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Abstract: The symmetries that govern the laws of nature can be spontaneously broken,
enabling the occurrence of ordered states. Crystals arise from the breaking of translation
symmetry, magnets from broken spin rotation symmetry and massive particles break a phase
rotation symmetry. Time translation symmetry can be spontaneously broken in exactly the
same way. The order associated with this form of spontaneous symmetry breaking is char-
acterised by the emergence of quantum state reduction: systems which spontaneously break
time translation symmetry act as ideal measurement machines. In this review the breaking
of time translation symmetry is first compared to that of other symmetries such as spatial
translations and rotations. It is then discussed how broken time translation symmetry gives
rise to the process of quantum state reduction and how it generates a pointer basis, Born’s
rule, etc. After a comparison between this model and alternative approaches to the problem
of quantum state reduction, the experimental implications and possible tests of broken time
translation symmetry in realistic experimental settings are discussed.
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1. Introduction

The physical laws of nature typically possess a great amount of symmetry. We expect Newton’s laws
for example to give an adequate description of the motion of a pendulum, irrespective of its precise posi-
tion on earth or the time of day. Imposing such symmetry constraints on theorems in physics has direct
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implications for the processes that can be described by them. The translational and temporal invariance
of Newton’s laws for example are responsible for the conservation of momentum and energy in classical
physics [1]. In quantum mechanics the role played by symmetry is even stronger. Having a translation-
ally invariant Hamiltonian does not just forbid processes that don’t conserve momentum. It also means
that all eigenstates of that Hamiltonian are simultaneously eigenstates of the (total) momentum operator.
In principle any physical object described by such a Hamiltonian should therefore always be in a trans-
lationally invariant state. Clearly this situation is not realised in our everyday world. Even though the
Hamiltonian governing the description of objects like tables and chairs must be translationally invariant
due to the homogeneity of empty space, the objects themselves can occur in a state that breaks the trans-
lational symmetry. The understanding of the mechanism of spontaneous symmetry breaking, explaining
how symmetry-broken states can result from the symmetric laws of nature, is one of the highlights of
modern quantum physics [2,3]. It was originally formulated in the context of magnetism in solid state
theory, but is in fact a general phenomenon that is also central to many of the ideas in other fields of
physics, including elementary particle physics and cosmology [4].

Almost any conceivable form of symmetry is spontaneously broken somewhere in nature, from broken
translational symmetry in crystals or broken phase rotation symmetry in superconductors and massive
elementary particles to broken supersymmetry resulting in the distinction between bosons and fermions.
The only symmetry in quantum mechanics that is not often thought of as being subject to spontaneous
breakdown is its unitary time translation symmetry. The mechanism of spontaneous symmetry breaking
is traditionally formulated in an equilibrium description, thereby pre-empting any possibility of finding
a state that does not obey the unitary symmetry. We have recently shown that this is not a necessary
constraint, and that it is possible to give a dynamical description of spontaneous symmetry breaking in
quantum mechanics which does indeed allow even the time translation symmetry to break down [5,6].
The time evolution resulting from the spontaneous breakdown of unitarity turns out to be surprisingly fa-
miliar: it reproduces precisely the quantum state reduction process observed whenever we try to measure
a quantum state with an effectively classical measuring apparatus. The aim of this article is to review
how certain objects can spontaneously break unitary time translation symmetry, to explain why this im-
plies that these objects can induce quantum state reduction, and to compare the predictions of this model
of quantum state reduction with some of the other models found in the literature.

The paper is organised as follows. We first give a brief overview of the workings of spontaneous sym-
metry breaking in quantum mechanics. The central concepts in this description are the order parameter
field, the singular nature of the thermodynamic limit and the so-called ‘thin’ spectrum. We illustrate
these notions using the elementary example of a harmonic crystal which breaks translational symmetry.
We then turn to the special case of unitary time translation symmetry, and show that this symmetry too
can be broken spontaneously. The description closely follows that of the standard case, and again the
roles of the main players (the order parameter field, the singular limits and the thin spectrum) are clarified
by applying them to the harmonic crystal. It is also shown how gravity may provide the required order
parameter field in this case, due to the inherent conflict between the principles of general covariance and
unitarity. The fourth section presents the application of the theory as a model for quantum state reduc-
tion. It discusses how the timescales of the non-unitary dynamics can give rise to a distinction between
microscopic and macroscopic objects, and points out that this automatically leads to the emergence of a
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pointer basis and Born’s rule, without reference to an environment. After a short discussion of the main
principles underlying some other models for quantum state reduction, we then discuss how the predic-
tions of these models can be distinguished from spontaneously broken unitarity using the experimental
setting of a mesoscopic object in a state of spatial superposition. We conclude with a summary and
outlook to future experiments.

2. Spontaneous symmetry breaking

Both in classical and quantum mechanics it is often possible to find a stable (ground) state of a
system which does not respect the symmetry of the physical laws that govern it. The way in which these
symmetry-broken states are stabilised in the quantum case is subtly different from their counterpart in
the classical case.

Figure 1. A nearly balanced pencil. The limits of making the pencil infinitely sharp (b→ 0)
and perfectly balanced (θ → 0) do not commute, so that even the smallest deflection will tip
over a sharp enough pencil.

The generic example of spontaneous symmetry breaking in classical physics is to consider a pencil
balanced on its tip. The upright position of the pencil is a metastable state, and the ground state of this
classical system is a configuration in which the pencil lies flat on the table. In which direction the pencil
points does not matter: all directions form equivalent, degenerate ground states due to the rotational
symmetry of the setup. The pencil, being a classical object, cannot fall towards all directions at the
same time. If it leaves its metastable balanced state it will have to pick out one particular direction
to fall towards and thus break the rotational symmetry. The broken symmetry can be parametrised by
introducing an order parameter such as the three-dimensional position (x, y, z) of the centre of mass of
the pencil. To see how one can go from an unordered, balanced state with z ̸= 0 and x = y = 0 to an
ordered, symmetry-broken state with z = 0 but x or y ̸= 0, consider a pencil that is not perfectly sharp,
and not perfectly balanced (as in figure 1). If the flat base of the pencil b is wide enough and the angle
of deflection θ is small enough, the pencil will always remain upright. Only if θ becomes so great that
it tips the centre of mass of the pencil over the end of its base will the pencil drop. If we now take the
limit of an infinitely well-balanced, infinitely sharp pencil we find that this is a singular limit: the fate of
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the pencil (parametrised by the height of its centre of mass z) depends on the order in which we take the
limits.

lim
b→0

lim
θ→0

z ̸= 0

lim
θ→0

lim
b→0

z = 0. (1)

If the pencil were perfectly balanced, it would always stay upright. But if an infinitely sharp pencil is
even only infinitesimally far away from being perfectly centred it will always fall down. We say that in
that case the pencil can spontaneously break the rotational symmetry because any disturbance, no matter
how small, will tip it over.

2.1. The harmonic crystal

The classical description of spontaneous symmetry breaking is also applicable to some special cases in
quantum physics. The Hamiltonians describing for example a φ4 field theory or a ferromagnet have many
degenerate ground states. In these cases picking out a single groundstate which breaks the symmetry of
the Hamiltonian is very similar to picking out a single orientation for the pencil to fall towards. This,
however, is not the generic situation for symmetric quantum systems. In general, a Hamiltonian with
a continuous symmetry will have single non-degenerate ground state that obeys the same symmetry.
Examples include all types of antiferromagnets, superconductors, Bose-Einstein condensates, crystals,
and so on. For those systems, the symmetry broken state is not a ground state of the Hamiltonian.
In fact, it usually is not even an eigenstate. The quantum version of the mechanism of spontaneous
symmetry breaking will thus have to explain both how a single symmetry-broken state is favoured over
all others, and how a state that is not an eigenstate of the Hamiltonian can nonetheless be realised and be
stable. To illustrate how this can be done, consider the textbook example of a harmonic crystal, with the
Hamiltonian

H =
∑
j

p2
j

2m
+
κ

2

∑
j

(xj − xj+1)
2 , (2)

where j labels allN atoms in the lattice, which have massm, momentum pj and position xj . We consider
here only a one-dimensional chain of atoms, but all of the following can be straightforwardly generalised
to higher dimensions as well. The harmonic potential between neighbouring atoms is parametrised
by κ; it turns out that the results on spontaneous symmetry breaking that follow are equally valid for
anharmonic potentials.

In the standard treatment of the harmonic oscillator, one begins by introducing new coordinates,
which are the displacements of atoms from their equilibrium positions. After a Fourier transformation
the eigenstates of this Hamiltonian are then easily found. This method has the disadvantage that it
does not address the motion of the crystal as a whole, but instead only focuses on the internal degrees
of freedom (i.e. the phonons). Because the breaking of translational symmetry requires the crystal
as a whole to localise at a single position in space, we need to keep track of the external as well as the
internal coordinates. This can be done by introducing bosonic operators from the very beginning without
introducing displacement operators. This procedure brings to the fore the so called thin spectrum in a
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natural manner, and can be easily adapted to the descriptions of antiferromagnets, superconductors and
Bose-Einstein condensates [7–13].

The momentum and position operators are expressed in terms of bosonic operators as

pj = iC

√
~
2
(b†j − bj); xj =

1

C

√
~
2
(b†j + bj), (3)

so that the commutation relation [xj, pj′ ] = i~δj,j′ is fulfilled. We choose C2 =
√
2mκ so that the

Hamiltonian after a Fourier transformation reduces to

H = ~
√

κ

2m

∑
k

[
Akb

†
kbk +

Bk

2
(b†kb

†
−k + bkb−k) + 1

]
, (4)

where Ak = 2 − cos (ka), Bk = − cos (ka) and a is the lattice constant. This form of the Hamiltonian
can be diagonalised using a Bogoliubov transformation by introducing the transformed boson operators
βk = cosh(uk)b−k + sinh(uk)b

†
k, and choosing uk such that all terms other than the number operator

disappear [14]. The result seems to coincide with the textbook Hamiltonian which we would have
obtained by following the conventional route:

Hk ̸=0 = 2~
√
κ

m

∑
k ̸=0

sin |ka/2|
[
β†
kβk +

1

2

]
. (5)

However, the Bogoliubov transformation has the advantage that it automatically singles out the col-
lective part of the crystal dynamics. When k → 0 both of the parameters sinh(uk) and cosh(uk) in
the Bogoliubov transformation diverge [7]. We should therefore treat the bosonic terms with k = 0

separately from the rest. This zero wavenumber part of the Hamiltonian simply describes the kinetic
energy of the crystal as a whole, while the finite wavenumber operators in the Hamiltonian of equation
(5) describe the internal dynamics of the crystal in terms of phonons.

As a function of the original operators, the k = 0 part can be written as

Hk=0 =
p2tot

2Nm
+ constant, (6)

where ptot ≡
∑

j pj =
√
Npk=0 is the total momentum of the entire system, or equivalently, its centre

of mass momentum. It can be straightforwardly checked that the collective Hamiltonian of equation (6)
commutes with the total Hamiltonian of equation (2). The eigenstates of the crystal can thus be labelled
by separate quantum numbers for the centre of mass momentum and the internal phonon excitations.
The single, non-degenerate ground state of the harmonic crystal has no phonons in it, and has zero
total momentum. It is thus completely delocalised, in accordance with the translational symmetry of its
Hamiltonian. The symmetry-broken state, which picks out a definite locus in space, is not an eigenstate
of the Hamiltonian, and it can only be formed by a linear combination of different total momentum
states. If N is large, these excitations of the crystal which change its centre of mass momentum, but
leave the internal state of the phonons untouched, are very low in energy. In fact, the k = 0 part of
the spectrum is called the thin spectrum because it contains so few states of such low energy that its
contribution to the free energy in the limit N → ∞ (the thermodynamic limit) completely disappears
[7]. In turn, this implies that these thin spectrum states do not contribute to any thermodynamically
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measurable quantities such as for instance the specific heat of the crystal. Their effect on the properties of
the crystal is increasingly subtle, but its existence can nonetheless have profound consequences, leading
for example to decoherence in solid state qubits [8–12]

2.2. Breaking the symmetry

The fact that the thin spectrum states all become equal in energy as the system size grows to infinity,
makes that limit a singular limit. As in the case of classical symmetry breaking, it is this singularity
which enables the system to realise an ordered, symmetry broken state. To see that the formation of the
ordered state happens spontaneously, consider the collective part of the Hamiltonian with a very small
symmetry breaking field, or order parameter field added to it

H ′
k=0 =

p2tot

2Nm
+

1

2
Nmω2x2tot. (7)

Here xtot is the centre of mass position of the crystal as a whole. Notice that as in the case of the
pencil, the disturbance away from the perfectly symmetric system introduced by the order parameter
field may not actually exist. It is only introduced here as a mathematical tool to clarify the singularity
of the thermodynamic limit, and we will accordingly send ω to zero at the end of the calculation. The
collective Hamiltonian in equation (7) is just a harmonic oscillator, and its ground state wavefunction is
well known to be

ψ0(xtot) =

(
Nmω

π~

)1/4

e−
Nmω
2~ x2

tot . (8)

This function describes a wavepacket in real space consisting of wavefunctions that differ only in
their total momentum. In other words, the order parameter field has introduced a coupling between the
thin spectrum states of the symmetric Hamiltonian. We can now again study the fate of this localised,
symmetry broken wavefunction under the action of two non-commuting limits:

lim
N→∞

lim
ω→0

ψ0(xtot) = const

lim
ω→0

lim
N→∞

ψ0(xtot) = δxtot,0. (9)

The perfectly symmetric Hamiltonian has a perfectly symmetric ground state regardless of how many
particles make up the crystal. For an infinitely large crystal however, even an infinitesimally small
perturbation of the symmetry is enough to completely localise the crystal in a single position. In that limit
we thus again say that the crystal can spontaneously break the symmetry of its underlying Hamiltonian.
Notice that the infinitely small order parameter field not only suffices to pick out one point in space above
all others, but also to combine the total momentum states which are the eigenstates of the symmetric
Hamiltonian into a stable symmetry-broken wavefunction. The reason that only an infinitesimal field is
necessary to do this, lies in the special properties of the thin spectrum. In the thermodynamic limit all
thin spectrum states become degenerate with the ground state, and in that limit it thus costs no energy to
form a symmetry breaking wave packet out of them.

Real crystals of course are not infinitely large. Neither can real pencils be made infinitely sharp.
What the singularity of the thermodynamic limit means for these real systems is that as long as we
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consider large enough crystals or sharp enough pencils, almost any deviation from perfect symmetry
will be immediately reflected by the system. The effect of any such departure from the perfect case
will be amplified by a very large factor indeed (either N or 1/b). Although the symmetry in a finite
harmonic crystal described by equation (2) can strictly speaking not be broken spontaneously, it can
be argued that there will always be some interaction with some other object somewhere in the universe
which effectively looks like equation (7) and which is strong enough to localise the 1023 particles in a
typical real system, just like there is always some deviation from the perfect setup that prevents you from
actually balancing a sharp pencil on its tip.

3. Spontaneously broken unitarity

Just like the homogeneity and isotropy of empty space enforce any quantum Hamiltonian in it to be
translationally and rotationally invariant, the homogeneity and isotropy of time impose their own time-
translation and time-inversion symmetries. The equivalence of all directions in time is hard-wired into
the formalism of quantum mechanics by the unitarity of its time evolution, which is in turn guaranteed
by the Hermiticity of the Hamiltonian. Despite this stringent constraint, it is conceivable that there could
exist situations in which the time dependent wavefunction of a quantum system does not respect the
unitarity imposed by its governing Hamiltonian, just like a crystal can exist in a state that defies transla-
tional symmetry, and just like a superconductor can ignore the phase symmetry of its governing laws. To
find systems that are susceptible to a spontaneous breakdown of unitarity, and the time-dependent states
that result from it, we need the same ingredients as in the standard description of spontaneous symmetry
breaking: a singular thermodynamic limit, an order parameter field, and a thin spectrum.

To see how these come together to break the unitarity of quantum time evolution, consider again the
example of the harmonic crystal. As shown in the previous section, the collective properties of the crystal
as a whole are given by the k = 0 part of the symmetric Hamiltonian:

Hk=0 =
p2tot

2Nm
, (10)

which we called the thin spectrum. If we ignore the internal (phonon) dynamics of the crystal, the time
evolution of its wavefunction will be given by applying the operator U(t) = exp(−iHk=0t/~). The time
evolution will be unitary because Hk=0 is a Hermitian operator. To study the spontaneous breakdown of
unitarity, we do the same as in the case of any other symmetry: we add an order parameter field to the
symmetric Hamiltonian of equation (10) which renders the time evolution generated by it non-unitary
and we consider the fate of the wavefunction in the thermodynamic limit as the strength of the order
parameter field is sent back to zero. The unitarity breaking field must couple to the order parameter of
the crystal, because only by using the amplification factorN can a field of infinitesimal strength have any
effect in the thermodynamic limit. The simplest form of non-unitary time evolution that we can consider
is therefore given by

U ′(t) = exp

(
−i t

~

[
p2tot

2Nm
− i

1

2
Nmω2x2tot

])
, (11)

in close analogy to the equilibrium description of broken translational symmetry in equation (7). The fact
that the order parameter field only couples to the collective thin spectrum states and not to the internal
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phonon degrees of freedom ensures that the time evolution described by this equation does not violate
conservation of energy in the thermodynamic limit. In that limit all total momentum components of the
crystal wavepacket become degenerate, and any dynamics involving those states will have a disappearing
effect on the total energy. The loss of conservation of normalization with the introduction of the order
parameter field will be shown in section 4 not to have any consequences for the probabilistic predictions
of quantum theory.

Non-Hermitian Hamiltonian operators of the type appearing in the exponent of equation (11) have
been used before in various contexts. As an effective description of open systems [15,16], non-unitary
dynamics can be introduced to represent dissipation into an effectively classical environment. In such
models the non-unitarity is not fundamental in the sense that it only emerges as an effective description
of the interaction with the classical environment. Similar structures also appear in the study of pseudo-
Hermitian operators [17–19], which have only real eigenvalues even though they are not Hermitian
(strictly speaking, in fact part of their spectrum usually is complex, but because these operators are not
self-adjoint this part of the spectrum does not necessarily contain any eigenvalues [20]). It is possible
to formally extend quantum mechanics by allowing such pseudo-Hermitian operators as well as the
usual Hermitian operators to represent observables. Because all eigenvalues of a pseudo-Hermitian
Hamiltonian are real however, the time evolution generated by it will still be unitary. Finally, time
translation symmetry may also be explicitly broken on a purely formal level by quantizing the time
variable and creating wavepackets from its eigenstates [21].

The order parameter field of equation (11) differs from these approaches in that it describes a fun-
damental non-unitary addition to the quantum description of closed systems without imposing any con-
straint on its eigenvalues. It stays as close as possible to the standard quantum theory by assuming the
non-unitarity to be only infinitessimally strong and by treating the time variable in its usual parametric
way. The effects of the broken unitarity will arise only from the dynamical time evolution it generates.

3.1. The time scales of non-unitary dynamics

The ground state in the presence of the unitarity breaking field will no longer be a static state. Instead
we need to consider the time-dependent ground state obtained by applying U ′(t) to the ground state of
the crystal at some initial time t = 0. In fact, there are two possible choices for the initial ground state
of the crystal from which to start. We can either begin with the exact, symmetric ground state of the
collective Hamiltonian, or we could take a symmetry-broken ground state localised at some position
in space. Because the factor exp(−Nmω2x2tot/2) in U ′(t) exponentially suppresses all components of
the wavefunction, except for the one localised at x = 0, it is clear that the wavefunction of the crystal
will eventually be reduced to a symmetry broken state centred around xtot = 0, independent of the
initial state. The timescale over which the transformation to the final state takes place however, does
depend on the initial configuration of the wavefunction. Because of the opposing influences of the two
terms in equation (11), an analytic expression for the dynamics starting from a general initial state is
not straightforwardly obtained. The numerical solutions shown in figure 2 however, clearly show the
difference in timescales for the dynamics of the two initial conditions.
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Figure 2. The dynamics of the crystal wavefunction under the influence of a non-unitary
field. Left: the evolution of equation (11), starting from a perfectly homogeneous (ptot = 0)
initial state, and resulting in a localised state at the origin. The parameters used in this figure
are Nm = 1.5 · 10−9 kg and ω = 0.1 kHz. The inset shows the spread in position as a
function of tNmω2 for several simulations of the same process, with parameters varying
between 1.0 · 10−11 < Nm < 1.0 · 10−9 kg and 0.1 < ω < 1.0 kHz. It indicates that the time
scale over which the reduction from an unordered, delocalised state to an ordered, localised
state takes place, is proportional to ~/(Nmω2x20), where x20 is related to the spread of the
initial wavepacket. The final spread in each individual case is determined by the competition
between the two terms in equation (11), and is given by ⟨x2⟩ = ~

√
1/Nm/

√
Nmω2 =

~/(Nmω). Right: the evolution starting from an already localised state. The final state will
again be a localised state at the origin, but the translation of the initial state towards the origin
requires both terms in equation (11), resulting in a timescale for this process proportional to
1/ω. The parameters used in this figure areNm = 1.0 ·10−11 kg and ω = 1.0 kHz. The inset
shows the average position as a function of tω for several simulations of the same process,
with parameters varying between 1.0 · 10−11 < Nm < 1.0 · 10−10 kg and 0.1 < ω < 1.0

kHz. The curves in both figures have been renormalised at each time step for clarity.

Starting from a purely symmetric ptot = 0 state, all positions have equal weight initially and the
final state is approached with a half time proportional to 1/(Nmω2), set entirely by the coupling of the
unitarity breaking field to the order parameter. On the other hand, if the initial wavefunction is already
localised (at some point x ̸= 0), there is only a vanishing weight of the wavefunction at the amplified
position, and the kinetic energy term in the Hamiltonian is required to spread out the initial wavepacket
before the non-unitary dynamics can take place. In that case the approach to the state localised at x = 0

happens over a timescale proportional to 1/
√
(1/Nm)(Nmω2) = 1/ω. The factor Nm drops out, and

in the limit of vanishing non-unitarity the dynamics is dictated wholly by the Hermitian Hamiltonian of
equation (10). A localised, symmetry broken state is thus stable against non-unitary influences for any
number of particles. The delocalised state however, does give rise to a singular thermodynamic limit.
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The fate of that time-dependent wavefunction depends on the order in which we take the limits of infinite
system size and vanishing non-unitarity. We find

lim
N→∞

lim
ω→0

ψ0(xtot, t > 0) = const

lim
ω→0

lim
N→∞

ψ0(xtot, t > 0) = δxtot,0, (12)

where ψ0(xtot, t = 0) = const. From these equations, we conclude that if nature is truly, perfectly
symmetric in time, the quantum dynamics of any initial state is unitary for all system sizes. However,
an infinitely large crystal in a delocalised initial state will be sensitive to even an infinitesimally small
departure from unitarity, and the resulting dynamics will instantaneously reduce a spread-out wavepacket
to a localised state. A truly infinitely large crystal can thus spontaneously break the unitarity of its time
evolution and localise its wavefunction at a given point in space. Once that has happened, its location is
fixed for all time because neither kinetic energy nor an infinitesimal non-unitary field has any influence
on the localised state.

3.2. The order parameter field

As observed before, real systems are not infinitely large. Strictly speaking, real crystals can therefore
not spontaneously escape the unitarity of quantum time evolution. The meaning of the non-commuting
limits of equation (12) for finite-sized crystals is that as long as we consider large enough crystals, almost
any deviation from unitarity will be immediately reflected by the system. As in the equilibrium case, any
such departure from the perfectly symmetric situation will be amplified by the factor N . Real crystals
can thus be expected to display non-unitary dynamics only if it can be argued that there will be some
field somewhere in the universe whose influence on the crystal effectively looks like equation (11).

Such influences of course are forbidden by construction in the quantum theory of closed systems,
because the Hamiltonian (being an observable) is required from the onset to be purely Hermitian. Such
a requirement for unitarity however, is not necessary in all realms of physical law. Einstein’s general
theory of relativity for example, is not a unitary theory. In fact, one of the problems in unifying quantum
theory with general relativity can be argued to be the incompatibility between the defining properties of
general relativity (i.e. its general covariance) and the unitarity of quantum mechanics [22]. Building on
this observation, it is possible to construct an explicit derivation of how equation (11) may arise from
the interplay between gravity and quantum mechanics, as will be shown in detail in the next section. An
alternative way of arriving at the same broken unitarity may perhaps be found in a stochastic quantization
approach akin to the one giving rise to broken time translation invariance in the propoagator of gluons in
the temporal gauge [23].

But even without committing ourselves to any particular source for the order parameter field, it is
clear that unitarity as such is not a fundamental prerequisite for all laws of physics. It is therefore not un-
reasonable to expect that a very small non-Hermitian order parameter field may exist as a consequence of
some physical process which is not normally described in terms of quantum mechanics. The singularity
of the thermodynamic limit in equation (12) then tells us that no matter how small that order parame-
ter field may be, it will have a noticeable effect on the dynamics of a large enough crystal because its
influence will be amplified by a factor proportional to the number of particles in the crystal.
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3.3. Gravity’s influence on quantum mechanics

One particular way in which a non-unitary time evolution could arise, is as a consequence of the
interplay between general relativity and quantum mechanics. The physical principle that lies at the heart
of general relativity is general covariance (or rather, diffeomorphism invariance). That is, the idea that
local changes in the choice of coordinate system do not affect the form of physical laws. This principle
immediately implies that it is in general impossible to define a globally applicable coordinate frame. It
has been argued that the absence of such a global structure makes the principle of general covariance
incompatible with the presence of a unitary time evolution, as required by quantum mechanics [22,24].
To completely overcome this incompatibility, one would need a full-fledged theory of quantum gravity.

In the absence of such a theory, it may still be possible to see the first effects that gravity has on quan-
tum mechanics in certain situations by treating them as small perturbations to Schrödinger’s equation
[24]. Let’s assume that the inherent non-unitarity of general covariance is the most important character-
istic of its conflict with quantum mechanics, and leave other possible ingredients (such as non-linearity)
to higher order terms, so that to first order, the perturbed Schrödinger equation can be written as

i~
d

dt
ψ(r⃗, t) = [H − iX]ψ(r⃗, t), (13)

where H is the usual quantum Hamiltonian and X is a Hermitian operator. The fact that the time
evolution generated in this way does not conserve energy (as measured by H) agrees with the lack of a
locally conserved energy concept in a non-static configuration of general relativity. Of course globally
energy should be a conserved quantity, and we will have to choose X such that it takes account of that
restriction.

Figure 3. The massive superposition |ψ⟩ =
√

1/2(|ψ1⟩ + |ψ2⟩) of a block of width L and
mass M over a small distance x.

To get an idea of what the size of the correctionX should be, we need a measure of the incompatibility
between general covariance and unitarity. Such a measure has been introduced for the special case of
a massive object superposed over two distinct spatial locations [22,25–27]. As an example, consider a
block of mass M which is evenly superposed over a distance x small compared to its length L (as in
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figure 3). For this case, a good measure for the extent to which it is impossible to treat the superposition
of spacetimes in a generally covariant manner turns out to be [24,25]

∆ = G
M2

2L3
x2, (14)

where G is the gravitational constant, and ∆ has units of energy. The form of this expression allows a
straightforward generalisation to the case of a generic superposition consisting of any number of com-
ponents carrying arbitrary weights in the wavefunction. By interpreting x as the quantum mechanical
operator which measures the position of the block’s centre of mass, the expression can be applied to any
wavefunction with an overall centre of mass at x = 0. The (semiclassical) measure for the ill-definedness
of a covariant treatment of a given arbitrary wavefunction of the block in that case reduces to the expec-
tation value of the quantum operator ∆. We can thus identify ∆ with the first order perturbation in
equation (13) [24]. Once again ignoring the internal properties of the block and considering only its
collective dynamics, the perturbed Schrödinger equation is then given by

i~
d

dt
ψ(r⃗, t) =

[
p2

2M
− i

1

2
G
M2

L3
x2
]
ψ(r⃗, t), (15)

which precisely reproduces equation (11) if we take ω2 = Gρ, with the mass density ρ ∝M/L3.
This expression for the first order effect of gravity on quantum mechanics however, still has one un-

satisfactory aspect. As we argued before, the defining characteristic of the theory of general relativity is
its general covariance, which implies the impossibility of defining a globally applicable coordinate frame
within a given spacetime. Considering the superposition of spacetimes associated with the different po-
sitions of the block, the absence of a globally defined coordinate system in either of the components
makes it impossible in general to identify a particular point in one spacetime with any one point in the
other. The best we can possibly do is make an approximate identification of different regions by refer-
ring to their local spacetime structure. At best there is thus a many-to-many identification of spacetime
points in different components of the wavefunction, rather than a one-to-one correspondence, due to the
requirement of general covariance [22,24]. The implication of this for the expression in equation (15)
is that the operator x, which measures the position of the block’s centre of mass within one component
of the wavefunction with respect to the overall average centre of mass at x = 0, becomes inherently ill-
defined. To model this ill-definedness of the position operator, we introduce a small stochastic variable
ξ(t) which randomly fluctuates in time, and replace x with x− ξ.

Notice that both general relativity and quantum mechanics are in fact fully deterministic theories. The
introduction of a random variable here should be seen only as a poor man’s approach towards a resolution
between the two theories: although superpositions and random variables may not actually feature in the
exact reality of quantum gravity, we assume that if we insist on the possibility of effectively describing
the state of the system using the concept of superpositions –even though they are ill-defined notions
in General Relativity– then we also need to take into account an effectively random correction to the
notion of position. We are thus led to a minimal correction to the unitary Schrödinger equation due to
the influence of general covariance, which for the case of the massive block in our example reads

i~
d

dt
ψ(r⃗, t) =

[
p2

2M
− i

1

2
G
M2

L3
(x− ξ(t))2

]
ψ(r⃗, t). (16)
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The phenomenological treatment of the first order effects of gravity in equation (16) can be seen as a
specific realisation of the order parameter field of equation (11). It shows that massive crystals may be
able to spontaneously break the unitarity of their quantum time evolution due to the influence of gravity.
At the moment, it is unclear if there exists a similar treatment for the order parameter fields associated
with different ordered states such as antiferromagnets or superconductors. Perhaps they can indirectly
couple to gravity [24], or perhaps there is another realm of physics that could somehow provide their
specific order parameter fields. For now, we will leave this question open and focus solely on the case
of the harmonic crystal, for which general covariance provides the justification for the introduction of a
non-unitary term.

4. Spontaneously broken unitarity as a model for quantum state reduction

In the previous section we showed that the singularity of the thermodynamic limit implies that any
unitarity breaking order parameter, even if it is only infinitesimally small, will have a noticeable effect
on the dynamics of a large enough crystal. Reversing the argument, we can also posit that the dynamics
of quantum objects may be used as a detector for non-Hermitian order parameter fields. After all, if any
such field does exist, it will inevitably render the dynamics of a large enough crystal non-unitary. There
is ample experimental confirmation that the unitary theory of quantum mechanics correctly predicts the
dynamics of objects ranging from elementary particles to C60 molecules and even coherent supercurrents
of more than 106 electrons [29–31]. At the same time, it is also well known that truly macroscopic objects
do not seem to obey Schrödinger’s equation. Taken at face value, the fact that we can use a macroscopic
apparatus to project a microscopic quantum state onto a given set of basis states suggests that the ap-
paratus undergoes some form of non-unitary dynamics [32]. This observation that the phenomenon of
quantum state reduction does not immediately fit into the standard framework of the quantum theory
lies at the basis of the many different ‘interpretations’ of quantum mechanics. Despite the success of
some of these interpretations in explaining certain aspects of the problem, we still lack conclusive evi-
dence in favour of any one particular interpretation, and no general consensus on the subject has been
reached. In the light of the continuing mystery surrounding the problem of quantum state reduction, one
may wonder if the sensitivity to non-unitary influences experienced by large enough crystals could help
to understand the observed behaviour of macroscopic objects. The influence of a non-Hermitian order
parameter field which is too small to have any noticeable effect on microscopic particles could become
observable when multiplied by the number of particles in a typical macroscopic quantum measurement
machine, and perhaps explain its observed non-unitary dynamics.

Apart from providing a dynamical description of the quantum state reduction process, there are three
basic requirements that any potential resolution of this problem needs to fulfil. Any theory of quantum
state reduction must first of all provide an explanation of why only macroscopic objects seem to be
affected by it, and what exactly defines an object as being macroscopic. Secondly, it should determine
which states are the possible outcomes of a measurement process (the so-called Pointer basis [33]), and
how this basis of states is selected over all other possibilities. Finally, it needs to give rise to Born’s
rule. That is, the probability for a particular result of a measurement to be realised should equal the
squared amplitude of the corresponding component in the initial wavefunction of the quantum state to
be measured [34].
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4.1. The dynamics of quantum state reduction

We have already seen in the previous section that spontaneous unitarity breaking can account for
some difference between the dynamics of microscopic objects and that of macroscopic ones. The time
it takes for a delocalised state to spontaneously localise due the presence of an order parameter field
is proportional to 1/(Nmω2). If ω2 is of the correct order of magnitude, this timescale could be im-
measurably long for microscopic objects while being immeasurably short for macroscopic objects [5,6].
If we assume that the order parameter field results from the incompatibility of general covariance and
unitarity, as we argued before, then the combination of ω2 = Gρ and M is indeed of the correct order of
magnitude to ensure that elementary particles, molecules and even supercurrents should be considered
microscopic, while tables, chairs and pointers should be treated as macroscopic objects. This division
however only applies to the dynamics starting from a fully delocalised state. To account for the sepa-
ration between microscopic and macroscopic objects during a general quantum state reduction process,
we need to consider a more general initial state of the crystal.

Let’s assume that we want to measure some property of a microscopic particle by coupling it to the
position of a macroscopic crystal. We should then arrange things in such a way that the final position of
the crystal (at x = x0 ± a) tells us the initial state (|ϕ = ±1⟩) of the microscopic particle:

|ϕ = +1⟩ ⊗ |x = x0⟩ → |ϕ = +1⟩ ⊗ |x = x0 + a⟩
|ϕ = −1⟩ ⊗ |x = x0⟩ → |ϕ = −1⟩ ⊗ |x = x0 − a⟩. (17)

In the absence of an order parameter field, the unitarity of time evolution in quantum mechanics then
implies that measuring a superposed microscopic state with the same setup must result in a superposed
macroscopic state.

( α |+ 1⟩+ β | − 1⟩)⊗ |x0⟩ → α |+ 1⟩ ⊗ |x0 + a⟩+ β | − 1⟩ ⊗ |x0 − a⟩. (18)

In the presence of a small order parameter field, the states corresponding to single localised positions
of the crystal are stable and take a time proportional to 1/ω to feel the effect of the non-unitarity. The
final state in the last measurement however cannot be a stable state. This superposition of the crystal
over two distinct locations is not the completely delocalised state studied before, but the effect of the
non-unitary field is similar. After all, the non-unitary part of equation (11) will suppress any component
of the wavefunction which is not at x = 0. Whichever of the two components at x = x0 ± a lies furthest
from the central point will be suppressed most. In fact, the suppression of the furthest component will be
exponentially stronger than that of the nearest. We might therefore expect one of the components of the
wavefunction to dominate after a typical timescale which is again set only by the non-unitary field and
its coupling to the order parameter. The numerical solution of the dynamics of the superposed state in
figure 4 shows that this is indeed the case. An initial state consisting of a superposition over any number
of different localised states reduces to just a single of its initial components under the time evolution
of equation (11) within a time proportional to 1/(Nmω2). After that, the single localised state further
evolves into a wavefunction localised at the centre of the order parameter field in a timescale proportional
to 1/ω [5,6,24].
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Figure 4. The dynamics of the crystal wavefunction under the influence of a non-unitary
field, starting from an initial superposition of two localised states. The final state, localised
at the origin, is reached via two consecutive processes. First the superposition is reduced to
just a single localised wavefunction within a timescale proportional to 1/(Nmω2), analogous
to the process in the left of figure 2. Then the single localised state is translated towards the
origin within a time scale proportional to 1/ω, as in the right of figure 2. The parameter
values used in this figure are Nm = 2.0 · 10−11 kg and ω = 1.0 kHz. The insets show the
average position as a function of tNmω2 (top) and tω (bottom), for several simulations of
the same process, with parameters varying between 0.5 ·10−11 < Nm < 5.0 ·10−11 kg while
ω = 1.0 kHz. The curves have been renormalised at each time step for clarity.

4.2. quantum measurement

These timescales invite the following interpretation of the measurement process in terms of the spon-
taneous breakdown of unitarity. Initially a microscopic object may be in any quantum state without
being affected by the order parameter field because the timescale proportional to 1/(Nmω2) is immea-
surably long. The macroscopic measurement machine will initially be in a state of spontaneously broken
symmetry, and it too will be unaffected by the non-unitarity, because its single, ordered state will only
conform to the non-unitary potential over the timescale proportional 1/ω, which is too long to be ob-
served. The measurement procedure then consists of a quantum mechanical interaction which forces the
state of the macroscopic measurement machine to reflect the initial state of the microscopic object. If
the initial state of that object was a superposition, then the resulting state of the macroscopic object will
also be a superposed state. This coupling process is assumed to happen very rapidly, so that the order pa-
rameter field will not noticeably affect the dynamics until after the macroscopic wavefunction has been
put into a superposition. Once that has happened though, the macroscopic superposed state is found to
be unstable, and its evolution will be dominated by the unitarity breaking order parameter field which
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suppresses all but one component of the wavefunction. The one component surviving after a timescale
proportional to 1/(Nmω2) is a localised, ordered state which corresponds to a single component of the
initial wavefunction of the microscopic object.

This description of measurement makes a distinction between microscopic objects, which are so small
that they cannot spontaneously break the unitary symmetry of time evolution (or any other continuous
symmetry), and macroscopic objects, which are so large that they are almost infinitely sensitive to the
order parameter field and almost instantaneously break unitarity whenever they are forced into a super-
position of ordered states. In between these two extreme cases there may be mesoscopic objects, which
do respond to the presence of a non-Hermitian field, but take a finite (and possibly measurable) time
to do so. If we assume the order parameter field to originate from gravity, it can be straightforwardly
shown that these mesoscopic states fall precisely in the unexplored experimental gap between objects
which are already proven to act purely quantum mechanically (such as C60 molecules and supercurrents)
and objects which are expected to always behave classically (such as tables and pointers) [22].

The second requirement on the description of quantum state reduction, that of determining a basis
of possible final outcomes of a measurement process, is also automatically fulfilled by the invocation of
spontaneous unitarity breaking. The only macroscopic wavefunctions that are stable against the influence
of the order parameter field are the ordered, localised states of the crystal. These are precisely the
symmetry-broken states (or generalised coherent states) that we customarily refer to as classical states.
They form a literal pointer basis in the sense that they describe all possible single positions that the
pointer could take without allowing any superpositions of them. A quantum measurement machine in
this description is thus necessarily a classical object displaying a spontaneously broken symmetry. The
outcomes of measurements can be recorded in a pointer basis only if the coupling to the microscopic
quantum state is such that it affects the order parameter associated with the broken symmetry of the
measurement machine. As it turns out, all known quantum measurement machines are of this type,
mainly because the human senses are only capable of directly registering classical (order parameter)
properties of macroscopic machines. Without coupling to some classical order parameter, we would not
be able to record the outcome of any measurement.

4.3. Born’s rule

As it stands, the third requirement of reproducing Born’s rule has not been fulfilled. If the non-unitary
field is a given, static field, it will always favour the component of a superposed wavefunction that is clos-
est to its centre. Even if the location of that centre changes from one run of the experiment to another,
this could never lead to a distribution of experimental outcomes that is correlated to the weight of indi-
vidual components in the initial wavefunction [5,6,28]. However, we saw in the previous section that the
conflict between general covariance and quantum mechanics can give rise to a non-unitary perturbation
of Schrödinger’s equation that is best modelled by the introduction of a time dependent stochastic vari-
able, as in equation (16). The time dependent nature of this variable implies that the component of the
initial wavefunction which is favoured by the non-unitarity at one instant in time, may be suppressed the
next. Its random nature on the other hand makes it impossible to predict deterministically which com-
ponent will win out in which run of the experiment. The best we can do is make a statistical prediction
about the probability that a certain component will dominate the wavefunction after a time proportional
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to 1/(Nmω2) (that this is indeed the correct time scale for the selection of a single component, even in
the presence of a randomly fluctuating field, can be tested numerically, as shown in figure 5).

Figure 5. The distribution of times after which the crystal dynamics in the presence of
a fluctuating field yields a localised wavefunction. The normalised number density n(t) (in
arbitrary units) indicates the number of simulations out of 50000 in which a single component
first dominates the wavefunction at time t. The data is plotted as a function of t in the upper
inset. The same data is shown in the main figure, but as a function of tNmω2, indicating
that the onset of the distribution is proportional to 1/(Nmω2). The lower inset displays the
same data again, but plotted against t(Nmω2)2, showing that the width of the distribution is
proportional to 1/(Nmω2)2 . The different lines represent sets of simulations with parameter
values ranging between 0.5 < ω < 1.0 kHz and 0.5 · 10−11 < Nm < 1.5 · 10−11 kg.

It turns out to be possible to make these statistical predictions without solving the detailed dynamics of
equation (16) by introducing an auxiliary, ‘external’ object in an entangled state with the crystal [5,6,35].
During the time evolution described by the perturbed Schrödinger equation, the external object does not
interact with the crystal, nor with the microscopic state to be measured. In fact, it is completely absent
from the perturbed Hamiltonian, and may not actually exist. It is introduced here only as a mathematical
tool to assist in the discussion of the crystal dynamics. It is sufficient for the following discussion that
such an entangled, external object could in principle exist, even if it is perhaps never actually present.

Consider the initial wavefunction

|ψ⟩ = α|e1⟩ ⊗ |x = a > +β|e2⟩ ⊗ |x = b >, (19)

where a ̸= b and |x = a, b⟩ denotes the state of the crystal localised at x = a, b, and |e1,2⟩ is the
state of the external object. The time evolution of this initial state governed by equation (16) does
not depend on any of the properties of the external object. It acts solely on the crystal’s wavefunction
and, as we showed in the previous section, reduces the superposed state to just one of its components
within the (short) timescale proportional to 1/(Nmω2). The external object being unaffected by these
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dynamics, the total final state will thus be either |e1⟩ ⊗ |x = a > or |e2⟩ ⊗ |x = b >. The probabilities
Pa(ψ) and Pb(ψ) for ending up in the former or the latter state respectively, cannot depend on any
property of the external object. They must also be independent of the non-unitary field, since its centre
is determined by the fluctuating random variable ξ which is guaranteed by symmetry not to favour any
one particular outcome. The only quantity that Pa,b(ψ) can possibly depend on, is the form of the initial
state, parametrised by the quantities α and β. Because of this, the initial state

|φ⟩ = α|e3⟩ ⊗ |x = a > +β|e4⟩ ⊗ |x = b > (20)

must also give rise to the probabilities Pa(φ) = Pa(ψ) and Pb(φ) = Pb(ψ), independent of the external
states. If we consider the special case with |e3⟩ = eiθ|e1⟩ and |e4⟩ = |e2⟩, this shows that the probabilities
cannot depend on the phases of α and β.

Next, consider the initial states

|ψ⟩ = α|e1⟩ ⊗ |x = a > +β|e2⟩ ⊗ |x = b >,

|χ⟩ = β|e1⟩ ⊗ |x = a > +α|e2⟩ ⊗ |x = b > . (21)

It is immediately clear that Pa(ψ) = Pb(χ) for any choice of α and β. In the special case |α| = |β|,
we also know that Pa(ψ) = Pa(χ), so that it is clear that in that case we must have Pa(ψ) = Pb(ψ), and
thus the perhaps trivial looking result that equal sizes of the initial weights lead to equal probabilities
for finding the corresponding final states. This statement can be trivially extended to yield the rule that
a set of possible final states with equal weights in the initial wave function leads to equal probability for
finding any one of the final states within that set. Continuing that line of thought, consider the initial
state

|ϕ⟩ = α|x = a > +α|x = b > +α|x = c > +.. , (22)

with a ̸= b ̸= c. The combined probability Pa or b(ϕ) must then be equal to Pa(ϕ) + Pb(ϕ) = 2Pc(ϕ),
which follows directly from the additivity of probabilities and the fact that only a single component of
the initial wavefunction can dominate the final state. Extending this result, we find that within a set of
possible final states with equal weights in the initial wave function, a subset has a combined probability
equal to the relative size of the subset times the total probability of the entire set.

Finally, consider the initial state

|ψ⟩ =
√
m

N
|e1⟩ ⊗ |x = a > +

√
n

N
|e2⟩ ⊗ |x = b >, (23)

withm, n andN positive integers. The probabilities Pa,b(ψ) are again independent of the external states.
We are therefore free to write |e1⟩ and |e2⟩ in a basis in which they are a sum of states with equal weights
[35,36]:

|e1⟩ ≡
√

1

m
[|E1⟩+ |E2⟩+ ..+ |Em⟩] ,

|e2⟩ ≡
√

1

n
[|F1⟩+ |F2⟩+ ..+ |Fn⟩] . (24)
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In terms of these states, the expression for the initial wavefunction then becomes

|ψ⟩ =
√

1

N

[
m∑
i=1

|Ei⟩ ⊗ |x = a > +
n∑

j=1

|Fj⟩ ⊗ |x = b >

]
. (25)

In this expression all weights are equal, and using the previously found rules we must conclude that
Pa(ψ) = n

m
Pb(ψ). In the case that the total probability for finding any outcome at all is 1, this result

precisely corresponds to Born’s rule: the probability for finding a specific final pointer state is equal to
the square of the weight of the corresponding state in the initial wavefunction [34]. The extension of
this result to include also weights which are square roots of non-rational numbers is trivial because the
rational numbers are dense on the real line [35,36].

It is now clear how the probabilistic predictions of quantum theory can be recovered from the time
evolution generated by equations (11) and (16), even though they do not conserve the normalisation of
the wavefunction. In each realisation of a quantum measurement, a macroscopic superposition is reduced
to just one of its components. That component can be associated with a single pointer state, irrespective
of its total norm. After many repetitions of such a measurement procedure the proportion of outcomes
yielding a given pointer state agrees with Born’s rule, and thus with the probabilistic predictions arising
from a normalised initial wavefunction.

Combining all of these results, the spontaneous breakdown of the unitary symmetry of quantum me-
chanical time evolution is seen to lead to a natural explanation of all of the phenomena normally associ-
ated with the problem of quantum state reduction. It shows why there is a divide between macroscopic
and microscopic objects, and gives a definition of where the division occurs. It guarantees that the
macroscopic objects can not exist in a (stable) superposition of classical states, while leaving the micro-
scopic objects free to explore the entire Hilbert space associated with the unitary Schrödinger equation.
It also provides a reason for why only a certain basis of classical states can serve as the final pointer
states in a quantum measurement experiment, and establishes which states form that basis. Finally, it
correctly predicts the outcome of the quantum state reduction process to be in accordance with Born’s
rule. Spontaneous unitarity breaking can thus be seen as a model for quantum state reduction, on equal
footing with established interpretations of quantum mechanics such as the GRW and CSL models, or
decoherence, hidden variable and many world theories. Which of these models gives the most accurate
description of reality will have to be decided by experimental evidence focusing on those regions where
the theories differ in their predictions.

5. Comparison to other models of quantum state reduction

Before discussing the possibility of experimentally distinguishing different models of quantum state
reduction, let’s first briefly review their main assumptions and predictions. The following will necessarily
be incomplete, and will not do justice to the vast amount of physical detail underlying these models, nor
to their many individual accomplishments. Many good and thorough reviews and discussions of each of
the models exist in the literature [33,35,36,38–58]. Here, we only present the essential ideas underlying
some specific models for quantum state reduction, and the most prominent features of their predictions,
with the aim of finding ways to experimentally differentiate between them.
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The GRW and CSL models

The GRW (after Ghirardi, Rimini and Weber) and CSL (Continuous Spontaneous Localisation) mod-
els are very close to the model of spontaneously broken unitarity presented here, in the sense that they
hypothesise the existence of a process that falls outside of the realm of applicability of Schrödinger’s
equation which causes the quantum state reduction [38–41]. In the GRW theory this extra process is
assumed to be the spontaneous and instantaneous spatial localisation of an elementary particle at par-
ticular intervals in time [38]. What causes the localisation, and which particles it acts on precisely, is
not specified. If the frequency with which these localisation events occur is low enough, it will take an
immeasurably long time (on average) for any individual particle to undergo such an event. Within an
extended object consisting of a macroscopic number of elementary particles on the other hand, it will
not take long before at least one of the particles is localised. If we assume that the macroscopic object is
rigid in the sense that it describes a (symmetry broken) crystal whose internal wavefunction looks like an
ordered array of constituents, but whose overall, external position is still undefined, then the localisation
of a single particle within the crystal suffices to give the entire wavefunction a definite position in space.
GRW thus provides a differentiation between microscopic and macroscopic objects in terms of the typi-
cal frequency with which localisation events occur. It assumes a basis of pointer states by assuming the
perturbation to quantum mechanics to cause events which localise the wavefunction in real space rather
than for example in momentum space. It also assumes Born’s rule from the outset, by assuming that the
probability for a localisation event to occur at a particular position is proportional to the squared weight
of the wavefunction at that position [41].

The CSL models can be seen as extensions of the GRW model in which the addition to quantum
mechanics is no longer a set of instantaneous localisation events, but rather a continuous process which
constantly acts to gradually localise the individual particles [39,40]. In different CSL models this con-
tinuous process has been linked to for example the local number density, the local mass density, or a
non-linear form of the effective gravitational potential [26,27,41]. The average rate of localisation is
usually a free parameter of the theory that can be chosen to ensure that the localisation of microscopic
particles will take an immeasurably long time. In close analogy to the GRW model, macroscopic ob-
jects, which are again assumed to posses some amount of rigidity, amplify the localisation rate due to
their large number of constituents, and are therefore almost instantaneously brought into a single locus.
The pointer basis of CSL models is determined by the specific form of the localisation process, and is
usually taken to be the position basis. Born’s rule can spontaneously emerge from the stochastic locali-
sation processes described in CSL models due to the competition between possible outcomes, which is
precisely analogous to the “gambler’s ruin” problem in probability theory [42].

Decoherence

An alternative approach to the problems posed by quantum state reduction is based on the phe-
nomenon of decoherence. The basis of decoherence theory is the observation that the exact quantum
state of a macroscopic object necessarily involves the description of many microscopic degrees of free-
dom, most of which are beyond the reach of our current observational skills [33,35,36,43–45,47]. If one
averages over all the possible values that these unobservable microscopic degrees of freedom can take,
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the remaining density matrix describing only the observable macroscopic degrees of freedom looks fully
classical. It is thus argued that real macroscopic objects can occur in any quantum state, localised or not,
but that the macroscopic observables associated with that object seem to take on only classical values
if one disregards the microscopic degrees of freedom. Macroscopic objects are then classical ‘for all
practical purposes’ only. Notice that the unobservable (microscopic) traits do not need to be internal de-
grees of freedom of a macroscopic object. A single elementary particle for example can in the same way
behave purely classically by itself if its wavefunction is entangled with enough unobservable particles in
its environment.

The theory of decoherence and the effectively classical behaviour of objects which are strongly entan-
gled with their environments have been experimentally verified many times. In fact, in modern quantum
information science, decoherence forms one of the major fundamental stumbling blocks to be overcome
in the race towards a working quantum computer. Its application to the problem of quantum state reduc-
tion however, is limited by the fact that it only describes the properties of objects when averaged over all
possible states of the microscopic or environmental degrees of freedom. In a single experiment, only one
specific state of the environment is realised, not an average over all possible states. Decoherence there-
fore cannot explain the absence of macroscopic superpositions from any single experiment [48]. For
the average result of many quantum measurements, it does provide all the necessary ingredients: micro-
scopic and macroscopic objects are distinguished by the time it takes them to loose their coherence; the
pointer basis is that set of (macroscopic) states which is unaffected by the averaging over environmental
degrees of freedom; and Born’s rule arises automatically from the averaging procedure [35,36].

The hidden variable and many worlds interpretations

Hidden variable theories take the view that Schrödinger’s equation can be interpreted as describing
not just a wavefunction, but also a configuration of particles with definite positions as well as definite
velocities. The wavefunction in such a description becomes a ‘pilot wave’ which guides the particle
configuration through phase space, much like the force fields of Newtonian mechanics guide classical
configurations of particles [49–54]. Experiments on quantum mechanical systems are assumed to mea-
sure the actual configuration of the particles rather than the state of the wavefunction. The problem of
quantum state reduction thus becomes non-existent (the wavefunction is unaffected by measurement), as
does the difference between microscopic and macroscopic objects (both consist only of a configuration
of point particles). A pointer basis is implicitly acquired via the classicality of the posited particles. To
make the predictions of hidden variable theories agree with Born’s rule however, an additional assump-
tion is needed. One can either explicitly assume that the initial state of all particles agreed with Born’s
rule and show that this agreement is then conserved in time [50,51]; or one can use the theory of deco-
herence to argue that any initial configuration of particles will eventually come to look like it agrees with
Born’s rule in a course grained description which averages over the microscopic degrees of freedom of
the wavefunction [54].

Like hidden variable theories, the many worlds interpretation assumes that the dynamics of all ob-
jects, microscopic or macroscopic, can be described by Schrödinger’s equation. Rather than introducing
a particle configuration however, it is argued that the theory can be made to agree with all experimental
observations by including the state of the observer in the wavefunction [55]. In the course of a typical
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experiment, the observer and the observed object become entangled. Relative to the state of the observer
then, the observed property takes on a definite value in each run of the experiment. All different com-
ponents of the wavefunction, with all their different states of the observer, and all their different values
for the observed quantity are assumed to be equally real (hence ‘many worlds’), but the observer is only
conscious of a single outcome for each macroscopic variable in each component. The existence of a
pointer basis is assumed in this description, either by assuming that the human brain itself cannot be in
a superposition of different states of mind, or by reference to decoherence processes. Likewise, Born’s
rule can be attributed either to game theoretical arguments or to the loss of coherence between individual
components of the wavefunction [55–58].

5.1. Experimental implications

Let us now return to the model of spontaneous unitarity breaking, and discuss how its predictions
for possible experimental implications differ from those made by the other theories of quantum state
reduction. If unitarity is not a fundamental property of nature, and the effect of the existence of non-
unitary laws of physics on quantum dynamics can be modelled by the introduction of a non-Hermitian
order parameter field such as in equations (11) and (16), then there must be an energy (or mass) scale
intermediate between microscopic particles (which for all practical purposes look purely quantum me-
chanical) and macroscopic objects (which seem wholly classical). This mesoscopic mass scale, at which
the non-unitary dynamics happens on human timescales, must lie beyond the experiments that have been
done to date. It should involve massive objects that are large compared to single molecules but small
compared to, say, dust particles. The approximate mass scale at which gravity leads to observable non-
unitary effects has been previously estimated, based on a dimensional analysis [22,25–27]. The model
of spontaneous unitarity breaking however, also describes the dynamics of massive superpositions, and
how they give rise to the emergence of a pointer basis and Born’s rule.

In the ideal experimental test of this non-unitary dynamics, one would create a superposition of a
massive object over two distinct spatial locations, and follow its time evolution. The preparation of the
initial state could involve a coupling to a suitably prepared microscopic object, while the monitoring
of the dynamics could be done by repeating the experiment many times and projecting the state of
the mesoscopic object using a standard (macroscopic) quantum measurement machine after different
intervals in each run. Depending on the size of the mesoscopic object, the dynamics should then turn
out to be unitary (in the quantum regime), non-unitary (in the unitarity breaking regime), or non-existent
(in the classical regime, where the initial state is already a static projection). Some experiments of this
type have recently been proposed using a mesoscopic mirror or a magnetised mechanical resonator as
the mesoscopic object to be superposed [24,37].

The difficulty in actually constructing such an experiment lies in the presence of decoherence. Be-
cause one cannot monitor the time dependent evolution of the mesoscopic state without disturbing it, we
are forced to infer the dynamics from many projections in many different runs of the experiment. Such
an ensemble averaged evolution will always look classical if one does not keep track of all the individual
degrees of freedom in the environment. Fortunately the decoherence time over which this environment
induced process takes place can be calculated using standard methods [45,46]. Separating decoherence
from the similar effects induced by a non-unitary order parameter field can then be done by ensuring that
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the decoherence time is longer than the expected timescale of the unitarity breaking dynamics. This typ-
ically involves cooling the mesoscopic object to temperatures extremely close to absolute zero [24,37].
Further confirmation about whether the measured dynamics is due to either decoherence or broken uni-
tarity can be gained from exploring the scaling of the quantum state reduction time with the involved
mass or geometry of the mesoscopic object. Decoherence effects are usually only weakly dependent on
the geometry. If on the other hand, the non-unitarity arises from gravity, it will typically depend strongly
on the precise geometry of the experimental setup [25].

The non-unitarities of the type predicted by GRW and CSL models can likewise be distinguished
by referring to the scaling of the reduction time with parameters of the model and the geometry of the
mesoscopic object. GRW predicts that the reduction time will only scale with the number of particles
involved, rather than the mass or shape of the object. Different CSL models may predict dependencies
on number density, mass density, and even geometry, and will thus be more difficult to distinguish from
the model of spontaneously broken unitarity. The detailed dynamics of the mesoscopic object however,
depend on the precise form of the non-unitary interaction, and thus provides a means of differentiating
between the models.

If nature does turn out to be fundamentally unitary, and we have successfully circumvented the prob-
lem of decoherence by cooling the experimental setup to low enough temperatures, it should be possible
to create stable superposed states of mesoscopic objects. In that case, there is even no objection in prin-
ciple to extending the experiment to macroscopic length scales. Given enough time and experimental
progress it may then be possible to cool even a chair to sufficiently low temperatures to force its wave-
function into a state of spatial superposition and to do interference experiments with it. In that case, the
apparent absence of macroscopic quantum dynamics from daily experience would be a strong indicator
that either a type of hidden variables or a many worlds interpretation of quantum mechanics (both of
which assume the unitary Schrödinger equation to apply universally) may be applicable.

6. Conclusions

In this paper we have reviewed the possibility of the existence of broken unitarity. We have shown that
a description of the spontaneous loss of unitary time translation symmetry in large enough objects can be
formulated in close analogy to the standard theory of spontaneous symmetry breaking. The same three
main ingredients that are responsible for the breakdown of translational symmetry in crystals, rotational
symmetry in magnets, and so on, are also responsible for the loss of unitarity in the time evolution
of these objects. These ingredients are the singular nature of the thermodynamic limit, the existence
of a ‘thin’ spectrum of extremely low energy states in macroscopic systems, and the presence of an
infinitesimally small order parameter field.

The order parameter field responsible for a breakdown of unitarity would have to be a non-Hermitian
contribution to the quantum Hamiltonian. We have shown how such a contribution could in principle
arise as a first order correction to Schrödinger’s equation due to the existence of general relativity and
the incompatibility between its idea of general covariance and the unitarity of quantum theory. In the
presence of a unitarity breaking order parameter field (regardless of its origin), we have shown that the
dynamics of a macroscopic, symmetry-broken wavefunction mimics the ideal quantum measurement.
Such a wavefunction can no longer appear in a stable superposition of different symmetry-broken states.
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If it is forced into such a superposed state by being coupled to a microscopic quantum state, it will quickly
reduce to just one of its components, with the probability for ending up in any particular state given by
Born’s rule. That is, the probability is equal to the square weight of the corresponding component in the
initial wavefunction of the microscopic object.

We have argued that this description of spontaneously broken unitarity thus fulfils all the requirements
for being a model of quantum state reduction. It explains why there is a difference between microscopic
and macroscopic objects in terms of the singularity of the thermodynamic limit and the influence of the
order parameter field. It gives rise to a pointer basis of states that are stable under the non-unitary time
evolution. And it leads to the emergence of Born’s rule if macroscopic objects are used as quantum
measurement machines.

Comparing the predictions of a spontaneously broken unitarity with those of other models for quan-
tum state reduction, it appears that they can be distinguished if we have access to an experimental setup
in which a mesoscopic object can be brought into a state of spatial superposition. If decoherence can be
avoided by carefully cooling and isolating the object, it becomes possible to distinguish the detailed time
evolutions predicted by different models of quantum state reduction via their dependence on external
parameters such as the shape and mass of the superposed object. Experiments of this type are currently
being developed in various places. Some of the most promising ones may be the recent proposals for
creating a superposition of a mesoscopic cantilever over different angles of deflection, either by coupling
it to light or to the magnetic field of a suitably prepared spin state [24,37].

In conclusion, it is suggested in this review that the unitary time translation symmetry of quantum
theory may be just another symmetry, which can spontaneously break down if an appropriate order
parameter field presents itself. The consequence of losing unitarity in this way would be the emergence
of quantum state reduction. Whether or not the non-Hermitian order parameter field actually exists,
and whether it is actually responsible for quantum state reduction will have to be decided by future
experiments.
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