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Abstract: We argue that quantum theory should proceed not from a spacetime background
but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the
cosmological constant is positive means not that the spacetime background is curved but
that the de Sitter (dS) algebra as the symmetry algebra is more relevant than the Poincare
or anti de Sitter ones. The physical interpretation of irreducible representations (IRs) of the
dS algebra is considerably different from that for the other two algebras. One IR of the
dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare
approximation works with a high accuracy. Only in this case additive quantum numbers such
as electric, baryon and lepton charges are conserved, while at early stages of the Universe
they could not be conserved. Another property of IRs of the dS algebra is that only fermions
can be elementary and there can be no neutral elementary particles. The cosmological
repulsion is a simple kinematical consequence of dS symmetry on quantum level when
quasiclassical approximation is valid. Therefore the cosmological constant problem does
not exist and there is no need to involve dark energy or other fields for explaining this
phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli).
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In memory of Leonid Avksent’evich Kondratyuk

Our collaboration with Leonid Avksent’evich has considerably enhanced my understanding of
quantum theory. In particular, he explained that the theory should not necessarily be based on a local
Lagrangian, and symmetry on quantum level means that proper commutation relations are satisfied. I
believe that the present paper is in the spirit of these ideas.
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1. Introduction

The discovery of the cosmological repulsion (see e.g., [1,2]) has ignited a vast discussion on how
this phenomenon should be interpreted. The majority of authors treat this phenomenon as an indication
that the cosmological constant Λ in General Relativity (GR) is positive and therefore the spacetime
background has a positive curvature. According to References [3,4], the observational data on the value
of Λ define it with the accuracy better than 5%. Therefore the possibilities that Λ = 0 or Λ < 0 are
practically excluded. We argue in Sections 2–4 that the notion of spacetime background is not physical
and, from the point of view of quantum theory, one should proceed not from this notion but from a
symmetry algebra. Then the fact that in classical approximation Λ > 0 is an indication that on quantum
level the de Sitter (dS) algebra is a more relevant symmetry algebra than the Poincare or anti de Sitter
(AdS) algebras. In particular, elementary objects in quantum theory should be described by irreducible
representations (IRs) of the dS algebra by Hermitian operators. In Sections 5–7 we discuss mathematical
properties of such IRs. Although there exists a vast literature on IRs of the dS group and algebra, their
physical interpretation has not been widely discussed. One of the main problems is that IRs of the dS
algebra are implemented on two Lorentz hyperboloids, not one as in the case of the Poincare or AdS
algebras. Therefore a problem arises how IRs can be interpreted in terms of elementary particles and
antiparticles. In Reference [5] we have proposed an interpretation that one IR of the dS algebra describes
a particle and its antiparticle simultaneously. In Section 8 this analysis is considerably extended. In
particular, we show that additive quantum numbers such as electric, baryon and lepton charges can be
only approximately conserved quantities. It is also shown that only fermions can be elementary and there
can be no neutral elementary particles. In Section 9 it is shown that cosmological repulsion is a simple
kinematical consequence of the dS symmetry on quantum level when quasiclassical approximation is
valid. For deriving this result there is no need to involve spacetime background, Riemannian geometry,
de Sitter quantum field theory (QFT), Lagrangians or other sophisticated methods. In other words, the
phenomenon of the cosmological repulsion can be naturally explained on the basis of existing knowledge
without involving dark energy or other new fields (in agreement with a conclusion by Bianchi and Rovelli
in Reference [6]). We tried to make the presentation self-contained and make it possible for readers to
reproduce calculations without looking at other papers.

2. Remarks on the Cosmological Constant Problem

We would like to begin our presentation with a discussion of the following well-known problem: How
many independent dimensionful constants are needed for a complete description of nature? A paper [7]
represents a trialogue between three well known scientists: M.J. Duff, L.B. Okun and G. Veneziano.
The results of their discussions are summarized as follows: LBO develops the traditional approach with
three constants, GV argues in favor of at most two (within superstring theory), while MJD advocates
zero. According to Reference [8], a possible definition of a fundamental constant might be such that it
cannot be calculated in the existing theory. We would like to give arguments in favor of the opinion of
the first author in Reference [7]. One of our goals is to argue that the cosmological constant cannot be a
fundamental physical quantity.
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Consider a measurement of a component of angular momentum. The result depends on the system of
units. As shown in quantum theory, in units h̄/2 = 1 the result is given by an integer 0,±1,±2, .... But
we can reverse the order of units and say that in units where the momentum is an integer l, its value in
kg·m2/s is(1.05457162·10−34· l/2) kg·m2/s. Which of those two values has more physical significance?
In units where the angular momentum components are integers, the commutation relations between the
components are

[Mx,My] = 2iMz [Mz,Mx] = 2iMy [My,Mz] = 2iMx

and they do not depend on any parameters. Then the meaning of l is clear: It shows how big the angular
momentum is in comparison with the minimum nonzero value 1. At the same time, the measurement of
the angular momentum in units kg·m2/s reflects only a historic fact that at macroscopic conditions on the
Earth in the period between the 18th and 21st centuries people measured the angular momentum in such
units.

The fact that quantum theory can be written without the quantity h̄ at all is usually treated as a choice
of units where h̄ = 1/2 (or h̄ = 1). We believe that a better interpretation of this fact is simply that
quantum theory tells us that physical results for measurements of the components of angular momentum
should be given in integers. Then the question why h̄ is as it is, is not a matter of fundamental physics
since the answer is: Because we want to measure components of angular momentum in kg·m2/s.

Our next example is the measurement of velocity v. The fact that any relativistic theory can be written
without involving c is usually described as a choice of units where c = 1. Then the quantity v can take
only values in the range [0,1]. However, we can again reverse the order of units and say that relativistic
theory tells us that results for measurements of velocity should be given by values in [0,1]. Then the
question why c is as it is, is again not a matter of physics since the answer is: Because we want to
measure velocity in m/s.

One might pose a question whether or not the values of h̄ and c may change with time. As far as h̄
is concerned, this is a question that if the angular momentum equals one then its value in kg·m2/s will
always be 1.05457162 × 10−34/2 or not. It is obvious that this is not a problem of fundamental physics
but a problem how the units (kg,m,s) are defined. In other words, this is a problem of metrology and
cosmology. At the same time, the value of c will always be the same since the modern definition of meter
is the length which light passes during (1/(3·108)) s.

It is often believed that the most fundamental constants of nature are h̄, c and the gravitational
constant G. The units where h̄ = c = G = 1 are called Planck units. Another well known notion
is the ch̄G cube of physical theories. The meaning is that any relativistic theory should contain c, any
quantum theory should contain h̄ and any gravitational theory should contain G. However, the above
remarks indicates that the meaning should be the opposite. In particular, relativistic theory should not
contain c and quantum theory should not contain h̄. The problem of treating G will be discussed below.

A standard phrase that relativistic theory becomes non-relativistic one when c → ∞ should be
understood such that if relativistic theory is rewritten in conventional (but not physical!) units then c
will appear and one can take the limit c → ∞. A more physical description of the transition is that all
the velocities in question are much less than unity. We will see in Section 9 that those definitions are not
equivalent. Analogously, a more physical description of the transition from quantum to classical theory
should be that all angular momenta in question are very large rather than h̄→ 0.
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Consider now what happens if we assume that de Sitter symmetry is fundamental. For definiteness, we
will discuss the dS SO(1,4) symmetry and the same considerations can be applied to the AdS symmetry
SO(2,3). The dS space is a four-dimensional manifold in the five-dimensional space defined by

x21 + x22 + x23 + x24 − x20 = R2 (1)

In the formal limit R → ∞ the action of the dS group in a vicinity of the point (0, 0, 0, 0, x4 = R)

becomes the action of the Poincare group on Minkowski space. In the literature, instead of R, the
cosmological constant Λ = 3/R2 is often used. Then Λ > 0 in the dS case and Λ < 0 in the AdS one.
The dS space can be parameterized without using the quantity R at all if instead of xa (a = 0, 1, 2, 3, 4)
we define dimensionless variables ξa = xa/R. It is also clear that the elements of the SO(1,4) group do
not depend on R since they are products of conventional and hyperbolic rotations. So the dimensionful
value of R appears only if one wishes to measure coordinates on the dS space in terms of coordinates
of the flat five-dimensional space where the dS space is embedded in. This requirement does not have
a fundamental physical meaning. Therefore the value of R defines only a scale factor for measuring
coordinates in the dS space. By analogy with c and h̄, the question why R is as it is, is not a matter of
fundamental physics since the answer is: Because we want to measure distances in meters. In particular,
there is no guarantee that the cosmological constant is really a constant, i.e., does not change with time.
It is also obvious that if the dS symmetry is assumed from the beginning then the value of Λ has no
relation to the value of G.

If one assumes that spacetime background is fundamental then in the spirit of GR it is natural to think
that the empty spacetime is flat, i.e., that Λ = 0 and this was the subject of the well-known dispute
between Einstein and de Sitter. However, as mentioned in Section 1, it is now accepted that Λ 6= 0 and,
although it is very small, it is positive rather than negative. If we accept parameterization of the dS space
as in Equation (1) then the metric tensor on the dS space is

gµν = ηµν − xµxν/(R2 + xρx
ρ) (2)

where µ, ν, ρ = 0, 1, 2, 3, ηµν is the diagonal tensor with the components η00 = −η11 = −η22 =

−η33 = 1 and a summation over repeated indices is assumed. It is easy to calculate the Christoffel
symbols in the approximation where all the components of the vector x are much less than R:
Γµ,νρ = −xµηνρ/R2. Then a direct calculation shows that in the non-relativistic approximation the
equation of motion for a single particle is

a = rc2/R2 (3)

where a and r are the acceleration and the radius vector of the particle, respectively.
The fact that even a single particle in the Universe has a nonzero acceleration might be treated as

contradicting the law of inertia but this law has been postulated only for Galilean or Poincare symmetries
and we have a = 0 in the limit R → ∞. A more serious problem is that, according to standard
experience, any particle moving with acceleration necessarily emits gravitational waves, any charged
particle emits electromagnetic waves etc. Does this experience work in the dS world? This problem
is intensively discussed in the literature (see e.g., References [9–11] and references therein). Suppose
we accept that, according to GR, the loss of energy in gravitational emission is proportional to the
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gravitational constant. Then one might say that in the given case it is not legitimate to apply GR since the
constant G characterizes interaction between different particles and cannot be used if only one particle
exists in the world. However, the majority of authors proceed from the assumption that the empty
dS space cannot be literally empty. If the Einstein equations are written in the form Gµν + Λgµν =

(8πG/c4)Tµν where Tµν is the stress-energy tensor of matter then the case of empty space is often
treated as a vacuum state of a field with the stress-energy tensor T vacµν such that (8πG/c4)T vacµν = −Λgµν .
This field is often called dark energy. With such an approach one implicitly returns to Einstein’s point of
view that a curved space cannot be empty. Then the fact that Λ 6= 0 is treated as a dark energy on the flat
background. In other words, this is an assumption that Poincare symmetry is fundamental while dS one
is emergent.

However, in this case a new problem arises. The corresponding quantum theory is not renormalizable
and with reasonable cutoffs, the quantity Λ in units h̄ = c = 1 appears to be of order 1/l2P = 1/G where
lP is the Planck length. It is obvious that since in the above theory the only dimensionful quantities in
units h̄ = c = 1 are G and Λ, and the theory does not have other parameters, the result that GΛ is of
order unity seems to be natural. However, this value of Λ is at least by 120 orders of magnitude greater
than the experimental one. Numerous efforts to solve this cosmological constant problem have not been
successful so far although many explanations have been proposed.

Many physicists argue that in the spirit of GR, the theory should not depend on the choice of the
spacetime background (so called a principle of background independence) and there should not be a
situation when the flat background is preferable (see e.g., a discussion in Reference [12] and references
therein). Moreover, although GR has been confirmed in several experiments in Solar system, it is not
clear whether it can be extrapolated to cosmological distances. In other words, our intuition based on
GR with Λ = 0 cannot be always correct if Λ 6= 0. In Reference [6] this point of view is discussed in
details. The authors argue that a general case of Einstein’s equation is when Λ is present and there is no
reason to believe that a special case Λ = 0 is preferable.

In summary, numerous attempts to resolve the cosmological constant problem have not converged to
any universally accepted theory. All those attempts are based on the notion of spacetime background and
in the next section we discuss whether this notion is physical.

3. Should Physical Theories Involve Spacetime Background?

From the point of view of quantum theory, any physical quantity can be discussed only in conjunction
with the operator defining this quantity. For example, in standard quantum mechanics the quantity
t is a parameter, which has the meaning of time only in classical limit since there is no operator
corresponding to this quantity. The problem of how time should be defined on quantum level is very
difficult and is discussed in a vast literature (see e.g., References [13–15] and references therein). It has
been also well known since the 1930s [16] that, when quantum mechanics is combined with relativity,
there is no operator satisfying all the properties of the spatial position operator. In other words, the
coordinates cannot be exactly measured even in situations when exact measurements are allowed by
the non-relativistic uncertainty principle. In the introductory section of the well-known textbook [17]
simple arguments are given that for a particle with mass m, the coordinates cannot be measured with
the accuracy better than the Compton wave length h̄/mc. This fact is mentioned in practically every
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textbook on quantum field theory (see e.g., Reference [18]). Hence, the exact measurement is possible
only either in the non-relativistic limit (when c→∞) or classical limit (when h̄→ 0). There also exists
a wide literature where the meaning of space is discussed (see e.g., References [12–15]).

We accept a principle that any definition of a physical quantity is a description how this quantity
should be measured. In quantum theory this principle has been already implemented but we believe that
it should be valid in classical theory as well. From this point of view, one can discuss if coordinates
of particles can be measured with a sufficient accuracy, while the notion of spacetime background,
regardless of whether it is flat or curved, does not have a physical meaning. Indeed, this notion implies
that spacetime coordinates are meaningful even if they refer not to real particles but to points of a
manifold which exists only in our imagination. However, such coordinates are not measurable. To
avoid this problem one might try to treat spacetime background as a reference frame. Note that even in
GR, which is a pure classical (i.e., non-quantum) theory, the meaning of reference frame is not clear.
In standard textbooks (see e.g., Reference [19]) the reference frame in GR is defined as a collection
of weightless bodies, each of which is characterized by three numbers (coordinates) and is supplied
by a clock. Such a notion (which resembles ether) is not physical even on classical level and for sure
it is meaningless on quantum level. There is no doubt that GR is a great achievement of theoretical
physics and has achieved great successes in describing experimental data. At the same time, it is
based on the notions of spacetime background or reference frame, which do not have a clear physical
meaning. Therefore it is unrealistic to expect that successful quantum theory of gravity will be based on
quantization of GR. The results of GR should follow from quantum theory of gravity only in situations
when spacetime coordinates of real bodies is a good approximation while in general the formulation of
quantum theory might not involve spacetime background at all.

One might take objection that coordinates of spacetime background in GR can be treated only as
parameters defining possible gauge transformations while final physical results do not depend on these
coordinates. Analogously, although the quantity x in the Lagrangian density L(x) is not measurable,
it is only an auxiliary tool for deriving equations of motion in classical theory and constructing Hilbert
spaces and operators in quantum theory. After this construction has been done, one can safely forget
about background coordinates and Lagrangian. In other words, a problem is whether nonphysical
quantities can be present at intermediate stages of physical theories. This problem has a long history
discussed in a vast literature (see e.g., a discussion in References [12–15]). Probably Newton was the
first who introduced the notion of spacetime background but, as noted in a paper in Wikipedia, “Leibniz
thought instead that space was a collection of relations between objects, given by their distance and
direction from one another”. We believe that at the fundamental level unphysical notions should not be
present even at intermediate stages. So Lagrangian can be at best treated as a hint for constructing a
fundamental theory. As stated in Reference [17], local quantum fields and Lagrangians are rudimentary
notion, which will disappear in the ultimate quantum theory. Those ideas have much in common with the
Heisenberg S-matrix program and were rather popular till the beginning of the 1970’s. Although no one
took objections against those ideas, they are now almost forgotten in view of successes of gauge theories.

In summary, although the most famous successes of theoretical physics have been obtained in theories
involving spacetime background, this notion does not have a physical meaning. Therefore a problem
arises how to explain the fact that physics seems to be local with a good approximation. In Section 9 it
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is shown that the result given by Equation (3) is simply a consequence of dS symmetry on quantum level
when quasiclassical approximation works with a good accuracy. For deriving this result there is no need
to involve dS space, metric, connection, dS QFT and other sophisticated methods. The first step in our
approach is discussed in the next section.

4. Symmetry on Quantum Level

If we accept that quantum theory should not proceed from spacetime background, a problem arises
how symmetry should be defined on quantum level. In the spirit of Dirac’s paper [20], we postulate
that on quantum level a symmetry means that a system is described by a set of operators, which satisfy
certain commutation relations. We believe that for understanding this Dirac’s idea the following example
might be useful. If we define how the energy should be measured (e.g., the energy of bound states,
kinetic energy etc.), we have a full knowledge about the Hamiltonian of our system. In particular, we
know how the Hamiltonian should commute with other operators. In standard theory the Hamiltonian
is also interpreted as an operator responsible for evolution in time, which is considered as a classical
macroscopic parameter. In situations when this parameter is a good approximate parameter, macroscopic
transformations from the symmetry group corresponding to the evolution in time have a meaning of
evolution transformations. However, there is no guarantee that such an interpretation is always valid
(e.g., at the very early stage of the Universe). In general, according to principles of quantum theory,
self-adjoint operators in Hilbert spaces represent observables but there is no requirement that parameters
defining a family of unitary transformations generated by a self-adjoint operator are eigenvalues of
another self-adjoint operator. A well known example from standard quantum mechanics is that if Px
is the x component of the momentum operator then the family of unitary transformations generated by
Px is exp(iPxx/h̄) where x ∈ (−∞,∞) and such parameters can be identified with the spectrum of the
position operator. At the same time, the family of unitary transformations generated by the Hamiltonian
H is exp(−iHt/h̄) where t ∈ (−∞,∞) and those parameters cannot be identified with a spectrum of a
self-adjoint operator on the Hilbert space of our system. In the relativistic case the parameters x can be
formally identified with the spectrum of the Newton-Wigner position operator [16] but it is well known
that this operator does not have all the required properties for the position operator. So, although the
operators exp(iPxx/h̄) and exp(−iHt/h̄) are well defined, their physical interpretation as translations
in space and time is not always valid (see also a discussion in Section 8).

The definition of the dS symmetry on quantum level is that the operators Mab (a, b = 0, 1, 2, 3, 4,
Mab = −M ba) describing the system under consideration satisfy the commutation relations of the dS
Lie algebra so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (4)

where ηab is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 = −η44 = 1. These
relations do not depend on any free parameters. One might say that this is a consequence of the choice
of units where h̄ = c = 1. However, as noted above, any fundamental theory should not involve the
quantities h̄ and c.

With such a definition of symmetry on quantum level, the dS symmetry looks more natural than the
Poincare symmetry. In the dS case all the ten representation operators of the symmetry algebra are
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angular momenta while in the Poincare case only six of them are angular momenta and the remaining
four operators represent standard energy and momentum. If we define the operators P µ as P µ = M4µ/R

then in the formal limit when R →∞, M4µ →∞ but the quantities P µ are finite, the relations (4) will
become the commutation relations for representation operators of the Poincare algebra such that the
dimensionful operators P µ are the four-momentum operators.

A theory based on the above definition of the dS symmetry on quantum level cannot involve quantities
which are dimensionful in units h̄ = c = 1. In particular, we inevitably come to conclusion that the
dS space, the gravitational constant and the cosmological constant cannot be fundamental. The latter
appears only as a parameter replacing the dimensionless operators M4µ by the dimensionful operators
P µ which have the meaning of momentum operators only ifR is rather large. Therefore the cosmological
constant problem does not arise at all but instead we have a problem why nowadays Poincare symmetry
is so good approximate symmetry. This is rather a problem of cosmology but not quantum physics.

5. IRs of the dS Algebra

If we accept dS symmetry on quantum level as described in the preceding section, a question arises
how elementary particles in quantum theory should be defined. A discussion of numerous controversial
approaches can be found, for example in the recent paper [21]. Although particles are observables and
fields are not, in the spirit of QFT, fields are more fundamental than particles, and a possible definition
is as follows [22]: It is simply a particle whose field appears in the Lagrangian. It does not matter if it’s
stable, unstable, heavy, light—if its field appears in the Lagrangian then it’s elementary, otherwise it’s
composite. Another approach has been developed by Wigner in his investigations of unitary irreducible
representations (UIRs) of the Poincare group [23]. In view of this approach, one might postulate that a
particle is elementary if the set of its wave functions is the space of an IR of the symmetry group or Lie
algebra in the given theory. Since we do not accept approaches based on spacetime background then by
analogy with the Wigner approach we accept that, by definition, elementary particles in the dS invariant
theory are described by IRs of the dS algebra by Hermitian operators. For different reasons, there exists
a vast literature not on such IRs but on UIRs of the dS group. References to this literature can be found
e.g., in our papers [5,24–26] where we used the results on UIRs of the dS group for constructing IRs of
the dS algebra by Hermitian operators. In this section we will describe the construction proceeding from
an excellent description of UIRs of the dS group in a book by Mensky [27]. The final result is given by
explicit expressions for the operators Mab in Equations (20) and (21). The readers who are not interested
in technical details can skip the derivation.

The elements of the SO(1,4) group will be described in the block form

g =

∥∥∥∥∥∥∥∥
g00 aT g04
b r c

g40 dT g44

∥∥∥∥∥∥∥∥ (5)

where

a =

∥∥∥∥∥∥∥∥
a1

a2

a3

∥∥∥∥∥∥∥∥ bT =
∥∥∥ b1 b2 b3

∥∥∥ r ∈ SO(3) (6)
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and the subscript T means a transposed vector.
UIRs of the SO(1,4) group belonging to the principle series of UIRs are induced from UIRs of

the subgroup H (sometimes called “little group”) defined as follows [27]. Each element of H can be
uniquely represented as a product of elements of the subgroups SO(3), A and T: h = rτAaT where

τA =

∥∥∥∥∥∥∥∥
cosh(τ) 0 sinh(τ)

0 1 0

sinh(τ) 0 cosh(τ)

∥∥∥∥∥∥∥∥ aT =

∥∥∥∥∥∥∥∥
1 + a2/2 −aT a2/2

−a 1 −a
−a2/2 aT 1− a2/2

∥∥∥∥∥∥∥∥ (7)

The subgroup A is one-dimensional and the three-dimensional group T is the dS analog of the
conventional translation group (see e.g., Reference [27,28]). We believe it should not cause
misunderstandings when 1 is used in its usual meaning and when to denote the unit element of the
SO(3) group. It should also be clear when r is a true element of the SO(3) group or belongs to the SO(3)
subgroup of the SO(1,4) group. Note that standard UIRs of the Poincare group are induced from the
little group, which is a semidirect product of SO(3) and four-dimensional translations and so the analogy
between UIRs of the Poincare and dS groups is clear.

Let r → ∆(r; s) be an UIR of the group SO(3) with the spin s and τA → exp(imdSτ) be a
one-dimensional UIR of the group A, where mdS is a real parameter. Then UIRs of the group H used
for inducing to the SO(1,4) group, have the form

∆(rτAaT;mdS, s) = exp(imdSτ)∆(r; s) (8)

We will see below that mdS has the meaning of the dS mass and therefore UIRs of the SO(1,4) group are
defined by the mass and spin, by analogy with UIRs in Poincare invariant theory.

Let G=SO(1,4) and X = G/H be the factor space (or coset space) of G over H . The notion of
the factor space is well known (see e.g., References [27,29–34]). Each element x ∈ X is a class
containing the elements xGh where h ∈ H , and xG ∈ G is a representative of the class x. The choice of
representatives is not unique since if xG is a representative of the class x ∈ G/H then xGh0, where h0
is an arbitrary element from H , also is a representative of the same class. It is well known that X can be
treated as a left G space. This means that if x ∈ X then the action of the group G on X can be defined
as follows: if g ∈ G then gx is a class containing gxG (it is easy to verify that such an action is correctly
defined). Suppose that the choice of representatives is somehow fixed. Then gxG = (gx)G(g, x)H where
(g, x)H is an element of H . This element is called a factor.

The explicit form of the operatorsMab depends on the choice of representatives in the spaceG/H . As
explained in papers on UIRs of the SO(1,4) group (see e.g., Reference [27]), to obtain the possible closest
analogy between UIRs of the SO(1,4) and Poincare groups, one should proceed as follows. Let vL be
a representative of the Lorentz group in the factor space SO(1,3)/SO(3) (strictly speaking, we should
consider SL(2, C)/SU(2)). This space can be represented as the well known velocity hyperboloid with
the Lorentz invariant measure

dρ(v) = d3v/v0 (9)

where v0 = (1 + v2)1/2. Let I ∈ SO(1, 4) be a matrix which formally has the same form as the metric
tensor η. One can show (see e.g., Reference [27] for details) that X = G/H can be represented as a
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union of three spaces, X+, X− and X0 such that X+ contains classes vLh, X− contains classes vLIh

and X0 has measure zero relative to the spaces X+ and X− (see also Section 7).
As a consequence, the space of UIR of the SO(1,4) group can be implemented as follows. If s is the

spin of the particle under consideration, then we use ||...|| to denote the norm in the space of UIR of
the group SU(2) with the spin s. Then the space of UIR is the space of functions {f1(v), f2(v)} on two
Lorentz hyperboloids with the range in the space of UIR of the group SU(2) with the spin s and such
that ∫

[||f1(v)||2 + ||f2(v)||2]dρ(v) <∞ (10)

It is well-known that positive energy UIRs of the Poincare and AdS groups (associated with
elementary particles) are implemented on an analog of X+ while negative energy UIRs (associated
with antiparticles) are implemented on an analog of X−. Since the Poincare and AdS groups do not
contain elements transforming these spaces to one another, the positive and negative energy UIRs are
fully independent. At the same time, the dS group contains such elements (e.g., I [27,28]) and for
this reason its UIRs can be implemented only on the union of X+ and X−. Even this fact is a strong
indication that UIRs of the dS group cannot be interpreted in the same way as UIRs of the Poincare and
AdS groups.

A general construction of the operators Mab is as follows. We first define right invariant measures on
G = SO(1, 4) and H . It is well known (see e.g., References [29–32]) that for semisimple Lie groups
(which is the case for the dS group), the right invariant measure is simultaneously the left invariant one.
At the same time, the right invariant measure dR(h) onH is not the left invariant one, but has the property
dR(h0h) = ∆(h0)dR(h), where the number function h→ ∆(h) on H is called the module of the group
H . It is easy to show [27] that

∆(rτAaT) = exp(−3τ) (11)

Let dρ(x) be a measure on X = G/H compatible with the measures on G and H . This implies that the
measure on G can be represented as dρ(x)dR(h). Then one can show [27] that if X is a union of X+

and X− then the measure dρ(x) on each Lorentz hyperboloid coincides with that given by Equation (9).
Let the representation space be implemented as the space of functions ϕ(x) on X with the range in the
space of UIR of the SU(2) group such that∫

||ϕ(x)||2dρ(x) <∞ (12)

Then the action of the representation operator U(g) corresponding to g ∈ G is defined as

U(g)ϕ(x) = [∆((g−1, x)H)]−1/2∆((g−1, x)H ;mdS, s)
−1ϕ(g−1x) (13)

One can directly verify that this expression defines a unitary representation. Its irreducibility can be
proved in several ways (see e.g., Reference [27]).

As noted above, if X is the union of X+ and X−, then the representation space can be implemented
as in Equation (8). Since we are interested in calculating only the explicit form of the operators Mab,
it suffices to consider only elements of g ∈ G in an infinitely small vicinity of the unit element of the
dS group. In that case one can calculate the action of representation operators on functions having the
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carrier in X+ and X− separately. Namely, as follows from Equation (11), for such g ∈ G, one has to
find the decompositions

g−1vL = v′Lr
′(τ ′)A(a′)T (14)

and
g−1vLI = v”LIr”(τ”)A(a”)T (15)

where r′, r” ∈ SO(3). In this expressions it suffices to consider only elements of H belonging to an
infinitely small vicinity of the unit element.

The problem of choosing representatives in the spaces SO(1,3)/SO(3) or SL(2.C)/SU(2) is well known
in standard theory. The most usual choice is such that vL as an element of SL(2,C) is given by

vL =
v0 + 1 + vσ√

2(1 + v0)
(16)

Then by using a well known relation between elements of SL(2,C) and SO(1,3) we obtain that vL ∈
SO(1, 4) is represented by the matrix

vL =

∥∥∥∥∥∥∥∥
v0 vT 0

v 1 + vvT/(v0 + 1) 0

0 0 1

∥∥∥∥∥∥∥∥ (17)

As follows from Equations (8) and (13), there is no need to know the expressions for (a′)T and (a”)T

in Equations (14) and (15). We can use the fact [27] that if e is the five-dimensional vector with the
components (e0 = 1, 0, 0, 0, e4 = −1) and h = rτAaT, then he = exp(−τ)e regardless of the elements
r ∈ SO(3) and aT. This makes it possible to easily calculate (v′L,v”L, (τ

′)A, (τ”)A) in Equations (14)
and (15). Then one can calculate (r′, r”) in these expressions by using the fact that the SO(3) parts of
the matrices (v′L)−1g−1vL and (v”L)−1g−1vL are equal to r′ and r”, respectively.

The relation between the operators U(g) and Mab is as follows. Let Lab be the basis elements of the
Lie algebra of the dS group. These are the matrices with the elements

(Lab)
c
d = δcdηbd − δcbηad (18)

They satisfy the commutation relations

[Lab, Lcd] = ηacLbd − ηbcLad − ηadLbc + ηbdLac (19)

Comparing Equations (4) and (19) it is easy to conclude that the Mab should be the representation
operators of −iLab. Therefore if g = 1 + ωabL

ab, where a sum over repeated indices is assumed and the
ωab are such infinitely small parameters that ωab = −ωba then U(g) = 1 + iωabM

ab.
We are now in position to write down the final expressions for the operators Mab. Their action on

functions with the carrier in X+ has the form

M(+) = l(v) + s, N(+) = −iv0
∂

∂v
+

s× v

v0 + 1
,

B(+) = mdSv + i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v] +

s× v

v0 + 1
,

M
(+)
04 = mdSv0 + iv0(v

∂

∂v
+

3

2
) (20)
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where M = {M23,M31,M12}, N = {M01,M02,M03}, B = {M41,M42,M43}, s is the spin operator,
and l(v) = −iv × ∂/∂v. At the same time, the action on functions with the carrier in X− is given by

M(−) = l(v) + s, N(−) = −iv0
∂

∂v
+

s× v

v0 + 1
,

B(−) = −mdSv − i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v]− s× v

v0 + 1
,

M
(−)
04 = −mdSv0 − iv0(v

∂

∂v
+

3

2
) (21)

Note that the expressions for the action of the Lorentz algebra operators on X+ and X− are the same
and they coincide with the corresponding expressions for IRs of the Poincare algebra. At the same time,
the expressions for the action of the operators M4µ on X+ and X− differ by sign.

In deriving Equations (20) and (21) we used only the commutation relations (4), no approximations
have been made and the results are exact. In particular, the dS space, the cosmological constant and the
Riemannian geometry have not been involved at all. Nevertheless, the expressions for the representation
operators is all we need to have the maximum possible information in quantum theory. If one defines
m = mdS/R and the operators P µ as in the preceding section then in the formal limitR→∞ we indeed
obtain the expressions for the operators of the IRs of the Poincare algebra such that the Lorentz algebra
operators are the same, E = mv0 and P = mv where E is the standard energy operator and P is the
standard momentum operator. If we assume for definiteness thatmdS > 0 then we obtain positive energy
and negative energy IRs of the Poincare algebra on X+ and X−, respectively. It is obvious that in that
case m is the standard mass in Poincare invariant theory.

It is well known that in Poincare invariant theory the operator W = E2 − P2 is the Casimir
operator, i.e., it commutes with all the representation operators. According to the well known Schur
lemma in representation theory, all elements in the space of IR are eigenvectors of the Casimir
operators with the same eigenvalue. In particular, they are the eigenvectors of the operator W with the
eigenvalue m2. As follows from Equation (4), in the dS case the Casimir operator of the second order is
I2 = −1/2

∑
abMabM

ab and this operator might be treated as a dS analog of the mass operator squared.
An explicit calculation shows that for the operators given by Equations (20) and (21) the numerical value
of I2 is m2

dS − s(s+ 1) + 9/4.

6. Absence of Weyl Particles in dS Invariant Theory

According to Standard Model, only massless Weyl particles can be fundamental elementary particles
in Poincare invariant theory. Therefore a problem arises whether there exist analogs of Weyl particles in
dS invariant theory. In the preceding section we have shown that the dS and Poincare masses are related
as mdS/R = m. The dS mass is dimensionless while the Poincare mass has the dimension length−1.
Since the Poincare symmetry is a special case of the dS one, this fact is in agreement with the observation
in Section 2 that dimensionful quantities cannot be fundamental. Let lC(m) be the Compton wave length
for the particle with the mass m. Then one might think that, in view of the relation mdS = R/lC(m),
the dS mass shows how many Compton wave lengths are contained in the interval (0, R). However,
such an interpretation of the dS mass means that we wish to interpret a fundamental quantity mdS in
terms of our experience based on Poincare invariant theory. As already noted, the value of mdS does not
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depend on any quantities having the dimension length or length−1 and it is the Poincare mass which
implicitly depends on R. Let us assume for estimations that the value of R is 1028 cm. Then even the
dS mass of the electron is of order 1039 and this might be treated as an indication that the electron is
not a true elementary particle. Moreover, the present upper level for the photon mass is 10−18 ev which
seems to be an extremely tiny quantity. However, the corresponding dS mass is of order 1015 and so
even the mass which is treated as extremely small in Poincare invariant theory might be very large in dS
invariant theory.

In Poincare invariant theory, Weyl particles are characterized not only by the condition that their
mass is zero but also by the condition that they have a definite helicity. Several authors investigated
dS and AdS analogs of Weyl particles proceeding from covariant equations on the dS and AdS spaces,
respectively. For example, the authors of Reference [35] show that Weyl particles arise only when the
dS or AdS symmetries are broken to the Lorentz symmetry. At the level of IRs, the existence of analogs
of Weyl particles is known in the AdS case. In Reference [36] we investigated such analogs by using
the results of References [37] for standard IRs of the AdS algebra (i.e., IRs over the field of complex
numbers) and the results of Reference [38] for IRs of the AdS algebra over a Galois field. In the standard
case the minimum value of the AdS energy for massless IRs with positive energy is Emin = 1 + s. In
contrast with the situation in Poincare invariant theory, where massless particles cannot be in the rest
state, the massless particles in the AdS theory do have rest states and the value of the z projection of the
spin in such states can be−s,−s+ 1, ..., s as usual. However, for any value of energy greater than Emin,
the spin state is characterized only by helicity, which can take the values either s or −s, i.e., we have
the same result as in Poincare invariant theory. In contrast with IRs of the Poincare and dS algebra, IRs
describing particles in AdS theory belong to the discrete series of IRs and the energy spectrum in them
is discrete: E = Emin, Emin + 1, ...,∞. Therefore, strictly speaking, rest states do not have measure
zero. Nevertheless, the probability that the energy is exactly Emin is extremely small and therefore there
exists a correspondence between Weyl particles in Poincare and AdS theories.

In Poincare invariant theory, IRs describing Weyl particles can be constructing by analogy with
massive IRs but the little group is now E(2)instead of SO(3) (see e.g., section 2.5 in the textbook [18]).
The matter is that the representation operators of the SO(3) group transform rest states into themselves
but for massless particles there are no rest states. However, there exists another way of getting massless
IRs: one can choose the variables for massive IRs in such a way that the operators of massless IRs
can be directly obtained from the operators of massive IRs in the limit m → 0. This construction has
been described by several authors (see e.g., References [39–42] and references therein) and the main
stages are as follows. First, instead of the (0, 1, 2, 3) components of vectors, we work with the so called
light front components (+,−, 1, 2) where v± = (v0 ± v3)/

√
2 and analogously for other vectors. We

choose (v+,v⊥) as three independent components of the 4-velocity vector, where v⊥ = (vx, vy). In
these variables the measure (9) on the Lorentz hyperboloid becomes dρ(v+,v⊥) = dv+dv⊥/v

+. Instead
of Equation (16) we now choose representatives of the SL(2,C)/SU(2) classes as

vL =
1

(v0 + vz)1/2

∥∥∥∥∥∥ v0 + vz 0

vx + ivy 1

∥∥∥∥∥∥ (22)
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and by using the relation between the groups SL(2,C) and SO(1,3) we obtain that the form of this
representative in the Lorentz group is

vL =

∥∥∥∥∥∥∥∥∥∥∥

√
2v+ 0 0 0
v2
⊥√
2v+

1√
2v+

vx
v+

vy
v+√

2vx 0 1 0√
2vy 0 0 1

∥∥∥∥∥∥∥∥∥∥∥
(23)

where the raws and columns are in the order (+,−, x, y).
By using the scheme described in the preceding section, we can now calculate the explicit form of

the representation operators of the Lorentz algebra. In this scheme the form of these operators in the IRs
of the Poincare and dS algebras is the same and in the case of the dS algebra the action is the same for
states with the carrier in X+ and X−. The results of calculations are:

M+− = iv+
∂

∂v+
M+j = iv+

∂

∂vj
M12 = lz(v⊥) + sz

M−j = −i(vj ∂

∂v+
+ v−

∂

∂vj
)− εjl

v+
(sl + vlsz) (24)

where a sum over j, l = 1, 2 is assumed and εjl has the components ε12 = −ε21 = 1, ε11 = ε22 = 0. In
Poincare invariant theories one can define the standard four-momentum p = mv and choose (p+,p⊥) as
independent variables. Then the expressions in Equation (24) can be rewritten as

M+− = ip+
∂

∂p+
M+j = ip+

∂

∂pj
M12 = lz(p⊥) + sz

M−j = −i(pj ∂

∂p+
+ p−

∂

∂pj
)− εjl

p+
(msl + plsz) (25)

In dS invariant theory we can work with the same variables if m is defined as mdS/R.
As seen from Equations (25), only the operators M−j contain a dependence on the operators sx

and sy but this dependence disappears in the limit m → 0. In this limit the operator sz can be
replaced by its eigenvalue λ which now has the meaning of helicity. In Poincare invariant theory the
four-momentum operators P µ are simply the operators of multiplication by pµ and therefore massless
particles are characterized only by one constant—helicity.

In dS invariant theory one can calculate the action of the operators M4µ by analogy with the
calculation in the preceding section. The actions of these operators on states with the carrier in X+

and X− differ only by sign and the result for the actions on states with the carrier in X+ is

M4− = mdSv
− + i[v−(v+

∂

∂v+
+ vj

∂

∂vj
+

3

2
)− ∂

∂v+
] +

1

v+
εjlv

jsl

M4j = mdSv
j + i[vj(v+

∂

∂v+
+ vl

∂

∂vl
+

3

2
) +

∂

∂vj
]− εjlsl

M4+ = mdSv
+ + iv+(v+

∂

∂v+
+ vj

∂

∂vj
+

3

2
) (26)

If we define m = mdS/R and pµ = mvµ then for the operators P µ we have

P− = p− +
ip−

mR
(p+

∂

∂p+
+ pj

∂

∂pj
+

3

2
)− im

R

∂

∂p+
+

1

Rp+
εjlp

jsl
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P j = pj +
ipj

mR
(p+

∂

∂p+
+ pl

∂

∂pl
+

3

2
) +

im

R

∂

∂pj
− 1

R
εjls

l

P+ = p+ +
ip+

mR
(p+

∂

∂p+
+ pj

∂

∂pj
+

3

2
) (27)

Then it is clear that in the formal limit R → ∞ we obtain the standard Poincare result. However, when
R is finite, the dependence of the operators P µ on sx and sy does not disappear. Moreover, in this case
we cannot take the limit m → 0. Therefore we conclude that in dS theory there are no Weyl particles,
at least in the case when elementary particles are described by IRs of the principle series. Mensky
conjectured [27] that massless particles in the dS invariant theory might correspond to IRs of the discrete
series with −imdS = 1/2 but this possibility has not been investigated. In any case, in contrast with the
situation in Poincare invariant theory, the limit of massive IRs when m→ 0 does not give Weyl particles
and moreover, this limit does not exist.

7. Other Implementations of IRs

In this section we will briefly describe two more implementations of IRs of the dS algebra. The first
one is based on the fact that since SO(1,4)=SO(4)AT andH=SO(3)AT [27], there also exists a choice of
representatives which is probably even more natural than those described above. Namely, we can choose
as representatives the elements from the coset space SO(4)/SO(3). Since the universal covering group
for SO(4) is SU(2) × SU(2) and for SO(3) — SU(2), we can choose as representatives the elements of
the first multiplier in the product SU(2) × SU(2). Elements of SU(2) can be represented by the points
u = (u, u4) of the three-dimensional sphere S3 in the four-dimensional space as u4 + iσu where σ are
the Pauli matrices and u4 = ±(1 − u2)1/2 for the upper and lower hemispheres, respectively. Then the
calculation of the operators is similar to that described above and the results are as follows. The Hilbert
space is now the space of functions ϕ(u) on S3 with the range in the space of the IR of the su(2) algebra
with the spin s and such that ∫

||ϕ(u)||2du <∞ (28)

where du is the SO(4) invariant volume element on S3. The explicit calculation shows that in this case
the operators have the form

M = l(u) + s B = iu4
∂

∂u
− s M04 = (mdS + 3i/2)u4 + iu4u

∂

∂u

N = −i[ ∂
∂u
− u(u

∂

∂u
)] + (mdS + 3i/2)u− u× s + u4s (29)

Since Equations (10), (20) and (21) on one hand and Equations (28) and (29) on the other are the different
implementations of one and the same representation, there exists a unitary operator transforming
functions f(v) into ϕ(u) and operators (20,21) into operators (29). For example in the spinless case
the operators (20) and (29) are related to each other by a unitary transformation

ϕ(u) = exp(−imdSlnv0)v
3/2
0 f(v) (30)

where the relation between the points of the upper hemisphere andX+ is u = v/v0 and u4 = (1−u2)1/2.
The relation between the points of the lower hemisphere and X− is u = −v/v0 and u4 = −(1− u2)1/2.
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The equator of S3 where u4 = 0 corresponds to X0 and has measure zero with respect to the upper
and lower hemispheres. For this reason one might think that it is of no interest for describing particles
in dS theory. Nevertheless, an interesting observation is that while none of the components of u has the
magnitude greater than unity, the set X0 in terms of velocities is characterized by the condition that |v| is
infinitely large and therefore the standard Poincare momentum p = mv is infinitely large too. This poses
a question whether p always has a physical meaning. From mathematical point of view Equation (29)
might seem more convenient than Equations (20) and (21) since S3 is compact and there is no need to
break it into the upper and lower hemispheres. In addition, Equation (29) is an explicit implementation
of the idea that since in dS invariant theory all the variables (x1, x2, x3, x4) are on equal footing and so(4)
is the maximal compact kinematical algebra, the operators M and B do not depend on mdS . However,
those expressions are not convenient for investigating Poincare approximation since the Lorentz boost
operators N depend on mdS .

Finally, we describe an implementation of IRs based on the explicit construction of the basis in the
representation space. This construction is based on the method of su(2)×su(2) shift operators, developed
by Hughes [43] for constructing UIRs of the group SO(5). It will be convenient for us to deal with the
set of operators (J′,J′′, Rij) (i, j = 1, 2) instead of Mab. Here J′ and J′′ are two independent su(2)
algebras (i.e., [J′,J′′] = 0). In each of them one chooses as the basis the operators (J+, J−, J3) such that
J1 = J+ + J−, J2 = −ı(J+ − J−) and the commutation relations have the form

[J3, J+] = 2J+, [J3, J−] = −2J−, [J+, J−] = J3 (31)

The commutation relations of the operators J′ and J′′ with Rij have the form

[J ′3, R1j] = R1j, [J ′3, R2j] = −R2j, [J ′′3 , Ri1] = Ri1,

[J ′′3 , Ri2] = −Ri2, [J ′+, R2j] = R1j, [J ′′+, Ri2] = Ri1,

[J ′−, R1j] = R2j, [J ′′−, Ri1] = Ri2,

[J ′+, R1j] = [J ′′+, Ri1] = [J ′−, R2j] = [J ′′−, Ri2] = 0 (32)

and the commutation relations of the operators Rij with each other have the form

[R11, R12] = 2J ′+, [R11, R21] = 2J ′′+,

[R11, R22] = −(J ′3 + J ′′3 ), [R12, R21] = J ′3 − J ′′3
[R11, R22] = −2J ′′−, [R21, R22] = −2J ′− (33)

The relation between the sets (J′,J′′, Rij) and Mab is given by

M = (J′ + J′′)/2 B = (J′ − J′′)/2 M01 = i(R11 −R22)/2,

M02 = (R11 +R22)/2 M03 = −i(R12 +R21)/2 M04 = (R12 −R21)/2 (34)

Then it is easy to see that Equation (4) follows from Equations (32–34) and vice versa.
Consider the space of maximal su(2)× su(2) vectors, i.e., such vectors x that J ′+x = J ′′+x = 0. Then

from Equations (32) and (33) it follows that the operators

A++ = R11 A+− = R12(J
′′
3 + 1)− J ′′−R11 A−+ = R21(J

′
3 + 1)− J ′−R11

A−− = −R22(J
′
3 + 1)(J ′′3 + 1) + J ′′−R21(J

′
3 + 1) +

J ′−R12(J
′′
3 + 1)− J ′−J ′′−R11 (35)
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act invariantly on this space. The notations are related to the property that if xkl (k, l > 0) is the maximal
su(2)×su(2) vector and simultaneously the eigenvector of operators J ′3 and J3” with the eigenvalues k
and l, respectively, then A++xkl is the eigenvector of the same operators with the values k+ 1 and l+ 1,
A+−xkl - the eigenvector with the values k+ 1 and l− 1, A−+xkl - the eigenvector with the values k− 1

and l + 1 and A−−xkl - the eigenvector with the values k − 1 and l − 1.
The basis in the representation space can be explicitly constructed assuming that there exists a vector

e0 which is the maximal su(2)×su(2) vector such that

J ′3e0 = 0 J ′′3 e0 = se0 A−−e0 = A−+e0 = 0 I2e
0 = [m2

dS − s(s+ 1) + 9/4]e0 (36)

Then, as shown in Reference [26], the full basis of the representation space consists of vectors

enrij = (J ′−)i(J ′′−)j(A++)n(A+−)re0 (37)

where n = 0, 1, 2, ..., r can take only the values 0, 1, ..., 2s and for the given n and s, i can take the values
0, 1, ..., n+ r and j can take the values 0, 1, ..., n+ 2s− r.

These results show that IRs of the dS algebra can be constructed purely algebraically without
involving analytical methods of the theory of UIRs of the dS group. As shown in Reference [26],
this implementation is convenient for generalizing standard quantum theory to a quantum theory over a
Galois field.

8. Physical Interpretation of IRs of the dS Algebra

In Section 5–7 we discussed mathematical properties of IRs of the dS algebra. In particular it has been
noted that they are implemented on two Lorentz hyperboloids, not one as IRs of the Poincare algebra.
Therefore the number of states in IRs of the dS algebra is twice as big as in IRs of the Poincare algebra. A
problem arises whether this is compatible with a requirement that any dS invariant theory should become
a Poincare invariant one in the formal limit R → ∞. Although there exists a wide literature on IRs of
the dS group and algebra, their physical interpretation has not been widely discussed. Probably one of
the reasons is that physicists working on dS QFT treat fields as more fundamental objects than particles
(although the latter are observables while the former are not).

In his book [27] Mensky notes that, in contrast with IRs of the Poincare and AdS groups, IRs of the
dS group characterized by mdS and −mdS are unitarily equivalent and therefore the energy sign cannot
be used for distinguishing particles and antiparticles. He proposes an interpretation where a particle
and its antiparticle are described by the same IRs but have different space-time descriptions (defined by
operators intertwining IRs with representations induced from the Lorentz group). Mensky shows that in
the general case his two solutions still cannot be interpreted as a particle and its antiparticle, respectively,
since they are nontrivial linear combinations of functions with different energy signs. However, such an
interpretation is recovered in Poincare approximation.

In view of the above discussion, it is desirable to give an interpretation of IRs which does not involve
spacetime. In Reference [5] we have proposed an interpretation such that one IR describes a particle and
its antiparticle simultaneously. In this section this analysis is extended.
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8.1. Problems with Physical Interpretation of IRs

Consider first the case when the quantity mdS is very large. Then, as follows from Equations (20)
and (21), the action of the operators M4µ on states localized on X+ or X− can be approximately written
as ±mdSv

µ, respectively. Therefore a question arises whether the standard Poincare energy E can be
defined as E = M04/R. Indeed, with such a definition, states localized on X+ will have a positive
energy while states localized on X− will have a negative energy. Then a question arises whether this
is compatible with the standard interpretation of IRs, according to which the following requirements
should be satisfied:

Standard-Interpretation Requirements: Each element of the full representation space represents a
possible physical state for the given elementary particle. The representation describing a system of N
free elementary particles is the tensor product of the corresponding single-particle representations.

Recall that the operators of the tensor product are given by sums of the corresponding single-particle
operators. For example, if M (1)

04 is the operator M04 for particle 1 and M
(2)
04 is the operator M04 for

particle 2 then the operator M04 for the free system {12} is given by M (12)
04 = M

(1)
04 + M

(2)
04 . Here it is

assumed that the action of the operator M (j)
04 (j = 1, 2) in the two-particle space is defined as follows. It

acts according to Equation (20) or (21) over its respective variables while over the variables of the other
particle it acts as the identity operator.

One could try to satisfy the standard interpretation as follows.
A) Assume that in Poincare approximation the standard energy should be defined as E = ±M04/R

where the plus sign should be taken for the states with the carrier in X+ and as the minus sign—for the
states with the carrier in X−. Then the energy will always be positive definite.

B) One might say that the choice of the energy sign is only a matter of convention. Indeed, to measure
the energy of a particle with the mass m one has to measure its momentum p and then the energy can
be defined not only as (m2 + p2)1/2 but also as −(m2 + p2)1/2. In that case the standard energy in the
Poincare approximation could be defined as E = M04/R regardless of whether the carrier of the given
state is in X+ or X−.

It is easy to see that either of the above possibilities is incompatible with Standard-Interpretation
Requirements. Consider, for example, a system of two free particles in the case when mdS is very large.
Then with a high accuracy the operators M04/R and B/R can be chosen diagonal simultaneously.

Let us first assume that the energy should be treated according to B). Then a system of two free
particles with the equal masses can have the same quantum numbers as the vacuum (for example, if the
first particle has the energy E0 = (m2 + p2)1/2 and momentum p while the second one has the energy
−E0 and the momentum−p) what obviously contradicts experiment. For this and other reasons it is well
known that in Poincare invariant theory the particles should have the same energy sign. Analogously,
if the single-particle energy is treated according to A) then the result for the two-body energy of a
particle-antiparticle system will contradict experiment.

We conclude that IRs of the dS algebra cannot be interpreted in the standard way since such an
interpretation is physically meaningless even in Poincare approximation. The above discussion indicates
that the problem we have is similar to that with the interpretation of the fact that the Dirac equation has
solutions with both, positive and negative energies.
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As already noted, in Poincare and AdS theories there exist positive energy IRs implemented on the
upper hyperboloid and negative energy IRs implemented on the lower hyperboloid. In the latter case
Standard-Interpretation Requirements are not satisfied for the reasons discussed above. However, we
cannot declare such IRs unphysical and throw them away. In QFT quantum fields necessarily contain
both types of IRs such that positive energy IRs are associated with particles while negative energy IRs
are associated with antiparticles. Then the energy of antiparticles can be made positive after proper
second quantization. In view of this observation, we will investigate whether IRs of the dS algebra can
be interpreted in such a way that one IR describes a particle and its antiparticle simultaneously such that
states localized on X+ are associated with a particle while states localized on X− are associated with
its antiparticle.

By using Equation (10), one can directly verify that the operators (20) and (21) are Hermitian if
the scalar product in the space of IR is defined as follows. Since the functions f1(v) and f2(v) in
Equation (10) have the range in the space of IR of the su(2) algebra with the spin s, we can replace them
by the sets of functions f1(v, j) and f2(v, j), respectively, where j = −s,−s + 1, ..., s. Moreover, we
can combine these functions into one function f(v, j, ε) where the variable ε can take only two values,
say +1 or -1, for the components having the carrier in X+ or X−, respectively. If now ϕ(v, j, ε) and
ψ(v, j, ε) are two elements of our Hilbert space, their scalar product is defined as

(ϕ, ψ) =
∑
j,ε

∫
ϕ(v, j, ε)∗ψ(v, j, ε)dρ(v) (38)

where the subscript ∗ applied to scalar functions means the usual complex conjugation.
At the same time, we use ∗ to denote the operator adjoint to a given one. Namely, if A is the operator

in our Hilbert space then A∗ means the operator such that

(ϕ,Aψ) = (A∗ϕ, ψ) (39)

for all such elements ϕ and ψ that the left hand side of this expression is defined.
Even in the case of the operators (20) and (21) we can formally treat them as integral operators with

some kernels. Namely, if Aϕ = ψ, we can treat this relation as

∑
j′,ε′

∫
A(v, j, ε;v′, j′, ε′)ϕ(v′, j′, ε′)dρ(v′) = ψ(v, j, ε) (40)

where in the general case the kernel A(v, j, ε;v′, j′, ε′) of the operator A is a distribution.
As follows from Equations (38–40), ifB = A∗ then the relation between the kernels of these operators

is
B(v, j, ε;v′, j′, ε′) = A(v′, j′, ε′;v, j, ε)∗ (41)

In particular, if the operator A is Hermitian then

A(v, j, ε;v′, j′, ε′)∗ = A(v′, j′, ε′;v, j, ε) (42)

and if, in addition, its kernel is real then the kernel is symmetric, i.e.,

A(v, j, ε;v′, j′, ε′) = A(v′, j′, ε′;v, j, ε) (43)
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In particular, this property is satisfied for the operators mdSv0 and mdSv in Equations (20) and (21). At
the same time, the operators

l(v) − iv0
∂

∂v
− i[ ∂

∂v
+ v(v

∂

∂v
) +

3

2
v] − iv0(v

∂

∂v
+

3

2
) (44)

which are present in Equations (20) and (21), are Hermitian but have imaginary kernels. Therefore, as
follows from Equation (42), their kernels are antisymmetric:

A(v, j, ε;v′, j′, ε′) = −A(v′, j′, ε′;v, j, ε) (45)

In standard approach to quantum theory, the operators of physical quantities act in the Fock space
of the given system. Suppose that the system consists of free particles and their antiparticles. Strictly
speaking, in our approach it is not clear yet what should be treated as a particle or antiparticle. The
considered IRs of the dS algebra describe objects such that (v, j, ε) is the full set of their quantum
numbers. Therefore we can define the annihilation and creation operators (a(v, j, ε), a(v, j, ε)∗) for
these objects. If the operators satisfy the anticommutation relations then we require that

{a(v, j, ε), a(v′, j′, ε′)∗} = δjj′δεε′v0δ
(3)(v − v′) (46)

while in the case of commutation relations

[a(v, j, ε), a(v′, j′, ε′)∗] = δjj′δεε′v0δ
(3)(v − v′) (47)

In the first case, any two a-operators or any two a∗ operators anticommute with each other while in the
second case they commute with each other.

The problem of second quantization can now be formulated such that IRs should be implemented as
Fock spaces, i.e., states and operators should be expressed in terms of the (a, a∗) operators. A possible
implementation is as follows. We define the vacuum state Φ0 such that is has a unit norm and satisfies
the requirement

a(v, j, ε)Φ0 = 0 ∀ v, j, ε (48)

The image of the state ϕ(v, j, ε) in the Fock space is defined as

ϕF =
∑
j,ε

∫
ϕ(v, j, ε)a(v, j, ε)∗dρ(v)Φ0 (49)

and the image of the operator with the kernel A(v, j, ε;v′, j′, ε′) in the Fock space is defined as

AF =
∑

j,ε,j′,ε′

∫ ∫
A(v, j, ε;v′, j′, ε′)a(v, j, ε)∗a(v′, j′, ε′)dρ(v)dρ(v′) (50)

One can directly verify that this is an implementation of IR in the Fock space. In particular,
the commutation relations in the Fock space will be preserved regardless of whether the (a, a∗)

operators satisfy commutation or anticommutation relations and, if any two operators are adjoint in
the implementation of IR described above, they will be adjoint in the Fock space as well. In other words,
we have a ∗ homomorphism of Lie algebras of operators acting in the space of IR and in the Fock space.
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We now require that in Poincare approximation the energy should be positive definite. Recall that
the operators (20) and (21) act on their respective subspaces or in other words, they are diagonal in the
quantum number ε.

Suppose that mdS > 0 and consider the quantized operator corresponding to the dS energy M04 in
Equation (20). In Poincare approximation, M (+)

04 = mdSv0 is fully analogous to the standard free energy
and therefore, as follows from Equation (50), its quantized form is

(M
(+)
04 )F = mdS

∑
j

∫
v0a(v, j, 1)∗a(v, j, 1)dρ(v) (51)

This expression is fully analogous to the quantized Hamiltonian in standard theory and it is well known
that the operator defined in such a way is positive definite.

Consider now the operator M (−)
04 . In Poincare approximation its quantized form is

(M
(−)
04 )F == −mdS

∑
j

∫
v0a(v, j,−1)∗a(v, j,−1)dρ(v) (52)

and this operator is negative definite, what is unacceptable.
One might say that the operators a(v, j,−1) and a(v, j,−1)∗ are “nonphysical”: a(v, j,−1) is the

operator of object’s annihilation with the negative energy, and a(v, j,−1)∗ is the operator of object’s
creation with the negative energy.

We will interpret the operator (M
(−)
04 )F as that related to antiparticles. In QFT the annihilation and

creation operators for antiparticles are present in quantized fields with the coefficients describing negative
energy solutions of the corresponding covariant equation. This is an implicit implementation of the idea
that the creation or annihilation of an antiparticle can be treated, respectively as the annihilation or
creation of the corresponding particle with the negative energy. In our case this idea can be implemented
explicitly.

Instead of the operators a(v, j,−1) and a(v, j,−1)∗, we define new operators b(v, j) and b(v, j)∗.
If b(v, j) is treated as the “physical” operator of antiparticle annihilation then, according to the above
idea, it should be proportional to a(v,−j,−1)∗. Analogously, if b(v, j)∗ is the “physical” operator of
antiparticle creation, it should be proportional to a(v,−j,−1). Therefore

b(v, j) = η(j)a(v,−j,−1)∗ b(v, j)∗ = η(j)∗a(v,−j,−1) (53)

where η(j) is a phase factor such that
η(j)η(j)∗ = 1 (54)

As follows from this relations, if a particle is characterized by additive quantum numbers (e.g., electric,
baryon or lepton charges) then its antiparticle is characterized by the same quantum numbers but with
the minus sign. The transformation described by Equations (53) and (54) can also be treated as a special
case of the Bogolubov transformation discussed in a wide literature on many-body theory (see, e.g.,
Chapter 10 in Reference [44] and references therein).

Since we treat b(v, j) as the annihilation operator and b(v, j)∗ as the creation one, instead of
Equation (48) we should define a new vacuum state Φ̃0 such that

a(v, j, 1)Φ̃0 = b(v, j)Φ̃0 = 0 ∀ v, j, (55)
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and the images of states localized in X− should be defined as

ϕ
(−)
F =

∑
j,ε

∫
ϕ(v, j,−1)b(v, j)∗dρ(v)Φ̃0 (56)

In that case the (b, b∗) operators should be such that in the case of anticommutation relations

{b(v, j), b(v′, j′)∗} = δjj′v0δ
(3)(v − v′), (57)

and in the case of commutation relations

[b(v, j), b(v′, j′)∗] = δjj′v0δ
(3)(v − v′) (58)

We have to verify whether the new definition of the vacuum and one-particle states is a correct
implementation of IR in the Fock space. A necessary condition is that the new operators should satisfy
the commutation relations of the dS algebra. Since we replaced the (a, a∗) operators by the (b, b∗)

operators only if ε = −1, it is obvious from Equation (50) that the images of the operators (20) in the
Fock space satisfy Equation (4). Therefore we have to verify that the images of the operators (21) in the
Fock space also satisfy Equation (4).

Consider first the case when the operators a(v, j, ε) satisfy the anticommutation relations. By using
Equation (53) one can express the operators a(v, j,−1) in terms of the operators b(v, j). Then it follows
from the condition (53) that the operators b(v, j) indeed satisfy Equation (57). If the operator AF is
defined by Equation (50) and is expressed only in terms of the (a, a∗) operators at ε = −1, then in terms
of the (b, b∗)-operators it acts on states localized in X− as

AF =
∑
j,j′

∫ ∫
A(v, j,−1;v′, j′,−1)η(j′)η(j)∗b(v,−j)b(v′,−j′)∗dρ(v)dρ(v′) (59)

As follows from Equation (57), this operator can be written as

AF = C −
∑
j,j′

∫ ∫
A(v′,−j′,−1;v,−j,−1)η(j)η(j′)∗b(v, j)∗b(v′, j′)dρ(v)dρ(v′) (60)

where C is the trace of the operator AF :

C =
∑
j

∫
A(v, j,−1;v, j,−1)dρ(v) (61)

In general, C is some indefinite constant. It can be eliminated by requiring that all quantized operators
should be written in the normal form or by using another prescriptions. The existence of infinities in
the standard approach is the well known problem and we will not discuss it. Therefore we will always
assume that if the operator AF is defined by Equation (50) then in the case of anticommutation relations
its action on states localized in X− can be written as in Equation (60) with C = 0. Then, taking into
account the properties of the kernels discussed above, we conclude that in terms of the (b, b∗)-operators
the kernels of the operators (mdSv)F change their sign while the kernels of the operators in Equation (44)
remain the same. In particular, the operator (−mdSv0)F acting on states localized on X− has the same
kernel as the operator (mdsv0)F acting on states localized in X+ has in terms of the a-operators. This
implies that in Poincare approximation the energy of the states localized in X− is positive definite, as
well as the energy of the states localized in X+.
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Consider now how the spin operator changes when the a-operators are replaced by the b-operators.
Since the spin operator is diagonal in the variable v, it follows from Equation (60) that the transformed
spin operator will have the same kernel if

si(j, j
′) = −η(j)η(j′)∗si(−j′,−j) (62)

where si(j, j′) is the kernel of the operator si. For the z component of the spin operator this relation is
obvious since sz is diagonal in (j, j′) and its kernel is sz(j, j′) = jδjj′ .If we choose η(j) = (−1)(s−j)

then the validity of Equation (62) for s = 1/2 can be verified directly while in the general case it can be
verified by using properties of 3j symbols.

The above results for the case of anticommutation relations can be summarized as follows. If we
replace mdS by −mdS in Equation (21) then the new set of operators

M′ = l(v) + s, N′ = −iv0
∂

∂v
+

s× v

v0 + 1
,

B′ = mdSv − i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v]− s× v

v0 + 1
,

M ′
04 = mdSv0 − iv0(v

∂

∂v
+

3

2
) (63)

obviously satisfies the commutation relations (4). The kernels of these operators define quantized
operators in terms of the (b, b∗)-operators in the same way as the kernels of the operators (20) define
quantized operators in terms of the (a, a∗)-operators. In particular, in Poincare approximation the energy
operator acting on states localized in X− can be defined as E ′ = M ′

04/R and in this approximation it is
positive definite.

At the same time, in the case of commutation relation the replacement of the (a, a∗)-operators by the
(b, b∗)-operators is unacceptable for several reasons. First of all, if the operators a(v, j, ε) satisfy the
commutation relations (47), the operators defined by Equation (53) will not satisfy Equation (58). Also,
the r.h.s. of Equation (60) will now have the opposite sign. As a result, the transformed operator M04

will remain negative definite in Poincare approximation and the operators (44) will change their sign. In
particular, the angular momentum operators will no longer satisfy correct commutation relations.

We have shown that if the definitions (48) and (49) are replaced by (55) and (56), respectively, then
the images of both sets of operators in Equation (20) and Equation (21) satisfy the correct commutation
relations in the case of anticommutators. A question arises whether the new implementation in the Fock
space is equivalent to the IR described in Section 5. For understanding the essence of the problem, the
following very simple pedagogical example might be useful.

Consider a representation of the SO(2) group in the space of functions f(ϕ) on the circumference
ϕ ∈ [0, 2π] where ϕ is the polar angle and the points ϕ = 0 and ϕ = 2π are identified. The generator
of counterclockwise rotations is A = −id/dϕ while the generator of clockwise rotations is id/dϕ. The
equator of the circumference contains two points, ϕ = 0 and ϕ = π and has measure zero. Therefore
we can represent each f(ϕ) as a superposition of functions with the carriers in the upper and lower semi
circumferences, S+ and S−. The operators A and B are defined only on differentiable functions. The
Hilbert space H contains not only such functions but a set of differentiable functions is dense in H . If
a function f(ϕ) is differentiable and has the carrier in S+ then Af(ϕ) and Bf(ϕ) also have the carrier
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in S+ and analogously for functions with the carrier in S−. However, we cannot define a representation
of the SO(2) group such that its generator is A on functions with the carrier in S+ and B on functions
with the carrier in S− because a counterclockwise rotation on S+ should be counterclockwise on S− and
analogously for clockwise rotations. In other words, the actions of the generator on functions with the
carriers in S+ and S− cannot be independent.

In the case of finite dimensional representations, any IR of a Lie algebra by Hermitian operators can be
always extended to an UIR of the corresponding Lie group. In that case the UIR has a property that any
state is its cyclic vector i.e., the whole representation space can be obtained by acting by representation
operators on this vector and taking all possible linear combinations. For infinite dimensional IRs this is
not always the case and there should exist conditions for IRs of Lie algebras by Hermitian operators to
be extended to corresponding UIRs. This problem has been extensively discussed in the mathematical
literature (see e.g., References [29–32]). By analogy with finite dimensional IRs, one might think that
in the case of infinite dimensional IRs there should exist an analog of the cyclic vector. In Section 7 we
have shown that for infinite dimensional IRs of the dS algebra this idea can be explicitly implemented
by choosing a cyclic vector and acting on this vector by operators of the enveloping algebra of the dS
algebra. Therefore if IRs are implemented as described in Section 5, one might think that the action of
representation operators on states with the carrier inX+ should define its action on states with the carrier
in X−.

8.2. Example of Transformation Mixing Particles and Antiparticles

We treated states localized inX+ as particles and states localized inX− as corresponding antiparticles.
However, the space of IR contains not only such states. There is no rule prohibiting states with the carrier
having a nonempty intersection with both,X+ andX−. Suppose that there exists a unitary transformation
belonging to the UIR of the dS group such that it transform a state with the carrier in X+ to a state with
the carrier in X−. If the Fock space is implemented according to Equations (48) and (49) then the
transformed state will have the form

ϕ
(−)
F =

∑
j

∫
ϕ(v, j)a(v, j,−1)∗dρ(v)Φ0 (64)

while with the implementation in terms of the (b, b∗) operators it should have the form (56). Since the
both states are obtained from the same state with the carrier in X+, they should be the same. However,
they cannot be the same. This is clear even from the fact that in Poincare approximation the former has
a negative energy while the latter has a positive energy.

Our construction shows that the interpretation of states as particles and antiparticles is not always
consistent. We can only guarantee that this interpretation is consistent when we consider only states
localized either in X+ or in X− and only transformations which do not mix such states. In quantum
theory there is a superselection rule (SSR) prohibiting states which are superpositions of states with
different electric, baryon or lepton charges. In general, if states ψ1 and ψ2 are such that there are no
physical operators A such that (ψ2, Aψ1) 6= 0 then the SSR says that the state ψ = ψ1 +ψ2 is prohibited.
The meaning of the SSR is now widely discussed (see e.g., Reference [45] and references therein).
Since the SSR implies that the superposition principle, which is a key principle of quantum theory, is
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not universal, several authors argue that the SSR should not be present in quantum theory. Other authors
argue that the SSR is only a dynamical principle since, as a result of decoherence, the state ψ will quickly
disappear and so it cannot be observable.

We now give an example of a transformation, which transform states localized inX+ to ones localized
inX− and vice versa. Let I ∈ SO(1, 4) be a matrix which formally coincides with the metric tensor η. If
this matrix is treated as a transformation of the dS space, it transforms the North pole (0, 0, 0, 0, x4 = R)

to the South pole (0, 0, 0, 0, x4 = −R) and vice versa. As already explained, in our approach the dS
space is not involved and in Sections 5–7 the results for UIRs of the dS group have been used only for
constructing IRs of the dS algebra. This means that the unitary operator U(I) corresponding to I is well
defined and we can consider its action without relating I to a transformation of the dS space.

If vL is a representative defined by Equation (17) then it is easy to verify that IvL = (−v)LI

and, as follows from Equation (13), if ψ1 is localized in X+ then ψ2 = U(I)ψ1 will be localized
in X−. Therefore U(I) transforms particles into antiparticles and vice versa. In Section 3 we
argued that the notion of the spacetime background is unphysical and that unitary transformations
generated by self-adjoint operators may not have a usual interpretation. The example with U(I) gives
a good illustration of this point. Indeed, if we work with the dS space, we might expect that all
unitary transformations corresponding to the elements of the group SO(1,4) act in the space of IR
only kinematically, in particular they transform particles to particles and antiparticles to antiparticles.
However, in QFT in curved spacetime this is not the case. Nevertheless, this is not treated as an indication
that standard notion of the dS space is not physical. Although fields are not observable, in QFT in curved
spacetime they are treated as fundamental and single-particle interpretations of field equations are not
tenable (moreover, some QFT theorists state that particles do not exist). For example, as shown in
References [9–11,46,47], solutions of fields equations are superpositions of states which usually are
interpreted as a particle and its antiparticle, and in the dS space neither coefficient in the superposition
can be zero. This result is compatible with the Mensky’s one [27] described in the beginning of this
section. One might say that our result is in agreement with those in dS QFT since UIRs of the dS group
describe not a particle or antiparticle but an object such that a particle and its antiparticle are different
states of this object (at least in Poincare approximation). However, as noted above, in dS QFT this is not
treated as the fact that the dS space is unphysical.

The matrix I belongs to the component of unity of the group SO(1,4). For example, the transformation
I can be obtained as a product of rotations by 180 degrees in planes (1, 2) and (3, 4). Therefore, U(I)

can be obtained as a result of continuous transformations exp[i(M12ϕ1 + M34ϕ2)] when the values of
ϕ1 and ϕ2 change from zero to π. Any continuous transformation transforming a state with the carrier
in X+ to the state with the carrier in X− is such that the carrier should cross X0 at some values of the
transformation parameters. As noted in the preceding section, the setX0 is characterized by the condition
that the standard Poincare momentum is infinite and therefore, from the point of view of intuition based
on Poincare invariant theory, one might think that no transformation when the carrier crosses X0 is
possible. However, as we have seen in the preceding section, in variables (u1, u2, u3, u4) the condition
u4 = 0 defines the equator of S3 corresponding to X0 and this condition is not singular. So from the
point of view of dS theory, nothing special happens when the carrier crosses X0. We observe only
either particles or antiparticles but not their linear combinations because Poincare approximation works
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with a very high accuracy and it is very difficult to perform transformations mixing states localized in
X+ and X−.

8.3. Summary

As follows from the above discussion, objects belonging to IRs of the dS algebra can be treated as
particles or antiparticles only if Poincare approximation works with a high accuracy. As a consequence,
the conservation of electric, baryon and lepton charges can be only approximate.

At the same time, our discussion shows that the approximation when one IR of the dS algebra splits
into independent IRs for a particle and its antiparticle can be valid only in the case of anticommutation
relations. Since it is a reasonable requirement that dS theory should become the Poincare one at certain
conditions, the above results show that in dS invariant theory only fermions can be elementary.

Let us now consider whether there exist neutral particles in dS invariant theory. In AdS and Poincare
invariant theories, neutral particles are described as follows. One first construct a covariant field
containing both IRs, with positive and negative energies. Therefore the number of states is doubled
in comparison with the IR. However, to satisfy the requirement that neutral particles should be described
by real (not complex) fields, one has to impose a relation between the creation and annihilation operators
for states with positive and negative energies. Then the number of states describing a neutral field
again becomes equal to the number of states in the IR. In contrast with those theories, IRs of the dS
algebra are implemented on both, upper and lower Lorentz hyperboloids and therefore the number of
states in IRs is twice as big as for IRs of the Poincare and AdS algebras. Even this fact shows that
in dS invariant theory there can be no neutral particles since it is not possible to reduce the number of
states in IR. Another argument is that, as follows from the above construction, dS invariant theory is not
C invariant. Indeed, C invariance in standard theory means that representation operators are invariant
under the interchange of a-operators and b-operators. However, in our case when a-operators are replaced
by b-operators, the operators (20) become the operators (63). Those sets of operators coincide only in
Poincare approximation while in general the operators M4µ in Equations (20) and (63) are different.
Therefore a particle and its antiparticle are described by different sets of operators. We conclude that in
dS invariant theory neutral particles cannot be elementary.

9. dS Quantum Mechanics and Cosmological Repulsion

The results on IRs can be applied not only to elementary particles but even to macroscopic bodies
when it suffices to consider their motion as a whole. This is the case when the distances between the
bodies are much greater that their sizes. In this section we will consider the operators M4µ not only in
Poincare approximation but taking into account dS corrections. If those corrections are small, one can
neglect transformations mixing states on the upper and lower Lorentz hyperboloids (see the discussion
in the preceding section) and describe the representation operators for a particle and its antiparticle by
Equations (20) and (63), respectively.

We define E = M04/R, P = B/R and m = mdS/R. Consider the non-relativistic approximation
when |v| � 1. If we wish to work with units where the dimension of velocity is m/s, we should replace
v by v/c. If p = mv then it is clear from the expressions for B in Equations (20) and (63) that p
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becomes the real momentum P only in the limit R→∞. Now by analogy with nonrelativistic quantum
mechanics, we define the position operator r as i∂/∂p. At this stage we do not have any coordinate
space yet. However, if we assume that quasiclassical approximation is valid, we can treat p and r as
usual vectors and neglect their commutators. Then as follows from Equation (20)

P = p +mcr/R H = p2/2m+ cpr/R (65)

where H = E −mc2 is the classical non-relativistic Hamiltonian and, as follows from Equations (63)

P = p−mcr/R H = p2/2m− cpr/R (66)

As follows from these expressions, in both cases

H(P, r) =
P2

2m
− mc2r2

2R2
(67)

The last term in Equation (67) is the dS correction to the non-relativistic Hamiltonian. It is interesting
to note that the non-relativistic Hamiltonian depends on c although it is usually believed that c can be
present only in relativistic theory. This illustrates the fact mentioned in Section 2 that the transition to
non-relativistic theory understood as |v| � 1 is more physical than that understood as c → ∞. The
presence of c in Equation (67) is a consequence of the fact that this expression is written in standard
units. In non-relativistic theory c is usually treated as a very large quantity. Nevertheless, the last term in
Equation (67) is not large since we assume that R is very large.

The result given by Equation (3) is now a consequence of the equations of motion for the Hamiltonian
given by Equation (67). In our approach this result has been obtained without using dS space and
Riemannian geometry while the fact that Λ 6= 0 should be treated not such that the spacetime background
has a curvature (since the notion of the spacetime background is meaningless) but as an indication that
the symmetry algebra is the dS algebra rather than the Poincare one. Therefore for explaining the fact
that Λ 6= 0 there is no need to involve dark energy or any other quantum fields.

Another way to show that our results are compatible with GR is as follows. The well known
result of GR is that if the metric is stationary and differs slightly from the Minkowskian one then in
the non-relativistic approximation the curved spacetime can be effectively described by a gravitational
potential ϕ(r) = (g00(r) − 1)/2c2. We now express x0 in Equation (1) in terms of a new variable t as
x0 = t+ t3/6R2 − tx2/2R2. Then the expression for the interval becomes

ds2 = dt2(1− r2/R2)− dr2 − (rdr/R)2 (68)

Therefore, the metric becomes stationary and ϕ(r) = −r2/2R2 in agreement with Equation (67).
Consider now a system of two free particles described by the variables pj and rj (j = 1, 2). Define

the standard non-relativistic variables

P12 = p1 + p2 q12 = (m2p1 −m1p2)/(m1 +m2)

R12 = (m1r1 +m2r2)/(m1 +m2) r12 = r1 − r2 (69)

Then if the particles are described by Equation (65), the two-particle operators P and E in the
non-relativistic approximation are given by

P = P12 +MR12/R, E = M + P2
12/2M + P12R12/R (70)
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where
M = M(q12, r12) = m1 +m2 + q2

12/2m12 + q12r12/R (71)

and m12 is the reduced two-particle mass. Comparing Equations (65) and (71), we conclude that M has
the meaning of the two-body mass and therefore M(q12, r12) is the internal two-body Hamiltonian.
As a consequence, in quasiclassical approximation the relative acceleration is given by the same
expression (3) but now a is the relative acceleration and r is the relative radius vector.

The fact that two free particles have a relative acceleration is well known for cosmologists who
consider the dS symmetry on classical level. This effect is called the dS antigravity. The term antigravity
in this context means that the particles repulse rather than attract each other. In the case of the dS
antigravity the relative acceleration of two free particles is proportional (not inversely proportional!)
to the distance between them. This classical result (which in our approach has been obtained without
involving dS space and Riemannian geometry) is a special case of the dS symmetry on quantum level
when quasiclassical approximation works with a good accuracy.

For a system of two antiparticles the result is obviously the same since Equation (66) can be
formally obtained from Equation (65) if R is replaced by −R. At the same time, in the case of a
particle-antiparticle system a problem with the separation of external and internal variables arises. In
any case the standard result can be obtained by using Equation (67).

Another problem discussed in the literature (see e.g., Reference [48] and references therein) is that
composite particles in the dS theory are unstable. As shown in References [25,26], if we assume that
non-relativistic approximation is valid but quasiclassical approximation is not necessarily valid then the
result (71) can be generalized as

Hnr =
q2

2m12

+ VdS, VdS =
i

R
(q

∂

∂q
+

3

2
) (72)

where Hnr is the non-relativistic internal Hamiltonian and q = q12. In spherical coordinates this
expression reads

Hnr =
q2

2m12

+
i

R
(q
∂

∂q
+

3

2
) (73)

where q = |q|. The operator (73) acts in the space of functions ψ(q) such that
∫∞
0 |ψ(q)|2q2dq <∞ and

the eigenfunction ψK of Enr with the eigenvalue K satisfies the equation

q
dψK
dq

=
iRq2

m12

ψK − (
3

2
+ 2iRK)ψK (74)

The solution of this equation is

ψK =

√
R

π
q−3/2exp(

iRq2

2m12

− 2iRKlnq) (75)

and the normalization condition is (ψK , ψK′) = δ(K−K ′). The spectrum of the operator Enr obviously
belongs to the interval (−∞,∞) and one might think that this is unacceptable. Suppose however that
f(q) is a wave function of some state. As follows from Equation (75), the probability to have the value
of the energy K in this state is defined by the coefficient c(K) such that

c(K) =

√
R

π

∫ ∞
0

exp(− iRq
2

2m12

+ 2iRKlnq)f(q)
√
qdq (76)
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If f(q) does not depend on R and R is very large then c(K) will practically be different from zero
only if the integrand in Equation (76) has a stationary point q0, which is defined by the condition K =

q20/2m12. Therefore, for negative K, when the stationary point is absent, the value of c(K) will be
exponentially small.

This result confirms that, as one might expect from Equation (71), the dS antigravity is not important
for local physics when r � R. At the same time, at cosmological distances the dS antigravity is much
stronger than any other interaction (gravitational, electromagnetic etc.). Since the spectrum of the energy
operator is defined by its behavior at large distances, this means that in the dS theory there are no bound
states. This does not mean that the theory is unphysical since stationary bound states in standard theory
become quasistationary with a very large lifetime if R is large. For example, as shown in Equations (14)
and (19) of Reference [48], a quasiclassical calculation of the probability of the decay of the two-body
composite system gives that the probability equals w = exp(−πε/H) where ε is the binding energy and
H is the Hubble constant. If we replace H by 1/R and assume that R = 1028cm then for the probability
of the decay of the ground state of the hydrogen atom we get that w is of order exp(−1035) i.e., an
extremely small value. This result is in agreement with our remark after Equation (76).

In Reference [25] we discussed the following question. In standard quantum mechanics the free
Hamiltonian H0 and the full Hamiltonian H are not always unitarily equivalent since in the presence of
bound states they have different spectra. However, in the dS theory there are no bound states, the free
and full Hamiltonians have the same spectra and it is possible to show that they are unitarily equivalent.
Therefore one can work in the formalism when interaction is introduced not by adding an interaction
operator to the free Hamiltonian but by a unitary transformation of this operator. Such a formalism
might shed light on understanding of interactions in quantum theory.

10. Discussion and Conclusions

The experimental fact that Λ > 0 might be an indication that for some reasons nature prefers dS
invariance vs. AdS invariance (Λ < 0) and Poincare invariance (Λ = 0). A question arises whether
there exist theoretical arguments explaining this fact. However, the majority of authors treat Λ > 0 as
an anomaly since in their opinion AdS invariance or Poincare invariance are more preferable than dS
invariance. One of the arguments is that dS symmetry does not have a supersymmetric generalization in
contrast with the other two symmetries. Also, as argued by many authors (see e.g., Reference [49]), in
QFT and its generalizations (string theory, M-theory etc.) a theory based on the dS algebra encounters
serious difficulties. One of the reasons is that IRs of the Poincare and AdS algebras describing elementary
particles are the lowest weight representations where the Hamiltonian is positive definite. On the other
hand, as noted in the literature on IRs of the dS algebra, the spectrum of any representation operator of
this algebra is symmetric relative to zero, i.e., if λ > 0 is an eigenvalue then −λ also is an eigenvalue.
Polyakov [50] believes that for this reason “Nature seems to abhor positive curvature and is trying to get
rid of it as fast as it can”.

Let us discuss this objection in greater details. IRs of the Poincare and AdS algebras with the lowest
weight are implemented on the upper Lorentz hyperboloid in the velocity space. Then the following
question arises. If nature likes Poincare and AdS symmetries then how should one treat the fact that
for any IR with the lowest weight E0 > 0 there exists an IR with the highest weight −E0 on the lower
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hyperboloid? Should one declare such IRs with negative energies unphysical and throw them away? It
is well known that the answer is “no” since local covariant objects needed for constructing QFT (e.g.,
Dirac fields) necessarily contain IRs with lowest and highest weight on equal footing. IRs with the
lowest weight are associated with particles while IRs with the highest weight (and negative energies) are
associated with antiparticles. Then the problem of negative energies is solved by second quantization
after which both, the energies of particles and antiparticles become positive. So, Polyakov’s objection
should be understood such that only secondly quantized IRs with positive energies are physical. If this
is true then IRs of the dS algebra are indeed unphysical.

In AdS and Poincare invariant theories, neutral particles are described as follows. One first construct
a covariant field containing both IRs, with positive and negative energies. Therefore the number of states
is doubled in comparison with the IR. However, to satisfy the requirement that neutral particles should be
described by real (not complex) fields, one has to impose a relation between the creation and annihilation
operators for states with positive and negative energies. Then the number of states describing a neutral
field again becomes equal to the number of states in the IR.

As shown in Reference [27] and other papers, IRs of the dS algebra are implemented on both, upper
and lower Lorentz hyperboloids and therefore the number of states in IRs is twice as big as for IRs of
the Poincare and AdS algebras. A question arises whether such a description is physical since the dS
theory should become the Poincare one when R →∞. Another question is how one should distinguish
particles and antiparticles in the dS theory. In Reference [5] we argued that the only possible physical
interpretation of IRs is such that they describe an object such that a particle and its antiparticle are
different states of this object in cases when the wave function in the velocity space has a carrier on the
upper and lower Lorentz hyperboloids, respectively. In Section 8 of the present paper we have shown
that in dS invariant theory

• Each state is either a particle or antiparticle only when one does not consider transformations
mixing states on the upper and lower hyperboloids. Only in this case additive quantum numbers
such as electric, baryon and lepton charges are conserved. In particular, they are conserved if
Poincare approximation works with a high accuracy.

In general, there is no superselection rule prohibiting states which are superpositions of a particle and
its antiparticle. This shows that dS invariant theory implies a considerably new understanding of the
notion of particles and antiparticles. In contrast with Poincare or AdS theories, for combining a particle
and its antiparticle together, there is no need to construct a local covariant object since they are already
combined at the level of IRs.

We believe that this is an important argument in favor of dS symmetry. Indeed, the fact that in AdS and
Poincare invariant theories a particle and its antiparticle are described by different IRs means that they are
different objects. Then a problem arises why they have the same masses and spins but opposite charges.
In QFT this follows from the CPT theorem which is a consequence of locality since we construct local
covariant fields from a particle and its antiparticle with equal masses. A question arises what happens if
locality is only an approximation: In that case the equality of masses, spins etc., is exact or approximate?
Consider a simple model when electromagnetic and weak interactions are absent. Then the fact that the
proton and the neutron have the same masses and spins has nothing to do with locality; it is only a
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consequence of the fact that the proton and the neutron belong to the same isotopic multiplet. In other
words, they are simply different states of the same object—the nucleon. We see, that in dS invariant
theories the situation is analogous. The fact that a particle and its antiparticle have the same masses and
spins but opposite charges (in the approximation when the notions of particles, antiparticles and charges
are valid) has nothing to do with locality or non-locality and is simply a consequence of the fact that they
are different states of the same object since they belong to the same IR.

The non-conservation of the baryon and lepton quantum numbers has been already considered in
models of Grand Unification but the electric charge has been always believed to be a strictly conserved
quantum number. In our approach all those quantum numbers are not strictly conserved because in the
case of de Sitter symmetry transitions between a particle and its antiparticle are not prohibited. The
experimental data that these quantum numbers are conserved reflect the fact that at present Poincare
approximation works with a very high accuracy. As noted in Section 2, the cosmological constant is not
a fundamental physical quantity and if the quantity R is very large now, there is no reason to think that
it was large always. This completely changes the status of the problem known as “baryon asymmetry of
the Universe”.

Another consequence of our consideration is that in dS invariant theory only fermions can be
elementary and there are no neutral elementary particles. The latter is obvious from the fact that there
is no way to reduce the number of states in the IR. One might think that theories where the photon (and
also the graviton and the Higgs boson, if they exist) is not elementary, cannot be physical. However,
several authors discussed models where the photon is composite; in particular, in AdS theory it might be
a composite state of Dirac’s singletons [51–53]. An indirect confirmation of our conclusions is that all
known neutral particles are bosons.

One might say that a possibility that only fermions can be elementary is not attractive since such a
possibility would imply that supersymmetry is not fundamental. There is no doubt that supersymmetry
is a beautiful idea. On the other hand, one might say that there is no reason for nature to have both,
elementary fermions and elementary bosons since the latter can be constructed from the former. A well
know historical analogy is that the simplest covariant equation is not the Klein-Gordon equation for
spinless fields but the Dirac and Weyl equations for the spin 1/2 fields since the former is the equation of
the second order while the latter are the equations of the first order.

We see that theories based on dS symmetry on one hand and on AdS and Poincare symmetries on the
other, are considerably different. The problem with the interpretation of IRs of the dS algebra has a clear
analogy with the fact that the Dirac equation has solutions with both, positive and negative energies. As
already noted, in modern quantum theory the latter problem has been solved by second quantization.
This is possible because IRs of the Poincare and AdS algebras with positive and negative energies are
independent of each other. On the contrary, one IR of the dS algebra contains states which can be
treated as particles and antiparticles only in some approximations while in general, as we have seen in
Section 8, the second quantization formalism is not sufficient for splitting all possible states into particle
and antiparticle ones.

Depending on their preferences, physicists may have different opinions on this situation. As noted
above, many physicists treat the dS theory as unphysical and the fact that Λ > 0 as an anomaly. However,
as noted in Section 1, the accuracy of experimental data is such that the possibilities Λ = 0 or Λ < 0
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are practically excluded and this is an indication that the dS theory is more relevant than the Poincare
and AdS ones. We believe that for understanding which of those possibilities are “better” (if any),
other approaches to quantum theory should be investigated. For example, in a quantum theory over a
Galois field [54–56], Poincare symmetry is not possible and even in the AdS case one IR describes a
particle and its antiparticle simultaneously. In Galois fields the notions of “less than”, “greater than”
and “positive and negative numbers” can be only approximate. In particular, there can be no IRs over
a Galois field with the lowest weight or highest weight. As a consequence, in this theory, as well as in
standard dS theory, such quantum numbers as the electric, baryon and lepton charges can be conserved
only in some approximations and there are no neutral elementary particles. However, we did not succeed
in proving that only fermions can be elementary since in Galois fields not only Equation (54) is possible
but η(j)η(j)∗ = −1 is possible too.

A possible approach for seeking new theories might be based on finding new symmetries such that
known symmetries are special cases of the new ones when a contraction parameter goes to zero or
infinity (see e.g., the famous paper [57] entitled “Missed Opportunities”). For example, classical theory
is a special case of quantum one when h̄ → 0 and non-relativistic theory is a special case of relativistic
one when c → ∞. From this point of view, dS and AdS symmetries are “better” than Poincare one
since the latter is a special case of the former when R → ∞. A question arises whether there exists a
ten-dimensional algebra, which is more general than the dS or AdS one, i.e., the dS or AdS algebra is a
special case of this hypothetical new algebra when some parameter goes to zero or infinity. As noted in
Reference [57], the answer is “no” since the dS and AdS algebras are semisimple. So one might think
that the only way to extend the de Sitter symmetries is to consider higher dimensions and this is in the
spirit of modern trend.

However, if we consider a quantum theory not over complex numbers but over a Galois field of
characteristic p then standard dS and AdS symmetries can be extended as follows. We require that the
operators Mab satisfy the same commutation relations but those operators are considered in spaces over
a Galois field. Such operators implicitly depend on p but they still do not depend on R. This approach,
which we call quantum theory over a Galois field (GFQT), has been discussed in details in References
[26,36,54–56]. GFQT is a more general theory than standard one since the latter is a special case of the
former when p → ∞. In the approximation when p is very large, GFQT can reproduce all the standard
results of quantum theory. At the same time, GFQT is well defined mathematically since it does not
contain infinities. While in standard theory the dS and AdS algebras are “better” than the Poincare
algebra from aesthetic considerations (see the discussion in Section 4), in GFQT there is no choice since
the Poincare algebra over a Galois field is unphysical (see the discussion in References [26,54–56]).

In view of the above discussion, it seems natural to express all dimensionful quantities in terms of
(c, h̄, R) rather than (c, h̄, G) since the former is a set of parameters characterizing transitions from higher
symmetries to lower ones. Then a reasonable question is why the quantity G is so small. Indeed, in units
h̄ = c = 1, G has the dimension length2 and so one might expect that it should be of order R2 = 3/Λ.
So again the disagreement is more that 120 orders of magnitude and one might call this the gravitational
constant problem rather than the cosmological constant problem. As noted above, in standard theory
a reasonable possibility is that GΛ is of order unity. However, in GFQT we have a parameter p. In
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Reference [58] we have described our hypothesis that G contains a factor 1/lnp and that is why it is so
small.

In the present paper we have shown that the well known classical result about the cosmological
repulsion in the dS space is a special case of quantum theory with the dS algebra as the symmetry
algebra when no interaction between particles is introduced and quasiclassical approximation is valid.
Our result has been obtained without using the notions of spacetime background, Riemannian geometry
and dS QFT. This result shows that for explaining the fact that Λ > 0 there is no need to involve dark
energy or other fields.

The main achievements of modern theory have been obtained in the approach proceeding from
spacetime background. In quantum theory this approach is not based on a solid mathematical basis
and, as a consequence, the problem of infinities arises. While in QED and other renormalizable theories
this problem can be somehow circumvented, in quantum gravity this is not possible even in lowest orders
of perturbation theory. Mathematical problems of quantum theory are discussed in a wide literature. For
example, in the well known textbook [59] it is explained in details that interacting quantized fields can
be treated only as operatorial distributions and hence their product at the same point is not well defined.
One of ideas of the string theory is that if a point (a zero-dimensional object) is replaced by a string (a
one-dimensional object) then there is hope that infinities will be less singular.

For the majority of physicists the fact that GR and quantum theory describe many experimental data
with an unprecedented accuracy is much more important than a lack of mathematical rigor, existence of
infinities and that the notion of spacetime background is not physical. For this reason physicists do not
wish to abandon this notion. As one of the consequences, the cosmological constant problem arises and
it is now believed that dark energy accounts for more than 70% of the total energy of the Universe. There
exists a vast literature where different authors propose different approaches and some of the authors claim
that they have found the solution of the problem. Meanwhile the above discussion clearly demonstrates
that the cosmological constant problem (which is often called the dark energy problem) is a purely
artificial problem arising as a result of using the notion of spacetime background while this notion is
not physical.

The conclusion that the cosmological constant problem does not exist has been made earlier by
different authors from different considerations but probably all those authors accepted approaches based
on spacetime background. For example, Bianchi and Rovelli in their paper [6] entitled “Why all these
prejudices against a constant?” discussed this problem in the framework of classical GR. They argue that
since the most general form of Einstein equations contains both, G and Λ, there is no reason to believe
that nature prefers a special case Λ = 0. In their approach, both G and Λ are fundamental physical
quantities. In our paper we argue that none of this quantity is fundamental and this is in agreement with
recent intensive investigation of a possibility that gravity in not fundamental but emergent.
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