

The semantic difference between invariant and property also consists in its quantitative or 
qualitative character. For instance, when we say that “the graph has no directed edges”, this is a 

http://en.wikipedia.org/wiki/NP_%28complexity%29�
http://en.wikipedia.org/wiki/Polynomial_time�
http://en.wikipedia.org/wiki/NP-hard�
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property, because it is a qualitative statement. While when we say “the number of nodes of degree two 
in such a graph”, this is an invariant, because it is a quantitative statement. 

From a strictly mathematical viewpoint, a graph property can be interpreted as a class of graphs, 
composed by the graphs that have in common the accomplishment of some conditions. Hence, a graph 
property can also be defined as a function whose domain would be the set of graphs, and which range 
would be the bi-valued set, {true, false}; the value of the property depending on whether it is verified 
or violated for the graph. 

A graph property is called hereditary, if it is inherited by its induced subgraphs.  
And a graph property will be additive, if it is closed under disjoint union.  
For example, the property of a graph being planar is both additive and hereditary. And the property 

of being connected is neither. 
The computation of certain graph invariants is very useful to discriminate whether two graphs are 

isomorphic or non-isomorphic. For any particular invariant, two graphs with different values cannot be 
isomorphic. However, two graphs with the same invariant value may or may not be isomorphic.  

It is possible to prove that every group is the automorphism group of a graph.  
If the group is finite, the graph may be taken to be finite.  
G. Pólya observed that not every group is the automorphism group of a tree. 
Many reasons are behind the current popularity of Complex Networks [13]. To cite but a few, their 

generality and flexibility for representing any natural structure, including those structures that reveal 
dynamical changes of topology [11,14,20,22]. 

Before turning to Complex Networks, it is very convenient to introduce some concepts which are 
useful in understanding Networks, as measures of their principal characteristics [1,11].  

The characteristic path length measures the distance from every node to every other node. It is 
calculated by the median of the shortest paths from each node to every other node. So, as a derived 
measure, the diameter gives us the maximum possible distance between all pairs of reachable nodes. 

Another commonly used value is the Clustering Coefficient. It is the mean of the clustering indices 
of all the nodes in the graph. It is usually denoted C. It tells us how well connected the neighborhood 
of the node is. So, it is the answer to this question: How close is the neighborhood of a node to be a 
clique (i.e., a complete subgraph). Finding C, we look for the neighbors of the corresponding node, and 
then find the number of existing edges between them. The ratio of the number of existing edges to the 
number of all possible edges is the clustering index of the node.  

If the neighborhood is fully connected, then the clustering coefficient must be equal to one, C = 1. 
In the opposite situation, a value of C = 0 signifies that the neighborhood is fully disconnected. And 
any intermediate value is a measure of the graph’s degree of connectedness. Values close to zero mean 
that there are hardly any connections in the neighborhood.  

This measure has been used to summarize features of undirected and unweighted networks in 
Complexity Science.  

An interesting type of graph is Regular Networks, where each node is connected to all other nodes; 
i.e., they are fully connected. Because of such a type of structure, they have the lowest path length (L), 
and the lowest diameter (D), being L = D = 1. Also, they have the highest clustering coefficient (C). 
So, it holds that C = 1.  
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Furthermore, they have highest possible number of edges, given by  

Card (E) = n (n -1)/2 ∼ n² 

4. Random Graphs  

In Random Graphs (RGs), each pair of nodes is connected with probability p. They have a low 
average path length [8,17], following that:  

L ∼ (ln n) / n<k> ∼ ln n, for n ≫ 1 

Therefore, the total network may be covered in <k> steps, from which  

n ∼ <k>L 

Moreover, Random Graphs possess a low clustering coefficient, when the graph is sparse. Thus, 

C = p = <k>/n ≪ 1 

The reason is that the probability of each pair of neighboring nodes to be connected is precisely 
equal to p. 

The Small-World effect is observed on a network when it has a low average path length: 

L << n, for n >> 1 

Recall [15,21,24,25] the now very famous “six degrees of separation”, which also may be called 
“small-world phenomenon”. The subjacent idea is that two arbitrarily selected people may be 
connected by only six degrees of separation, or six handshakes (in average, and it is not much larger 
than this value). Therefore, the diameter of the corresponding graph is not much larger than six.  

The usual example is social connections. So, the Small-World property [11,15] can be interpreted as 
that despite its large size (of the corresponding graph), the shortest path between two nodes is small, as 
for example on the WWW, or on the Internet. 

5. Self-Similarity 

Self-similarity on a network [11] indicates that it is approximately similar to any part of itself, and 
therefore, it is fractal. In many cases, real networks possess all these properties, i.e., they are Fractal, 
Small-World, and Scale-Free.  

Fractal dimensions describe self-similarity of diverse phenomena: Images, temporal signals, etc. 
Such fractal dimension gives us an indication of how completely a fractal appears to fill the space, as 
one zooms down to finer and finer scales. It is so a statistical measure. 

The most important of such measures are Rényi dimension, Hausdorff dimension, and  
Packing dimension.  

A Fuzzy set approach also may produce some very consistent models [26–28].  

6. Small-World Model 

The Watts-Strogatz Small-World Model, proposed in 1998, is a hybrid case between a Random 
Graph and a Regular Lattice [14,20,22]. So, Small-World models share with Random Graphs some 
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common features, such as: The Poisson or Binomial degree distribution, near to Uniform degree 
distribution; network size: It does not grow; each node has approximately the same number of edges. 

Therefore, it shows a homogeneous nature. Because of their ease of implementation, the more usual 
procedures to compute such measures are correlation dimension and box counting.  

Watts-Strogatzmodels show the low average path length typical of Random Graphs,  

L ∼ ln n, for n >> 1 

And also such models give us the usual high clustering coefficient of Regular Lattices, being 

C ≈ 0.75, for k >> 1 

In consequence, WS-models have a small-world structure, being well clustered. The Random 
Graphs coincide on the small-world structure, but they are poorly clustered. This model (WS) has a 
peak degree distribution, of Poisson type. 

7. Scale-Free Networks 

With reference to the last analyzed model [16,17,23,24], called Scale-Free Network, this appears 
when the degree distribution follows a Power-Law: 

P (k) ∼ k-γ 

In such a case, there exist a small number of highly connected nodes, called Hubs, which are the tail 
of the distribution. 

On the other hand, the great majority of the sets of their nodes have few connections, representing 
the head of such distribution. 

Such a model was introduced [8,14,16] by Albert-Laszló Barabási and Réka Albert, in 1999.  
Some of their essential features are these: non-homogeneous nature, in the sense that some (few) 

nodes have many edges from them, and the remaining nodes only have very few edges, or links; as 
related to the network size, it continuously grows; and regarding to the connectivity, it obeys a  
Power-Law distribution.  

Many massive graphs, such as the WWW graph, share certain characteristics, described as such 
aforementioned Power-Law.  

Bela Bollobás and Oliver Riordan [9,11] consider a Random Graph process in which nodes are 
added to the graph one at a time, and joined to a fixed number of earlier nodes, chosen with probability 
proportional to their degree. After n steps, the resulting graph has diameter approximately equal to 
log n. This affirmation is true for n = 1. But for n ≥ 2, the diameter value would show asymptotical 
convergence to (logn)/log(log n). 

Another very interesting mechanism is the so-called Preferential Attachment process (PA). This 
would be any class of processes in which some quantity is distributed among a number of sets (for 
instance, objects or individuals), according to how much they already have, so that intuitively “the rich 
get richer” (the more interrelated get more new connections than those who are not). 

The principal scientific interest in PA is that they may produce interesting power law distributions. 
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A very notable example of a Scale-Free Network is the World Wide Web (WWW). As we  
know [23,25], it is a collection of many, possibly very different, sub-networks. Related to the Web 
graph characteristics, we notice the Scale Invariance as being very important [10]. 

8. Diameter of the Web 

Another interesting feature is the possibility of obtaining a measurement of the World Wide Web, 
its diameter, i.e., the shortest distance between any pair of nodes into the system, or at least some 
adequate bound, either a mean value [18,19], etc. 

The WWW representation is made by a very large digraph, whose nodes are documents, and whose 
edges are links (URLs), pointing from one document to another [14,20,22]. 

Réka Albert et al. [18] found that the average of the shortest path between two nodes will be 

<d> = 0.35 + 2.06 log N 

where N is the number of nodes in the Random Graph considered. This shows that the WWW is a  
Small-World network. 

In particular, if we take  

N = 8 × 10⁸ 

we will obtain 

<dWeb> = 18.59 

This important result signifies that two randomly chosen nodes (documents), on the graph which 
represent the WWW, are only on average 19 clicks (or steps into the WWW graph) from each other. 

For a given value of the number of nodes, N, the distribution associated to d is of Gaussian 
(Normal) type. It is also very remarkable the logarithmic dependence of such diameter on the value of 
N. In this sense, R. Albert et al. indicate that the future evaluation of <d>, with the increasing of the 
WWW, would change from 19 to only 21. 

9. Community Structure 

The Community Structure can also be called Modularity. It is a very frequent characteristic in many 
real networks. Therefore, it has become a key problem in the study of networked systems [11,12,21]. 

Giving out its deterministic definition is nontrivial because of the complexity of networks. The 
concept of modularity (Q) can be used as a valid measure for community structure.  

Some current models have proposed to capture the basic topological evolution of Complex 
Networks by the hypothesis that highly connected nodes increase their connectivity faster than their 
less connected peers, a phenomenon denoted as PA (preferential attachment). So, we can find a class of 
models that view networks as evolving dynamical systems, rather than static graphs.  

Most evolving network models are based on two essential hypotheses, growth and preferential 
attachment. 

Growth suggests that networks continuously expand through the addition of new nodes and links 
between the nodes. And preferential attachment states that the rate at which a node with k links 
acquires new links will be a monotonically increasing function of k. 
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We can consider an undirected n-graph, or network, G, with adjacency matrix denoted as A = (aij), 
where aij = 1, if nodes i and j are connected; otherwise, aij = 0. Then, the modularity function, denoted 
by Q, will be defined as: 

Q (Pk) = Σ [{L(Vj, Vj)/L(V, V)} - {L(Vj, V)/L(V, V)}2] 

where Pk is a partition of the nodes into k groups, and: 

L (V´, V´´) = Σi∈V´,i∈V´´ aij 

The modularity function, Q, provides a way to determine whether a partition will be valid to 
decipher the community structure in a network. Maximization of such modularity function, over all the 
possible partitions of a network, is indeed a highly effective method. 

An important case in community detection is that some nodes may not belong to a single 
community, and then placing them into more than one group may be much more reasonable. Such 
nodes can provide a “fuzzy” categorization [25], and hence, they may take a special role, such as 
signal transduction in biological networks.  

10. Fuzzy Symmetry 

Recall that according to Klaus Mainzer, “Symmetry and Complexity determine the spirit of 
nonlinear science”. And “the universal evolution is caused by symmetry break, generating diversity, 
increasing complexity and energy” [26].  

Graph theory has emerged as a primary tool for detecting numerous hidden structures in various 
information networks, including Internet graphs, social networks, biological networks, or more 
generally, any graph representing relations in massive data sets. Analyzing these structures is very 
useful to introduce concepts such as Graph Entropy and Graph Symmetry.  

We consider a function on a graph, G = (V, E), with P a probability distribution on its node set, V. 
The mathematical construct called Graph Entropy will be denoted by G, E. It will be defined as  

H (G, P) = min ∑ pi log pi 

Observe that such a function will be convex. It tends to +∞ on the boundary of the non-negative 
orthant of Rⁿ. And monotonically to −∞ along rays from the origin. So, such a minimum is always 
achieved and it will be finite.  

The entropy of a system represents the amount of uncertainty one observer has about the state of the 
system. The simplest example of a system will be a random variable, which can be shown by a node 
into the graph, where their edges represent the mutual relationship between them. Information 
measures the amount of correlation between two systems, and it reduces to a mere difference in 
entropies. So, the entropy of a graph is a measure of graph structure, or lack of it. Therefore, it may be 
interpreted as the amount of Information, or the degree of “surprise”, communicated by a message. 
And as the basic unit of Information is the bit, entropy also may be viewed as the number of bits of 
“randomness” in the graph, verifying that the higher the entropy, the more random is the graph. 

It is possible to introduce some new asymmetry and symmetry level measures as by [27,28]. Note 
that our results may also be applied to some different classes of spaces. 

Recall some very useful definitions from Fuzzy Measure Theory.  
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Definition 1: Let U be the universe of discourse, with ℘ a σ-algebra on U. Then, given a function  

m: ℘→[0,1] 

we describe m as a Fuzzy Measure, if it verifies:  

I) m (∅) = 0; 
II) m (U) =1; 
III) If A, B ∈ ℘, with A ⊆ B, then m (A) ≤ m (B) [monotonicity]. 

When we take the Entropy concept, we attempt to measure the fuzziness, i.e., the degree of being 
fuzzy for each element in ℘.  

Definition 2: The Entropy measure can be designed as the function. 

H: ℘ → [0,1] 

verifying: 

I) If A is a crisp set, then H (A) = 0;  
II) If H (x) = 1/2, for each x∈A, then H (A) is maximal (total uncertainty);  
III) If A is less fuzzified than B, it holds that H (A) ≤ H (B);  
IV) H (A) = H (U∖A).  

Definition 3: The Specificity Measure will be introduced as a measure of the tranquility when we 
take decisions. Such Specificity Measure (denoted by Sp) will be a function:  

Sp: [0,1]U → [0,1] 

where 

I) Sp (∅) = 0; 
II) Sp (k) = 1 if and only if k is a unitary set (singleton); 
III) If V and W are normal fuzzy sets in U, with V ⊂ W, then Sp (V) ≥ Sp (W); 

Note. [0,1]U denotes the class of fuzzy sets in U; Let (E, d) be a fuzzy metric space. 

We proceed to define our new fuzzy measures. Such functions might be defined as some of the type  

{Li}i∈{s,a} 

where s denotes symmetry, and a denotes asymmetry. 
Suppose that from here we denote by c (A) the cardinal of a fuzzy set, A. We denote by H (A) its 

entropy measure, and by Sp (A) its corresponding specificity measure.  

Theorem 1. Let (E, d) be a fuzzy metric space, with A as a subset of E, and let H and Sp be both 
above fuzzy measures defined on (E, d). Then, the first function, operating on A, may be 
defined as  

Ls (A) = Sp(A) ((1-c(A))/(1+c(A)) + (1/(1+H(A)) 

and will be also a fuzzy measure. This measure is called Symmetry Level Function. 

Theorem 2. Let (E, d) be a fuzzy metric space, with A as any subset of E, and let H and Sp be 
both above fuzzy measures defined on (E, d). Then, the function  
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La (A ) = 1 - {Sp(A) ((1-c(A))/(1+c(A))+(1/(1+H(A))} 

This measure is called Asymmetry Level Function.  

Corollary 1. In the same precedent hypotheses, the Symmetry Level Function is a Normal Fuzzy 
Measure.  
Corollary 2. Also, in such conditions the Asymmetry Level Function will be a Normal Fuzzy 
Measure.  

Recall that the values of a fuzzy measure, Sp, are decreasing when the size of the considered set is 
increasing. And also that the Range of the Specificity Measure, Sp, will be [0,1]. 

11. New Lines of Research 

An important fact, but commonly forgotten, is that an element can belong to more than a fuzzy set 
at the same time. This admits new generalizations on the theoretical basis of important topics [30], as 
may be Clustering and Community structures. 

And recall the line which was open by the Three Laws of Similarity of Shu-Kun Lin [30], according 
to which, in parallel to the first and the second laws of thermodynamics, we have:  

i) The first law of information theory. The logarithmic function L = ln w, or the sum of entropy 
and information, L = S + I, of an isolated system remains unchanged, where S denotes the 
entropy and I the information content of the system. 

ii) The second law of information theory. Information of an isolated system decreases to a 
minimum at equilibrium.  

iii) The third law of information theory. For a perfect crystal (at zero absolute thermodynamic 
temperature), the information is zero and the static entropy is at the maximum. Or in a more 
general form, “for a perfect symmetric static structure, the information is zero and the static 
entropy is the maximum”. 

Analyzing the Gibbs’ paradox, Dr. Lin arrives to its well-known: 

iv) Similarity principle. The higher the similarity among the components is, the higher the value 
of entropy will be and the higher the stability will be.  

By these three laws and such principle, Dr. Lin has clarified the relation of symmetry to several 
other concepts, as higher symmetry, higher similarity, higher entropy, less information and less 
diversity, related to higher stability. Upon these deep foundations, the tracks of mutual relationships 
between such fuzzy measures can be traced: as it is the case with Symmetry, Entropy, Similarity, and 
so on, which can lead in the future to advances for innovative fields connected to them. 

The paper of Prof. Joel Ratsaby is also very inspiring [31]. He introduces an algorithmic complexity 
framework for representing Lin’s concepts of static entropy, stability and their connection to the 
second law of thermodynamic. Instead of static entropy, according to Ratsaby, the Kolmogorov 
complexity of a static structure may be the proper measure of disorder. Consider one static structure in 
a surrounding perfectly-random universe in which it acts as an interfering entity which introduces a 
local disruption of randomness. This is modeled by a selection rule, R. So, we may clearly explain why 
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more complex static structures are less stable. To continue in this line of promising investigation can 
be very interesting in the future. 

According to Garlaschelli et al. [32], “while special types of symmetries (e.g., automorphisms) are 
studied in detail within discrete mathematics for particular classes of deterministic graphs, the analysis 
of more general symmetries in real Complex Networks is far less developed”. 

They argued that real networks, as any entity characterized by imperfections or errors, necessarily 
require a stochastic notion of invariance. So, they propose a definition of stochastic symmetry based on 
graph ensembles. 

But we suggest that in addition, they can and must try theoretical approximations from the field of 
fuzzy measures, since it is those of symmetry and entropy, really interrelated between them. Thus, to 
regulate mathematically, by modulating, the diverse degrees with which one will find these types of 
characteristics in reality, when we consider networks and systems. 

12. Conclusions 

Our initial purpose was to provide a comprehensive vision on principal aspects, and essential 
properties, of Complex Networks, from a new Mathematical Analysis point of view, and in particular 
to show the promise of the new functions of Symmetry/Asymmetry Levels. 

The essential idea was to obtain an as wide as possible perspective of certain aspects of Complex 
Networks, as well as of the fuzzy measures when they are acting on them. With the new results and the 
pointed lines of advance, we think that it will be possible to penetrate into the aforementioned 
problems, to come to a deeper comprehension of the symmetry, of the entropy and of other similar 
fuzzy measures, interesting not only from a theoretical viewpoint, but promising for many scientific 
applications. 
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