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Abstract: In this paper, we study the influence of hard supersymmetry breaking terms in
a N = 1, d = 4 supersymmetric model, in S1 × R3 spacetime topology. It is shown
that when the radius of the compact dimension is large supersymmetry is unbroken, and
dynamically breaks as the radius decreases. We point out that this resembles the inverse
symmetry breaking of continuous symmetries at finite temperature (however, in the case of
supersymmetry, the role of the temperature is played by the compact dimension’s radius).
Furthermore, we also find a universality in the dependence of the critical length Lc as a
function of a coupling g3, after comparing all cases.
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1. Introduction

One of the most promising extensions of the Standard Model is offered by supersymmetric theories.
These theories are elegant due to the cancelation of quadratic divergences, thus, protecting the Higgs
mass from increasing without an upper limit.
It is known that supersymmetry is spontaneously broken when the theory is examined at finite temper-
ature. This takes place due to the boundary conditions, which are periodic for bosons and anti-periodic
for fermions and are used at finite temperature. Similar situations could also occur in the conceptually
similar case of field theories at finite volume. However in this case, supersymmetry is not spontaneously
broken due to fermions and bosons being less restricted in the boundary conditions that they can obey
(no Kubo-Martin-Schwinger relations in finite volume field theories).
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Boundary conditions control the breaking of supersymmetry in a way. In this paper, we shall begin with
a supersymmetric N = 1, d = 4 theory, containing bosons and fermions with no gauge symmetry. We
shall assume spacetime topology S1 × R3 of a flat Clifford–Klein type one, and with S1 referring to
a spatial dimension. It was previously shown that spacetime topology has an impact on the boundary
conditions of the fields, which are integrated in the path integral. In addition, only the sections of
the fiber bundle appear in the path integral, on which we have quantized the theory. Given a class
of metrics, several spacetime topologies are allowed for a metric. Non-trivial topology presupposes
non-trivial sections of the fiber bundle [1–6]. This non-triviality is expressed through the boundary
conditions, which the fields (sections) obey along the compact dimensions. In this case, there is a formal
mathematical base, which we shall briefly analyze later in this paper.
The structure of this paper begins with a N = 1, d = 4 supersymmetric theory and the allowed field
configurations, which are determined from the topology. The calculation of the effective potential is an-
alyzed in detail, in which it is clearly shown the cases that supersymmetry breaks or does not. This paper
discusses in detail the addition of the Lagrangian non holomorphic and hard supersymmetry breaking
terms. These terms break supersymmetry through the re-introduction of quadratic divergences.
But why re-introduce quadratic divergences? Hard supersymmetry breaking terms introduce divergences
of the form

∆mscalar =
1

8π2
(ls − l2f )Λ

2
UV , (1)

with Λ2
UV a relevant upper cut-off of the theory and ls, lf boson and fermion couplings. These are valid

when the couplings are not equal. So, the question would be why these terms matter? The answer is
what was the motivation to prepare this article. It seems that for some values of the couplings and of
the masses, intriguing phenomena could occur. In particular, when the compact dimension radius is
large supersymmetry is unbroken, and breaks after a critical length as the compact dimension magnitude
decreases. It is important to note here that we refer to this as ”inverse supersymmetry breaking” for
brevity. This is because it is counter-intuitive: we would expect that for small distances supersymmetry is
unbroken and for large distances it breaks dynamically. This stems from modern theoretical high energy
physics expectations, since it is believed that at short distances (for instance high energy densities, on
the Planck scale) all interactions are unified and all broken symmetries are restored. Supersymmetry is
one symmetry that should be intact at small distances.
We will present the case, which has been referred to previously, in which supersymmetry is broken at
large compact space radius and at small. This is odd from the four-dimensional high energy physics view,
but it can find application for extra dimensional physics. The situation that is being described has a finite
temperature conceptual analog. It would be helpful to have in mind the transformation T → 1/L, where
T and L refer to the temperature and the radius, respectively. At finite temperature in a few cases, broken
O(Nf ) × O(Nψ) symmetries become restored at high temperatures. Also, unbroken symmetries at low
temperatures can break at high temperatures; a phenomenon known as ”inverse symmetry breaking”.
This second case may have cosmological implications. In the currently studied case, the same occurs
but with supersymmetry in place of the symmetry, and with compact dimension playing the role of
the temperature. It is of critical important to notice that the high temperature limit is, roughly, closely
related to the small length limit through the transformation T → 1

L
. In actual fact, through the last

transformation, we can relate the two limits where this is possible. The most striking feature of this
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resemblance relies in the similarity of the terms in the Lagrangian, which trigger these phenomena in
both cases. This occurs due to the rich scalar sector of the two theories. Also, these terms appear in the
new inflationary models [7–11] and help in the procedure of reheating the universe, after inflation. The
inverse symmetry breaking process will be presented in due course.
The study of supersymmetry breaking will be done using the effective potential [12–23]. The appearance
of vacuum terms in the effective potential, which have different coefficients for fermions and bosons,
lead to the fact that the effective potential of the theory has no longer its minimum at zero, and thus,
supersymmetry is spontaneously broken. These vacuum terms are affected by the boundary conditions.
In conclusion, using the appropriate boundary conditions will result in these terms being canceled, thus
avoiding spontaneous supersymmetry breaking, which gives the potential to focus on dynamical super-
symmetry breaking.
Regarding the calculative part, our calculations will be done at a 1-loop level and within the perturbative
limits with mL ≤ 1, where m is the largest mass scale in the theory and L is the circumference of the
compact dimension. In addition, within the four-dimensional setup we use, renormalizability of masses
and couplings is ensured when mL ≤ 1.
In section 1, the mathematical setup will be reviewed, which is needed for field theories with non-trivial
topology and also describes the N = 1 supersymmetric model that is used. The effective potential is
also calculated in the case of continuum and in the compact aspect. In section 2, several supersymmetry
breaking terms are added and studied in detail, as well as their effect on the vacuum energy of the model.
Furthermore, the conditions are presented, that must hold in order for these effects to take place. In
section 3, the continuous symmetry restoration, symmetry non-restoration and inverse symmetry are
reviewed, breaking at finite temperature. The resemblance of these to our case is also highlighted, which
stems from the interactions of the scalar sector. In section 4, possible applications are discussed.

2. Twisted Sections and Non-Trivial Topology

Non-trivial topology affects the fields, which appear in the Lagrangian (see [1–3]). In this case, the
topological properties of S1×R3 are studied, which are determined by the first Stieffel classH1(S1×R3, Z2̃)

that is isomorphic to the singular (simplicial) cohomology groupH1(S
1×R3, Z2) because of the triviality

of the Z2̃ sheaf. The group H1(S1×R3, Z 2̃) = Z2 classifies the twisting of a bundle. The mathemat-
ical exercise is to find the sections that correspond to the fiber bundle, which are classified by Z2 [1].
These are real scalar fields and Majorana spinor fields. These carry a topological number called moe-
biosity (twist), which distinguishes twisted from untwisted fields. The twisted fields obey anti-periodic
boundary conditions, while untwisted fields periodic in the compact dimension. This is contrary to the
finite temperature case, in which one takes scalar fields to obey periodic and fermion fields to obey
anti-periodic boundary conditions, disregarding all other configurations that may arise from non trivial
topology. Let φu, φt and ψt, ψu denote the untwisted and twisted scalar and twisted and untwisted spinor
fields, respectively. The boundary conditions in the S1 dimension read,

φu(x, 0) = φu(x, L), (2)

and
φt(x, 0) = −φt(x, L), (3)
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for scalar fields and
ψu(x, 0) = ψu(x, L), (4)

and
ψt(x, 0) = −ψt(x, L), (5)

for fermion fields, where x stands for the remaining two spatial and one time dimension, which are
not affected by the boundary conditions. Spinors (both Dirac and Majorana), still remain Grassmann
quantities. We assign the untwisted fields as twist h0 (the trivial element of Z2) and the twisted fields
as twist h1 (the non trivial element of Z2). Recall that h0 + h0 = h0 (0 + 0 = 0), h1 + h1 = h0

(1 + 1 = 0), h1 + h0 = h1 (1 + 0 = 1). We require the Lagrangian to be scalar under Z2 and
therefore to have h0 moebiosity. Thus, the topological charges at the interaction vertices sum to h0

under H1(S1×R3, Z 2̃). For supersymmetric models, supersymmetry transformations restricts the twist
assignments of the superfield component fields [3].
In the general case when the spacetime topology is (S1)q × R4−q, then the allowed field configurations
are determined by the representations of H1

(
(S1)q ×R4−q, Z2

)
= Zq

2 . Thus, the number of the different
inequivalent twists is 2q, which means that we could have 2q topologically inequivalent spin 0 scalars,
spin 1/2 Majorana fermions and spin 3/2 Majorana fermions .This is for supergravity, while for our case
q = 1.

2.1. N = 1, d = 4 Supersymmetric Model

The model being presented is described by the global N = 1, d = 4 supersymmetric Lagrangian,

L = [Φ+
1 Φ1]D + [Φ+Φ]D + [

m1

2
Φ2 +

g1
6
Φ3 +

m

2
Φ2

1 + gΦΦ2
1]F +H.c, (6)

where Φ1, Φ are chiral superfields and the superpotential from which the interaction part of the La-
grangian arises is [m1

2
Φ2 + g1

6
Φ3 + m

2
Φ2

1 + gΦΦ2
1]F . In the above,

Φ = φu(x) +
√
2θψu(x) + θθFφu + i∂µφu(x)θσ

µθ̄ (7)

− i√
2
θθ∂µψu(x)σ

µθ̄ − 1

4
∂µ∂

µφ+
u (x)θθθ̄θ̄,

is a left chiral superfield which contains the untwisted scalar field components and the untwisted Weyl
fermion. The real components which will be the representatives of the sections of the trivial bundle are
classified by H1(S1×R3, Z 2̃). Also,

Φ1 = φt(x) +
√
2θψt(x) + θθFφt + i∂µφt(x)θσ

µθ̄ (8)

− i√
2
θθ∂µψt(x)σ

µθ̄ − 1

4
∂µ∂

µφ+
t (x)θθθ̄θ̄,
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is another left chiral superfield containing the twisted scalar field and the twisted Weyl fermion. Writing
down (6) in component form, we have (writing Weyl fermions in the Majorana representation):

L = ∂µφ
+
u ∂

µφu −
∣∣∣m1φu +

g1
2
φuφu + gφ2

t

∣∣∣2 + iΨtγ
µ∂µΨt −

1

2
mΨtΨt (9)

− g1
4
(ΨuΨu −Ψuγ5Ψu)φu −

g1
4
(ΨuΨu +Ψuγ5Ψu)φ

+
u + ∂µφ

+
t ∂

µφt−

|mφt + 2gφtφu|2 + iΨuγ
µ∂µΨu −

1

2
m1ΨuΨu−

g

4
(ΨtΨt −Ψtγ5Ψt)φu −

g

4
(ΨtΨt +Ψtγ5Ψt)φ

+
u .

It can be easily checked that moebiosity is conserved at all interaction vertices i.e., equals h0. The
moebiosity of φu and Ψu is h0 while for φt and Ψt is h1. Using the Z2 cyclic group properties we
see that the Lagrangian (9) has moebiosity h0. The complex field φu can be written in terms of real
components as φu= χ+ iφu2/

√
2, where χ = v + (φu1)/

√
2 (v is the classical value). Thus, φu1 andφu2

are real untwisted field configurations belonging to the trivial element of H1(S1×R3, Z2̃) and satisfying
periodic boundary conditions in the compactified dimension. The twisted scalar field can be written in
terms of real fields φt= (φt1+iφt2)/

√
2, since this field, being a member of the non-trivial element of

H1(S1×R3, Z 2̃) cannot acquire a vacuum expectation value. The minimization of the effective potential
will be done in terms of v. The tree order masses are calculated to be:

m2
b1

= m2
1 + 3g1m1v + 3g21v

2/2 (10)

m2
b2

= m2
1 + g1m1v + g21v

2/2

m2
t1

= m2 + 4gmv + 4g2v2 + g2m1v/
√
2 + g2g1v

2/4

m2
t2

= m2 + 4gmv − g2m1v/
√
2− g2g1v

2/4

mf1 = m1 + g1v, mf2 = m+ 2gv.

Where in (10) mb1 , mb2 are the masses of the untwisted bosons (φu1 and φu2 , respectively), mt1 , mt2 are
the masses of the twisted bosons (φt1 and φt2), and finally, mf1 , mf2 are the untwisted Majorana fermion
and twisted Majorana fermion masses, respectively (Ψu and Ψt). The general tree level relation (related
to rigid supersymmetric theories) is satisfied, (see [24]) i.e., :

STr(M2) =
∑
j

(−1)2j(2j + 1)m2
j = 0. (11)

Also, the following relations hold:

m2
b1
+m2

b2
= 2m2

f1
, m2

t1
+m2

t2
= 2m2

f2
. (12)

Since twisted scalars cannot acquire vacuum expectation value, supersymmetry is not spontaneously
broken at tree level, like in the O’Raifeartaigh models as can be seen by solving the auxiliary field
equations,

F+
φu

= m1φu +
g1
2
φ2
u + gφ2

t = 0 (13)

F+
φt

= mφt + 2gφuφt = 0,

which imply that φu = 0 and φt = 0 and consequently v = 0, thus, at tree level, no spontaneous
supersymmetry breaking occurs.
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2.2. Supersymmetric Effective Potential in S1 ×R3

Now, assume that the topology is changed to S1×R3, while the local geometry remains Minkowski.
The metric is:

ds2 = dt2 − dx21 − dx22 − dx23, (14)

with −∞ < x2, x3, t < ∞ and 0 < x1 < L with the points x1 = 0 and x1 = L periodically identified.
The boundary conditions for the fields are:

φu(x1, x2, x3, t) = φu(x1 + L, x2, x3, t) (15)

φt(x1, x2, x3, t) = − φt(x1 + L, x2, x3, t)

Ψu(x1, x2, x3, t) = Ψu(x1 + L, x2, x3, t)

Ψt(x1, x2, x3, t) = −Ψt(x1 + L, x2, x3, t).

Euclidean space is worked, with Wick rotating the time. The twisted fermions and twisted bosons, will
be summed over odd Matsubara frequencies, while the untwisted fermions and untwisted scalars will be
summed over even Matsubara frequencies [25,26]. In the calculations, the DR

′
renormalization scheme

[24] and zeta regularization techniques [27–30] are adopted. The Euclidean potential reads:

V = V0 +
1

64π2L

∞∑
n=−∞

∫
d3k

(2π)3

(
ln[k2 +

4π2n2

L2
+m2

b1
] (16)

− 2 ln[k2 +
4π2n2

L2
+m2

f1
] + ln[k2 +

4π2n2

L2
+m2

b2
]

− 2 ln[k2 +
π2(2n+ 1)2

L2
+m2

f2
] + ln[k2 +

π2(2n+ 1)2

L2
+m2

t1
]

+ ln[k2 +
π2(2n+ 1)2

L2
+m2

t2
]

)
.

V0 includes the tree and the one loop corrections for infinite length,

V0 = m2
1v

2 + g21m1v
3 +

g21v
4

4
+

1

64π2

(
m4
b1
(ln[

m2
b1

µ2
]− 3

2
) (17)

+m4
b2
(ln[

m2
b2

µ2
]− 3

2
) +m4

t1
(ln[

m2
t1

µ2
]− 3

2
) +m4

t2
(ln[

m2
t2

µ2
]− 3

2
)

− 2m4
f1
(ln[

m2
f1

µ2
]− 3

2
)− 2m4

f2
(ln[

m2
f2

µ2
]− 3

2
)

)
,

and µ is the renormalization scale, being of the order of the largest mass. Furthermore, it is assumed that
mL ≃ 1, which is required for the validity of the perturbation theory [11,26] as we previously referred.

2.3. Connection with Zeta Function

The effective potential can be written in a much more elegant way using the zeta function (see for
example [4,27–29], and references therein) associated with the operators in S1 ×R3. For simplicity, we
deal with the bosonic effective potential,

1

L

∫
dkd

(2π)d

∞∑
n=−∞

ln[
(4π2n2

L2
+ k2 +m2

)
/µ2] (18)
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In detail, the one loop potential can written,

V 1(ϕ) =
1

vol(M)

∑
n

ln(an/µ
2), (19)

where vol(M) is the volume of the spacetime under study and an are the eigenvalues of the Laplace
operator on S1 ×R3. Using the zeta function [27–29],

ζ(s) =
∑
n

a−sn . (20)

the potential at 1-loop can be written as,

V 1(ϕ) =
1

vol(M)
[ζ ′(0) + ζ(0) lnµ2], (21)

with µ a dimensional regularization parameter that we will use in the following. For S1 × R3 the
eigenvalues an are,

an = m2 +
(4π2n2

L2
+ k21 + k22 + k23

)
. (22)

Also the zeta function [27–29] ζ(s) reads,

ζ(s, L) =
L

2π

∫
ddki

∞∑
n=−∞

[4π2n2

L2
+ k21 + k22 + k23 + ...k2d +m2

]−s
. (23)

The above equation can be written in terms of the Epstein zeta [27–29] function (after performing the
integration),

Zv2

d

(
s;w1, ..., wd

)
=

∞∑
n1...nd=−∞

[w1n
2
1 + ...+ wdn

2
d + v2]−s. (24)

as,

ζ(s, L) =
(√π
L

)dΓ(s− d
2
)

Γ(s)

( L
2π

)2s
Zv2

d

(
s;
4π2

L2

)
. (25)

The above relation expresses in a more elegant way the effective potential. The fermion case is similar
to this. For a detailed presentation see [27].

2.4. Small L Expansion of the effective potential

Zeta-regularization techniques [4,27–29,31–34], can be used to compute the small L expansion of the
effective potential. For the case in which the total dimensionality of space is even, the potential can be
computed as follows (for general d):

1

L

∫
dkd

(2π)d

∞∑
n=−∞

ln[
4π2n2

L2
+ k2 +m2] = (26)

− 1

2

√
π

(2π)da
(2π)

d−1
2 md+1Γ(−ν − 1

2
+ 1) +

1

4

1

(2π)d
(2π)

d−1
2 md+1Γ(−ν)

−
√
π

(2π)da
(2π)

d−1
2 md+1Γ(−ν − 1

2
+ 1)(a2)

1
2
−ν

× [

ν− 1
2∑

l=0

((2π)2)ν−
1
2
−l(ν − 1

2
)!

(ν − 1
2
− l)!l!

(a2)lζ(−2ν + 1 + 2l)]
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for the boson case, with α = mL and

1

L

∫
dkd

(2π)d

∞∑
n=−∞

ln[
(2n+ 1)2π2

L2
+ k2 +m2] = (27)

− (2π)
d−1
2 md+1

(2π)d
(

∞′∑
q=−∞

K d+1
2
(mqL)

(mqL
2

)
d+1
2

− 1

2

∞′∑
q=−∞

K d+1
2
(mqL

2
)

(mqL
4

)
d+1
2

) =

−
√
π

(2π)da2
(2π)

d−1
2 md+1Γ(−ν − 1

2
+ 1) +

1

2

1

(2π)d
(2π)

d−1
2 md+1Γ(−ν)

− 2
√
π

(2π)da2
(2π)

d−1
2 md+1Γ(−ν − 1

2
+ 1)(a22)

1
2
−ν

×
[ σ∑
l=0

((2π)2)ν−
1
2
−l(ν − 1

2
)!

(ν − 1
2
− l)!l!

(a22)
lζ(−2ν + 1 + 2l)

]
+

1

2

√
π

(2π)da1
(2π)

d−1
2 md+1Γ(−ν − 1

2
+ 1)− 1

4

1

(2π)d
(2π)

d−1
2 md+1Γ(−ν)

+
1

2

√
π

(2π)da1
(2π)

d−1
2 md+1Γ(−ν − 1

2
+ 1)(a21)

1
2
−ν

×
[ σ∑
l=0

((2π)2)ν−
1
2
−l(ν − 1

2
)!

(ν − 1
2
− l)!l!

(a21)
lζ(−2ν + 1 + 2l)

]
for the fermion case, with α2 = mL and α1 =

mL
2

and σ indicating the values of the terms we can keep
[25,31,35]. Also

ν =
d+ 1

2
(28)

It is of great importance to mention at this point that the Gamma functions above contain singularities
for the four-dimensional spacetime case. However, these poles cancel within each contribution. For
example, in the boson case we have,

1

L

∫
dk3

(2π)3

∞∑
n=−∞

ln[
4π2n2

L2
+ k2 +m2] = (29)

−m4

16π2 +
m4

16 π2

ε
+ (

m2

12L2
+

3m4

64π2
− γ m4

32π2
− γ m4

16Lπ2
− m3

6Lπ
− π2

45L4
+
m4 ln(2)

32π2
+

m4 ln(2)

32Lπ2
− m4 ln(m)

16π2
+
m4 ln(m)

16Lπ2
− m4 ln(L2m2)

32 π2
+
m4 ln(π)

32π2
+
m4 ln(π)

32Lπ2

−
m4 ψ(−

(
3
2

)
)

32 π2
−
m4 ψ(1

2
)

32 π2
+
m4 ψ(5

2
)

32 π2
+

L2m6 ζ(3)

384π4
− L4m8 ζ(5)

4096π6
).

The cancelation of the poles can be explicitly shown. The way to obtain these is based on the method
of dimensional regularization after expanding everything around ε → 0, with d = 3 + ε. The same
considerations hold in the fermionic contribution (see also [30]).
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Now for the four-dimensional case, the above are expanded in terms of L, and upon keeping leading
order contribution in the L expansion, that is non-vanishing terms in the limit L → 0, to the one loop
effective potential we obtain:

V = m2
1v

2 + g21m1v
3 +

g21v
4

4
(30)

−
3(2m4

f1
−m4

b1
−m4

b2
)

4096π4
−

3(2m4
f2
−m4

t1
−m4

t2
)

256π4

+
3(2m4

f1
−m4

b1
−m4

b2
+ 2m4

f2
−m4

t1
−m4

t2
)

128π2

+
(γ − ln[4π])(2m4

f1
−m4

b1
−m4

b2
)

1024π4
+

(γ + ln[ 2
π
])(2m4

f2
−m4

t1
−m4

t2
)

64π4

+
(2m3

f1
−m3

b1
−m3

b2
)

384Lπ3
−

(2m2
f1
−m2

b1
−m2

b2
)

768π2L2
+

(2m2
f2
−m2

t1
−m2

t2
)

384π2L2

+
2m4

f1
ln[Lmf1 ]−m4

b2
ln[Lmb2 ]−m4

b1
ln[Lmb1 ]

1024π4

+
2m4

f2
ln[Lmf2 ]−m4

t2
ln[Lmt2 ]−m4

t1
ln[Lmt1 ]

64π4

−
(2m4

f1
ln[

m2
f1

µ2
]−m4

b2
ln[

m2
b2

µ2
]−m4

b1
ln[

m2
b1

µ2
])

64π2

−
(2m4

f2
ln[

m2
f2

µ2
]−m4

t2
ln[

m2
t2

µ2
]−m4

t1
ln[

m2
t1

µ2
])

64π2
.

Since relation (12) holds, the terms proportional to 1
L2 cancel. Also, the minimum potential vanishes at

Figure 1. The supersymmetric effective potential
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v = 0 and supersymmetry is preserved. Indeed, the behavior of (30) for small v we get:

V ≃ m2
1v

2 +O(v3). (31)

In figure 1, the plot of the effective potential for the upper perturbative limit mL = 1 is shown. The
other numerical values are chosen to be: m1=200, m =7000, g1=0.001, g =0.09, µ =7000.
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3. Addition of Explicit Supersymmetry Breaking Terms

At this point, we add in Lagrangian (9) various hard supersymmetry breaking terms of the form
g3χ

2φ2
i and g2ΨΨχ, where g3 and g2 are dimensionless couplings (and recall χ = v + φu1/

√
2). These

terms, being non holomorphic and hard, explicitly break supersymmetry and also have moebiosity zero.
The index ’i’ runs over all the twisted scalar fields.
As previously referred to, the addition of such terms re-introduce quadratic divergences in the theory,
namely,

∆mscalar =
1

8π2
(ls − l2f )Λ

2
UV , (32)

with Λ2
UV a relevant upper cut-off of the theory and ls, lf boson and fermion couplings.

Since χ develops a vacuum expectation value, the fields coupled to it will have an additional mass of the
form g3v

2 for bosons and g2v for fermions. Various combinations of the allowed terms can be added.
However, the interesting features are only triggered by some of these. In the following, we shall give a
detailed description of all the terms.
As it was previously referred to, for specific values of the parameters appearing in these terms, the
result is a theory in which supersymmetry is unbroken when the length of the compact dimension is
large, and as the radius decreases supersymmetry spontaneously breaks after a critical length. Thus,
supersymmetry is only broken for small lengths. In the following, the cases for which this happens are
described in detail.

3.1. A term of the form g3χ
2φ2

t1

An interaction among a twisted boson and an untwisted boson is added, which acquires vacuum
expectation value, namely −g3χ2φ2

t1
. Since χ = v+φu1/

√
2, the twisted boson φt1 will have additional

contribution to it’s tree order mass. The masses now read,

m2
b1

= m2
1 + 3g1m1v + 3g21v

2/2 (33)

m2
b2

= m2
1 + g1m1v + g21v

2/2

m2
t1

= m2 + 4gmv + 4g2v2 + g2m1v/
√
2 + g2g1v

2/4 + g3v
2

m2
t2

= m2 + 4gmv − g2m1v/
√
2− g2g1v

2/4

mf1 = m1 + g1v, mf2 = m+ 2gv.

As expected m2
t1
+m2

t2
− 2m2

f2
̸= 0, since supersymmetry is hardly broken.

An interesting phenomenon occurs for this term and for a class of other terms. In detail, when the length
of the compact dimension is small supersymmetry is broken, and is restored when the radius increases
above a critical length Lc.
As can be seen in the next section, the behavior resembles the inverse symmetry breaking of continuous
symmetries at finite temperature. A mentioned during the introduction, we call this “inverse supersym-
metry breaking” for brevity. Inverse supersymmetry breaking can happen when g3 is of the order of m1

m

or for smaller values; that is g3 ≤ m1

m
when only the term g3χ

2φ2
t1

appears in the Lagrangian. This whole
phenomenon is overviewed in figure 2. We use the following numerical values: m1=200, m =7000,
g1=0.001, g =0.09, µ =7000 and g3 = 0.05.
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Figure 2. Inverse Supersymmetry Breaking
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Table 1. g3 and the corresponding Lc values, case g3χ2φ2
t1

g3 L−1
c

0.1 32319
0.07 41352
0.05 50839
0.03 67994
0.01 121950

0.007 145900
0.005 173083
0.003 223990
0.001 388990

0.0005 557000
0.0001 1232000

0.00005 1740000
0.00001 3942000

As can be seen in figure 2, the phenomenon looks like a second order phase transition with the length
of the compact dimension playing the role of the temperature. No barrier appears between the vacua at
v = 0 and at v ̸= 0. The study was limited to perturbation theory preserving values of L. As it can be
seen, for large L (L = 1/7000) supersymmetry is unbroken and it starts to break at Lc = 1/50830. As
the length decreases, the breaking is all the more profound. It is also important to note that the two non-
supersymmetric vacua are not equivalent. We tried to examine how Lc changes under a change of g3. In
Table 1 we present the values of g3 and the corresponding values of Lc, and in Table 2 we present the
Lc − g3 and the fit of the curve with a continuous function. The dots are the values that appear in Table
1, while the continuous line corresponds to the function 0.0000914

√
x. Thus, the dependence of g3 as a

function of Lc is roughly,
L−1
c ∼ 0.0000914

√
g3. (34)
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Table 2. Plot of the Lc − g3 (left) and fit with a continuous curve (right), case g3χ2φ2
t1
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Table 3. Contour plots of the effective potential as a function of g3 and Lc, case g3χ2φ2
t1
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Before ending this section, contour plots of the effective potential are presented as a function of g3 and
the classical values v. In Table 3 the g3 − Lc behavior can be seen clearer. It is noticeable that as the
colors become lighter, the values are larger. Finally, a term of the form g3χ

2φ2
t2

, an interaction between
the other twisted scalar and of the untwisted scalar, gives similar results with the case we just studied.
Even the fitting curve of the Lc − g3 behavior is the same. We give in Table 4 some specific values in
order to compare with Table 1

Table 4. g3 and the corresponding Lc values for the g3χ2φ2
t2

case

g3 L−1
c

0.1 32290
0.07 41320
0.01 121551

0.0001 1238950
0.00001 3922000
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Table 5. g3 and the corresponding Lc values, case g3χ2φ2
t1

, g3χ2φ2
t2

g3 L−1
c

0.1 32300
0.07 41359
0.05 51009
0.03 68100
0.01 121900

0.005 173500
0.001 388990

Table 6. Plot of the Lc − g3 (right) and fit with a continuous curve (left), case g3χ2φ2
t1
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3.2. Combination of the terms g3χ2φ2
t1

and g3χ2φ2
t2

In the Lagrangian (6), we now add a combination of the terms g3χ2φ2
t1

and g3χ2φ2
t2

. These terms
describe interactions between the untwisted scalar and the two twisted scalar fields, respectively. Thus,
the tree order masses of the twisted scalar fields are modified to:

m2
t1

= m2 + 4gmv + 4g2v2 + g2m1v/
√
2 + g2g1v

2/4 + g3v
2 (35)

m2
t2

= m2 + 4gmv − g2m1v/
√
2− g2g1v

2/4 + g3v
2

and as before m2
t1
+m2

t2
− 2m2

f2
̸= 0. Now, as in the case where a single interaction term between the

untwisted and twisted scalar, the conditions that must hold in order for inverse supersymmetry breaking
to occur, are g3 ≤ m1

m
. What happens again then is described by Figure 2. In Table 5 we present the

g3 − Lc dependence and in Table 6 we plot the g3 − Lc and fit the curve with a continuous function,
As in (34), the fitted Lc − g3 dependence is:

L−1
c ∼ 0.0000918

√
g3. (36)

This behavior is almost the same in the two cases, and motivates us to think that there is some kind of
universality in the Lc − g3 behavior. This aspect could possibly be used against the argument that the
inverse supersymmetry breaking is just a perturbation theory artifact, but this will be analyzed thoroughly
in the conclusion. In summary, this case has many similarities with the previous, with one twisted scalar
breaking term.
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Table 7. g3 and the corresponding Lc values for the case 1
2
g2ΨuΨuχ, g3χ2φ2

t1

g3 L−1
c

0.1 32178
0.07 41205
0.05 50742
0.03 62250
0.01 84200

0.005 170000
0.001 381570

Table 8. Plot of the Lc − g3 (right) and fit with a continuous curve (left), for the case
1
2
g2ΨuΨuχ, g3χ2φ2

t1
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Lc
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3.3. Combination of the terms 1
2
g2ΨuΨuχ and g3χ2φ2

t1

We now add in the Lagrangian the terms 1
2
g2ΨuΨuχ and g3χ2φ2

t1
, which describe interaction between

the twisted scalar field and the untwisted fermion and twisted scalar, respectively. In this case, the
untwisted fermion and one twisted scalar acquire additional mass terms:

m2
t1

= m2 + 4gmv + 4g2v2 + g2m1v/
√
2 + g2g1v

2/4 + g3v
2 (37)

mf1 = m1 + g1v + g3v

As expected m2
t1
+ m2

t2
− 2m2

f2
̸= 0, and also m2

b1
+ m2

b2
− 2m2

f1
̸= 0 since supersymmetry is hardly

broken.
The conditions that must hold in order for inverse supersymmetry breaking to occur are g3 ≤ m1

m
, as in

the previous cases and in addition g2 ≪ g3. For this condition, the behavior of supersymmetry breaking
is well described from Figure 2 and inverse supersymmetry breaking occurs. Table 7 shows the g3 − Lc

dependence and in Table 8 we plot the g3 − Lc and fit the curve with a continuous function. We fix the
coupling to g2 = 0.0001.
The fitted Lc − g3 dependence is:

L−1
c ∼ 0.0000944

√
g3. (38)

Compared with (36) and (34), the behavior is slightly different but to the sixth decimal. Thus, one could
say that the Lc − g3 dependence is more or less the same.
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Table 9. Contour plots of the effective potential as a function of g3 and Lc, for the case
1
2
g2ΨuΨuχ, g3χ2φ2

t1
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Table 9 shows the contour plots of the effective potential as a function of g2 and of the classical value v.
The value of g3 = 0.1 is fixed. The first conclusion we can show is that inverse supersymmetry breaking
occurs, and the value of g3 is fixed in this case, and the second that the potential is not affected by the
value of g2.
We omit the case 1

2
g2ΨuΨuχ, g3χ2φ2

t2
because it is identical with the one being just studied.

3.4. Combination of the terms 1
2
g2ΨuΨuχ, g3χ2φ2

t1
and g3χ2φ2

t2

The final case for which inverse supersymmetry breaking occurs is when interactions of the untwisted
scalar χ are added along with the two twisted scalars and with the untwisted fermion. Thus, we add in
the Lagrangian (6) the terms 1

2
g2ΨuΨuχ, g3χ2φ2

t1
and g3χ2φ2

t2
. Thus the two untwisted scalars and the

untwisted fermion acquire additional contributions to their tree order mass, which are:

m2
t1

= m2 + 4gmv + 4g2v2 + g2m1v/
√
2 + g2g1v

2/4 + g3v
2 (39)

m2
t2

= m2 + 4gmv − g2m1v/
√
2− g2g1v

2/4 + g3v
2

mf1 = m1 + g1v + g2v.

As usual m2
t1
+m2

t2
− 2m2

f2
̸= 0 and m2

b1
+m2

b2
− 2m2

f1
̸= 0.

The conditions that must hold in order for inverse supersymmetry breaking to occur are as before, g3 ≤
m1

m
, as in the previous cases and in addition g2 ≪ g3. For this condition the behavior of supersymmetry

breaking is again well described from Figure 2 and inverse supersymmetry breaking occurs. In Table 10
the g3−Lc dependence is shown and in Table 11 the g3−Lc is plotted and the curve fit with a continuous
function. The coupling is fixed to g2 = 0.0001.
The fitted Lc − g3 dependence is:

L−1
c ∼ 0.0000916

√
g3. (40)

Compare with (36) and (34) and (38). The behavior that relation (40) describes is the same with that of
(36) and (34). This cannot be accidental. We shall discuss this in the next subsection.
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Table 10. g3 and the corresponding Lc values for the case 1
2
g2ΨuΨuχ, g3χ2φ2

t1
, g3χ2φ2

t2

g3 L−1
c

0.1 32350
0.07 41900
0.05 50900
0.03 67990
0.01 121500

0.005 172000
0.001 300000

Table 11. Plot of the Lc − g3 (right) and fit with a continuous curve (left), for the case
1
2
g2ΨuΨuχ, g3χ2φ2

t1
, g3χ2φ2

t2

0.02 0.04 0.06 0.08 0.1
g3

5´10-6

0.00001

0.000015

0.00002

0.000025

0.00003

1
��������

Lc

0.02 0.04 0.06 0.08 0.1
g3

0.00001

0.000015

0.00002

0.000025

0.00003

1
��������

Lc

3.5. Discussion

Previously, we showed for which combinations of terms inverse supersymmetry breaking occurs. In
this section, we show which terms do not give inverse supersymmetry breaking. These are:

• Addition of fermion interactions with the untwisted scalar of the form

* 1
2
g2ΨuΨuχ

* 1
2
g2ΨtΨtχ

* 1
2
g2ΨuΨuχ and 1

2
g2ΨtΨtχ

• Addition of interactions of twisted fermions with twisted scalars of the form

* 1
2
g2ΨtΨtχ, g3χ2φ2

t1

* 1
2
g2ΨtΨtχ, g3χ2φ2

t2

* 1
2
g2ΨtΨtχ, g3χ2φ2

t1
, g3χ2φ2

t2

In principle any interaction involving untwisted scalar and twisted fermion interactions, 1
2
g2ΨtΨtχ, does

not trigger inverse supersymmetry breaking. This holds for any combination of terms we add along
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with the above. Also, any fermion-untwisted scalar interaction appearing itself does not give inverse
supersymmetry breaking.
As it was previously shown, in all the cases when inverse supersymmetry breaking occurs, it is followed
by a kind of universal behavior. This is focused mainly in the Lc − g3 dependence. This universality (if
this term can be used) is expressed by:

L−1
c ∼ 0.000091

√
g3. (41)

This is an interesting feature and it can be claimed that it cannot be accidental. Thus, this could stand
against the argument that inverse supersymmetry breaking is an artifact of perturbation theory. Also,
the theory remains, at some level, supersymmetric, and we do not expect dramatic changes when higher
loop calculations are incorporated.

4. Inverse Symmetry Breaking and Symmetry non-Restoration at Finite Temperature

In this section we review similar phenomena to ones that were previously described. The difference
is that in this section symmetries are studied at finite temperature and the symmetry that is involved is
not supersymmetry, but a continuous global O(N1)×O(N2) or a discrete Z2 ×Z2. As it will be shown,
symmetry non-restoration and inverse symmetry breaking phenomena can occur, when terms similar to
1
2
g2ψtψtχ, g3χ2φ2

t1
appear in the Lagrangian.

Symmetry non-restoration means that a symmetry broken at T = 0 never gets restored at high temper-
atures. Inverse symmetry breaking means that an unbroken symmetry at T = 0 may be spontaneously
broken at high temperature.
These phenomena occur in field theories when cross interactions are included among the scalar fields
similar to the bosonic hard supersymmetry breaking term g3χ

2φ2
u2

or other crossed terms that were used.
Similar to this term, scalar interactions and also Yukawa terms like the ones of the previous sections, are
frequently used in the theory of reheating after inflation. In actual fact, these similarities motivated us to
use such terms in order to show their impact on supersymmetry breaking.
The inverse symmetry breaking phenomenon is briefly reviewed here. The setup is a theory with real
scalar fields ϕ1 and ϕ2 described by the O(N1)×O(N2) globally symmetric Lagrangian,

L =
1

2
∂µϕ1∂µϕ1 +

1

2
∂µϕ2∂µϕ2 +

1

2
m2

1ϕ
2
1 +

1

2
m2

2ϕ
2
2 +

1

4!
λ1ϕ

4
1 +

1

4!
λ1ϕ

4
2 +

1

4!
λϕ2

1ϕ
4
2, (42)

where ϕ1 and ϕ2 be real scalars with N1 and N2 components. In the above Lagrangian one of the global
O(Ni) symmetries may break at high temperature if the λ coupling takes negative values. Thus, one
of the two scalar fields ϕ1 or ϕ2 may acquire a non-zero vacuum expectation value. Therefore, at high
temperature and for certain values of the parameters, the initialO(N1)×O(N2) is broken toO(N1). This
so-called inverse symmetry breaking was first pointed out by Weinberg [26] and has been extensively
studied by many authors [36–41].
Symmetry non-restoration was used in [40] to solve the monopole problem in the SU(5) GUT. As was
proposed in [40], the symmetric phase of SU(5) was never realized, no matter how high the temperature
became. In that paper, the interaction term α|χ45|2|H24| appearing in the scalar Kibble-Higgs sector is
responsible for the non-restoration of the SU(5) symmetry. Actually, the scalar interaction of H24 and
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χ45 gives negative contributions to the thermal masses and one of those become negative. When this
takes place, the corresponding Higgs field acquires a vacuum expectation value for high temperatures
and the symmetry is never restored. This phenomenon occurs for certain values of the parameters (see
[37,40]).
The intuitive approach to all phenomena at finite temperature is based on the fact that symmetries broken
at low temperatures may become restored at high temperature (in the same class belong finite volume
theories). Counter-intuitive phenomena occur in field theories with rich scalar sector. Especially, if the
multi-scalar sectors interact weakly with negative couplings, then as we have seen, the phenomena like
inverse symmetry breaking or symmetry non-restoration occur. This happens at high temperature and
refers to the spontaneous breaking of a symmetry at high temperature. Usually the symmetry is a global
O(N1)×O(N2) or for the case of symmetry non-restoration continuous, like SU(5).
Although inverse symmetry breaking is counter-intuitive, nature has provided us with cases where sys-
tems are more symmetric at low temperatures than at high temperature. The Rochelle salt and physics
of liquid crystals are two examples.
Before closing this section, it is essential to note that similar terms to those we used appear in the
reheating after inflation process. The Lagrangian governing this process is,

L =
1

2
(∂µφ)

2 − mφ

2
φ2 +

1

2
(∂µχ)

2 − mχ

2
χ2 + ψ(iγµ∂µ −mψ)ψ − λφψψ − 1

2
g2φ2χ2. (43)

The role of the inflaton field is played by the scalar field φ. The inflaton field decays to the particles ψ
and χ due to the interaction terms λφψψ and 1

2
g2φ2χ2. It is noticeable that similar terms are used in

order to break supersymmetry hard and all the effects that are shown in the previous section are due to
these interaction terms. Also, in order for reheating to take place, the conditionmφ ≫ mψ,mχ must hold
(it is noticeable that similar conditions hold in the supersymmetric model that are previously studied).
There, m1 was the tree order mass of the untwisted scalar field and m the tree order mass of the twisted
scalar. One of the conditions used is that the untwisted sector mass is larger than the twisted sector one,
namely m1 ≫ m. Also the untwisted fermion has mass m [8].

5. Conclusions

In this paper, a simple supersymmetric model was studied in S1 × R3 spacetime topology. The way
that topology affects the boundary conditions was reviewed. In addition, it was depicted that super-
symmetry breaks spontaneously at finite volume, and how this can be avoided in terms of the boundary
conditions that the fields obey. The effective potential was calculated and it was shown that with the
appropriate boundary conditions supersymmetry remains intact.
In addition, interaction terms among scalars and fermions were introduced in the Lagrangian. These
terms cause hard supersymmetry breaking, when the topology is R4 topology. This appears in the plot
of the effective potential for the case where the compact radius is infinite (see Figure 3).
It seems that in S1 × R3 something different occurs. It could be possibly assumed that supersymmetry
remains broken when the compact radius remains finite. However, this does not take place when one loop
finite volume corrections are taken into account. As it was shown, the addition of hard supersymmetry
breaking interactions among the scalars of the untwisted sector that develop a vacuum expectation value
and the twisted scalars or the twisted fermions, results in a very peculiar phenomenon. In particular,
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when certain conditions hold, which are similar to the aforementioned, supersymmetry is broken for
small lengths, and as the radius increases supersymmetry becomes restored after a critical length. This
was referred to as “inverse supersymmetry breaking” for brevity. This conceptually resembles second
order phase transitions. In particular, we presented all the combinations of terms for which inverse
supersymmetry breaking occurs. The result was that it works only for twisted boson and untwisted
fermions combinations (but never for fermion interactions alone).

Figure 3. The continuum effective potential
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In addition, it was found that there is a universality in the Lc − g3 behavior. Specifically, it seems that,
with a sixth-decimal accuracy, the Lc − g3 dependence can be described by:

L−1
c ∼ 0.00009

√
g3. (44)

This holds for all the cases that inverse supersymmetry breaking can occur. This fact led to our assump-
tion that inverse supersymmetry breaking cannot be a consequence of coupling interplay and maybe
one loop physics artifact. The last can be augmented by the fact that the theory remains at some level
supersymmetric and the two loop results will not change dramatically the one loop results.
We found conceptual similarities between inverse supersymmetry breaking and inverse symmetry break-
ing phenomena at finite temperature, which occur in field theories with a rich scalar sector. In that case
a symmetry unbroken at low temperatures may break at high temperature. In our case, at small lengths
supersymmetry breaks, while it remains unbroken at large radius values. The terms in the Lagrangian
that trigger inverse symmetry breaking are the same that trigger inverse supersymmetry breaking. Also,
these terms appear in the theory of reheating and in the thermal inflation.
To end this paper, the physical significance of “inverse supersymmetry breaking” can be shown. This
phenomenon is not so appealing to a four-dimensional theory. What would be expected is that super-
symmetry should be unbroken for small values of the radius of the compact dimension and should break
dynamically at large radius. However, we discuss that what actually happens is the converse: for large
values of the radius supersymmetry is unbroken and dynamically breaks for small values of the radius.
This would be interesting for a five-dimensional model. Imagine a theory where supersymmetry is un-
broken for a large radius of the compact dimension and breaks dynamically for small values of the
compact dimension. It is an intriguing task to find what this mechanism, which has something to do
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with coupling interplay between interactions, has to say for the radius stabilization mechanism and the
supersymmetry breaking mechanisms of extra dimensional models.

6. Acknowledgments

The author acknowledges the valuable contribution of Demetra Economou for proofreading the article
in linguistic issues.

References

1. Avis, S. J.; Isham, C. J. Generalized spin structures on four dimensional space-times. Commun.
Mathe. Phys. 1980 72, 103-118.

2. Ford, L. H. Vacuum polarization in a nonsimply connected Spacetime. Phys. Rev. D 1980, 21,
933-948.

3. Goncharov, Yu. P.; Bytsenko, A. A. Topological violation of supersymmetry. Phys. Lett. B 1985,
163, 155-160.

4. Toms, D. J. The Casimir Effect And Topological Mass. Phys. Rev. D 1980, 21, 928-932.
5. Toms, D. J. Symmetry Breaking And Mass Generation By Space-Time Topology. Phys. Rev. D

1980, 21, 2805-2817.
6. Toms, D. J. Interacting Twisted And Untwisted Scalar Fields In A Nonsimply Connected Space-

Time. Ann. Phys. 1980, 129, 334-357.
7. Linde, A. D. Particle Physics and Inflationary Cosmology; CRC Press: Florida, USA, 1990.
8. Kofman, L.; Linde, A.; Starobinsky, A. A. Reheating after Inflation. Phys. Rev. Lett. 1994, 73,

3195-3198.
9. Starobinsky, A. A. A new type of isotropic cosmological models without singularity. Phys. Lett. B

1980, 91, 99-102.
10. Vilenkin, A. Birth of inflationary universes. Phys. Lett. B 1983, 27, 2848-2855.
11. Guth, A. H.; Tye, S. H. H. Phase Transitions and Magnetic Monopole Production in the Very Early

Universe. Phys. Rev. Lett. 1980, 44, 631-635.
12. Buchbinder, I. L.; Odintsov, S. D. Effective Action In Multidimensional (Super)Gravities And

Spontaneous Compactification. (Quantum Aspects Of Kaluza-Klein Theories). Fortshrt. Phys.
1989, 37, 225-259.

13. Buchbinder, I, L; Odintsov, S. D. Effective potential in A curved Space-Time. J. Sov. Phys. 1984,
27, 554-558.

14. Buchbinder, I, L; Odintsov, S. D. One loop renormalization of the Yang-Mills field theory in A
Curved Space-Time. J. Sov. Phys. 1983, 26, 359-361.

15. Odintsov, S. D. Casimir Effect In Multidimensional Quantum Supergravities And Supersymmetry
Breaking. Mod. Phys. Lett. A 1988, 3, 1391-1399.

16. Odintsov, S. D. Two loop effective potential in quantum field theory in curved space-time. Phys.
Lett. B 1993, 306, 233-236.

17. Elizalde, E.; Odintsov, S. D.; A. Romeo Zeta regularization of the O(N) nonlinear sigma model in
D-dimensions. J. Math. Phys. 1996, 37, 1128-1147.



Symmetry 2010, 2 386

18. Elizalde, E.; Odintsov, S. D.; Romeo, A. Effective potential for a covariantly constant gauge field
in curved space-time. Phys. Rev. D 1996, 54, 4152-4159.

19. Elizalde, E.; Nojiri, S.; Odintsov, S. D.; Ogushi, S. Casimir effect in de Sitter and anti-de Sitter
brane worlds. Phys. Rev. D 2003, 67, 063515.

20. Lavrov, P. M.; Odintsov, S. D. I. V. Tyutin Effective actions in quantum gravity theories. Sov. J.
Nucl. Phys. 1987, 46, 932-936.

21. Odintsov, S. D. Renormalization Group, Effective Action And Grand Unification Theories In Curved
Space-Time. Fortsch. Phys. 1991, 39, 621-641.

22. Dowker, J. S.; Banach, R. Quantum Field Theory On Clifford-Klein Space-Times. The Effective
Lagrangian And Vacuum Stress Energy Tensor. J. Phys. A: Math. Theor. 1978, 11, 2255-2284

23. Dowker, J. S.; Banach, R. Automorphic Field Theory: Some Mathematical Issues. J. Phys. A:
Math. Theor. 1979, 12, 2527-2543

24. Martin, S. P. Two-loop effective potential for a general renormalizable theory and softly broken
supersymmetry. Phys. Rev. D 2002, 65, 116003.

25. Dolan, L.; Jackiw, R. Symmetry behavior at finite temperature. Phys. Rev. D 1974, 9, 3320-3341.
26. Weinberg, S. Gauge and global symmetries at high temperature. Phys. Rev. D 1974, 9, 3357-3378.
27. Elizalde, E. Ten physical applications of spectral zeta functions; Springer-Verlag: Berlin Heidel-

berg, Germany, 1995.
28. Elizalde, E.; Odintsov, S. D.; Romeo, A.; Bytsenko, A. A.; Zerbini, S. Zeta regularization tech-

niques and applications; World Scientific: Singapore, 1994
29. Kirsten, K. Spectral Functions in Mathematics and Physics; Chapman & Hall/CRC: Florida, USA,

2002
30. Oikonomou, V. K. Report of the Detailed Calculation of the Effective Potential in Spacetimes with

S1×Rd Topology and at Finite Temperature. Rev. Math. Phys. 2009, 21, 615-674.
31. Elizalde, E.; Kirsten, K. Topological symmetry breaking in selfinteracting theories on toroidal

space-time. J. Math. Phys. 1994, 35, 1260-1273.
32. Odintsov, S. D. Compactification And Spontaneous Symmetry Breaking In The Lambda Phi4 The-

ory With Kaluza-Klein Background. J. Sov. Phys. 1988, 31, 695-699.
33. Elizalde, E; Odintsov, S. D.; Leseduarte S. Chiral symmetry breaking in the Nambu-Jona-Lasinio

model in curved space-time with nontrivial topology. Phys. Rev. D 1994, 49, 5551-5558.
34. Brevik, I; Milton, K; Nojiri, S; Odintsov, S. D. Quantum (in)stability of a brane world AdS(5)

universe at nonzero temperature. Nucl. Phys. B 2001, 599, 305-318.
35. Kirsten, K. Casimir effect at finite temperature J. Phys. A: Math. Theor. 1991, 24, 3281-3298.
36. Bimonte, G.; Lozano, G. On symmetry non-restoration at high temperature. Phys. Lett. B 1996,

366, 248-252.
37. Bimonte, G.; Lozano, G. Can symmetry non-restoration solve the monopole problem?. Nucl. Phys.

B 1996, 460, 155-166.
38. Pinto, M. B.; Ramos, R. O. A Nonperturbative study of inverse symmetry breaking at high temper-

atures. Phys. Rev. D 2000, 61, 125016.
39. Pinto, M. B.; Ramos, R. O.; Parreira, J, E. Phase transition patterns in relativistic and nonrelativistic

multi-scalar-field models. Phys. Rev. D 2005, 71, 123519.



Symmetry 2010, 2 387

40. Dvali, G.; Melfo, A.; Senjanovic, G. Symmetry Nonrestoration at High Temperature and the
Monopole Problem. Phys. Rev. Lett. 1995, 75, 4559-4562.

41. Pinto, M. B.; Ramos, R. O.; de Souza Cruz, F. F. Effective potential and thermodynamics for a
coupled two-field Bose-gas model. Phys. Rev. A 2005, 74, 033618.

c⃝ 2010 by the author; licensee Molecular Diversity Preservation International, Basel, Switzerland. This
article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license http://creativecommons.org/licenses/by/3.0/.


	Introduction
	Twisted Sections and Non-Trivial Topology
	N=1 , d=4 Supersymmetric Model
	Supersymmetric Effective Potential in 
	Connection with Zeta Function
	Small L Expansion of the effective potential

	Addition of Explicit Supersymmetry Breaking Terms
	A term of the form 
	Combination of the terms 
	Combination of the terms 
	Combination of the terms 
	Discussion

	Inverse Symmetry Breaking and Symmetry non-Restoration at Finite Temperature
	Conclusions
	Acknowledgments

