
Symmetry 2010, 2, 999-1021; doi:10.3390/sym2020999 
 

symmetry
ISSN 2073-8994 

www.mdpi.com/journal/symmetry 

Article 

Magnetization Dynamics Symmetry in Spin Torque Induced 
Magnetization Switching 

Xiaobin Wang 

Seagate Technology, 7801 Computer Avenue South, Bloomington, MN 55435, USA; 

E-Mail: Xiaobin.Wang@Seagate.com 

Received: 27 December 2009; in revised form: 28 April 2010 / Accepted: 30 April 2010 /  

Published: 7 May 2010 

 

Abstract: Magnetization dynamics symmetry plays important roles in magnetization 

switching. Here we study magnetic field and spin torque induced magnetization switching. 

Spin moment transferring from polarized itinerant electrons to local magnetization 

provides a magnetization switching mechanism without using external magnetic field. 

Besides its importance in fundamental magnetization switching dynamics, spin torque 

magnetization switching has great application potential for future nanoscale 

magnetoelectronic devices. The paper explores magnetization dynamics symmetry effects 

on spin torque induced magnetization switching, and its interactions with random 

fluctuations. We will illustrate the consequences of magnetization dynamics symmetry on 

the critical switching current magnitude and the thermal stability energy of spin torque 

induced magnetization switching, which are the two most important design criteria for 

nanoscale spin torque magnetic devices. The concept of Logarithmic magnetization 

susceptibility is used to extract symmetry and damping information on spin torque induced 

nonlinear magnetization dynamic processes, and provides paths to control spin torque 

induced switching in a fluctuating environment. 

Keywords: symmetry; magnetization dynamics; spin torque switching; random 

fluctuations 

 

1. Introduction 

Magnetization switching is a fundamental physics problem that has important practical 

implications. Achieving desired magnetization switching behavior is the first requirement for utilizing 

magnetic information. For magnetic devices, writability means the ability to switch magnetization 
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from one equilibrium state to the other equilibrium state. Readability means the magnetization 

equilibrium state is stable under disturbances, such as random thermal fluctuation, disturbing magnetic 

field and polarized current excitations. Understanding and manipulating magnetization switching is a 

challenging issue because magnetization switching is a nonlinear and non-equilibrium process 

involving large angle magnetization motion due to interactions of the magnetic system with other 

physical systems at room temperature.  

Hidden in these complex magnetization dynamics are switching behaviors that are of interest to a 

scientist working on magnetism and an engineer working on device design. Over years, I was 

fascinated by how these switching behaviors can be revealed through magnetization dynamics 

symmetry. In this paper I will explore magnetization dynamics symmetry effects on magnetization 

switching. The focus is on spin torque induced magnetization switching [1,2] and its comparison to 

“more traditional” magnetic field induced switching. However, I believe the approaches developed 

here can be pursued fruitfully in other “more exotic” magnetization switching mechanisms, such as all 

electric field magnetization switching [3] and all optical magnetization switching [4]. 

Magnetization switching refers to magnetization motion from one equilibrium state to another 

equilibrium state. The magnetization equilibrium state is determined by magnetic energy minimization 
with respect to the magnetization vector: )(min ME

M


 . The derivative of magnetic energy to 

magnetization vector gives a restoring force called effective field 
M

E
Heff 





 . For magnetization 

motion under a constant magnetic field H


, the effective field is the magnetic field and magnetic 

energy is Zeeman energy: MHE


 .  

Additional energy terms in a magnetic system include exchange energy and anisotropy energy. 

Exchange energy brings magnetization order in ferromagnetic material. For a spatially distributed 

magnetization system iM


 (where i denotes spatial position), exchange energy prefers to order 

neighboring magnetization to the same direction: 



ji

ji MME
,


, where  ji, denotes nearest 

neighboring positions. Magnetization magnitude at individual spatial location is conserved 

( iM


=constant). As nano-scale magnetic device scales down, magnetization reversal can be well 

approximated by the coherent switching mode, where )( jiMM ji 


 due to exchange ordering 

effects. In this manuscript, we study coherent magnetization switching with element magnetization 

described by a magnetization vector with constant magnitude: 

)cos,sinsin,cos(sin),,( szyx MMMMM 


. Exchange energy does not explicitly enter 

coherent magnetization switching formalism.  

When the physical property of a device has a spatial direction preference, that property is called 

anisotropy. The preference for the magnetization to point in a particular direction is the result of 

magnetic anisotropy energy. There are two types of anisotropy energy. The first one is the crystal 

anisotropy energy from magnetic material crystal structure. The second one is the shape anisotropy 

energy. The origin of shape anisotropy comes from magnetic dipole interaction (or magnetostatic 

interaction). The basic property of magnetostatic interaction is the avoidance of surface magnetic 

charge accumulation. Figure 1 illustrates shape anisotropy (or demagnetization anisotropy). Starting 

with a cubic element with magnetization orientation in the vertical direction, two cuts change the 
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element shape to a thin film and an elongated needle. The magnetization direction changes in the 

process as a result of minimizing shape anisotropy energy. The minimization of shape anisotropy is the 

same as avoiding surface magnetic charge accumulation. Here we assume the material crystal 

anisotropy is much smaller than the shape anisotropy and the magnetization direction is determined by 

shape anisotropy. For magnetic material with much stronger crystal anisotropy, the magnetization 

direction follows the direction of the crystal anisotropy. For example, in the thin film structure Figure 

1(b), if there is huge perpendicular crystal anisotropy, the equilibrium magnetization points in the 

vertical direction against the thin film plane demagnetization factor. This structure is called 

perpendicular thin film structure.  

The magnetic anisotropy energy can be written in a general form:  

  222
2

2 zzyyxx
s mNmNmN
VM

E        (1) 

where sM  is the magnetization saturation, V  is the magnetic element volume and sMMm /
   is the 

normalized magnetization. zy NNN ,,x  are element anisotropy factors (or demagnetization factors) 

including both shape anisotropy and crystal anisotropy. 

Figure 1. Shape anisotropy (or demagnetization factor) effects on magnetization 

equilibrium states. Starting with a cubic element with magnetization orientation in the 

vertical direction, two cuts change the element shape to a thin film and an elongated 

needle. The magnetization direction changes in the process as a result of minimizing shape 

anisotropy energy. The minimization of shape anisotropy is the same as avoiding surface 

magnetic charge accumulation. 

 

Spin torque induced magnetization switching involves a structure of two ferromagnetic layers 

sandwiching an insulating barrier. The magnetization direction of one ferromagnetic layer (reference 

layer) is fixed by coupling to a pinned magnetization layer, while the magnetization direction of the 

other ferromagnetic layer (free layer) can be changed. To switch the free layer magnetization to the 
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same direction as the reference layer magnetization, an electric current is passed from the reference 

layer to the free layer. The injected current electrons have spins pointing to the same and the opposite 

directions of the reference layer magnetization. After passing through the reference layer, the electrons 

have a preferred spin orientation direction pointing to the same direction as the reference layer 

magnetization. This is because most of the electrons with spin pointing to the opposite direction of the 

reference layer magnetization are reflected back due to interaction between itinerant electron spin and 

reference layer local magnetization. The polarized current electrons, with a net spin moment in the 

same direction as the reference layer magnetization, will switch the free layer magnetization to the 

same direction as the reference layer magnetization. In order to switch the free layer magnetization to 

the opposite direction of the reference layer magnetization, electron current passes from the free layer 

to the reference layer. Based upon the same physics argument as before, the electrons reflected from 

the reference layer have a preferred spin direction opposite to the direction of the reference layer 

magnetization. These will switch the free layer magnetization to the opposite direction of the reference 

layer magnetization.  
The magnetization dynamics at finite temperature is described by the stochastic Landau-Lifshitz-Gilbert 

equation with spin torque terms: 

  
s

thefftheff M

T
hhmmhhm

dt

md


 )( .     (2) 

where m


 is the normalized magnetization vector, time t  is normalized by sM with   being the 

gyromagnetic ratio. 
m

MHh seffeff 








/  is the normalized effective field with normalized energy 

density  , and   is the damping parameter. fluch


 is the thermal fluctuation field, whose magnitude is 

determined by the fluctuation-dissipation condition at room temperature and whose formalism follows 

reference [5–9]. 
VM

T
T

s
norm


  is the normalized spin torque term with units of magnetic field. The net 

spin torque T

 can be obtained through a microscopic quantum electronic spin transport model [10–17]. 

At the level of macroscopic magnetization dynamics, spin torque can be approximated through an 
adiabatic term proportional to pmm


  and non-adiabatic term proportional to pm


  where p

  is a 

unit vector pointing to the spin polarization direction.  

In this manuscript, we consider the dynamic thermal reversal of a magnetic element under 

combined magnetic field and spin torque excitation as in Figure 2. For the case of magnetic field lying 

in the plane X–Z, the energy of the magnetic system is: 

zxz
z

y
y

x
x

s

YmhYmhm
N

m
N

m
N

VM

E
cossin

222
222

2
     (3) 

The spin polarization direction is ),,( zyx nnnp  . Here we neglect the non-adiabatic term (which is 

usually much smaller) and study the case of spin torque )(/ pmmMT s


   with   proportional to 

the spin torque current magnitude. 
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Figure 2. Configuration of the manuscript: magnetic element under combined magnetic 

field and spin torque current excitations. 

 

2. Symmetry Effects on Magnetic Field Induced Magnetization Switching 

As an introduction to symmetry effects on magnetization switching dynamics, let’s consider the 

simplest case where only an external magnetic field is acting on the element and the magnetic field is 

aligned along the z axis (Y = 0): 

zzz
z

y
y

x
x mhm

N
m

N
m

N
 222

222
        (4) 

with zxy NNN  . When there is no magnetic field, the stable equilibrium magnetization states are: 

0,0,1  yxz mmm  with energy minimum 
2

zN
 . There are saddle points at 0,1,0  yxz mmm  

between the two energy minimums and the energy barriers are 
2

zx NN 
 . External magnetic field h 

in the opposite direction of the equilibrium magnetization increases the magnetization equilibrium 

energy to h
Nz 
2

  and lowers the saddle point magnetic energy to 
)(22

2

zx

x

NN

hN


 . For 

magnetic fields smaller than )( zx NN  , there is an energy barrier 
2

1
2 














zx

zx

NN

hNN  between 

the two equilibrium magnetization states. For magnetic fields bigger than )( zx NN  , the initial 

equilibrium magnetization state is destroyed and the magnetization relaxes to the final equilibrium 

state aligned to the external magnetic field.  
The critical magnetic field )( zx NNh   required to switch the magnetization is called the 

coercivity. The energy barrier 
2

1
2 














zx

zx

NN

hNN  determines the element’s thermal stability. 

For long time thermal decay, a Neel-Arrhenius type formula is used to link thermal fluctuation induced 

switching time to this energy barrier: Tk

hE

Beft
)(

1
0


 , where t  is the switching time, 0f  is the attempt 

frequency, TkB  is the thermal agitation energy and  VMhE s
2)(  is the element stability energy 
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barrier. In magnetic field induced magnetization switching, the coercivity and stability barrier are the 

two most important parameters for writability and readability.  

Based on the above energy surface analysis, the coercivity and energy barrier depend only upon 
anisotropy difference )( zx NN  . Thus, for an elongated magnetic element, the coercivity and energy 

barrier do not depend upon its axial symmetry property. Figure 3 shows the example of two magnetic 
elements. The first magnetic element is a thin film element with zxy NNN ,  due to strong out-of-plane 

demagnetization factor. The second element has cylindrical axial symmetry with zxxy NNNN  , . If 

zx NN   is the same for these two elements, they will have the same coercivity and energy barrier 

independent of shape anisotropy factor yN . 

Figure 3. Configurations of thin film magnetic element without axial symmetry and 

magnetic element with cylindrical symmetry. 

 

Figure 4 shows magnetization switching as a function of time (normalized by sM ) for two 

magnetic elements with same zx NN   and different yN . It is a numerical simulation solving Landau-

Lifshiltz-Gilbert (LLG) equation (2) at zero temperature. The thin film element has anisotropy factors: 
2907.0,5957.0,6800.11  zxy NNN . The axial symmetric case is approximately represented by 

anisotropy factors: 8205.3,1255.4,6205.4  zxy NNN . The first case corresponds to a typical 

magnetic thin film element with strong out-of-plane demagnetization factor. The second relates to an 

element with perpendicular crystal anisotropy in z direction (thin film plane in x – y direction) as 
discussed in the introduction. The two elements have the same 305.0 zx NN  and quite different axial 

symmetry ( xy NN  ). The external magnetic field magnitude 31.0h  is just above the coercivity value 

305.0h . In the case of large damping parameter 0.2 , these two elements have similar switching 

behavior. However, in the case of small damping parameter 0055.0 , the two elements’ switching 

speeds are quite different. The thin film element switches much faster than the axial symmetric 

element. Damping parameter in ferromagnetic system includes both intrinsic and extrinsic relaxation 

processes. Intrinsic damping is small (~ 0.005) and usually refers to ferromagnetic relaxation process. 

Extrinsic damping is due to coupling of magnetic system to other sub-systems. Depending on the 
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physical process, extrinsic damping parameter can vary in a large range. Large damping (0.1 ~ 1) is 

also chosen quite frequently in micromagnetic simulation for interacting magnetic grains.  

Figure 4. Dynamic switching of thin film magnetic element and magnetic element with 

cylindrical symmetry for big and small damping parameters. For big damping parameter, 

spatial symmetry difference between the thin film element and the cylindrical element does 

not affect the magnetization switching process. For small damping parameter, the 

difference in spatial symmetry plays an important role in magnetization switching 

behavior. 

 

The symmetric effects on magnetization switching behavior for different damping parameters can 

be understood through analysis of the LLG equation at zero temperature. Without thermal fluctuation 

and spin torque terms, the LLG in spherical coordinates is:  








































2sinsin

1

sin

1

dt

d

dt

d

       (5)  

The first terms on the right side of the equations are the gyro-magnetic term effhm


  and the 

second terms are the damping term effhmm
  . The gyro-magnetic term rotates the magnetization 

along the constant energy level and the damping term moves the magnetization toward a lower energy 

level along the energy gradient direction  .  

In the limit of high damping parameter 1 , the gyro-magnetic term can be neglected and the 

magnetization relaxes along the energy gradient. The magnetization reversal trajectory in the large 

damping case is constrained in a minimum energy plane. For the thin film element, this minimum 

energy plane is the thin film plane. For the cylindrically symmetric element, this plane can be any 

plane aligned to easy axis. Easy axis refers to the direction that magnetization prefers to settle at 
equilibrium condition. Here it is the z direction for smallest anisotropy factor ( zN ). Thus, the 

difference in spatial symmetry between the thin film element and the cylindrical element does not 

affect the magnetization switching process. The magnetization switching process for large damping 

parameter can be approximated by a one dimension dynamical system:  
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














dt

d

h
NNN

mhm
N

m
N

m z
zxz

zzz
z

x
x

y cossin
2

)(

222
,0 222

  (6)  

Only zx DD   term enters into the solution of this one-dimensional system.  

On the other hand, in the limit of low damping parameter 1 , the magnetization precesses many 

circles around energy surface during the relaxation process. Magnetization trajectories are quite 

different for the thin film element and the axial symmetric element. The difference in spatial symmetry 

plays an important role in determining magnetization switching behavior. The analytical 

approximation for the small damping case can be pursued by averaging out fast rotating terms along 

constant energy levels. The justification for this approximation is that the magnetization traces many 

circles on a constant energy level before it relaxes to a lower energy level through small damping 

terms. A one dimensional dynamical system on energy level can be obtained as: 

dtFd )(          (7) 

where )(F is the averaged relaxation force on a particular energy level: 


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
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
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





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


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




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



/

sin

sin

1

/

sin

)(

2

2

2

d

d

F
     (8) 

where  ,  are magnetization angles in spherical coordinates.  is the integration around a constant 

energy level  ),( . Figure 5 shows the function )(F  for two elements. Although the difference 

between ending energy and starting energy is the same for the thin film element and the axial 

symmetric element, the thin film element does have a forcing much bigger than that of the axial 

symmetric element. As a result the thin film element switches much faster.  

Figure 5. Averaged forcing (normalized, unitless) versus normalized energy level for thin 

film magnetic element and magnetic element with cylindrical symmetry. The averaged 

forcing is significantly larger for thin film element. 
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3. Symmetry Effects on Critical Current of Spin Torque Induced Magnetization  

The example in the previous section shows the effects of symmetry on switching speed for magnetic 

field induced magnetization switching. However, for a magnetic field aligned to the element’s long 

axis, the element’s coercivity and thermal stability barrier only depends upon the anisotropy difference 

zx NN  . Also the element’s coercivity and thermal stability barrier scale the same. They are all 

proportional to zx NN  . In this section, I will show dynamic symmetry effects on spin torque induced 

magnetization switching. The dynamic symmetry effects on spin torque induced switching are quite 

different from those of magnetic field induced switching. Dynamic symmetry plays more important 

roles in spin torque induced magnetization switching and this provides opportunities for improving 

spin torque device writability and readability. 

For spin torque induced magnetization switching, the critical switching current is defined as the 

minimum polarized current magnitude to switch the magnetization. This is the writability parameter 

similar to coercivity in the magnetic field induced switching case. The readability parameter for spin 

torque switching is still the thermal stability barrier. However, for spin torque switching readability, 

instead of energy barrier dependence upon magnetic field, energy barrier dependence upon current 

magnitude is required. 

The dynamic picture of spin torque induced magnetization switching is quite different from that of 

magnetic field induced magnetization switching. This is illustrated in Figure 6. For magnetic field 

induced switching, the external magnetic field raises the initial equilibrium magnetization state energy 

and lowers the saddle point energy. When the magnetic field induced energy is bigger than the energy 

barrier between multi-stable magnetization states, the initial magnetization equilibrium state is 

destroyed and the magnetization evolves to its final equilibrium state through magnetization relaxation. 

However, for spin torque induced magnetization switching, spin torque excites magnetization 

precession out of the initial equilibrium state. In this process, there are always two equilibrium 

magnetization states and damping (or magnetization relaxation) tries to pull the magnetization back to 

its initial equilibrium state. Spin torque switching is a competition between spin torque excitation and 

magnetization damping. 

Figure 6. Schematic picture of magnetization switching mechanism difference for spin 

torque induced switching and magnetic field induced switching.  
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The stochastic LLG with spin torque term at finite temperature (2) can be written in spherical 

coordinates as two dimensional stochastic differential equations: 

dtdtd

dtdtd

T

T

2

1

2
sin

sin

2]sin
tansin

1
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

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














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
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
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     (9) 

where 21,   are Gaussian random variables with zero mean and variance 1. 
VM

Tk

s

B
T 2

   is the thermal 

fluctuation magnitude. The two dimensional stochastic differential equations (9) can be simplified to a 

one dimensional system for small damping parameter (which is usually true for ferromagnetic 

material). For small damping parameter, a stochastic averaging technique [18,19] allows equation (9) 

to be integrated around constant energy levels to obtain the following one dimensional stochastic 

differential equation for energy levels: 

)()()( tdWDdtAd         (10) 

where )(A  is a deterministic term and )(D  is a stochastic term. )(tdW  is the increment of a 

standard Brownian process. )(A  term can be explicitly written as: 
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where  ,  are magnetization angles in spherical coordinates.   is the integration around a constant 

energy level  ),( . For the general case of polarization pointing at an arbitrary direction 

( zyx nnn ,, ) in magnetic element’s coordinate (Figure 2), B and C terms in (11) can be expressed as: 
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The stochastic term )(D  can be explicitly written as: 
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The justification for this stochastic average technique is the same as in previous section: for small 

damping parameter, magnetization traces many circles on a constant energy level before it is changed 

by small damping and thermal fluctuations. Notice that the thermal fluctuation magnitude is 

proportional to damping through the fluctuation-dissipation condition. Small damping implies small 

thermal fluctuations.  
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The critical switching spin current density is determined by the minimum   that gives a positive 

value of the expression  
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CBd     (14) 

for all energy levels. Notice formula (14) is the numerator of equation (11) with  set to zero. In the 
case of spin polarization pointing to the z direction ( 1zn ), Formula (14) gives a proportionality for 

the critical switching current: 

 ))((M 2
s zyxycrit NNNNV   .     (15) 

We see immediately that critical switching current scales differently compared to coercivity and 

thermal stability barrier. Spin torque switching current scales with the difference between out-of-plane 
demagnetization factor yN  and in-plane demagnetization factors zx NN , , while coercivity and thermal 

stability energy scales as the difference between in-plane demagnetization factors zx NN , . For a thin 

film element as in Figure 2, zx NN yN  due to the strong out of plane demagnetization factor. 

Formula (15) implies that spin torque critical switching current is penalized quite a lot by the out of 

plane demagnetization factor. 

The scaling difference between spin torque switching and magnetic field switching is the result of 

different magnetization switching dynamics as explained in Figure 6. For spin torque induced 

magnetization switching, spin torque excites magnetization precession out of the initial equilibrium 

state. Magnetization switching needs to be achieved through magnetization precessing out of the thin 

film plane. Strong out of plane demagnetization in thin film elements brings the energy penalty that 

results in critical switching current being proportional to the out of plane demagnetization factor.  

The scaling difference between thermal stability and spin torque switching current provides an 

opportunity to decrease spin torque current density without sacrificing thermal stability. The approach 

is to bring more cylindrical dynamic symmetry to magnetization switching. The reduction of spin 

current without sacrificing thermal stability can be achieved by reduction of out of plane 
demagnetization factor yN  and at the same time maintain the difference in in-plane demagnetization 

factor zx NN  . The ultimate goal of this approach is to reach cylindrical symmetry in magnetization 

dynamics as illustrated in Figure 7. When magnetization dynamics are cylindrically symmetric, the 

spin torque critical switching current scales the same as the thermal stability barrier. 

For practical application, the challenge is to keep a geometrically thin film structure at the same 

time. A thin film geometric structure is essential for many other required device properties, such as a 

high magnetoresistance ratio. One solution to achieve cylindrically symmetric magnetization dynamics 

and thin film geometric structure at the same time is illustrated in Figure 7. When we rotate the 

configuration of thin film element with cylindrical symmetry magnetization dynamics, we recognize 

that this can be achieved by a thin film element with big perpendicular crystal anisotropy. Indeed for a 

thin film with perpendicular anisotropy much bigger than the out-of plane demagnetization factor, the 

critical spin torque switching current scales the same as the thermal stability barrier. 
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Figure 7. Approach leads to the same scaling of spin torque switching current and thermal 

stability barrier: the importance of magnetization switching dynamic symmetry. 

 

Another interesting difference between spin torque induced and magnetic field induced switching is 

the different angular dependence of critical switching current and coercivity. For magnetic field induced 

switching, when the magnetic field is not perfectly aligned to the long axis of the element, the coercivity 

decreases. The angular dependence of coercivity is the well known Stoner-Wohlfarth curve [20]: 
3/22/32/3 )sin/(cos1 YY  , where Y is the angle between the applied magnetic field direction and the 

magnetic element long axis. This formula can be obtained by analyzing the energy surface: 

 coscossinsin
2

sin
2

)(

2
22 YhYhm

NNNN
z

zzxz 


 . Again, because the onset of magnetic field 

induced switching results from annihilation of the energy barrier, the coercivity can be obtained by the 
analysis of magnetic energy with constrained magnetization 0ym .  

Figure 8 shows the angular dependence of critical switching current for a magnetic element. Spin 

polarization direction is in-plane and has an angle X relative to the easy axis of the element 
( )cos(,0),sin( XnnXn zyx  ). Here we consider the more general case where an additional magnetic 

field points to the easy axis of magnetic element. After normalizing to the critical switching current at 

X=0, the angular dependence of switching currents lies on the universal curve Xcos/1  for all external 

magnetic fields with amplitudes below coercivity. This angular dependent critical switching current is 

quite different from angular dependent coercivity. When the spin polarization direction is not perfectly 

aligned to the long axis of the element, the critical spin current increases. This result has been 

discovered in [21].  
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Figure 8. Critical spin torque switching current versus polarization angle for different 

magnetic field magnitudes. After normalization to the critical switching current at zero 

polarization angle, they all follow the universal curve of 1/cos(polarization angle). 

 

For the general case of spin polarization pointing to an arbitrary direction ( zyx nnn ,, ), the angular 

dependence of the critical switching current can be obtained through symmetry arguments. In the case 

of magnetic field pointing to the easy axis of the magnetic element, the only nonzero part of spin 
torque   term in the integration expression of (14) is  )sin( 2

znd  . All the yx nn , parts of   term in 

the integration are zero due to the symmetric condition that   is an even function of   for 

  . Thus the critical switching current for a magnetic field pointing to easy axis of the 

element is proportional to zn/1 . This is independent of magnetic field amplitude, element geometric 

dimensions and magnetic properties.  

4. Symmetry Effects on Magnetic Element Stability under Spin Torque Excitation  

For long time thermal reversal, when switching current is much less than the critical switching 

current, a Neel-Arrhenius type formula can be used to link the observed thermal switching time to the 

spin torque current Tk

IIE

B

c

eft
)/(

1
0


 , where t  is the switching time, 0f  is the attempt frequency, TkB  is 

the thermal agitation energy and )/( cIIE  is the thermal reversal barrier for spin torque induced 

thermal magnetization switching. cI  is the critical switching current at zero temperature, which has 

been defined in the previous section.  

The thermal stability barrier for magnetic field induced switching was discussed in section II. For 

an external magnetic field pointing to the easy axis of the element, the magnetic field energy barrier 

scales with magnetic field as: 
2

),,(
1),,( 












zyxc
zyxMH NNNh

h
NNN      (16) 
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where )( zxc NNh   is the critical switching field at zero temperature. 

2/)(),,( zxzyxM NNNNN   is the energy barrier at zero external magnetic field. Formula (16) is 

an exact solution based upon energy surface analysis. It can also be obtained by exact solution of 

stochastic differential equation (9). One important property of formula (16) is that this functional 
scaling relation between the energy barrier (normalized by M ) and the external magnetic field 

(normalized by ch ) is independent of element geometric shape and magnetization dynamics symmetry. 

The same functional relationship between normalized reversal barrier and normalized magnetic field 

holds whether it is a thin film element or a cylindrically symmetric element.  

However, for spin torque magnetization dynamics, the situation is quite different. Due to dynamic 

effects of spin torque switching, the functional scaling relation between the energy barrier (normalized 
by M ) and the spin torque current (normalized by cI ) depends upon element geometric shape and 

magnetization dynamic symmetry. 
Let’s first consider the case of an element with cylindrical symmetry ( xy NN  ). In this case, 

0





, and the stochastic Landau-Lifshitz-Gilbert equation (LLG) in spherical coordinates (9) can be 

simplified to a one-dimensional system only involving  : 

dtdthNNd Txy 12]
tan

sinsincossin)([ 


     (17) 

Notice, that in the cylindrically symmetric case, the spin torque term ( )sin has exactly the same 

format as the external magnetic field term )sin( h  and can be treated formally as an effective field 

term. According to formula (16), thermal reversal barrier for spin torque current switching should be: 

2

),,(
1

2

1












zyxc
sc NNNI

I
VMHE      (18) 

for the cylindrically symmetric case.  
For the general asymmetric case ( xy NN  ), when the damping parameter is small, the stochastic 

LLG can be integrated around constant energy levels to give a one dimensional stochastic differential 

equation for energy levels as shown in section III. It can be shown that a global stationary distribution 

exists for such a one-dimensional stochastic dynamical system [22]. The stationary distribution satisfies: 

TkVUM Bse
Z

W /21         (19)  

where Z is the normalization factor and U is related to energy of the system as:  
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dM
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M
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    (20)  

where the integrations are for the a constant energy level  . The functions )(M  and )(M  are 

called “melnikov functions”. Notice here W is not an equilibrium distribution in the statistical 
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mechanics sense; instead it is a stationary out-of-equilibrium distribution induced by spin polarized 

current, gyromagnetic motion and damping dynamics. The function U  has to be understood as an 

“effective potential” which governs the stochastic dynamics of the system. The spin torque induced 

reversal barrier is: 


1

0

)(




 dUU        (21)  

where 2/0 zN  is the energy at stable equlibrium state and 2/1 xN  is the energy at transition 

saddle point.  
In the case of cylindrical symmetry ( xy NN  ), the normalized magnetic field switching coercivity 

is )( zxc NNh   and the normalized critical switching current is )( zxc NN  . The melnikov 

functions can be easily calculated as: 

  







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
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






22

2

sin2sin

sincos2sin

dM

NNdM zx
    (22) 

The spin torque induced reversal barrier is: 
















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1
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NNN
U

x
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
   (23)  

Equation (23) gives 









c

ch
U


2

1
2

. In the thermal reversal region, for c  , 

2

1
2

2
1

2 







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


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


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c

c

c

c hh
U







. Written in a dimensional format, this gives Equation (18). This 

shows that the approach of stochastic averaging with an “effective potential” does give results 

consistent with the exact solution of the Fokker-Planck equation for the cylindrically symmetric case.  
For the general case without cylindrical symmetry, xy NN  , exact solutions of the melnikov 

functions can be obtained: 

     
  

  
  

zy

z

zx

zy

zxy

xyz

zxy

xyz

zx

x
zxy

NN

N

NN

NN
M

NNN

NNN

NNN

NNN

NN

N
NNNM



































































2
2)(

2

2

2

22
24)(

 

(24)  

where )(x  and )(x  are complete elliptic integral of the first and second kind. The normalized 

magnetic field switching coercivity is )( zxc NNh   and the normalized critical switching current is: 

 

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




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x
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


 . The thermal reversal barrier is: 
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Equation (25) can be written in following form:  
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with a thermal symmetry factor  : 
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(26) implies: 
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zyxc
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where the symmetry factor   depends upon magnetic element symmetry. Figure 9 shows an example 

of the dependence of   upon magnetic element geometric shape.  approaches 2 for the cylindrically 

symmetric case, consistent with the exact solution of the Fokker-Planck equation and   is close, but 

bigger than 1 for the thin film element case. For an example of a rectangular element with dimension 
180nm x 90nm x 2nm,   equals to 1.15. 

Figure 9. Thermal stability factor  dependence upon magnetic element symmetry. 

 

The dependence of thermal stability factor   on magnetization symmetry implies that there is no 

universal scaling between the normalized thermal reversal barrier and the normalized switching current 

density for spin torque induced magnetization switching. A symmetric factor that depends upon 

element anisotropy factors must be considered when scaling the thermal reversal barrier to switching 

current. [23] studied spin torque current fluctuation effects on spin torque induced magnetization 

switching. Theoretical and experimental work showed that fluctuating current effects on spin torque 

switching strongly depends upon magnetization dynamics symmetry. 
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5. Dynamic Symmetry Information and Damping Parameter Extraction through Magnetization 

Logarithmic Susceptibility 

The effects of dynamic symmetry and damping parameter on magnetization switching have been 

illustrated in previous sections. In this section, I will present a method to extract this information based 

upon the concept of logarithmic magnetization susceptibility.  

Logarithmic susceptibility (LS) is a concept originally proposed for the study of the probability of 

large infrequent fluctuations in non-adiabatically driven systems [24,25]. For a thermally activated 

magnetization process, magnetization logarithmic susceptibility can be defined as a change of the 

activation reversal barrier due to external forcing at various frequencies. External forcing here can be 

either external magnetic field or spin torque. Because thermally activated magnetization reversal 

naturally involves large angle magnetization dynamics, logarithmic susceptibility provides rich 

information on nonlinear magnetization dynamics and possible ways to control the thermal 

magnetization activation rate. 

We consider the case of spin polarization pointing along the easy axis of a magnetic element (z 

axis). Using notation from reference [26], the stochastic LLG (2) can be written as: 



 Wcrd
dt

dX  2)(       (29) 

where  zzzm ,sin1,cos1 22  


 is the normalized magnetization, 
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
, 
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B
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  is the 

thermal fluctuation magnitude and 1W , 2W are the standard Brownian motions. The gyro-magnetic 

rotation term and damping terms are:  
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and thermal fluctuation terms are: 
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For long time thermal reversal with 1
2


VM

Tk

s

B  and external driving forces well below critical 

switching forces, the magnetization switching is determined by the optimal reversal path, which is the 

minimization of the action functional of the above stochastic system [26–28]: 

dtXrXdXXXS
T

T  



 




0

2

1 )()()(
4

1
][       (32) 

The thermal reversal barrier is determined by: 

 ][minlim XST
XT 

        (33) 
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Which, with the minimization function )(tX , gives the optimal reversal path. For the case of no 

external forcing, 0 , it can be proven that  


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
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1     (34)  

Substituting (34) into (32) gives ][XST  and ][ oT XS  only for the optimal path that satisfies: 

)()( oo
o XrXd

dt

dX
       (35) 

with the boundary conditions that oX is at an equilibrium point at T  and that oX is at a 

transition saddle point at T . Note that in equation (35) the d  term and r  terms have 0 . 

In the case of thermal magnetization switching excited by a time varying external spin torque 
current )(t , the action functional is: 

dttXrtXdXrXdXXXS
T

T  

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 
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][     (36) 

where ),,(' tXr   and ),,(' tXd   represent gyro-magnetic motion and damping dynamics due to time 

varying external forces. Using relation (35), the action functional for time varying perturbation forces 

can be approximated to the leading order as: 

    dtthXrthXdXdXtXSXS
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The energy barrier decrease due to external time varying perturbations is: 
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Here we consider periodic spin torque driving )()( tt   , where   is the driving frequency. The 

optimal reversal path is: 
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and external driving force is: 
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The reversal barrier reduction due to periodic spin torque driving can be obtained: 
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222 )())(sin)(cos)(()(1)(     (41) 

The logarithmic susceptibility is defined as the reversal barrier reduction due to external periodic 

driving: 

 

  )())(sin)(cos)(()(1)(

)(),(min

222 tzNtNtNtztzt

dttttE

ozoyoxoo

c
tc



 







  (42) 

where )(t  is the magnetization logrithmic susceptibility. If an external periodic forcing is composed 

of many harmonic frequency components, 
k

tik
ket  )( , the reversal barrier reduction can be 

calculated as: 


k

tik
k

t

c

c

ekE  )(min        (43) 

For a single frequency component, the roll-off of logrithmic susceptibility with frequency determines 

the decreasing effects of reversal barrier reduction as the driving AC frequency increases.  
For the simplest case of a magnetization element with cylindrical symmetry: zxy NNN  , an 

analytical solution can be obtained for the optimal path:  

  tNN
o

zyetz )(1tancos)(          (44) 

Note here time is normalized by sM . The logarithmic susceptibility is: 

        2)(1)(1 tancos1tancos)( tNNtNN
xy

zyzy eeNNt       (45) 

Figure 10 shows the optimal reversal path for a cylindrical symmetric case with saturation magnetization 
ccemuM s /1000  and demagnetization factor 48.0,04.6  xyz NNN . The logarithmic susceptibility 

in the time domain is also shown in Figure 10. The damping parameter here is 0.0055. Figure 11(a) 

shows the frequency response of the logarithmic susceptibility for different damping parameters. It is 

clear from this figure that the logarithmic susceptibility’s frequency response is quite sensitive to the 

damping parameter. Thus, the damping parameter of the element can be obtained by fitting to the 

frequency dependence of the logarithmic susceptibility. For practical application, the energy barrier 

reduction required for the calculation of logarithmic susceptibility frequency response can be obtained 

from measured magnetization switching time. 

For magnetization dynamics without cylindrical symmetry, numerical solutions need to be used to 

obtain the optimal reversal path (35) and logarithmic susceptibility (42). Figure 10 shows the optimal 

reversal path for a thin film element with 180nm length, 90nm width and 2nm thickness. The 

magnetization saturation is 1000emu/cc and damping parameter is 0.0055. Also shown on the figure is 

the optimal reversal path in the time domain. Compared to the cylindrically symmetric case, the 

magnetization trajectory for thin film element is highly elliptical. This is because the out-of-plane 

demagnetization factor of the thin film element strongly suppresses the out-of–plane component of the 

magnetization motion. For a thin film element, the optimal path involves interactions between high 

frequency gyromagnetic rotation and low frequency damping dynamics. This is quite different from 
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the cylindrically symmetric case (where gyromagnetic motion and damping are effectively separated). 

The high frequency fluctuations of the time domain logarithmic susceptibility are a signature of this 

interaction between gyromagnetic motion and damping dynamics. It is also through this interaction 

that symmetries of magnetization dynamics are revealed. Figure 11 shows the frequency response of 

the logarithmic susceptibility for different demagnetization factors, corresponding to magnetization 
dynamics with different symmetries. The case of 92.11yN  corresponds the simulation in Figure 10. 

It is clear from Figure 11 that magnetization dynamics symmetry can be obtained by fitting to the 

frequency response of logarithmic susceptibility. Experiment measurements were done in [29] to 

determine a ferromagnetic thin film element’s damping parameter through logarithmic susceptibility. 

The logarithmic susceptibility also provides a path to control spin torque induced switching in a 

fluctuating environment. During the reading of a magnetic element, the high frequency read current 

can be designed to minimize its perturbations on the magnetization stable state. 

Figure 10. (a) Optimal reversal path and (b) time domain logarithmic susceptibility for a 

magnetization element with cylindrical symmetry. (c) Optimal reversal path and (d) time 

domain logarithmic susceptibility for a thin film magnetic element with strong out-of-plane 

demagnetization factor.  
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Figure 11. (a) Frequency dependence of logarithmic susceptibility upon damping 

parameters for a magnetic element with rotational symmetry. (b) Frequency dependence of 

logarithmic susceptibility upon magnetization symmetry for magnetic thin film elements 

with different demagnetization factors. Logarithmic susceptibility’s frequency response is 

quite sensitive to the damping parameter and magnetization dynamic symmetry. 

 

6. Conclusions 

Symmetry effects on spin torque and magnetic field induced magnetization switching were studied. 

Compared to magnetic field induced switching, dynamic symmetry plays more important roles in spin 

torque induced magnetization switching. Dynamic symmetry effects on the critical switching current 

and the spin torque perturbed stability barrier were obtained and their implications to practical device 

design were discussed. Logarithmic magnetization susceptibility was used to extract symmetry and 

damping information on spin torque induced nonlinear magnetization dynamic processes. 
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