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Abstract

Damped wave equations, as an important class of partial differential equations, have wide
applications in fields such as acoustics, signal processing, and fluid mechanics. However,
wave propagation is often affected by noise interference, including medium randomness,
random external forces and so on. Therefore, an uncertain term needs to be added to the
damped wave equation to enhance the model’s fidelity to real-world scenarios. Based on
uncertainty theory, this paper introduces the Liu process to the damped wave equation
to characterize uncertainties, thereby establishing a new type of equation—the uncertain
damped wave equation. In order to solve this equation, the method of separation of
variables is employed to derive the analytical solution. The uniqueness of the solution is
proved under given initial and boundary conditions. Finally, several examples are provided
to illustrate the analytical solutions.

Keywords: uncertain damped wave equation; uncertainty theory; Liu process

1. Introduction
Partial differential equations can be used to describe many phenomena, such as

vibrations of elastic bodies, heat conduction and fluid flow. In particular, the problem
of finding analytical solutions to partial differential equations is a crucial research topic,
as it is directly related to the accurate description of practical problems in fields such as
physics and engineering [1,2]. The wave equation, as a crucial class of partial differential
equations, models the propagation of diverse wave types, such as mechanical vibrations,
electromagnetic waves, and disturbances in fluids. The study on the wave equation can
be traced back as early as the 18th century. In 1747, D’Alembert [3] first derived the
one-dimensional wave equation in his investigation of vibrating strings.

However, in reality, the wave propagation inevitably involves energy loss, which
makes the wave equation inadequate to model certain phenomena. Consequently, many
scholars investigate the wave equation with damping terms. For example, Mickens [4]
revised the heat transport equation to derive a damped wave equation and obtained its
analytical solution. Su [5] compared the solutions of the phase-lagging heat transport
equation and the damped wave equation. Additionally, the damped wave equation has
been used to model different types of wave propagation, including pressure wave behaviour
in a fluid flowing through porous formations [6], heat conduction in porcine muscle
tissue and blood [7], the propagation of pressure waves with viscoelastic effects in fluid
flow [8], and electromagnetic wave propagation on transmission lines [9]. However, many
phenomena in nature are not entirely deterministic but involve randomness and uncertainty.
Thus, some researchers have turned their attention to studying stochastic damped wave
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equations. In the 1970s, Pardoux [10] investigated nonlinear stochastic damped wave
equations. Extensive research on stochastic damped wave equations has been performed
by Nguyen [11], Han [12], Cerrai [13] and Cai [14]. The Wiener process is often used to
characterize randomness in the stochastic damped wave equation. However, this approach
may not be suitable for describing some specific phenomena, such as heat conduction
with lagging response. We will explain in detail in Section 4 why it is unreasonable to
use the stochastic damped wave equation alone to describe heat conduction with lagging
response. This motivates us to explore new tools for characterizing uncertainties in damped
wave equations.

In 2007, Liu [15] established uncertainty theory as a mathematical approach for ad-
dressing problems involving uncertainty. Moreover, Liu [16] further refined the theory.
Liu introduced a special uncertain process named the Liu process, which is characterized
by stationary independent increments that follow an uncertain normal distribution. Sub-
sequently, Liu [17] first proposed uncertain differential equation (UDEs) actuated by the
Liu process. Chen and Liu [18] obtained analytical solutions for several linear UDEs and
established an existence and uniqueness theorem. Then, uncertainty theory was extended
to the field of partial differential equations, leading to the proposal of uncertain partial
differential equations (UPDEs) [19]. A wealth of relevant research has been performed
around UPDEs. Yang and Yao [19] were the first to introduce the uncertain heat equation
and derive its analytical solution. Gao and Ralescu [20] put forward the concept of the
uncertain wave equation and obtained its analytical solution. Gao [21] further proved the
existence and uniqueness theorem of the solution of the uncertain wave equation. Ye and
Yang [22] discussed the uncertain heat equation in the three-dimensional space and estab-
lished its analytical solution. Yang [23] proposed the uncertain age-structured population
equation by using the Liu process to model migration noise. Qiu [24] established the un-
certain pendulum equation and obtained its solution. He [25] defined higher-order partial
derivatives for the first time and verified the solutions of higher-order uncertain partial
differential equations. Yang [26] proposed a numerical algorithm for solving uncertain
partial differential equations. In uncertainty theory, the Liu process is widely applied to
characterize uncertainties in various systems. In this paper, we introduce the Liu process to
describe uncertainty in the damped wave equation, thereby providing a new perspective
for investigating damped wave equations.

In this paper, an uncertain damped wave equation actuated by the Liu process is
proposed. We derive the analytical solution of the uncertain damped wave equation and
prove its uniqueness. The rest of the paper is organized as follows. Section 2 presents the
uncertain damped wave equation to model heat conduction with an uncertain heat source.
In Section 3, we derive the analytical solution of the uncertain damped wave equation
and establish the uniqueness of the solution. Section 4 proposes a paradox concerning the
stochastic damped wave equation. Finally, the conclusions are provided in Section 5.

2. Uncertain Damped Wave Equation
Based on Fourier’s law and energy conservation law, we develop the uncertain

damped wave equation to model heat conduction under an external heat source with
uncertain factors.

Fourier’s law governs heat transfer from higher- to lower-temperature regions through
solids, liquids, or gases. This heat conduction process is characterized by the flux
relation [27]

q(y, τ) = −K∇u(y, τ), (1)

where u is the absolute temperature, y denotes the position vector, τ denotes the time, and
q and K > 0 are the heat flux density and the thermal conductivity. However, under high
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heat flux or low temperature, heat transfer is subject to velocity constraint. Therefore, the
heat transfer model should incorporate the lagging response [28–31]

q(y, τ + λ0) = −K∇u(y, τ), (2)

where λ0(λ0 > 0) is the thermal relaxation time. The parameter λ0 indicates the time lag
required for establishing a stable heat conduction state when a temperature gradient is
abruptly applied to a volume element. By approximating q(y, τ + λ0) with its first-order
Taylor series, we obtain the Maxwell–Cattaneo law [28,29,31]:{

1 + λ0
∂

∂τ

}
q(y, τ) = −K∇u(y, τ). (3)

According to the conservation of energy law, we get

ρcp
∂u(y, τ)

∂τ
+∇ · q(y, τ) = F(y, τ, Ċτ), (4)

where ρ represents the mass density, cp denotes the specific heat at constant pressure, and
F(y, τ, Ċτ) is the uncertain heat source. Here, Ċτ = dCτ/dτ and Cτ is a Liu process [16].
By combining Equations (3) and (4), we have

∂u(y, τ)

∂τ
+ λ0

∂2u(y, τ)

∂τ2 = κ∆u(y, τ) + F(y, τ, Ċτ), (5)

where κ = K/ρcp represents thermal diffusivity. This UPDE, a special case of the uncertain
heat equation, is referred to as the uncertain damped wave equation.

More generally, the one-dimensional uncertain damped wave equation with given
initial and boundary conditions

∂2u(y, τ)

∂τ2 = −ζ
∂u(y, τ)

∂τ
+ a2 ∂2u(y, τ)

∂y2 + f (y, τ, Ċτ), y ∈ I, τ > 0,

u(0, τ) = u(l, τ) = 0, τ ≥ 0,

u(y, 0) = θ(y),
∂u(y, 0)

∂τ
= p(y), 0 ≤ y ≤ l,

(6)

is investigated in this paper, where ζ > 0 denotes the damping coefficient, a > 0 is a con-
stant, f (y, τ, Ċτ) = F(y, τ, Ċτ)/λ0, I = {y | 0 < y < l}, θ(y) and p(y) are given functions.

For any given ω ∈ Ω, the uncertain damped wave Equation (6) degenerates into a
normal damped wave equation

∂2u(y, τ, ω)

∂τ2 = −ζ
∂u(y, τ, ω)

∂τ
+ a2 ∂2u(y, τ, ω)

∂y2 + f (y, τ, Ċτ(ω)), y ∈ I, τ > 0,

u(0, τ, ω) = u(l, τ, ω) = 0, τ ≥ 0,

u(y, 0, ω) = θ(y),
∂u(y, 0, ω)

∂τ
= p(y), 0 ≤ y ≤ l.

(7)

3. Existence and Uniqueness of Solution
Theorem 1. If f (y, τ, z) ∈ C(I × R̄+ × R), θ(y) ∈ C2(R) and p(y) ∈ C1(R), then the solution
of the uncertain damped wave Equation (6) is

u(y, τ) =
∞

∑
n=1

Tn(τ, Ċτ)sin
(nπ

l
y
)

, (8)
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where

Tn(τ, Ċτ) =



a1exp

(√
h − ζ

2
τ

)
+ a2exp

(
−
√

h − ζ

2
τ

)

+
1√
h

∫ τ

0

(
exp

(√
h − ζ

2
s

)
− exp

(√
h + ζ

2
(−s)

))
fn(t, Ċt)dt, i f h > 0,

exp
(
− ζ

2
τ

)
(b0 + bτ) +

∫ τ

0
exp

(
−ζs

2

)
s fn(t, Ċt)dt, i f h = 0,

exp
(
− ζ

2
τ

)(
c0cos

(√
−h
2

τ

)
+ csin

(√
−h
2

τ

))

+
2√
−h

∫ τ

0
exp

(
− ζs

2

)
sin

(√
−h
2

s

)
fn(t, Ċt)dt, i f h < 0,

(9)

in which fn(t, Ċt), θn and pn are the Fourier sine series coefficients of the functions f (y, t, Ċt), θ(y)

and p(y), respectively. And h = ζ2 −
(

2aπn
l

)2
, s = τ − t, a1 =

√
h + ζ

2
√

h
θn +

pn√
h

,

a2 =

√
h − ζ

2
√

h
θn −

pn√
h

, b0 = c0 = θn, b = pn +
ζ

2
θn, c =

2√
−h

pn +
ζ√
−h

θn.

Proof of Theorem 1. Using separation of variables, we assume that the solution of
Equation (6) is

u(y, τ) =
∞

∑
n=1

Tn(τ, Ċτ)sin
(nπ

l
y
)

. (10)

The term f (y, τ, Ċτ) is expressed as the Fourier sine series, i.e.,

f (y, τ, Ċτ) =
∞

∑
n=1

fn(τ, Ċτ)sin
(nπ

l
y
)

. (11)

Combining Equations (6), (10) and (11), we establish

T
′′
n (τ, Ċτ) + ζT

′
n(τ, Ċτ) +

( anπ

l

)2
Tn(τ, Ċτ) = fn(τ, Ċτ). (12)

For any given ω ∈ Ω, Equation (12) degenerates to a normal ordinary differential equation

T
′′
n (τ, Ċτ(ω)) + ζT

′
n(τ, Ċτ(ω)) +

( anπ

l

)2
Tn(τ, Ċτ(ω)) = fn(τ, Ċτ(ω)). (13)

Next, we prove Tn(τ, Ċτ(ω)) satisfies Equation (13) for the following three cases.

(1) If h = ζ2 −
(

2aπn
l

)2
> 0, we obtain the two distinct roots by solving the charac-

teristic Equation (13)

λ1 = − ζ

2
+

√
h

2
, λ2 = − ζ

2
−

√
h

2
.

Based on the variation of parameters, we assume that the solution of Equations (13) takes
the form

Tn(τ, Ċτ(ω)) = φ1(τ, Ċτ(ω))exp(λ1τ) + φ2(τ, Ċτ(ω))exp(λ2τ). (14)
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Note that

T
′
n(τ, Ċτ(ω)) = λ1 φ1(τ, Ċτ(ω))exp(λ1τ) + λ2 φ2(τ, Ċτ(ω))exp(λ2τ)

+ φ
′
1(τ, Ċτ(ω))exp(λ1τ) + φ

′
2(τ, Ċτ(ω))exp(λ2τ).

(15)

Letting
φ
′
1(τ, Ċτ(ω))exp(λ1τ) + φ

′
2(τ, Ċτ(ω))exp(λ2τ) = 0, (16)

then we derive

T
′
n(τ, Ċτ(ω)) = λ1 φ1(τ, Ċτ(ω))exp(λ1τ) + λ2 φ2(τ, Ċτ(ω))exp(λ2τ). (17)

From Equations (13), (14) and (17), we obtain

λ1 φ
′
1(τ, Ċτ(ω))exp(λ1τ) + λ2 φ

′
2(τ, Ċτ(ω))exp(λ2τ) = fn(τ, Ċτ(ω)). (18)

By solving Equations (16) and (18), we have

φ1(τ, Ċτ(ω)) =
1√
h

∫ τ
0 exp

(
ζ−

√
h

2 t
)

fn(t, Ċt(ω))dt + a1, (19)

φ2(τ, Ċτ(ω)) = − 1√
h

∫ τ
0 exp

(
ζ+

√
h

2 t
)

fn(t, Ċt(ω))dt + a2, (20)

where a1 and a2 are constants.
Combining Equations (14), (19) and (20) leads to

Tn(τ, Ċτ(ω)) = a1exp

(√
h − ζ

2
τ

)
+ a2exp

(
−
√

h − ζ

2
τ

)

+
1√
h

∫ τ

0

(
exp

(√
h − ζ

2
s

)
− exp

(√
h + ζ

2
(−s)

))
fn(t, Ċt(ω))dt.

(21)

Therefore, the derivative of Equation (21) is

T
′
n(τ, Ċτ(ω)) =

√
h − ζ

2
a1exp

(√
h − ζ

2
τ

)
−

√
h + ζ

2
a2exp

(
−
√

h − ζ

2
τ

)

+
1√
h

∫ τ

0

(√
h − ζ

2
exp

(√
h − ζ

2
s

)
+

√
h + ζ

2
exp

(√
h + ζ

2
(−s)

))
fn(t, Ċt(ω))dt.

(22)

Suppose that θ(y) and p(y) admit the following Fourier series expansions

θ(y) =
∞

∑
n=1

θnsin
(nπ

l
y
)

, p(y) =
∞

∑
n=1

pnsin
(nπ

l
y
)

.

From the initial conditions in Equation (7), we derive a1 + a2 = θn,√
h − ζ

2
a1 −

√
h + ζ

2
a2 = pn.

(23)

Solving Equation (23), we obtain

a1 =

√
h + ζ

2
√

h
θn +

pn√
h

, a2 =

√
h − ζ

2
√

h
θn −

pn√
h

. (24)
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Therefore, Equation (21) is the solution of Equation (13).
(2) If h = 0, the characteristic equation of Equation (13) has a repeated root

λ = − ζ

2
.

Using variation of parameters, we assume that the solution of Equation (13) is postulated
in the form

Tn(τ, Ċτ(ω)) = (φ3(τ, Ċτ(ω)) + τφ4(τ, Ċτ(ω)))exp(λτ). (25)

Setting
(φ

′
3(τ, Ċτ(ω)) + τφ

′
4(τ, Ċτ(ω)))exp(λτ) = 0, (26)

we obtain

T
′
n(τ, Ċτ(ω)) = (λφ3(τ, Ċτ(ω)) + λφ4(τ, Ċτ(ω))τ + φ4(τ, Ċτ(ω)))exp(λτ). (27)

Computing the second derivative of Tn(τ, Ċτ(ω)) and combining Equations (13), (25)
and (27), we have

φ
′
4(τ, Ċτ(ω))exp(λτ) + λ(φ

′
3(τ, Ċτ(ω)) + τφ

′
4(τ, Ċτ(ω))

+ 2φ4(τ, Ċτ(ω)))exp(λτ) + ζφ4(τ, Ċτ(ω))exp(λτ) = fn(t, Ċt(ω)).
(28)

Solving Equations (26) and (28) gives

φ3(τ, Ċτ(ω)) = −
∫ τ

0
exp

(
ζ

2
t
)

t fn(t, Ċt(ω))dt + b0, (29)

φ4(τ, Ċτ(ω)) =
∫ τ

0
exp

(
ζ

2
t
)

fn(t, Ċt(ω))dt + b, (30)

where b0 and b are constants.
Substituting Equations (29) and (30) into (25) gives

Tn(τ, Ċτ(ω)) = exp
(
− ζ

2
τ

)
(b0 + bτ) +

∫ τ

0
exp

(
− ζs

2

)
s fn(t, Ċt(ω))dt. (31)

Note that

T
′
n(τ, Ċτ(ω)) = exp

(
− ζ

2
τ

)((
1 − ζ

2
τ

)
b − ζ

2
b0

)
+
∫ τ

0

(
exp

(
− ζs

2

)
− ζs

2
exp

(
− ζs

2

))
fn(t, Ċt(ω))dt.

(32)

According to the initial conditions, we derive b0 = θn,

b − ζ

2
b0 = pn,

which yields

b0 = θn, b =
ζ

2
θn + pn. (33)

Consequently, the solution of Equation (13) is Equation (31).



Symmetry 2025, 17, 1533 7 of 16

(3) If h < 0, the characteristic equation of Equation (13) has two complex roots

λ3 = − ζ

2
+

√
−h
2

i, λ4 = − ζ

2
−

√
−h
2

i.

Note that these two roots are symmetric with respect to the real axis. By applying variation
of parameters, the solution of Equation (13) takes the form

Tn(τ, Ċτ(ω)) = φ5(τ, Ċτ(ω))exp(λ3τ) + φ6(τ, Ċτ(ω))exp(λ4τ). (34)

Similar to the case h > 0, we have

φ
′
5(τ, Ċτ(ω))exp(λ3τ) + φ

′
6(τ, Ċτ(ω))exp(λ4τ) = 0, (35)

λ3 φ
′
5(τ, Ċτ(ω))exp(λ3τ) + λ4 φ

′
6(τ, Ċτ(ω))exp(λ4τ) = fn(τ, Ċτ(ω)). (36)

From Equations (35) and (36), we derive

φ5(τ, Ċτ(ω)) = − i√
−h

∫ τ

0
exp

(
ζ −

√
−hi

2
t

)
fn(t, Ċt(ω))dt + d1, (37)

φ6(τ, Ċτ(ω)) =
i√
−h

∫ τ

0
exp

(
ζ +

√
−hi

2
t

)
fn(t, Ċt(ω))dt + d2, (38)

where d1 and d2 are constants.
Substituting Equations (37) and (38) into (34) yields

Tn(τ, Ċτ(ω)) = d1exp

(
− ζτ

2
+

τ
√
−h

2
i

)
+ d2exp

(
− ζτ

2
− τ

√
−h

2
i

)

+
2√
−h

∫ τ

0
exp

(
− ζs

2

)
sin

(√
−h
2

s

)
fn(t, Ċt(ω))dt.

(39)

Note that Equation (13) has two complex-valued solutions

exp

(
− ζτ

2
+

τ
√
−h

2
i

)
= exp

(
− ζ

2
τ

)(
cos

(√
−h
2

τ

)
+ isin

(√
−h
2

τ

))
,

exp

(
− ζτ

2
− τ

√
−h

2
i

)
= exp

(
− ζ

2
τ

)(
cos

(√
−h
2

τ

)
− isin

(√
−h
2

τ

))
.

Since the coefficients of Equation (13) are real constants, the real part

exp
(
− ζ

2
τ

)
cos

(√
−h
2

τ

)

and the imaginary part

exp
(
− ζ

2
τ

)
sin

(√
−h
2

τ

)
are two real-valued solutions to Equation (13). Thus, the solution of Equation (13) is
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Tn(τ, Ċτ(ω)) = exp
(
− ζ

2
τ

)(
c0cos

(√
−h
2

τ

)
+ csin

(√
−h
2

τ

))

+
2√
−h

∫ τ

0
exp

(
− ζs

2

)
sin

(√
−h
2

s

)
fn(t, Ċt(ω))dt.

(40)

Then, we have

T′
n(τ, Ċτ(ω)) = − ζ

2
exp

(
− ζ

2
τ

)(
c0cos

(√
−h
2

τ

)
+ csin

(√
−h
2

τ

))

+

√
−h
2

exp
(
− ζ

2
τ

)(
ccos

(√
−h
2

τ

)
− c0sin

(√
−h
2

τ

))

+
∫ τ

0

(
exp

(
− ζs

2

)
cos

(√
−h
2

s

)
− ζ√

−h
exp

(
− ζs

2

)
sin

(√
−h
2

s

))
fn(t, Ċt(ω))dt.

(41)

Based on the initial conditions, we derive c0 = θn,√
−h
2

c − ζ

2
c0 = pn,

which means
c0 = θn, c =

ζ√
−h

θn +
2√
−h

pn. (42)

Therefore, Equation (40) is the solution of Equation (13).
In conclusion, Tn(τ, Ċτ) is the solution of Equation (12).

Theorem 2. If u(y, τ) defined in Equation (8) is a twice continuously differentiable solution of the
uncertain damped wave Equation (6), then u(y, τ) is unique.

Proof of Theorem 2. For any ω ∈ Ω, assuming that v1(y, τ, ω) and v2(y, τ, ω) are two
solutions of the Equation (7). Then g(y, τ, ω) = v1(y, τ, ω)− v2(y, τ, ω) is the solution of
the following problem:

∂2g(y, τ, ω)

∂τ2 − a2 ∂2g(y, τ, ω)

∂y2 = −ζ
∂g(y, τ, ω)

∂τ
, 0 < y < l, τ > 0,

g(0, τ, ω) = g(l, τ, ω) = 0, τ ≥ 0,

g(y, 0, ω) = gτ(y, 0, ω) = 0, 0 ≤ y ≤ l.

(43)

Let E(τ) =
1
2

∫ l

0
(g2

τ(y, τ, ω) + a2g2
y(y, τ, ω))dy. It follows that

dE(τ)
dτ

=
∫ l

0
(gτ(y, τ, ω)gττ(y, τ, ω) + a2gy(y, τ, ω)gyτ(y, τ, ω))dy

=
∫ l

0
gτ(y, τ, ω)gττ(y, τ, ω)dy +

∫ l

0
a2gy(y, τ, ω)dgτ(y, τ, ω)

=
∫ l

0
gτ(y, τ, ω)gττ(y, τ, ω)dy −

∫ l

0
a2gτ(y, τ, ω)gyy(y, τ, ω)dy

=
∫ l

0
gτ(y, τ, ω)(gττ(y, τ, ω)− a2gyy(y, τ, ω))dy

= −ζ
∫ l

0
g2

τ(y, τ, ω)dy

≤ 0,
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which indicates E(τ) is monotonically decreasing. Hence, we obtain

E(τ) ≤ E(0). (44)

Since g(y, 0, ω) = 0, we can deduce gy(y, 0, ω) = 0. It follows that

E(0) =
1
2

∫ l

0
g2

τ(y, 0, ω) + a2g2
y(y, 0, ω)dy = 0. (45)

Combining Equations (44) and (45) yields

E(τ) ≤ 0. (46)

Additionally, it is evident that
E(τ) ≥ 0. (47)

From Equations (46) and (47), we can derive E(τ) = 0. For any τ, we obtain gy(y, τ, ω) ≡
gτ(y, τ, ω) ≡ 0. It means that g(y, τ, ω) is a constant function. Because the initial con-
dition g(0, τ, ω) = 0, we obtain g(y, τ, ω) ≡ 0. Therefore, the uncertain damped wave
Equation (6) admits a unique solution.

Next, the following three examples are presented to demonstrate the effectiveness of
the analytical solution. In Example 1, the function f (y, τ, Ċτ) is linear, while in Examples 2
and 3, it adopts nonlinear forms involving exponential and trigonometric functions.

Example 1. Consider an uncertain damped wave equation

∂2u(y, τ)

∂τ2 = −2
∂u(y, τ)

∂τ
+

∂2u(y, τ)

∂y2 + Ċτ , 0 < y < 2, τ > 0,

u(0, τ) = u(2, τ) = 0, τ ≥ 0,

u(y, 0) = sin
(π

2
y
)

,
∂u(y, 0)

∂τ
=

π

2
cos
(π

2
y
)

, 0 ≤ y ≤ 2.

(48)

Based on Theorem 1, setting n = 1 yields

θ1 =
∫ 2

0
sin2

(π

2
y
)

dy = 1,

p1 =
π

2

∫ 2

0
cos
(π

2
y
)

sin
(π

2
y
)

dy = 0.

If n ≥ 2, we obtain

θn =
∫ 2

0
sin
(π

2
y
)

sin
(nπ

2
y
)

dy =
1
2

∫ 2

0

(
cos
(
(1 − n)π

2
y
)
− cos

(
(1 + n)π

2
y
))

dy = 0,

pn =
π

2

∫ 2

0
cos
(π

2
y
)

sin
(nπ

2
y
)

dy

=
π

4

∫ 2

0

(
sin
(
(n + 1)π

2
y
)
− sin

(
(1 − n)π

2
y
))

dy

=
n

n2 − 1
(1 + (−1)n).

It can be seen that h < 0 for any n. Then the coefficients are given by
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T1(τ, Ċτ) = exp(−τ)

(
cos

(√
π2 − 4

2
τ

)
+

2√
π2 − 4

sin

(√
π2 − 4

2
τ

))

+
2√

π2 − 4

∫ τ

0
exp(−s)sin

(√
π2 − 4

2
s

) ∫ 2

0
Ċtsin

(π

2
y
)

dydt

= exp(−τ)

(
cos

(√
π2 − 4

2
τ

)
+

2√
π2 − 4

sin

(√
π2 − 4

2
τ

))

+
8

π
√

π2 − 4

∫ τ

0
exp(−s)sin

(√
π2 − 4

2
s

)
dCt

and

Tn(τ, Ċτ) =
2n(1 + (−1)n)exp(−τ)√

−h(n2 − 1)
sin

(√
−h
2

τ

)

+
2√
−h

∫ τ

0
exp(−s)sin

(√
−h
2

s

) ∫ 2

0
Ċtsin

(nπ

2
y
)

dydt

=
2n(1 + (−1)n)exp(−τ)√

−h(n2 − 1)
sin

(√
−h
2

τ

)

+
2√
−h

∫ τ

0
exp(−s)sin

(√
−h
2

s

)
Ċtdt

∫ 2

0
sin
(nπ

2
y
)

dy

=
2n(1 + (−1)n)exp(−τ)√

n2π2 − 4(n2 − 1)
sin

(√
n2π2 − 4

2
τ

)

+
4(1 − (−1)n)

nπ
√

n2π2 − 4

∫ τ

0
exp(−s)sin

(√
n2π2 − 4

2
s

)
dCt,

where n ≥ 2.
Therefore, the solution of Equation (48) is

u(y, τ) =

(
exp(−τ)

(
cos

(√
π2 − 4

2
τ

)
+

2√
π2 − 4

sin

(√
π2 − 4

2
τ

))

+
8

π
√

π2 − 4

∫ τ

0
exp(−s)sin

(√
π2 − 4

2
s

)
dCt

)
sin
(π

2
y
)

+
∞

∑
n=2

(
2n(1 + (−1)n)exp(−τ)√

n2π2 − 4(n2 − 1)
sin

(√
n2π2 − 4

2
τ

)

+
4(1 − (−1)n)

nπ
√

n2π2 − 4

∫ τ

0
exp(−s)sin

(√
n2π2 − 4

2
s

)
dCt

)
sin
(nπ

2
y
)

.

Example 2. Consider an uncertain damped wave equation

∂2u(y, τ)

∂τ2 = −4
∂u(y, τ)

∂τ
+

∂2u(y, τ)

∂y2 + exp(−τ)Ċτ , 0 < y < 2, τ > 0,

u(0, τ) = u(2, τ) = 0, τ ≥ 0,

u(y, 0) =
∂u(y, 0)

∂τ
= 0, 0 ≤ y ≤ 2.

(49)

From Theorem 1, it is evident that θn = pn = 0. When n = 1, we obtain h > 0. Therefore,
the coefficient is
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T1(τ, Ċτ) =
1√

16 − π2

∫ τ

0

(
exp

(√
16 − π2 − 4

2
s

)
− exp

(
−
√

16 − π2 + 4
2

s

)) ∫ 2

0
exp(−t)Ċtsin

(π

2
y
)

dydt

=
1√

16 − π2

∫ τ

0

(
exp

(√
16 − π2 − 4

2
s − t

)
− exp

(
−
√

16 − π2 + 4
2

s − t

))
Ċtdt

∫ 2

0
sin
(π

2
y
)

dy

=
4

π
√

16 − π2

∫ τ

0
exp(−s − τ)

(
exp

(√
16 − π2

2
s

)
− exp

(
−
√

16 − π2

2
s

))
dCt.

If n = 2, 3, . . ., we have h < 0. Hence the coefficients can be written as

Tn(τ, Ċτ) =
2√
−h

∫ τ

0
exp(−2s)sin

(√
−h
2

s

) ∫ 2

0
exp(−t)Ċtsin

(nπ

2
y
)

dydt

=
2√
−h

∫ τ

0
exp(−s − τ)sin

(√
−h
2

s

)
Ċtdt

∫ 2

0
sin
(nπ

2
y
)

dy

=
4(1 − (−1)n)

nπ
√

n2π2 − 16

∫ τ

0
exp(−s − τ)sin

(√
n2π2 − 16

2
s

)
dCt.

In summary, the solution of Equation (49) is

u(y, τ) = sin
(π

2
y
) 4

π
√

16 − π2

∫ τ

0
exp(−s − τ)

(
exp

(√
16 − π2

2
s

)
− exp

(
−
√

16 − π2

2
s

))
dCt

+
∞

∑
n=2

(
4(1 − (−1)n)

nπ
√

n2π2 − 16

∫ τ

0
exp(−s − τ)sin

(√
n2π2 − 16

2
s

)
dCt

)
sin
(nπ

2
y
)

.

To intuitively present the solution to Example 2, the finite difference method is em-
ployed for the numerical solution of the uncertain damped wave Equation (49). An ex-
plicit difference scheme is established by approximating ∂2u(y, τ)/∂τ2, ∂u(y, τ)/∂τ, and
∂2u(y, τ)/∂y2 in the equation using central difference quotients. The uncertain term Ċτ in
the equation is replaced with a randomly generated standard normal uncertain distri-
bution sequence. The simulation process is repeated 1000 times and the average of the
1000 solution samples at each grid point serves as the estimated value of the expectation for
the point. Figure 1 illustrates the variation of u(y, τ) with respect to space y and time τ.

Figure 1. Numerical solution for Example 2.
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Example 3. Consider an uncertain damped wave equation

∂2u(y, τ)

∂τ2 = −2π
∂u(y, τ)

∂τ
+

∂2u(y, τ)

∂y2 + cosyĊτ , 0 < y < 2, τ > 0,

u(0, τ) = u(2, τ) = 0, τ ≥ 0,

u(y, 0) =
∂u(y, 0)

∂τ
= 0, 0 ≤ y ≤ 2.

(50)

Following Theorem 1, we conclude that θn = pn = 0. Letting n = 1, we have h > 0. Hence
the coefficient is

T1(τ, Ċτ) =
1√
3π

∫ τ

0

(
exp

(√
3π − 2π

2
s

)
− exp

(√
3π + 2π

2
(−s)

)) ∫ 2

0
Ċtcosysin

(π

2
y
)

dydt

=
1√
3π

∫ τ

0

(
exp

(√
3π − 2π

2
s

)
− exp

(√
3π + 2π

2
(−s)

))
Ċtdt

∫ 2

0
cosysin

(π

2
y
)

dy

=
4πcos21√

3π(π2 − 4)

∫ τ

0

(
exp

(√
3π − 2π

2
s

)
− exp

(√
3π + 2π

2
(−s)

))
dCt.

Similarly, if n = 2 then we obtain h = 0 and the coefficient T2(τ, Ċτ) is given as

T2(τ, Ċτ) =
∫ τ

0
exp(−πs)s

∫ 2

0
Ċtcosysin(πy)dydt

=
∫ τ

0
exp(−πs)sĊtdt

∫ 2

0
cosysin(πy)dy

=
2πsin21
π2 − 1

∫ τ

0
exp(−πs)sdCt.

For n ≥ 3, we have h < 0 and the coefficients Tn(τ, Ċτ) are

Tn(τ, Ċτ) =
2√
−h

∫ τ

0
exp(−πs)sin

(√
−h
2

s

) ∫ 2

0
Ċtcosysin

(nπ

2
y
)

dydt

=
2√
−h

∫ τ

0
exp(−πs)sin

(√
−h
2

s

)
Ċtdt

∫ 2

0
cosysin

(nπ

2
y
)

dy

=
4n(1 − (−1)ncos2)√

n2 − 4(n2π2 − 4)

∫ τ

0
exp(−πs)sin

(√
n2 − 4

2
πs

)
dCt.

Therefore, the solution of Equation (50) is

u(y, τ) = sin
(π

2
y
) 4πcos21√

3π(π2 − 4)

∫ τ

0

(
exp

(√
3π − 2π

2
s

)
− exp

(√
3π + 2π

2
(−s)

))
dCt

+ sin(πy)
2πsin21
π2 − 1

∫ τ

0
exp(−πs)sdCt

+
∞

∑
n=3

(
4n(1 − (−1)ncos2)√

n2 − 4(n2π2 − 4)

∫ τ

0
exp(−πs)sin

(√
n2 − 4

2
πs

)
dCt

)
sin
(nπ

2
y
)

.

Similarly, we also solve Example 3 by using the numerical method proposed in
Example 2. Figure 2 shows the variation of u(y, τ) with respect to space y and time τ.
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Figure 2. Numerical solution for Example 3.

4. The Paradox in the Stochastic Damped Wave Equation
This section proposes a stochastic damped wave equation paradox to illustrate the

necessity of considering uncertain damped wave equations. We consider a homogeneous,
thermally conductive solid rod with constant cross-sectional area and constant thermal
diffusivity. Similar to the derivation of Equations (4), if a stochastic process is used to
model the external force, we obtain

ρcp
∂u(y, τ)

∂τ
+∇ · q(y, τ) = F(y, τ, Ẇτ), (51)

where F(y, τ, Ẇτ) denotes a stochastic heat source, Wτ is a standard Wiener process and
the white noise is defined by Ẇτ = dWτ/dτ. Using the MC law, the following stochastic
damped wave equation models the heat conduction in the solid rod [11,12,19]

∂2u(y, τ)

∂τ2 = −ζ
∂u(y, τ)

∂τ
+ a2 ∂2u(y, τ)

∂y2 + f (y, τ, Ẇτ), (52)

where a2 is the thermal diffusivity, u(y, τ) represents the absolute temperature, and
f (y, τ, Ẇτ) is a stochastic heat source. Note that

Ẇτ ∼ N
(

0,
1

dτ

)
,

which indicates that Ẇτ is a normally distributed random variable with mean 0 and variance
1/dτ. To explain the problem simply, we consider the case

f (y, τ, Ẇτ) = g(y, τ) + σ(y, τ)Ẇτ ,

where g(y, τ) and σ(y, τ) are real-valued and bounded on their domain. Then we obtain

∂2u(y, τ)

∂τ2 = −ζ
∂u(y, τ)

∂τ
+ a2 ∂2u(y, τ)

∂y2 + g(y, τ) + σ(y, τ)Ẇτ

and
∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2 ∼ N
(

g(y, τ),
σ2(y, τ)

dτ

)
.
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Therefore, we have

Pr
{∣∣∣∣ ∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2

∣∣∣∣ ≥ N
}

= Pr
{(

∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2 ≥ N
)⋃( ∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2 ≤ −N
)}

= Pr
{

∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2 ≥ N
}
+ Pr

{
∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2 ≤ −N
}

= Pr


∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2 − g(y, τ)

σ/
√

dτ
≥ N − g(y, τ)

σ/
√

dτ


+ Pr


∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2 − g(y, τ)

σ/
√

dτ
≤ − N + g(y, τ)

σ/
√

dτ


= 1 − Φ

(
N − g(y, τ)

σ

√
dτ

)
+ Φ

(
− N + g(y, τ)

σ

√
dτ

)
→ 1 (dτ → 0)

where N is a large enough constant and Φ represents the standard normal distribution
function. The result indicates that

Pr
{∣∣∣∣∂2u(y, τ)

∂τ2 + ζ
∂u(y, τ)

∂τ
− a2 ∂2u(y, τ)

∂y2

∣∣∣∣ ≥ N
}

= 1.

This implies that for any y and τ, at least one of ∂2u(y, τ)/∂τ2, ∂u(y, τ)/∂τ, and
∂2u(y, τ)/∂y2 must be infinite (∞). However, the three terms ∂2u(y, τ)/∂τ2 (accelera-
tion of temperature change), ∂u(y, τ)/∂τ (rate of temperature change) and ∂2u(y, τ)/∂y2

(acceleration of temperature change with respect to y) are bounded for arbitrary y and τ.
Thus, it is unreasonable for Equations (52) to follow the heat conduction with stochastic
heat source.

In summary, Equation (52) is applicable for modelling heat conduction phenomena
where the second time derivative, the first time derivative, or the second spatial derivative
of temperature is infinite. However, thermal wave speed is finite in practical cases. Conse-
quently, it is more appropriate to adopt an uncertain damped wave equation to describe
such phenomena.

When tackling problems that involve randomness, researchers usually rely on proba-
bility theory as their primary mathematical tool. However, due to the inherent variability
and complexity of random events, the process of obtaining their distributions consumes
large amounts of labour, materials, and technological means. Moreover, as Liu [15] points
out, some distributions fail to align sufficiently with real-world true frequencies. This is
because the evolution of certain phenomena is non-random, and when emergencies (such
as wars, rumours, floods, and earthquakes) occur, people typically lack the historical data
needed to address these scenarios. Under such circumstances, the probability theory is
no longer applicable. The uncertainty theory is another axiomatic mathematical system
specifically developed for handling such uncertain scenarios. Continuous and intensive
research is also being conducted on the uncertainty theory.

5. Conclusions
The paper investigates the heat conduction with uncertain heat source using Liu’s

uncertainty theory. Actuated by the Liu process, the uncertain damped wave equation,
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which is a type of UPDE, is proposed. Furthermore, we derive the analytical solution for
the uncertain damped wave equation and establish the uniqueness of the solution. In the
future, we will study the numerical solutions for the uncertain damped wave equation and
explore its applications in financial modelling and physical systems.
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