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Abstract

The short-time behavior of the survival probability of a system governed by a time-
dependent non-Hermitian Hamiltonian is derived using to the second-order perturbative
approach. The resulting expression allows for the analysis of some situations which could
be of interest in the field of quantum technology. For example, it becomes possible to
predict a quantum Zeno effect even in the presence of decay processes.
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1. Introduction

In the standard formulation of quantum mechanics, a closed and isolated quantum
system is assumed to be governed by a time-independent Hermitian Hamiltonian. Her-
miticity ensures both a real spectrum of the Hamiltonian and unitarity of the time evolution,
whose physical meanings are, respectively, the meaningfulness of the values of the en-
ergy and the preservation of probability [1,2]. Time independence, on the other hand,
allows us to evaluate the time evolution in a reasonably easy way, through simple ex-
ponentiation of the Hamiltonian operator. Generally speaking, when studying a system
interacting with “something else” (a driving classical fields, a reservoir, etc.), provided
all the degrees of freedom are included, one can always obtain a description through a
time-independent Hermitian Hamiltonian. However, when only the degrees of freedom
of the system are taken into account, time-dependence, non-Hermiticity or both will arise
in the relevant effective description. For example, the action of a classical time-dependent
field on a quantum system is responsible for the Hamiltonian becoming time-dependent,
which in general makes it harder to solve the dynamical problem. It is worth noting that
the time-independent (Hermitian) counterpart involves the free Hamiltonians of both
the system and the electromagnetic field, their interaction terms, as well as the field in a
classical state, usually a coherent state [3]. Moreover, the presence of an interaction with
an environment in a thermal state, under suitable hypotheses, can be analyzed through
approximate methods, such as master equations [4,5] and, in some cases, through non-
Hermitian Hamiltonians. The exploitation of non-Hermitian Hamiltonians is traceable
back to Gamow’s phenomenological model for the a-decay [6], where the imaginary part of
the eigenvalues of the Hamiltonian represents the decay rates of the eigenstates, which are
not stationary states as in the Hermitian case. The Feshbach-Porter—Weisskopf theory for
neutron scattering is also based on a model involving a complex potential whose imaginary
part describes an absorption process [7].
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Time-dependent Hamiltonians are commonly used, whereas non-Hermitian physics
is generally considered weird, although it arises in several physical contexts, ranging
from acoustics [8] to optics [9,10] to quantum systems, such as superconducting de-
vices [11-13], waveguides [14] and optomechanical systems [15-17]. We also mention
pseudo-Hamiltonian operators, which are nothing but coefficient matrices involved in
specific linear equations in mean field theories, often involving both gain and loss pro-
cesses, leading to eigenvalues with positive and negative imaginary parts [18-20]. Last
but not least, time-dependent non-Hermitian Hamiltonians have been used to describe
several lossy systems driven by external fields, such as atomic systems with unstable states
subjected to Stimulated Raman Adiabatic Passage [21,22] or Landau—Zener processes in
lossy systems [23,24]. As a consequence of the growing interest in non-Hermitian physics,
several theoretical studies have been reported over the decades. In fact, exactly solvable
non-Hermitian models have been presented [25] and general techniques based on a pertur-
bative approach have been proposed and exploited focusing on specific situations [26-28],
or studying general dynamical features [29]. Statistical and thermodynamic properties in
non-Hermitian physics have also been investigated [30-35]. Among the non-Hermitian op-
erators, some classes deserve particular attention. First, the PT-symmetric operators [36,37],
which are characterized by the possibility of having real spectra and inducing unitary
evolutions. Another interesting type of non-Hermitian operators is given by the class of
normal operators [38], identified by the property of commuting with their adjoint operators,
implying that their left and right eigenstates are adjoint to each other, while the eigenvalues
are complex numbers. When the non-Hermiticity arises as an effective description derived
from a Lindblad master equation, then the non-Hermitian part of the Hamiltonian turns
out to be a non-negative operator. Indeed, in such a case, the non-Hermitian part of the
Hamiltonian essentially emerges as the operator involved in the anticommutator of the
master equation with a non-negative operator [39].

In this paper, we focus on the short-time behavior of the survival probability (i.e.,
the probability of finding the system in its initial state) of general time-dependent non-
Hermitian systems. In fact, although the survival probability has been studied in systems
which are non-Hermitian [40] or time-dependent [41,42], there is limited literature specifi-
cally concerning the survival probability after a short-time evolution when the Hamiltonian
is both time-dependent and non-Hermitian. This topic could be of interest in view of
possible applications to the quantum Zeno effect, which occurs in the short-time dynamics,
usually evaluated with a second-order perturbative approach as in the original formu-
lation by Misra and Sudarshan [43]. Also, as we will see, our results concretely predict
the possibility of effectively suppressing the effects of decays and general non-Hermitian
processes, when the Hamiltonian has a specific time dependence. Moreover, the closed
expression for the survival probability we report here turns out to be very helpful also in
the Hermitian case, providing an intriguing generalization of the well-known result due
to Misra and Sudarshan in the study of the quantum Zeno effect. It is worth emphasiz-
ing that by exploiting second-order perturbation theory, we have derived a closed-form
expression for the survival probability that applies to a general Hamiltonian—whether
Hermitian or non-Hermitian, time-dependent or time-independent—without specifying
the physical system. The resulting formula therefore has the advantage of being applicable
to a wide range of scenarios, in contrast to very recent works where the survival probability
is computed either for arbitrary driven open quantum systems [41], or for specific models
such as a time-dependent Ising chain coupled to a bosonic bath at zero temperature [42].
Nevertheless, the applicability of a second-order perturbative treatment deserves specific
considerations related to the specific models that we will analyze in the section dedicated to
the applications. The paper is organized as follows. In Section 2, we show the main result



Symmetry 2025, 17, 1336

30f13

of this paper, which consists of a closed expression for the short-time survival probability,
while in Section 3, it is shown how to reach this result. In Section 4, some applications
are presented, ranging from the quantum Zeno effect in Hermitian systems to the decay
suppression for unstable systems. Finally, in Section 5, we provide a discussion on the
general results and relevant applications. An extensive discussion about the validity of the
approximate method we use is also provided in this section.

2. General Results

Considered a system governed by a generic Hamiltonian, which could be time-
dependent and non-Hermitian, we present here the second-order survival probability
derived through the Dyson expansion of the relevant Schrodinger equation. Subsequently,
we specialize this formula to some particular cases which will be of interest in connection
with the applications.

2.1. Second-Order Survival Probability

The second-order survival probability for a system governed by a time-dependent
non-Hermitian Hamiltonian can be written in the following form (see Section 3 for
the derivation):

WIT (o2t )y = 1= 2it9] [ - (o)asly) — 83 ([ H-(s)as ) )

—A2 ( /: H (s)ds, |¢>) |
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where the subscript (2) indicates quantities evaluated up to the second order in the pertur-
bation treatment, the operators

H(t)+ H(t)

Hy(t) = > , 2)

are the Hermitian (H.) and anti-Hermitian (H_) parts of the Hamiltonian operator, and

NL(A, ) = (p|A%|p) £ ((p|Alp))?. (3)

It is the case to observe that the functional A% coincides with the ordinary variance of the
operator A related to the state |¢p). The last term, which we will address as the cross term,
is the double-time integrated difference between the commutators of the Hermitian and
anti-Hermitian parts of the Hamiltonian at different times, with inverse orders. A direct
physical interpretation of this term is not straightforward, although it clearly encodes
the non-trivial interplay between the coherent and dissipative dynamics of the system.
The presence of commutators in the last term of Equation (1) between the Hermitian and
anti-Hermitian parts of the Hamiltonian at different times reflects, in a sense, how the
time ordering of these two contributions affects the evolution. In particular, the difference
between two commutators evaluated at inverted times points to the emergence of time-
asymmetric effects due to the non-Hermitian nature of the Hamiltonian. This is a natural
feature in the context of open quantum systems.

It is well known that the Dyson expansion is not equivalent to a Taylor expansion in
time. Indeed, while for time-independent Hamiltonians the k-th order Dyson term (the
Oth order term being the identity) is proportional to ¥, in general, for time-dependent
Hamiltonians, contributions proportional to t* can be present in all Dyson terms from the
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1st to the kth. Nevertheless, because of the specific form of the second-order correction
reported in (1), when one wants to make the Taylor series truncated to the second order,
it turns out that the cross term of the survival probability does not contribute. This is a
consequence of the fact that they involve a double integration with respect to time and
that the zeroth order term of the integrand is vanishing. Indeed, as discussed in the next
subsection, time-independent Hamiltonians give rise to a vanishing contribution from the
cross terms.

2.2. Special Cases

It is interesting to observe that there are some situations in which the cross term of (1)
gives zero contribution, implying the survival probability to assume the following form:

WIT el =1 =21yl [ H-asly) - 83 [ Ho () ) )

—A% </: H, (s)ds, |1,b)) , 4)

which means that the Hermitian and anti-Hermitian components act on the system inde-
pendently, when one focuses on the (second-order) survival probability.
Two sufficient conditions under which the cross term vanishes are the following:

[Hy(t), H-(t)] =0, V4t (5)
0Hy =90;H_=0. (6)

In the first case, both commutators are identically zero. In the second case, i.e., for
time-independent Hamiltonians, it is straightforward to see that the two commutators
are equal so that their difference is zero: [H (s), H-(s")] —[H4(s"), H-(s)] = [Hy, H-]

—[Hy,H-]=0.

In the very special case of a Hermitian Hamiltonian, the second-order approximated
survival probability can be expressed as 1 diminished by the variance of the operator
obtained integrating the Hamiltonian in the relevant time interval:

@Il =102 ([ Heods 9)). %

This is the natural, though not obvious, extension of the result for time-independent
Hamiltonians, || (t))|*> ~ 1 — A% (H, |))t?, which is the ground for the analysis of the
quantum Zeno effect for time-independent Hamiltonians.

3. Methods

Let us now prove (1). To this end, consider that the short-time dynamics can be
evaluated through the Dyson series truncated to the second order, even in the case of
non-Hermitian Hamiltonian:

ty ty 'S
Tl ) =1-i [ H)ds— [“ds [ d'HE)H(E), (8)

51 51 f

and

t
T(tz,tl)zf2> = Il+i/2H+

f

(s)ds — /: ds /; ds'H' (') H' (s). )
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From these, we get the following, keeping only terms up to the second order:

(91T (b2, ) [9) [Ty = WIT (2, 11) @) )P T (t2, 11) ) [9) =
1=itpl [ HOsI) +ily] [ HOdsly)

¥l s)dsly) ) ( (w| [ H'(s)ds'|p)
SO, )

—<lp|/t1 ds/tl ds'(H(s)H(s') + HY () H () ) ). (10)

After explicitly writing down H(t) = Hy (t) + H-(t) and H(t) = H, () — H_(t), one can
separate the contributions according to the following analysis.

First, the two first-order terms in the first line of (10) yield the term proportional to the
integral of H_.

Second, the product of the time integrals of the average values of H and H' in the
third line of (10) gives

(101 [0t (6)+ Ho sty ) (401 [ (1) ~ B (o)l ) =

(1 [ e (o1 [ an

which are involved in the A’s.
Let us now focus on the integrand operator of the fourth line:

H(s)H(s') + H'(s")H"(s) = Hy.(s)H(s") + Hy(s)H_(s")
+H_(s)Hy(s") + H-(s)H- (s’>+H (s")Hy (s)
—H, (s")H (s) —H_(s")Hy(s) + H_(s")H _(s). (12)

~—_ —

Since | Hb ds [Tds'f(s,s') = | ub ds’ fslf dsf(s,s’) (they are two equivalent ways to span the
points of the same triangular dominion), we have

~/t1t2 as /: ds'(Hy (s)H4 (s') + Hy (s") Hi (s)) =
/tt2 ds /ts ds'Hy(s)H4(s') + /ttz ds’ //t2 dsH (s')H(s) =
/tz ds /S ds'Hy(s)H4(s') + /tz ds /tz ds’'Hi (s)H.(s") =

t 2
/ ds/ ds'Hy (s)Ho (s / ds Ha (s /olsH+ < zdsH+(s)>, (13)
fy ty ty

where, in passing from the second to the third line the variables s and s’ have been swapped
(s 2 '). Similarly,

/tltz ds /tls ds’(H-(s)H_(s") + H_(s')H_(s)) = ( : ds H(s))z.

The expectation values of these operators are involved in the A’s. Finally, the four re-
maining terms (i.e., those involving products of H and H_) give rise to the difference of
commutators in (1).
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Summing up all the contributions, one gets
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[IT (1)l = 1280l [ " H-(5)dsly)
ty 2 ty 2
([T Han) = (wl [ Hw)
oty 2 oty 2
+<t dsH+(s)) —I—(t dsH(s))
ty s
— [7ds [ a5 (I (He () H- () = H- () Hi(5) = Hi (8 Ho () + H- (5)H (8) ). (14)

which, taking into account definitions in (3), gives exactly (1).

4. Applications

We now focus on some applications. First, we consider the case of a time-dependent
Hermitian Hamiltonian, showing the connection between the time dependence of the
Hamiltonian and the occurrence of a behavior similar to the quantum Zeno effect. Second,
we consider non-Hermitian Hamiltonians which describe either the state of a quantum
system undergoing some decays or a set of quantities in a gain-loss scheme. The analysis
of the short-time survival probability allows us to bring to light the possibility to alter and
even suppress the relevant non-Hermitian processes.

Hermitian case — Let us consider a time-dependent Hermitian Hamiltonian, so that
the survival probability can be expressed as in (7). If the system Hamiltonian has a time
dependence such that its average in a time interval [t1, ] (which from now on will be [0, ¢])
is equal to zero then the second-order survival probability is equal to unity at that time,
regardless of the initial state. For example, any oscillating time-dependence will produce
this result.

It is interesting to observe that a similar result can be obtained from the Magnus expan-
sion [44] in some very special cases. Indeed, such expansion makes it possible to express
the unitary evolution operator as the exponential of an operator, 7 (t) = exp(Lzq Qk(t)),
with O = fé —iH(s)ds, and all the other ();’s (k > 2) which depend on the commuta-
tors of the Hamiltonian operators at different times, [H(s), H(s)]. Therefore, under the
assumption that the Hamiltonians at different times commute, one finds that the evolution
operator is simply the exponential of the integral of the Hamiltonian, which reduces to
the identity operator when such integral vanishes, giving rise to a survival probability
equal to 1. This result is exact and holds order by order in the expansion, but it applies to
a special class of Hamiltonians that satisfy both conditions fot H(s)ds = 0 for some t and
[H(s),H(s")] = 0 for all 5,s". On the contrary, our analysis, though valid in the context of a
second-order approximation, requires only the first condition, fot H(s)ds = 0 for some t.

As a specific example, let us consider a physical system whose Hamiltonian is

H(t) = Ay sin(wt)oy + A(1 — 1) cos(wt)ay, (15)

with # a dimensionless parameter and o}’s the Pauli matrices.

In order to check our predictions, we consider the (numerically) exact survival proba-
bility at the time we focus on. According to our analysis, for a given w, at time t = 27r/w
(or any multiple of this time) the survival probability should be equal to 1. However, with a
growing w one would have to focus on a diminishing time interval, which could trivialize
our result. Therefore, we decide to fix an instant of time, t = 271/wy and, consequently,
focus on frequencies such that after such a time interval the integral of the Hamiltonian
vanishes, which is w = kwyp, with k an integer number. In Figures 1 and 2, it is shown
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the survival probability after a time t = 271/ wy as a function w/wy, for different values
of the parameters and for different initial states. In all such cases, it is well visible that
for high values of w the survival probability approaches unity. On the other hand, we
analytically predict a second-order survival probability equal to one for every w = kwy.
The discrepancy for not-so-high values of w is traceable back to the lack of validity for the
second-order perturbation treatment our prediction is based on.

1.()::. 1.09 ..:::'"'tioonnuooooo 1A0l:,
058 08 = 08
Soe® Sos " Soe®
= 00 T
S04 S04 S04
o2 02 o2
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
w/wy w/wg w/wy
(a) (b) (c)

Figure 1. Exact survival probability (P(t)) at t = 271/ wy as a function of k = w/wy, for A/wy =1,
initial states |{(0)) = |+) (red circles) and |(0)) = (|+) +i|—))/+/2 (blue squares), and for different
values of 7: # = 0.1 (a), 7 = 0.5 (b), 7 = 0.9 (¢). The Hamiltonian is that in (15).

1.0 1.0808 1.0
[ ] . ®
0.8 0.8 0.8
j=1 j=1 =
30.6 SO.G %O.G
S04 S04 S04
L 0.2 &~ 0.2 & 0.2
. ‘
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
w/wy w/wy w/wy
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Figure 2. Exact survival probability (P(t)) at t = 271/ wjq as a function of k = w/wy, for A/wy = 0.5,
initial states [¢(0)) = |+) (red circles) and |(0)) = (|+) +i|—))/+/2 (blue squares), and for different
values of 7: # = 0.1 (a), 7 = 0.5 (b), 7 = 0.9 (¢). The Hamiltonian is that in (15).

Finally, we comment on the fact that repeatedly measuring the system at such instants
of time where the integral of the Hamiltonian is zero would provide certainty of finding
the system in its initial state, which resembles a perfect quantum Zeno effect. However,
in our case, the time interval cannot be shortened (as required in the standard Zeno effect)
because this would compromise the vanishing of the Hamiltonian integral.

Non-Hermitian case: distributing or suppressing decays—Let us now consider a two-state
system undergoing a natural decay and subject to time-dependent fields, such that the
relevant Hamiltonian can be written as follows:

w(t) ir

H(t) = O E(UZ + 1) +xoy, (16)
where 0}s are the standard Pauli matrices. This kind of Hamiltonian is useful for example
in describing a superconducting qubit with a state (|+)) undergoing a decay [45]. Assuming
that the parameters I' and « are small enough, one is legitimated to estimate the survival
probability with a second-order perturbation theory. In the interaction picture associated to
the term proportional to oy, we get

¥ ir . iow i)y _ ;L O —i0(t)

H(t) = —E(ue +1_e )—1511 +xi(t4e —T_e ), (17)

where 7+ = |£),,(F| are the jump operators associated to the eigenstates of oy, |£), =

(|+) £[=))/v2,and Q(t) = fttl w(s)ds.
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First, one should note that the cross terms sum up to zero, which can be proven
straightforwardly. Second, if an instant of time exists such that fttl el Q6)ds = 0, then
it turns out that the integrals of the first and third terms of (17) are equal to zero, and,
accordingly, the two states of the system have “seemingly” undergone a decay with a rate
I'/2, as expressed by the residual term —i(I'/2)1, whose integral is —i(I't /2)1. Therefore,
in this picture, the survival probability does involve only the first- and second-order terms
associated to fttl H_(s)ds = fttl H(s)ds = —i(T't/2)1. As a consequence, looking at the
system at this instant of time makes it effectively evolves as if both the states are undergoing
a decay with rate I'/2, instead of having a state decaying with rate I' and a non-decaying
state. As a technical remark, when |, ttl e!(5)ds —  the unitary operator for the passage
to the interaction picture is equal to the identity operator, which means that coming back
to the Schrodinger picture in order to evaluate the survival probability will leave the
state unchanged.

It is worth mentioning that if the identity operator were absent from the Hamiltonian,
as in the following,

H(t) = wax _r 0 + Koy, (18)

2 2

then the decay would have resulted as suppressed, at the specific time instant we have
considered. Indeed, the term proportional to 1 is the only surviving to the integration.
However, this Hamiltonian is unphysical, involving a +il' /2 diagonal term, which would
imply a general probability increase, even beyond the value 1. Nevertheless, there are such
physical systems where some average quantities satisfy a linear equation which can be
considered a pseudo-Schrodinger equation describing both “loss and gain” [46]. In this
situation, imaginary parts of both signs are allowed for the diagonal terms of the “pseudo-
Hamiltonian”. In Figures 3 and 4, it is shown the (numerically) exact survival probability
for different initial conditions and different values of the decay rate I' and the coupling
constant x. In particular, Figure 3 considers x = 0 and different values of I', while Figure 4
considers a fixed value of I' and different values of non vanishing «. In all these cases,
for large (even not too large) values of w we obtain that the survival probability approaches
unity, since the contributions coming from the oscillating non-Hermitian part are zero, in a
second-order perturbation theory. It is important to point out that a probability exceeding
the value 1 for lower values of w/wy is consistent with the presence of the “gain term”
+il'/2.

2.0 ‘
1.2. . } o
10 15 5
=038 =) S 4l
\V 06 § 1.0 ® §43
S 8§ g3
EOA o5 L2 5
02 s 18
PY . s A
5 10 15 20 25 5 10 15 20 25 ) 10 15 20 25
wlwy w/wy w/wy
(a) (b) (c)

Figure 3. Exact survival probability (P(t)) at t = 271/ wy as a function of k = w/wy, for initial states
|(0)) = |+) (red circles) and |(0)) = (|+) +i|—))/+/2 (blue squares), for x = 0 and different
values of I': T'/wy = 0.1 (a), I'/wg = 0.25 (b), I'/wg = 0.5 (¢). The Hamiltonian is that in (18).
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Figure 4. Exact survival probability (P(t)) at t = 271/wy as a function of k = w/wy, for initial
states |{(0)) = |+) (red circles) and |¢(0)) = (|+) +i|—))/+/2 (blue squares), for T'/wy = 0.25 and
different values of x: x/wp = —0.1 (a), k/wy = —0.25 (b), k/wy = —0.5 (c). The Hamiltonian is that
in (18).

As another example, consider the case of a static Hermitian part and an oscillating
non-Hermitian part, as in the model of Ref. [47]:
w T
H= —OUZ — iz cos(wt) oy, (19)
2 2
which again contains some gain mechanism, since the operator cos(wt)oy has time-
dependent eigenvalues of opposite signs.
On the basis of this Hamiltonian, in the Schrodinger picture, assuming t; = 0, we can
calculate the second-order survival as

WIT (0,019} =1~ Tsin(wn)glesly) - o2 iz sinwnis, 1y)
_A2 (wotaz, |¢>) B %W)\Uy‘@ [Z(COS(wt) -1 tsina(Jwt)} / (20)

2 w?

where the last term is the result of the double integral of the difference of the two commuta-
tors, whose temporal dependence is given by the double integral of fot ds fos ds’(cos(ws) —
cos(ws’)). In view of possible applications in the context of the quantum Zeno effect, it
is worth noting that if one considers t = 271/ w (or an integer multiple), then the survival
probability is essentially that given by the Hermitian part of the Hamiltonian, regardless
of the initial state. In fact, the decay and all other non-Hermitian processes are effectively
suppressed if one measures the population of the initial state at this instant of time. Let
us now focus on a specific initial state which could be any of the two eigenstates of ¢;,
and evaluate the survival probability on a generic instant of time:

2 (wh) <w%t2> - Twy [2(cos(wt) —1) tsin(wt) ' 1)

4w 4 4 w? w

It is noteworthy that no first-order decay term appears in this expression.

5. Discussion

In this paper, we have presented a formula for the second-order survival probability
which allows us to evaluate short-time behaviors of quantum systems which are not
necessarily closed and isolated. The focus on second-order is due to the fact that the
standard treatment of the quantum Zeno effect is based on a second-order perturbative
approach, which we have extended to cases that go beyond static Hermitian Hamiltonians.
Indeed, our formula applies to every kind of non-Hermitian Hamiltonian (with either real
or complex eigenvalues), even in the case where they are time-dependent, and involves the
variance and pseudo-variance of the integrals of the Hermitian and anti-Hermitian parts
of the Hamiltonian, respectively. In addition, it also involves a difference between two
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commutators of the Hermitian and anti-Hermitian parts of the Hamiltonian at different
times, which somehow encodes the interplay between unitary and non-unitary processes.

In the case of Hermitian time-dependent Hamiltonians we are able to predict a sort
of Zeno effect, which, unlike the standard version of the QZE and possible generalization
to time-dependent Hamiltonians, does not necessarily require the time intervals between
measurements to go to zero. On the contrary, we usually require a finite time. In fact, we are
able to identify, under suitable hypotheses, instants of time where the survival probability
is equal to unity, even if it has assumed lower values at earlier instants of time. This is
easily achieved by considering that deviations of the second-order survival probability
from unity are given by the variance of the integral of the Hamiltonian in the initial state.
Therefore, once such an integral vanishes, the approximate survival probability is equal to
one, regardless of the initial state.

In the presence of a non-Hermitian Hamiltonian, an effective alteration of the decay (or
other non-unitary) processes can be obtained. In some cases, a decay which is relevant to a
single state can be somehow “distributed” over all the other states: this is what happens
to a two-state system with a decaying state and a stable one, which exhibits an overall
decay with half the decay rate of the unstable state. In some other cases, all the non-unitary
processes can be suppressed. This is the case of a non-Hermitian term describing gain and
loss at equal rates.

An important comment concerns the validity of our approximation. Indeed, as we
have pointed out several times, our treatment is based on a perturbative approach and
hence is valid under suitable hypotheses involving relevant parameters. This issue clearly
emerges from the plots presented here, where a survival probability is predicted to be
equal to one even for small values of the frequency w, while the numerical resolution of
the dynamics (reported in the plots) shows a potentially significant discrepancy, which
rapidly decreases for higher values of the frequency w. Indeed, in the examples ana-
lyzed here, a higher w ensures the validity of the second-order perturbative treatment.
As an example, consider the Hermitian model in (15), where the whole Hamiltonian is
oscillating at frequency w. As usual, the perturbative character of the oscillating terms
is established once the amplitude is much smaller than the frequency, and, since A = wy,
this corresponds to having w > wyp. A similar comment can be made concerning the
non-Hermitian time-independent models in (16) and (18), once they are analyzed in the
interaction picture, where they turn out to oscillate at frequency w. Therefore, ¥ and T,
which are of the order of wy, are supposed to be much smaller than w. The non-Hermitian
time-dependent model in (19) deserves a slightly more complicated discussion. Indeed,
while the oscillating part of the Hamiltonian can be treated as a perturbation, according
to previous considerations, the stationary part cannot. Nevertheless, if we consider small
intervals of time, a second-order expansion of the unitary evolution operator associated to
the sole stationary part would be allowed. Therefore, if we mainly focus on time t = 277/ w,
for large w we can satisfy both the conditions (smallness of perturbation, second-order
treatment for the larger part). In order to strengthen these assertions about the validity
of our approximation, we have made some plots comparing the numerically exact eval-
uation of the survival probability, with the same quantity calculated on the basis of our
formula obtained via a perturbative treatment, beyond the specific instants where perfect
revival of the initial state is predicted. In Figure 5 the absolute value of the difference
|| T (t2, 1) [9))? — || T (t2, t1) |9) |%2) is shown, where 7 (t2, t1) is the exact evolution op-
erator, here numerically evaluated. In particular, in Figure 5a we focus on the model in
(15), showing a very good agreement between the exact and approximate survival proba-
bility (discrepancy < 0.001), especially for larger values of w. In Figure 5b,c we focus on
the model in (19), and it clearly emerges that in this case the validity of our treatment is
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state-dependent. This circumstance is related to the fact that we have a non-perturbative
term (wy /2 07), which influences the dynamics in different ways, depending on whether
the initial state is an eigenstate of such operator (|+), in Figure 5b) or not ((|+) + |-))/v/2,
in Figure 5c). Nevertheless, it is important to stress that, regardless of the state, for small ¢,
and preferably large w, the agreement is very good, according to the previous comments.

1.000
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Figure 5. The absolute value of the difference between the (numerically) exact survival probability
and the survival probability evaluated via the second-order perturbation, Abs(|(|T (t2, t1)|)|> —
[(W| T (t2, t1)|9) |%2)), as a function of the ratio w/wy and time f in units of 1/wy. This quantity is
plotted for different models and initial states. In (a), the model is the one in (15), with A/wg = 1,
n/wp = 0.5 and initial state |(0)) = |+). In (b,c), the model is that in (19) with I'/wy = 0.1 and

initial state [((0)) = |+) in (b) and |(0)) = (|+) + |=))/v/2in (c).
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