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A Unified Perspective on Poincaré and Galilei Relativity:
II. General Relativity: A. Kinematics
Christian Y. Cardall

Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354, USA; cardallcy@ornl.gov

Abstract

Building on the first paper in this series (Paper I), a unified perspective on Poincaré and
Galilei physics in a 5-dimensional spacetime setting is further pursued through a con-
sideration of the kinematics of general relativity, with the gravitational dynamics to be
addressed separately. The metric of the 5-dimensional affine spacetimes governed by the
Bargmann groups considered in Paper I (central extensions of the Poincaré and Galilei
groups) is generalized to curved spacetime by extending the usual 1 + 3 (traditionally
‘3 + 1’) formalism of general relativity on 4-dimensional spacetime to a 1 + 3 + 1 formalism,
whose spacetime kinematics is shown to be consistent with that of the usual 1 + 3 formalism.
Spacetime tensor laws governing the motion of an elementary classical material particle
and the dynamics of a simple fluid are presented, along with their 1 + 3 + 1 decompositions;
these reference the foliation of spacetime in a manner that partially reverts the Einstein per-
spective (accelerated fiducial observers, and geodesic material particles and fluid elements)
to a Newton-like perspective (geodesic fiducial observers, and accelerated material particles
and fluid elements subject to a gravitational force). These spacetime laws of motion for
particles and fluids also suggest that a strong-field Galilei general relativity would involve
a limit in which not only c→ ∞ but also G → ∞, such that G/c2 remains constant.

Keywords: relativity; Poincaré group; Galilei group; Bargmann group

1. Introduction
This paper continues the development of a unified perspective on Poincaré and Galilei

relativity begun in the first paper in this series (hereafter Paper I) [1]. As used here,
‘relativity’ refers to the invariance of physical laws under the action of a symmetry group
that mixes time and space. The Poincaré group mixes time into space and space into time,
whereas the Galilei group only mixes time into space while leaving time invariant. The
profound consequences of the Poincaré group’s mixing of space into time—such as the
dependence of the time interval between two events on the motion of the observer—are
the phenomena traditionally labeled ‘relativistic’. However, the dependence of the space
interval between two events on the motion of the observer also renders physics governed
by the Galilei group ‘relativistic’ as far as space is concerned. Therefore, Paper I begins by
arguing that the traditional terms ‘non-relativistic physics’ and ‘relativistic physics’ should
be replaced by the more precise terms ‘Galilei physics’ (or ‘Galilei relativity’) and ‘Poincaré
physics’ (or ‘Poincaré relativity’), respectively.

With physics governed by the Poincaré group or the Galilei group both being ‘rela-
tivistic’ in this sense, Paper I argues further that the terms ‘special relativity’ and ‘general
relativity’ ideally would be released from their traditional association with ‘physics ac-
cording to Einstein’ to denote more generally ‘physics on flat spacetime’ and ‘physics on
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curved spacetime’ respectively, regardless of whether physics is governed by the Galilei
group or the Poincaré group—globally in the case of flat spacetime, but only locally in
the case of curved spacetime. Thus, on flat spacetime, one would speak of both ‘Galilei
special relativity’ and ‘Poincaré special relativity’, with the latter being ‘special relativity’
as traditionally understood following Einstein. On curved spacetime, one similarly might
consider a ‘Galilei general relativity’ alongside ‘Poincaré general relativity’, with the latter
being ‘general relativity’ as traditionally understood following Einstein.

The relativistic invariance of Poincaré physics is manifest, indeed automatic, when
expressed in terms of equations governing tensor fields on 4-dimensional spacetime. Ein-
stein’s proposal of Poincaré special relativity as the solution to theoretical and empirical
puzzles posed by Maxwell’s electrodynamics was formulated in terms of time-dependent
fields on 3-dimensional position space. Minkowski subsequently introduced the concept
of spacetime as a flat 4-dimensional Lorentz manifold (pseudo-Riemann manifold with
metric tensor of signature (−, +, +, +)) unifying time and space; this allowed him to express
electrodynamics in terms of the electromagnetic 4-potential (a covector or linear form)
and electromagnetic field tensor (an antisymmetric bilinear form) unifying the electric
and magnetic fields, and material particle dynamics in terms of the 4-momentum, whose
vector version unifies mass with vector 3-momentum, and whose covector version unifies
energy with covector 3-momentum. In short order, von Laue unified the energy den-
sity, energy flux, momentum density, and momentum flux of a material continuum in
the energy-momentum 4-flux tensor, and this—along with Minkowski’s introduction of
spacetime—was key to Einstein’s development of Poincaré general relativity in order to
accommodate gravity as spacetime curvature. (References to the original literature of the
early 20th century can be found in historical notes in the relevant sections of [2].)

One can also try to shoehorn Galilei physics into a 4-dimensional spacetime perspec-
tive (e.g., [3–5], Paper I, and the historical references therein), but the fit is uneasy and
incomplete. The fit is uneasy because the spacetime that arises from the infinite speed of
light (c→ ∞) limit of the Einstein metric and its inverse is not a Lorentz manifold: there
is no spacetime metric and, therefore, no metric duality of spacetime tensors (raising and
lowering of indices); no Levi-Civita connection on spacetime (natural covariant derivative
determined by the metric) and no Levi-Civita tensor on spacetime (natural volume form as-
sociated with the metric). The fit is incomplete because of the strict separation of mass and
energy implied by Galilei physics: a tensor formalism on 4-dimensional spacetime makes
manifest the relativistic invariance of conservation of matter and balance of 3-momentum,
but not the balance of energy. A 4-velocity vector and a matter-momentum 4-flux tensor are
natural enough, but there is no satisfactory 4-momentum covector or energy-momentum
4-flux tensor. The root of the problem is that transformations of time and space yield corre-
sponding transformations of inertia and 3-vector momentum; only through metric duality
do these directly correspond also to transformations of energy and 3-covector momentum.
Both Galilei physics and Poincaré physics do include a position space 3-metric that relates
3-vector momentum to 3-covector momentum, so that the balance of 3-momentum can be
expressed indifferently in terms of either. And the spacetime metric of Poincaré physics
implies the equivalence of mass and energy through which the relativistic invariance of
balance of inertia is also the relativistic invariance of balance of energy. But Galilei transfor-
mations leave the mass of a material particle invariant, and they do not directly exhibit the
transformation of kinetic energy implied by the transformation of its 3-momentum. And for
a material continuum, Galilei transformations do not allow the first law of thermodynamics
to be integrated into a mass-momentum 4-flux tensor, as happens in Poincaré physics.
Without a spacetime metric and in failing to manifestly include energy, the practical and
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aesthetic appeal of a spacetime tensor formalism is significantly compromised in the case
of Galilei physics on a 4-dimensional spacetime manifold.

However, a tensor formalism for Galilei physics that manifestly exhibits the trans-
formation of kinetic energy can be accommodated in a 5-dimensional spacetime setting
governed by the Bargmann group, a central extension of the Galilei group (e.g., [3,6,7],
Paper I, and the references therein). The Bargmann group emerged in connection with rep-
resentation theory in quantum mechanics, with the Galilei group as a notable example ([8],
see also, e.g., [9–11]). Still with a focus on quantum physics, the Bargmann group inspired a
tensor formalism for Galilei physics on a 5-dimensional extended spacetime [12,13], and its
relevance for classical (i.e., non-quantum) Galilei physics was subsequently recognized
as well [14]. It is worth emphasizing at the outset that in this well-established reformu-
lation of Galilei relativity, the extended spacetime introduces no new physical degrees of
freedom and serves only as a mathematical device to better express Galilei physics in a
tensor formalism.

In part—but only in part—the move from a 4-dimensional spacetime setting to a
5-dimensional extended spacetime setting is conceptually similar to the move from a
3-dimensional position space setting to a 4-dimensional spacetime setting. Consider a
classical material particle with no internal degrees of freedom, described completely by its
position (x(t), y(t), z(t)) in 3-dimensional position space as a function of time t according
to a fiducial (that is, Eulerian or ‘lab frame’) observer. These points trace out the particle’s
trajectory in position space, a (not necessarily injective, or 1-to-1) curve parametrized by t
with tangent vector field v, the coordinate 3-velocity. Described in terms of 4-dimensional
spacetime, the particle’s location (t(τ), x(τ), y(τ), z(τ)) according to a fiducial observer can
be given as a function of the proper time τ measured by a comoving (that is, Lagrangian
or ‘material frame’) observer moving along with the particle. These points in spacetime
trace the particle’s worldline, a (now definitely injective) curve parametrized by τ with
tangent vector field U, the 4-velocity. But while the particle is now regarded as a ‘history’
in 4-dimensional spacetime, from a kinematical and dynamical perspective it is still char-
acterized by only three degrees of freedom. Thus, the 4-velocity U, and the worldline it
determines, are subject to a constraint: g(U, U) = −c2 in the case of Poincaré physics,
where g is the Einstein metric; or τ(U) = 1 in the case of Galilei physics, where τ (not
to be confused with proper time τ, a scalar) is the time 1-form normal to the spacelike
position-space leaves associated with absolute time. In a 5-dimensional extended spacetime
motivated by the Bargmann group, the particle location (t(τ), x(τ), y(τ), z(τ), η(τ)) now
includes an additional ‘action coordinate’ η related to kinetic energy per unit mass, in such
a way that, not only for Poincaré physics but now also for Galilei physics, the extended
spacetime is a pseudo-Riemann (indeed, Lorentz) manifold with metric G. In this new
setting, the forms g (for Poincaré physics) and τ (for Galilei physics) are still invariant
structures governing causality, and the same constraint g(U,U) = −c2 or τ(U) = 1 applies,
where U is the 5-velocity tangent to the particle worldline in Bargmann-extended spacetime.
The Bargmann metric, G, governs the extended spacetime geometry, and it also provides an
additional constraint, G(U,U) = 0, ensuring that the particle continues to be characterized
by only three degrees of freedom. But unlike the time coordinate t associated with the
move to 4-dimensional spacetime, the additional coordinate η associated with the move
to extended 5-dimensional spacetime is afforded no independent physical significance,
and no explicit field dependence on it is allowed (all partial derivatives with respect to η

vanish). The utility of the additional dimension in the present context is purely to allow
Galilei physics to be expressed in a manifestly invariant formalism in terms of spacetime
tensor fields on a pseudo-Riemann manifold.
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The purpose of this series is to develop a more unified perspective on Poincaré and
Galilei relativity, including by exploring the possibility of a strong-field Galilei general
relativity that could serve as a useful approximation in astrophysical scenarios such as
core-collapse supernovae. The basic strategy is to reexpress standard Poincaré physics
on 4-dimensional spacetime in a 5-dimensional setting more congenial to Galilei physics
and then deduce the corresponding Galilei-invariant theory by taking the c → ∞ limit.
Focusing on flat spacetime, Paper I took a first step by elucidating and emphasizing the
fact that the Poincaré group can also be centrally extended to what might be called the
Bargmann-Poincaré group, in a manner analogous to the more familiar central extension of
the Galilei group to what might now be called the Bargmann–Galilei group (traditionally
simply the ‘Bargmann group’).

This installment in the series picks up where Paper I left off: Section 2 (re)introduces a
curved spacetime version of the Bargmann metric G, derived using a procedure similar to
that employed in Paper I in flat spacetime, but using the 1 + 3 (traditionally ‘3 + 1’) formal-
ism of Poincaré general relativity as the starting point. (Useful as it may be for the purpose
of numerically solving the Einstein equations as an initial value problem, a 1 + 3 spacetime
foliation, of course, is not fundamental to a spacetime perspective on Poincaré physics.
But the absolute time of Galilei physics does require a 1 + 3 spacetime foliation, making it
necessary as a common setting that enables a more unified perspective on Poincaré and
Galilei physics.) The projection operator←−γ ∗ needed for 1 + 3 and 1 + 3 + 1 tensor decom-
positions is the subject of Section 3, after which Section 4 relates the spacetime Levi-Civita
connections ∇ (associated with the 4-metric g) and D (associated with the 5-metric G) to
the position space Levi-Civita connection D associated with the 3-metric γ.

The gravitational ‘kinematics’ referred to in the title of this paper comes into fo-
cus in Section 5, where it is demonstrated that the extrinsic curvature tensor K of the
usual 1 + 3 formalism of Poincaré relativity (e.g., [15]) is all that is needed to also com-
pletely characterize the extrinsic geometry of the position space spacelike leaves in the
1 + 3 + 1 foliation of the Bargmann spacetimes considered here. The label ‘kinematics’ refers
to the fact that the usual 1 + 3 formalism of Poincaré relativity locates the gravitational de-
grees of freedom in the 3-metric γ, with the extrinsic curvature K describing the evolution
of γ between neighboring position space leaves, thus constituting a kind of ‘velocity’ of
the gravitational degrees of freedom. The gravitational ‘dynamics’—the Einstein equations
relating the spacetime metric to the energy-momentum content on spacetime, and the
evolution of K emerging therefrom (in effect, the ‘acceleration’ of the gravitational degrees
of freedom)—will be addressed in the next paper in this series.

The remaining sections in the present installment serve as preparation for the gravita-
tional dynamics to be considered in the sequel, and they also provide an initial application
of the geometry of the curved Bargmann spacetimes elucidated here to the motion of an
elementary material particle and a simple fluid. As mentioned above, the initial move in the
overarching strategy employed in this series is to re-express standard Poincaré physics on
4-dimensional spacetime in a 5-dimensional setting more congenial to Galilei physics. Key
to this ‘encoding’ of familiar 4-dimensional physics in a 5-dimensional setting is a ‘decoding’
operator←−g ∗ introduced in Section 6. Its utility for obtaining tensor laws on 5-dimensional
Bargmann spacetime from tensor laws on 4-dimensional spacetime is illustrated in Section 7
on the dynamics of an elementary particle and Section 8 on the dynamics of a simple fluid.
The latter section introduces the kinetic-energy–momentum–mass-density 5-flux tensor
T, the 5-dimensional encoding of the total-energy–momentum 4-flux tensor T ; this can be
expected to appear in the Einstein equations on the 5-dimensional Bargmann spacetimes to
be considered in a subsequent installment. Along with a concluding summary, Section 9
includes remarks about the relationships between this work and previous instantiations of



Symmetry 2025, 17, 1245 5 of 57

Newton gravity in a 5-dimensional setting [3,7,14], and generalizations of Newton-Cartan
gravity in 4-dimensional spacetime in which the connection includes torsion (e.g., [16–21]).

2. The Metric of Foliated Curved Spacetimes
Consider the metric components associated with a foliation of spacetime into spacelike

‘position space’ leaves. These are shown first for the usual Einstein spacetime and then
for Bargmann spacetimes. In addition to the 3-metric on each leaf of a foliation, the lapse
function and shift vector relating neighboring leaves are interpreted in terms of vector
fields tangent to the worldlines of ‘fiducial observers’, which are everywhere normal to
the leaves of the foliation. The classical (i.e., non-quantum) kinematics of a free material
particle is also summarized, as this enables a simple derivation of the Bargmann metric in
curved spacetime.

2.1. The Metric of Foliated Einstein Spacetime E
An ‘Einstein spacetime’ E is a 4-dimensional Lorentz manifold, a pseudo-Riemann

manifold endowed with a metric g of signature (−,+,+,+). This is the setting of Poincaré
general relativity as traditionally understood. Assume that a spacetime E is such that it
admits a Cauchy surface, a spacelike hypersurface (i.e., a submanifold of codimension 1
and, therefore, of dimension 3), such that each timelike or null curve intersects the surface
only once. Then E admits a foliation into a family (St)t∈R of spacelike hypersurfaces,
where each leaf or slice St of the foliation is a level surface of a scalar field t (e.g., [15]).
That is, there exists an atlas of E in which t serves as a global time coordinate for every
chart (coordinate patch) in the atlas. For convenience, let S denote St for some value of
t. Let (U, X) be a chart on E , with U being an open subset of E and X = (t, x) being
coordinates adapted to the foliation. Then (US , x) is a chart on S, where US = U ∩ S and
x = (x1, x2, x3) are local position space coordinates. The time coordinate index is 0, that is,
X0 = t.

Write the coordinate basis vector fields associated with the coordinates X as
(∂Xν) =

(
∂t, ∂xj

)
, and write its dual basis of 1-forms as (dXµ) =

(
dt, dxi). Here the

notation ∂Xν = ∂/∂Xν for a coordinate basis vector field is introduced as a simplified
alternative intended to be more visually parallel to the standard notation dXµ for a basis
1-form (the latter being also the exterior derivative of the coordinate function Xµ). Greek
indices take values in {0, 1, 2, 3} (the conventional spacetime coordinate indices), with let-
ters µ, ν, . . . near the middle of the alphabet preferred for free indices and letters α, β, . . .
near the beginning of the alphabet preferred for dummy indices. Lowercase Latin indices
take values in {1, 2, 3} (the position space coordinate indices), with letters i, j, . . . near the
middle of the alphabet preferred for free indices and letters a, b, . . . near the beginning of
the alphabet preferred for dummy indices.

In the 1 + 3 formalism of Poincaré general relativity associated with the foliation of
spacetime E into spacelike hypersurfaces St (traditionally known as the ‘3 + 1’ formalism,
e.g., [15]), the components of the metric g with respect to the coordinates X are given by

g =
[
gµν

]
=

[
−c2 α2 + βaβa β j

βi γij

]
(on E), (1)

where c is the speed of light, while the inverse matrix

←→g = [gµν] =

[
− 1

c2α2
1

c2α2 βj

1
c2α2 βi γij − 1

c2α2 βiβj

]
(on E) (2)
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collects the components of the inverse metric←→g . The determinant g of the matrix g of
metric components is

g = det g = −c2 α2 γ, (3)

where γ is the determinant of
[
γij

]
. Notably, a c→ ∞ limit of g and its matrix determinant

g do not exist due to the presence of c2 in gtt = g00, precluding a Galilei general relativity
featuring a 4-dimensional Lorentz manifold as its spacetime. However, the inverse metric
←→g of Poincaré physics limits sensibly to the degenerate inverse ‘metric’←→γ as c→ ∞, with
the latter being a viable (and indeed fundamental) tensor object in Galilei physics, as is
discussed at length for instance in Paper I.

The meaning of the functions γij in Equation (1) follows from the observation that
the metric g on E induces a 3-metric γ on each leaf S of the spacetime foliation. That
is, γ(u, v) = g(u, v) for vector fields u, v tangent to S. The leaves S are spacelike, that
is, the signature of the metric γ on S is (+,+,+). Thus, each leaf S of the foliation is a
Riemann manifold in its own right. The components of the inverse metric←→γ on S are γij,
appearing in Equation (2).

The functions α and β j appearing in the components of the metric g in Equation (1)
have to do with the relationship between neighboring spacelike leaves of the foliation
of E . A key idea illuminating this relationship is the notion of fiducial observers, whose
worldlines orthogonally thread the leaves S of the foliation. To discuss this, adopt notation
for metric duality used also in Paper I: in particular, v = g · v is the 1-form associated by
metric duality with a vector field v, and←−ω = ←→g · ω = ω · ←→g = −→ω is the vector field
associated by metric duality with the 1-form ω. The dot operator only denotes contraction
via an obvious ‘pairing of covariant and contravariant indices’, and not the scalar product
of two vectors; the latter will be written only in terms of a metric.

Begin with the gradient 1-form ∇t, which will lead to the fiducial observer vector field
n and the dual fiducial observer vector field χ. (For scalar fields, the Levi-Civita connection
∇ associated with g is simply the exterior derivative d.) This gradient 1-form is normal
to S in the sense that ∇t · v = 0 for any vector field v tangent to S. Define the fiducial
observer 1-form

n = −c2 α∇t = −c2 α dt, n = [nν] =
[
−c2 α 0j

]
(on E). (4)

Define also the dual fiducial observer 1-form

χ = − 1
c2 n (on E), (5)

with
χ = α∇t = α dt, χ = [χν] =

[
α 0j

]
(on E). (6)

Raising the index via contraction with←→g yields the fiducial observer vector field

n = −c2 α
←−
∇t =

1
α
(∂t− βa ∂xa), n = [nµ] =

[ 1
α

− 1
α βi

]
(on E), (7)

manifestly normal to S with respect to g since it derives from ∇t, and the dual fiducial
observer vector field

χ = α
←−
∇t = − 1

c2 α
(∂t− βa ∂xa), χ = [χµ] =

[
− 1

c2 α

1
c2 α

βi

]
(on E).
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The name ‘dual fiducial observer 1-form’ for χ comes from the fact that

χ · n = 1.

The observer vector field n for E in Equation (7) is interpreted as the 4-velocity field of the
congruence of curves comprising the worldlines of the fiducial observers, and indeed, it
satisfies the normalization

g(n, n) = n · n = −c2

expected of a 4-velocity.
Introduce also a ‘normal evolution vector field’ collinear with the fiducial observer

vector field:
m = α n, (8)

which satisfies
∇t ·m = α∇t · n = 1

as verified from the component expressions above. Under a displacement, δt m, for in-
finitesimal δt, a leaf, St, is carried (or ‘Lie dragged’) to St+δt: for any point p ∈ St,

t(p+ δt m) = t(p) + (∇t ·m) δt = t(p) + δt.

This is the reason why m is called the normal evolution vector field.
Together with the tensor g that governs proper time on E , the normal evolution vector

field m yields the meaning of the lapse function α. Consider the proper time increment δτ

corresponding to a displacement, δt m, on E :

c δτ =
√
−g( δt m, δt m ) = c α δt.

Thus, the lapse function α relates a time coordinate interval between two neighboring
points encountered by a fiducial observer to the proper time measured by that observer.

The meaning of the shift vector components βi follows from rewriting Equation (7) as

∂t = m + β, (9)

where β = βa ∂xa. Because ∇t = dt is an element of the 1-form basis dual to the coordinate
basis (so that ∇t · ∂t = 1), the vector field ∂t is, like m, a time evolution vector field through
which neighboring spacelike leaves S are Lie-dragged from one to another. But, unlike m,
the vector field ∂t, aligning at each point with the local t coordinate axis, is not in general
normal to the leaves S. Consider a point p in slice St, along with points p + δt m and
p+ δt ∂t in neighboring slice St+δt. Then, according to Equation (9), the vector δt β points
from p+ δt m to p+ δt ∂t in St+δt. Thus, the shift vector field β, everywhere tangent to the
leaves S , is the coordinate 3-velocity with which points of constant coordinate position

(
xi)

move relative to the fiducial observers. The 1-form components β j are given by β j = γja βa.
Consider next a material particle on E , whose coordinates along its worldline are

X(t) = (t, x(t)). Its 4-velocity is

U =
d

dτ
=

dt
dτ

∂

∂t
+

dt
dτ

dxa

dt
∂

∂xa

=
dt
dτ

(∂t + v),
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where dτ is an increment of proper time along the worldline, and vi = dxi/dt are the
components of the coordinate 3-velocity v = va ∂xa. The increment dτ is related to the
coordinate increments dXµ via the line element along the worldline:

−c2 dτ2 = gαβ dXα dXβ

= −c2 α2 dt2 + γab(dxa + βadt)(dxb + βbdt)

= −c2 α2 dt2
(

1− 1
c2 γ(V , V)

)
where

V = Va ∂xa =
1
α
(v + β) (10)

is tangent to S. Defining ΛV by

Λ−1
V =

√
1− 1

c2 γ(V , V)

and substituting into the line element along the worldline gives

ΛV =
α dt
dτ

. (11)

Using this together with Equation (7) in the above expression for the 4-velocity U then yields

U = ΛV (n + V), U = [Uµ] =

 1
α ΛV

ΛV

(
Vi − 1

α βi
).

It is evident that V is the physical 3-velocity of the particle measured using a fiducial
observer with 4-velocity n whose worldline crosses that of the particle at a given point.
Note that −g(n, V)/c2 = χ · V = 0, that ΛV = −g(n, U)/c2 = χ ·U is the Lorentz factor
of their relative motion, and that U → n as V → 0.

As to momentum, the vector version for a free particle of mass m is the
inertia–momentum

←−
P = m U = m ΛV (n + V).

Arguably more fundamental is the covector version, the total-energy–momentum

P = m U = m ΛV (n + V)

= −mc2ΛV χ + m ΛV V .

Defining the physical 3-momentum, p, and the total energy, Ep, both measured using the
fiducial observer, via

←−p = m ΛV V , Ep = mc2ΛV ,

one can write instead

P = −Ep χ + p, P = [Pν] =
[
−α Ep + paβa pj

]
, (12)

along with

Ep =
√

m2c4 + c2←→γ (p, p).
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Note that the covector p is tangent to S in the sense that p · n = 0. Moreover,

Up =
Ep

mc2

(
n + Vp

)
, Vp =

c2←−p
Ep

, Λp =

√
1 +

1
m2c2

←→γ (p, p) (13)

express the 4-velocity, physical 3-velocity, and Lorentz factor in terms of p. Thus, the
inertia–momentum

←−
P = m Up =

Ep

c2

(
n + Vp

)
=

Ep

c2 n +←−p (14)

is represented by the column

←−
P =

[ 1
α (Ep/c2)

pi − 1
α (Ep/c2)βi

]
.

While the inertia–momentum vector
←−
P has a meaningful c → ∞ limit as Ep/c2 → m,

the total-energy–momentum covector P does not, preventing a fully satisfactory 4-
dimensional spacetime treatment of Galilei physics, as discussed in Paper I.

2.2. The Metric of Foliated Bargmann Spacetimes BE and BG
A ‘Bargmann spacetime’ BE or BG is a 5-dimensional Lorentz manifold, a pseudo-

Riemann manifold endowed with a metric G of signature (−,+,+,+,+). In the case of
BE , this will turn out to be a reformulation of Poincaré general relativity in a 5-dimensional
setting. To be explored is whether a limit of this 5-dimensional reformulation in which
c→ ∞ might yield a strong-field theory of gravitation consistent with Galilei physics that
is not available, or is less readily available, in a 4-dimensional setting—a ‘Galilei general
relativity’ with pseudo-Riemann spacetime BG. Assume that a spacetime BE or BG is such
that it admits a foliation into a family

(
S(t,η)

)
(t,η)∈R2

of position space leaves of dimension

3 (as with the leaves St of E) and, therefore, of codimension 2 (unlike the leaves St of E ,
which are of codimension 1). Each leaf S(t,η) of the foliation is the locus defined by constant
values of scalar fields t and η. That is, there exists an atlas of BE or BG in which t and η serve
as global time and ‘action’ coordinates, respectively, for every chart in the atlas. The origin,
meaning, and significance of the action coordinate η are described in Paper I in the context
of the affine (and, therefore, flat) Bargmann–Minkowski and Bargmann–Galilei spacetimes
BM and BG, and they will be summarized in the context of the curved spacetimes BE and
BG below. For convenience, let S denote S(t,η) for some (t, η). Let (U,X) be a chart on BE
or BG, with U being an open subset and X = (X, η) = (t, x, η) being coordinates adapted
to the foliation. Then (US , x) is a chart on S, where US = U ∩ S and x = (x1, x2, x3) are
local position space coordinates. The time coordinate index is 0, and the action coordinate
index is 4; that is, X0 = X0 = t and X4 = η.

Write the coordinate basis vector fields associated with the coordinates X as
(
∂XJ

)
=

(∂Xν, ∂η) =
(
∂t, ∂xj, ∂η

)
, and write its dual basis of 1-forms as

(
dX I) = (dXµ, dη) =(

dt, dxi, dη
)
. Uppercase Latin indices take values in {0, 1, 2, 3, 4} (the extended space-

time coordinate indices), with letters I, J, . . . near the middle of the alphabet preferred
for free indices and letters A, B, . . . near the beginning of the alphabet preferred for
dummy indices.

As discussed in Paper I and [3], the action coordinate X4 = η is defined with reference
to the kinetic energy per unit mass of a material particle. This heuristic derivation of the
differential relationship between the new coordinate η and the other coordinates leads to a
‘Bargmann metric’ G; this structure constrains the nature of the extended spacetime in a
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way that allows the transformation of kinetic energy to be manifest in a tensor formalism.
With coordinates X(t) = (t, x(t), η(t)) along its worldline, the 5-velocity of the particle is

U =
d

dτ
=

dt
dτ

(∂t + v) +U4 ∂η (on BE or BG),

the terms except the last being the same as for the 4-velocity U on E . The metric on a
Bargmann spacetime is deduced by imposing the condition

U4 =
dη

dτ
=

dt
dτ

dη

dt
=

c2(ΛV − 1) (on BE)
1
2

γ(V , V) (on BG).
(15)

For BE , substitute into this equation the same expressions −c2 dτ2 = gαβ dXα dXβ and
ΛV = α dt/dτ as on E , and find

0 = βaβa dt2 + 2 dt βadxa + dxa γab dxb − 2 α dη dt +
1
c2 dη2 (on BE).

(The corresponding equation in the conclusion of Paper I has a sign error in the 2 dt βadxa

term, even though the matrix G of metric components presented there is correct.) For BG,
substitute dτ = α dt and γ(V , V) = γab(dxa + βadt)(dxb + βbdt)/α2 dt2, and find

0 = βaβa dt2 + 2 dt βadxa + dxa γab dxb − 2 α dη dt (on BG).

These are in the form of line elements, suggesting a metric G whose components with
respect to the coordinates X are given by

G =
[
GI J

]
=




βaβa β j −α

βi γij 0i

−α 0j
1
c2

 (on BE)


βaβa β j −α

βi γij 0i

−α 0j 0

 (on BG),

(16)

while the inverse matrix

←→
G =

[
GI J

]
=




− 1

c2α2
1

c2α2 βj − 1
α

1
c2α2 βi γij − 1

c2α2 βiβj 1
α βi

− 1
α

1
α βj 0

 (on BE)


0 0j − 1

α

0i γij 1
α βi

− 1
α

1
α βj 0

 (on BG)

(17)

collects the components of the inverse metric
←→
G . The determinant G of the matrix G of

metric components is
G = detG = −α2 γ (18)
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for both BE and BG, to be compared with Equation (3). In comparing Equation (16) with
Equation (1), note that, while a c→ ∞ limit of g and its matrix determinant g do not exist,
the speed of light, c, and the lapse function, α, appearing in gtt = g00 have been shifted
to Gηη = G44 and Gtη = G04, respectively, in the case of BE , in such a way that a c → ∞
limit makes sense, allowing a metric on BG. This is what allows for a formulation of Galilei
general relativity featuring a 5-dimensional pseudo-Riemann spacetime. But in comparing
Equation (2) with Equation (17), it is interesting to note that

Gµν = gµν (on BE)

for the usual spacetime components µ, ν ∈ {0, 1, 2, 3}; this seems to be connected with the
fact that the inverse metric←→g of Poincaré physics limits sensibly to the degenerate inverse
‘metric’←→γ as c→ ∞, as noted previously.

The meaning of the functions γij in Equation (16) for the components of G on BE or
BG is the same as in Equation (1) for the components of g on E . That is, the metric G on
BE or BG induces a 3-metric γ on each leaf S of the foliation, as expressed by the fact that
γ(u, v) = G(u, v) for vector fields u, v tangent to S . Again, the leaves S are spacelike; that
is, the signature of the metric γ on S is +++, and each leaf S is a Riemann manifold in its
own right. And again, the components of the inverse metric←→γ on S are γij, appearing in
Equation (17).

The functions α and β j appearing in the components of the metric G in Equation (16)
also have the same meaning in relating neighboring spacelike leaves of the foliation of
BE or BG as they have on E . Once again, there are fiducial observers whose worldlines
orthogonally thread the leaves S of the foliation. In discussing vector fields and 1-forms
on BE or BG, the underbar and overarrow notation introduced previously refer to metric
duality with respect to G; that is, v = G · v is the 1-form associated through metric duality
with a vector field v, and←−ω =

←→
G ·ω = ω · ←→G = −→ω is the vector field associated through

metric duality with the 1-form ω. It is worth emphasizing again that, in this paper, the dot
operator only denotes contraction via an obvious ‘pairing of covariant and contravariant
indices’, and not the scalar product of two vectors; the latter will be written only in terms
of a metric.

On BE or BG, begin not only with the gradient 1-form Dt as on E but also with the
gradient 1-form Dη in order to obtain the fiducial observer vector field n and the dual
fiducial observer vector field χ. (Again, for scalar fields, the Levi-Civita connection D

associated with G is simply the exterior derivative d.) For a reason that will be clear
momentarily—and for an additional reason explained in Section 6—the dual fiducial
observer vector field χ on BE or BG uses the same symbol as on E , but the fiducial observer
vector field is represented with the script character n on BE or BG instead of the italic
character n, as on E . The gradient 1-forms Dt and Dη are normal to S in the sense that
Dt · v = 0 and Dη · v = 0 for any vector field v tangent to S. On both BE and BG, define
the fiducial observer 1-form

n = −Dη = −dη, n =
[
nJ
]
=

[
0 0j −1

]
(on BE or BG) (19)

and the dual fiducial observer 1-form

χ = αDt = α dt, χ =
[
χJ

]
=

[
α 0j 0

]
(on BE or BG). (20)
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That the fiducial observer 1-form is related to Dη on BE or BG, rather than Dt, as on E , is
the present justification for using a different symbol, n, rather than n. Raising the index via
contraction with

←→
G yields the fiducial observer vector field

n = −←−Dη =
1
α
(∂t− βa ∂xa), n =

[
n I
]
=


1
α

− 1
α βi

0

 (on BE or BG) (21)

and the dual fiducial observer vector field

χ = α
←−
Dt =


− 1

c2 α
(∂t− βa ∂xa)− ∂η

−∂η,
χ =

[
χI

]
=




− 1

c2 α

1
c2 α

βi

−1

 (on BE)


0

0i

−1

 (on BG).

(22)

The name ‘dual fiducial observer 1-form’ for χ is appropriate since

χ · n = 1

similar to the analogous relation on E . The observer vector field n for BE or BG in
Equation (21) is interpreted as the 5-velocity field of the congruence of curves comprising
the worldlines of the fiducial observers; its first four components coincide with those
of the fiducial observer 4-velocity field n in Equation (7) on E . The fifth component in
Equation (21) vanishes because, as was worked out in Paper I and reiterated above, the en-
tire machinery of the Bargmann setting derives from the fact that the fifth component of the
5-velocity represents kinetic energy per unit mass relative to the fiducial observer, and of
course the fiducial observer has no kinetic energy relative to itself. As to χ, the first four
components of Equation (20) agree with Equation (6) on E . The major difference concerning
these vector fields and 1-forms on the extended spacetimes BE or BG compared with the
spacetime E is that the 4-vectors n and χ are collinear on E according to Equation (5), while
on BE or BG, the 5-vectors n and χ (and their corresponding 5-covectors) are not. This is
related to the formal separation of inertia from kinetic energy enabled by the 5-dimensional
Bargmann setting.

The analysis in Paper I supports the interpretation of n as the 5-velocity of fiducial
observers. As shown there, one requirement on a vector U purporting to be the 5-velocity
tangent to some observer’s worldline in the 5-dimensional Bargmann setting of BE or BG is
that it be null with respect to G, that is, G(U ,U) = 0. At first, this is disconcerting relative
to experience with the traditional 4-dimensional spacetime E ; but it is not G that governs
causality on BE or BG, and this leads to the second requirement on a vector purporting
to be a tangent vector to an observer’s (necessarily timelike) worldline. This second
consideration, causality, differs between BE and BG, as also described in Paper I. On BE ,
while g is no longer the spacetime metric, when regarded as a tensor on BE normal to the
action axis, it still governs proper time and the timelike vs. spacelike nature of vectors, such
that a vector U qualifies as a 5-velocity only if it is future-directed and g(U ,U) = −c2. On
BG the tensor governing proper time and the timelike vs. spacelike nature of vectors is the
1-form τ = χ, via the requirement that a vector U qualifies as a 5-velocity only if τ(U) = 1.
On BE and BG these two requirements are met by n, but not by χ (see Equations (30) and



Symmetry 2025, 17, 1245 13 of 57

(31) below). The status of n as not just any observer vector field, but as the ‘fiducial’ or
‘reference’ observer vector field, is cemented by the fact that it is also everywhere normal to
the leaves S , that is, G(n, v) = 0 for any vector field v tangent to S . This is analogous to the
corresponding condition for the fiducial observer vector field n on E , namely g(n, v) = 0.

As on E , introduce also a ‘normal evolution vector field’ collinear with the fiducial
observer vector field:

m = α n,

which, on BE or BG, satisfies the two relations

Dt ·m = αDt · n = 1,

Dη ·m = αDη · n = 0
(on BE or BG)

as verified from the component expressions above. As with n on BE or BG vs. n on E , note
also here the use of the script character m on BE or BG instead of the italic character m on E .
Under a displacement δtm for infinitesimal δt, a leaf S(t,η) is carried (or ‘Lie dragged’) to
S(t+δt,η): for any point p ∈ S(t,η),

t(p+ δtm) = t(p) + (Dt ·m) δt = t(p) + δt,

η(p+ δtm) = η(p) + (Dη ·m) δt = η(p).
(on BE or BG)

Thus, the interpretation of m as the normal evolution vector field on BE or BG is justified in
a manner analogous to the interpretation of m on E .

As on E , the normal evolution vector field m, together with the tensors g and τ that
continue to govern proper time on BE and BG, respectively, as described in Paper I, yield
the meaning of the lapse function α. Consider the proper time increment δτ corresponding
to a displacement δtm. On BE , as on E ,

c δτ =
√
−g( δtm, δtm ) = c α δt (on BE).

On BG,
δτ = τ( δtm ) = α δt (on BG).

Thus, on both BE and BG, the lapse function α once again relates a time coordinate interval
between two neighboring points encountered by a fiducial observer to the proper time
measured by that observer.

The shift vector components βi also have the same meaning as they do on E , for
Equation (21) on BE or BG yields the analogous relation

∂t = m + βa ∂xa.

Moreover, because Dt = dt is an element of the 1-form basis dual to the coordinate basis,
not only Dt · ∂t = 1 but also Dη · ∂t = 0. Thus, once again, the vector field ∂t is, like m,
a time evolution vector field through which neighboring spacelike leaves S are Lie-dragged
from one to another—just not the normal evolution vector field m. And again β = βa ∂xa is
the coordinate 3-velocity, tangent to S, with which points of constant coordinate position(

xi) move relative to the fiducial observers.
Having already discussed the 5-velocity U of a material particle in order to deduce a

Bargmann spacetime and its metric, close this section by turning to momentum. The vector
version is the inertia–momentum–kinetic-energy
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←−
Π = mUp

=
Ep

c2 n +←−p + ϵp ∂η,

←−
Π =

[
ΠI

]
=




1
α (Ep/c2)

pi − 1
α (Ep/c2)βi

ϵp

 (on BE)


1
α m

pi − 1
α m βi

ϵp

 (on BG)

(23)

where

ϵp =

mc2(ΛV − 1) (on BE)
m
2

γ(V , V) (on BG)

is the particle kinetic energy. The terms except the last of the vector version
←−
Π of momentum

on BE or BG are the same as the vector version
←−
P of momentum on E .

Here the overarrow represents index raising with respect to G, not g, and this has
a profound consequence for momentum in Bargmann spacetimes: taking Π = G · ←−Π ,
one finds that, instead of a total-energy–momentum covector, one has a relative-energy–
momentum–mass or kinetic-energy–momentum–mass covector

Π = −ϵp χ + p + m n,

Π =
[
ΠJ

]
=

[
−α ϵp + paβa pj −m

] (on BE or BG). (24)

Notably, Π does not simply add a component to P. The remarkable nature of a Bargmann
spacetime BE or BG is that mass is disentangled from kinetic energy by removing it from
the first component and moving it to the fifth component without a factor of c2. This is
what allows for kinetic energy to be handled in a tensor formalism while remaining strictly
separated from mass, as required by Galilei physics and discussed in Paper I.

3. Tensor Decomposition on Foliated Curved Spacetimes
Comparison between theory and experiment requires that tensor fields on spacetime

be decomposed into pieces consistent with the way humans experience time evolution in
position space. This is achieved by using vector fields and 1-forms normal to the spacelike
leaves of the foliation to construct a projection operator←−γ ∗ closely related to the induced
metric γ on those leaves.

3.1. Tensor Decomposition on Foliated Einstein Spacetime E
The 1 + 3 splitting of a spacetime E embodied in its foliation into 3-dimensional

hypersurfaces—leaves S of codimension 1—is accompanied by a 1 + 3 decomposition
of tensor fields at each point into pieces parallel to the fiducial observer’s worldline and
tangent to S. This is accomplished with a projection tensor constructed using the fiducial
observer vector field n and the dual fiducial observer 1-form χ = −n/c2 introduced in
Section 2.1. These are normal to S in the sense that they respectively have vanishing
contractions with 1-forms and vector fields tangent to S. Their norms with respect to the
spacetime metric g of E are

g(n, n) = n · n = −c2,

g(χ, χ) = χ · χ = − 1
c2

(on E),
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and their mutual contraction is

g(χ, n) = χ · n = 1 (on E).

These properties ensure that

←−γ = δ− n⊗ χ, ←−
γ = [γµ

ν] =

 0 0j

βi δi
j

 (on E), (25)

where δ =←−g is the identity tensor on E , is the projection tensor satisfying

0 =←−γ · n =←−γ · χ,

0 = n · ←−γ = χ · ←−γ

on E , as desired. For the decomposition of a vector field on E , the components normal and
tangent to S are given via contraction with χ and←−γ , respectively. For the decomposition
of a 1-form on E , the components normal and tangent to S are given via contraction with n
and←−γ , respectively.

Lowering the first index and raising the second index of the projection operator yield
extensions of the 3-metric γ and its inverse←→γ on S to E ,

γ = g − n⊗ χ, γ =
[
γµν

]
=

[
βaβa β j

βi γij

]
(on E) (26)

and

←→γ =←→g − n⊗ χ, ←→
γ = [γµν] =

[
0 0j

0i γij

]
(on E).

The same symbols, γ and←→γ , are used for both the original tensors on S and their extensions
to E , with the understanding that, for instance, γ(u, v) = γ

(←−γ (u),←−γ (v)
)

defines the
extension for vector fields u and v on E .

For a vector field v on E , the contraction←−γ · v =←−γ (v) with the projection operator
←−γ yields a vector field tangent to S ; and dual to this, for a 1-form ω defined on S , the eval-
uation ω

(←−γ (v)
)

defines an extension ω · ←−γ of ω to E . These observations lead to a general
projection operator←−γ ∗ for all tensors on E . For a (p, q) tensor field, T , meaning that it is p
times contravariant and q times covariant, its components are simply given by contracting
with←−γ on all indices; that is,(←−γ ∗T)µ1 ...µp

ν1 ...νq
= γµ1

α1
. . . γµp

αp
Tα1 ...αp

β1 ...βq γβ1
ν1

. . . γβq
νq

(on E) (27)

projects T from E to S. A vector field v and a 1-form ω, as (1, 0) and (0, 1) tensor fields
respectively, are of course special cases.

3.2. Tensor Decomposition on Foliated Bargmann Spacetimes BE and BG
In the case of BE or BG, instead of the 1 + 3 splitting introduced on E , a

1 + 3 + 1 decomposition of tensors is desired at each point, yielding pieces parallel to the
fiducial observer’s worldline, tangent to S, and parallel to the action axis. A projection
tensor to S does make use of the fiducial observer vector field n and the dual fiducial ob-
server 1-form χ introduced in Section 2.2. However, unlike the situation on 4-dimensional
E , the vector fields n and χ (and the metric dual 1-forms n and χ) are not collinear on BE
or BG. As in Paper I, it is useful to define an ‘action vector’ field ξ that characterizes the
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noncollinearity of n and χ and also happens to be collinear with (but opposite in direction
to) the η axis. It is defined by

ξ = −∂η =


1
c2 n + χ (on BE)

χ (on BG),
ξ =

[
ξ I
]
=

 0
0i

−1

 (on BE or BG). (28)

The corresponding 1-form is

ξ =


1
c2 n + χ

χ,
ξ =

[
ξ J
]
=


[
α 0j − 1

c2

]
(on BE)[

α 0j 0
]

(on BG).
(29)

Notice that ξ and χ coincide on BG. Since there is no action coordinate on E , there is no
action vector either; or rather, it degenerates to the zero vector in accord with Equation (5).

As with E , but now involving also the action vector ξ in addition to n and χ, the mu-
tual contractions of these vector fields and 1-forms point towards their appearance in a
projection operator←−γ needed for 1 + 3 + 1 tensor decompositions. The norms of these
vector fields are

G(n, n) = n · n = 0 (on BE or BG),

G(χ, χ) = χ · χ =


− 1

c2 (on BE)

0 (on BG),

G(ξ, ξ) = ξ · ξ =


1
c2 (on BE)

0 (on BG).

(30)

The mutual contractions are

G(χ, n) = χ · n = 1,

G(n, ξ) = n · ξ = 1,

G(χ, ξ) = χ · ξ = 0

(on BE or BG). (31)

These properties ensure that

←−γ = δ− n ⊗ χ− ξ ⊗ n, ←−
γ =

[
γI

J

]
=


0 0j 0

βi δi
j 0i

0 0j 0

 (on BE or BG), (32)

where in this context δ =
←−
G is the identity tensor on BEor BG, is the projection

tensor satisfying
0 =←−γ · n =←−γ · χ =←−γ · ξ,

0 = n · ←−γ = χ · ←−γ = ξ · ←−γ
(on BE or BG)

on BE or BG as desired. For the decomposition of a vector field on BE or BG, the components
parallel to the fiducial observer worldline, tangent to S, and parallel to the action axis
are given via contraction with χ, ←−γ , and −n, respectively. For the decomposition of a
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1-form on BE or BG, the components parallel to the fiducial observer worldline, tangent to
S , and parallel to the action axis are given via contraction with n,←−γ , and −ξ, respectively.

Lowering the first index or raising the second index of the projection operator yields
extensions of the 3-metric γ and its inverse←→γ on S to BE or BG:

γ = G− n ⊗ χ− ξ ⊗ n, γ =
[
γI J

]
=


βaβa β j 0

βi γij 0i

0 0j 0

 (on BE or BG) (33)

and

←→γ =
←→
G − n ⊗ χ− ξ ⊗ n, ←→

γ =
[
γI J

]
=


0 0j 0

0i γij 0i

0 0j 0

 (on BE or BG).

Again, the same symbols γ and←→γ are used for both the original tensors on S and their
extensions to BE or BG. The components of←−γ , γ, and←→γ on E in Section 3.1 all agree with
the time and position space components here on BE or BG.

As on E , the projection tensor←−γ on BE or BG that gives vector fields tangent to S
and extensions of 1-forms on S also provides for a general projection operator←−γ ∗ for all
tensors on BE or BG. In particular,(←−γ ∗T)I1 ...Ip

J1 ...Jq
= γI1

A1
. . . γIp

Ap
TA1 ...Ap

B1 ...Bq γB1
J1

. . . γBq
Jq

(on BE or BG) (34)

is the counterpart of Equation (27).
For α → 1 and βi → 0, all of this agrees with the expressions obtained for the flat

spacetimes BM and BG in Section 5.3 of Paper I.

4. Levi-Civita Connections on Foliated Curved Spacetimes
Noted here are the Levi-Civita connections ∇ on spacetime E and D on spacetimes

BE or BG—pseudo-Riemann manifolds all—and the Levi-Civita connection D on the
Riemann submanifolds S that constitute the position space leaves of their foliations. The
acceleration of fiducial observers and other important directional derivatives are also
considered. Finally, projective relationships are given between certain tensor gradients on
E , or BE or BG, and tensor gradients on S.

4.1. Levi-Civita Connection on Foliated Einstein Spacetime E
As a pseudo-Riemann manifold, the geometry of a 4-dimensional Einstein spacetime E is

determined by its spacetime metric g. Let ∇ denote the Levi-Civita connection, the covariant
derivative operator on E satisfying ∇g = 0. The variations ∇ν ∂Xµ = gΓα

µν ∂Xα of the
coordinate basis vectors define the connection coefficients

gΓρ
µν =

1
2

gρα

(
∂gαν

∂Xµ +
∂gµα

∂Xν
−

∂gµν

∂Xα

)
(on E).

By relating the values of basis vector fields (and, by implication, basis 1-forms) at neigh-
boring points, the connection ∇ enables the definition of the gradient of a tensor field of
arbitrary type, with the gradient ∇T of a (p, q) tensor field T being a tensor field of type
(p, q + 1). This is accomplished via a Leibniz rule: in addition to the partial derivatives
of tensor component functions, the Levi-Civita connection ∇ adds an additional term for
each component resulting from the variation of the corresponding basis vector field or basis



Symmetry 2025, 17, 1245 18 of 57

1-form. The connection coefficients are also called Christoffel symbols of the second kind;
the Christoffel symbols of the first kind,

gΓρµν = gρα
gΓα

µν =
1
2

(
∂gρν

∂Xµ +
∂gµρ

∂Xν
−

∂gµν

∂Xρ

)
(on E),

will also be useful on occasion.
Contraction of the gradient of a tensor field with a vector field, with the contraction tak-

ing place on the new ‘tensor slot’ opened by the gradient operation, results in a directional
derivative. An example of interest here is the 4-acceleration c2a of fiducial observers on the
1 + 3 foliated spacetime E , given by the directional derivative of n along itself, and related
directional derivatives called here ‘generalized accelerations’, for example, involving χ.
Such generalized accelerations will play a role in the extrinsic geometry of the foliation
discussed in Section 5, where the 1-form versions of such directional derivatives are more
relevant. For the directional derivative ∇nn, one can use the definition of the Christoffel
symbols to find

nα∇αnν = nα
(

∂αnν − gΓβ
να nβ

)
= nα ∂αnν +

1
2

∂νgαβ nα nβ

= c2 aν,

where
aν = ∂ν ln α− χν nα ∂α ln α. (35)

Metric duality and the antisymmetry of two of the terms in gΓρµν have been exploited,
and Equation (4) for n and Equation (6) for χ have been employed; the latter implies the
handy relation

∂µχν = χν ∂µ ln α, (36)

which will be of use later on. In this case, all that is needed from the metric is the single
component g00 = −1/c2α2. Alternatively, the explicit use of connection coefficients can
be avoided altogether by making use of the definition of n in Equation (4) in terms of the
gradient of the coordinate function t, and the fact that the Levi-Civita connection ∇ is
torsion-free (∇µ∇ν f = ∇ν∇µ f for a scalar field, f ). In any case, the (1-form version of the)
4-acceleration of the fiducial observers on E can also be written in more geometric form as

∇nn = c2 a (on E), (37)

where
a = D ln α, a = [aν] =

[
βa ∂a ln α ∂j ln α

]
(on E), (38)

with D being the (extension to E of the) Levi-Civita connection on spacelike leaves S dis-
cussed below in Section 4.3 (here, for a scalar field, simply an exterior derivative). Note
that a is tangent to S (since a · n = 0) and exhibits no time derivatives. That the variation
of n, which is normal to the spacelike leaves S, along the fiducial observers’ worldlines
is determined by the position space variation of the lapse function α is a manifestation of
the fact that the scalar field α determines the spacetime foliation. The equivalent general-
ized accelerations

∇χn = ∇nχ = −a (on E) (39)

follow from Equation (5) expressing the collinearity of n and χ on E .
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4.2. Levi-Civita Connection on Foliated Bargmann Spacetimes BE and BG
A 5-dimensional Bargmann spacetime BE or BG is also a pseudo-Riemann mani-

fold, with geometry determined by its spacetime metric G. Let D denote the Levi-Civita
connection satisfying DG = 0 on BE or BG. The connection coefficients

GΓK
I J =

1
2

GKA
(

∂GAJ

∂X I +
∂GIA

∂X J −
∂GI J

∂XA

)
(on BE or BG)

give the variations DJ ∂XI =
GΓA

I J ∂XA of the coordinate basis vectors. Part of what it
means to minimally embed Poincaré or Galilei physics in a Bargmann-extended spacetime
is that no field—representing the metric, a material continuum, or anything else—on BE or
BG is allowed to depend explicitly on the action coordinate X4 = η; thus, in the above and
all other expressions in this paper involving partial derivatives, any partial derivative with
respect to X4 = η vanishes.

The Christoffel symbols of the first kind are

GΓKI J = GKA
GΓA

I J =
1
2

(
∂GKJ

∂X I +
∂GIK

∂X J −
∂GI J

∂XK

)
(on BE or BG).

For the conventional spacetime indices µ, ν, ρ ∈ {0, 1, 2, 3}, it will be useful later to relate
gΓρµν to GΓρµν. Noting from Equations (6) and (20) that the components χν are the same
on BE or BG as on E , and comparing Equation (1) for g with the upper left 4× 4 block of
Equation (16) for G, for the conventional spacetime indices, one has

gµν = Gµν − c2 χµ χν.

Making use of Equation (36), the desired relation is

gΓρµν = GΓρµν − c2(χρ χν ∂µ ln α + χµ χρ ∂ν ln α− χµ χν ∂ρ ln α). (40)

The dependence on the lapse function α and its derivatives is explicitly separated, as the
components Gµν and, therefore, GΓρµν depend only on βi and γij.

The directional derivatives of interest include the 5-acceleration of fiducial observers
on BE or BG and related ‘generalized accelerations’. In contrast to Equation (37) for the
4-acceleration of fiducial observers on E , the 5-acceleration of fiducial observers on BE or
BG vanishes:

Dnn = 0 (on BE or BG). (41)

This can be shown using the matrix expressions for n in Equation (19) and
←→
G in

Equation (17), noting that G44 = 0 is the only metric component needed, to obtain

nA DAnJ = − nA GΓB
JA nB = −GΓBJA nB nA =

1
2

∂JGAB nA nB = 0.

That the 5-velocity n of fiducial observers is geodesic (vanishing 5-acceleration Dnn) with
respect to G on BE or BG, while the 4-acceleration of fiducial observers is not geodesic
with respect to g on E , may be a tantalizing hint that there is something deeply natural
or at least interesting about the Bargmann construction. However, a result for BE that
does coincide with what would be found on E , obtained with a similar but slightly more
involved calculation using Equation (20) for χ and G00 = −1/c2α2 as the only inverse
metric component needed, is
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Dχχ =


1
c2 a (on BE),

0 (on BG),

where the same acceleration 1-form as on E (now with an additional vanishing action
component) appears:

a = D ln α, a =
[
aJ
]
=

[
βa ∂a ln α ∂j ln α 0

]
(on BE or BG). (42)

Other generalized accelerations of interest include

Dξn = −1
2

a (on BE or BG), Dξχ =


1

2c2 a (on BE),

0 (on BG).
(43)

With Equation (28) used for the column ξ, these can be obtained as

ξA DAnJ = −GΓ4
J4 = −1

2
aJ ,

ξA DAχJ = α GΓ0
J4 =

1
2c2 aJ ,

where the calculations of GΓ4
J4 and GΓ0

J4 are streamlined by noting that

G4I = −n I , G4J = GJ4 = −ξ J = −χJ −
1
c2 nJ , G0I =

1
α

χI =
1
α

(
ξ I − 1

c2 n
I
)

.

Finally, the above directional derivatives can be combined using ξ = χ + n/c2 in
Equation (28) and the linearity of the directional derivative Du in u to obtain

Dχn = Dnχ = −1
2

a (on BE or BG), (44)

which differ from their counterparts on E in Equation (39) by a factor of 1/2.

4.3. Levi-Civita Connection on Spacelike Leaves S
Each 3-dimensional spacelike leaf S of a foliated spacetime E , or BE or BG, is a Riemann

manifold whose intrinsic geometry is governed by the induced metric γ. Let D denote the
Levi-Civita connection on S, satisfying Dγ = 0. The connection coefficients

Γk
ij =

1
2

γka
(

∂γaj

∂xi +
∂γia

∂xj −
∂γij

∂xa

)
give the variations Dj ∂xi = Γa

ij ∂xa of the coordinate basis vectors. In the particular case
of the intrinsic geometry of the leaves S , no additional prefixing superscript identifying the
metric is added to the connection coefficients.

4.4. Projections of Tensor Gradients

It will prove useful to consider projective relationships between certain tensor gradi-
ents on E , or BE or BG, and on S . Consider a tensor T on E , or on BE or BG, that is tangent
to a position space leaf S, that is, such that ←−γ ∗T = T, so that for T on E , all possible
contractions of T with n and with χ vanish; or, for T on BE or BG, all possible contractions
of T with n and ξ, and with χ and n, vanish. What is the relationship of the projection of
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the spacetime gradient ∇T on E , or of DT on BE or BG, to the position space gradient DT?
It turns out to be the intuitively pleasing relation

DT =


←−γ ∗∇T (on E)

←−γ ∗DT (on BE or BG),
(45)

given the respective generalized projection operators←−γ ∗ for E in Equation (27) or for BE or
BG in Equation (34), built from the fundamental projection operators←−γ in Equations (25)
or (32) respectively. That is, for a tensor field tangent to S, the projection of the spacetime
covariant derivative to S is just the position space covariant derivative. The essence of
the proof is to show that the key property of a Levi-Civita connection—that the gradient
of the metric vanishes—is satisfied by←−γ ∗∇γ = 0 on E and by←−γ ∗Dγ on BE or BG; then,
the uniqueness of the Levi-Civita connection implies that ←−γ ∗∇ = D and ←−γ ∗D = D,
respectively. With Equation (26) used for γ on E ,(←−γ ∗∇γ

)
ρµν

= γγ
ρ γα

µ γβ
ν∇γ

(
gαβ − nαχβ

)
= 0 (on E)

because ∇g = 0 and n · ←−γ = 0 and χ · ←−γ = 0. Similarly, with Equation (33) used for γ on
BE or BG,(←−γ ∗Dγ

)
KI J = γC

K γA
I γB

J DC(GAB − nAχB − ξAnB) = 0 (on BE)

because DG = 0 and n · ←−γ = 0 and χ · ←−γ = 0 and ξ · ←−γ = 0.

5. Extrinsic Geometry of Spacelike Leaves
An extrinsic curvature tensor carries information about the way the spacelike leaves

of a foliation are embedded in the ambient spacetime. This can be understood in at least
three ways. First, extrinsic curvature can be understood as relating a tensor gradient on a
spacelike leaf S to a tensor gradient on the ambient spacetime. Second, and closely related,
an extrinsic curvature tensor can be understood as giving the variation along S of a 1-form
or vector field normal to S . And third, less obviously related to the other two perspectives,
is that an extrinsic curvature tensor describes the change in the induced metric along a
normal vector connecting neighboring leaves.

5.1. Extrinsic Geometry of Spacelike Leaves of Einstein Spacetime E
The relationship between the covariant derivatives Duv and ∇uv of a vector field v

tangent to S, in a direction u also tangent to S, provides one perspective on the extrinsic
geometry of a leaf S of a foliation of spacetime. Recall that ∇ is the Levi-Civita connection
associated with the 4-metric g on E and that D is the Levi-Civita connection associated with
the 3-metric γ on S.

Apply Equation (45) to the directional derivative Duv, where u and v are both vector
fields tangent to S. Use Equation (25), as well as the fact that χ · v = 0 for v tangent to S.
The result can be expressed

Duv = ∇uv− L(u, v) n (on E), (46)

where
L(u, v) = −g(u,∇vχ) = −u ·∇vχ (on E)
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is the extrinsic curvature tensor associated with χ, describing its variation on S. The fact
that L is symmetric with respect to arguments tangent to S,

L(v, u) = L(u, v),

has also been used; this can be proved using the fact that χ is defined in terms of the
gradient of the scalar function t and the fact that the Levi-Civita connection ∇ is torsion-
free, along with the fact that the contractions of ∇t with u and v vanish when the latter are
tangent to S .

So far L has been defined as a tensor on S, but it will prove useful to extend it to all
vector fields u and v on E in order to relate it to all the spacetime components of ∇χ. This
is achieved by evaluating

L(u, v) = L
(←−γ (u),←−γ (v)

)
= −←−γ (u) ·∇←−γ (v)χ.

Because of the structure of the projection tensor←−γ in Equation (25), in the course of this
computation, the ‘generalized acceleration’ ∇nχ of Equation (39) appears, with the result

L = −∇χ− a⊗ χ (on E),

or in components
Lµν = −∇νχµ − aµχν (on E).

The trace is
L = −∇ · χ = −∇αχα (on E).

Again, this expression for L, extended from S to E , is valid for evaluation on any vector
fields, u and v, on E .

Because χ = −n/c2 on E , one can define an alternative extrinsic curvature tensor K
based on n instead of χ via

L = − 1
c2 K (on E), (47)

where
K(u, v) = −g(u,∇vn) = −u ·∇vn (on E)

for u and v tangent to S, and rewrite the above equations accordingly, including

Duv = ∇uv− K(u, v) χ (on E) (48)

for the comparison of space and spacetime gradients,

K = −∇n− a⊗ n (on E),

for the relation between extrinsic curvature and ∇n, and

K = −∇ · n = −∇αnα (on E)

for the trace. With K regarded as primary, the expressions

∇χ =
1
c2 K − a⊗ χ,

∇n = −K − a⊗ n
(on E) (49)

will prove to be useful expressions for the gradients of χ and n.
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This latter version K of the extrinsic curvature shows up in the time evolution of the
3-metric γ—its variation from leaf to leaf of the foliation, given by its Lie derivative along
the normal time evolution vector m introduced in Section 2.1:

Lmγµν = mα∇αγµν + γαν∇µmα + γµα∇νmα (on E).

Using Equations (5), (8), (26), (37), (38), (39), and (49), one finds

Lmγ = −2 α K (on E). (50)

This provides another perspective on the meaning of the extrinsic curvature. In contrast,
a related calculation for the projection tensor←−γ shows that

Lm
←−γ = 0 (on E), (51)

with the important consequence that, for any tensor field T tangent to S , the evolved tensor
field LmT is also tangent to S.

When one looks ahead to a comparison with BE and BG, an explicit component
expression for K will be useful. From Equation (49) and Equations (35) and (36),

Kµν = −c2α gΓ0
µν + c2(χµ ∂ν ln α + χν ∂µ ln α− χµ χν nα ∂α ln α).

Noticing that
gΓ0

µν = g0α gΓαµν = − 1
c2α

nα gΓαµν

and using Equation (40) along with nαχα = 1 yields the compact result

Kµν = nα GΓαµν (on E). (52)

This is independent of both the speed of light and derivatives of the lapse function. Inci-
dentally, the symmetry of the extension of K from S to E is also manifest.

5.2. Extrinsic Geometry of Spacelike Leaves of Bargmann Spacetimes BE and BG
On BE or BG, begin again with the relationship between the covariant derivatives

Duv and Duv of a vector field v tangent to S, in a direction u also tangent to S, where
D is the Levi-Civita connection associated with the 5-metric G, and once again D is the
Levi-Civita connection associated with the 3-metric γ on S . Applying Equation (45) to the
directional derivative Duv where u and v are both vector fields tangent to S , but now using
Equation (32), as well as the fact that χ · v = 0 and n · v = 0 for v tangent to S, one finds

Duv = Duv− L(u, v) n − K(u, v) ξ (on BE or BG). (53)

There is an additional term relative to Equation (46). Here

L(u, v) = −G(u,Dvχ) = −u ·Dvχ,

K(u, v) = −G(u,Dvn) = −u ·Dvn
(on BE or BG)

are extrinsic curvature tensors associated with χ and n, describing their variation on S . As
on E , they are symmetric with respect to arguments tangent to S:

L(v, u) = L(u, v), K(v, u) = K(u, v).
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To extend the definition from S to BE or BG, evaluate

L(u, v) = L
(←−γ (u),←−γ (v)

)
= −←−γ (u) ·D←−γ (v)χ,

K(u, v) = K
(←−γ (u),←−γ (v)

)
= −←−γ (u) ·D←−γ (v)n.

The structure of the projection tensor←−γ in Equation (32) makes generalized accelerations
from Equations (41), (43), and (44) appear, with the result

L = −Dχ− a⊗ χ +
1
2

a⊗ ξ +
1
2

ξ ⊗ a,

K = −Dn − 1
2

a⊗ n − 1
2
n ⊗ a

(on BE or BG), (54)

or in components

LI J = −DJχI − aIχJ +
1
2

aIξ J +
1
2

ξ I aJ ,

KI J = −DJnI −
1
2

aInJ −
1
2

nI aJ

(on BE or BG). (55)

The identities

n ·Dvχ = −v ·Dχn, ξ ·Dvχ = − 1
c2 v ·Dξn, ξ ·Dvn = − 1

c2 v ·Dξn

have also been employed; these can be proved with the definition of n in terms of the
gradient of coordinate X4 = η in Equation (19), the definition of the action vector in
Equation (28), the norms in Equation (30), and the fact that the connection D is torsion-free.
The traces are

L = −D · χ = −DAχA,

K = −D · n = −DAnA (on BE or BG).

Again, these expressions for K and L extended from S to BE or BG are valid for evaluation
on any vector fields u and v on BE or BG.

While there is no a priori justification to assume that the extrinsic curvatures on BE or
BG are the same as the K and L defined on E , this does in fact turn out to be case—for both
K and L in the case of BE , and for K in the case of BG. First, consider K. From Equation (57),

KI J =
GΓA

I J nA −
1
2

aInJ −
1
2
nI aJ (on BE or BG). (56)

Because n4 is the only non-vanishing component of n, the result for the traditional spacetime
indices µ, ν ∈ {0, 1, 2, 3} is

Kµν = nA GΓAµν = nα GΓαµν (on BE or BG), (57)

precisely the same as Equation (52) on E . As to the action components,

K4J = KJ4 = −GΓ4
J4 +

1
2

aJ = 0 (on BE or BG),

using a connection coefficient already encountered in Section 4.2. Displayed together,

[
KI J

]
=

[
Kµν 0µ

0ν 0

]
(on BE or BG), (58)
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and in this sense, K is the same on BE or BG as on E . Moreover, at first glance, it appears
that, since the leaves of the foliation are of codimension 2, there are two independent
extrinsic curvatures, L and K. However, it turns out that the nature of the Bargmann
spacetimes is such that there are not two independent extrinsic curvatures; instead,

L =


− 1

c2 K (on BE)

0 (on BG).
(59)

Remarkably, the straightforward definition of Equation (47), motivated by the collinearity
of χ and n on E , is preserved on BE as a nontrivial relation. On BG, the extrinsic curvature
K is the same as on BE and on E , but L vanishes. To prove Equation (59), note that

LI J = −χI ∂J ln α + α GΓ0
I J − aIχJ +

1
2

aIξ J +
1
2

ξ I aJ (on BE or BG)

follows from Equation (57) and the definition of χ in Equation (20). Then

GΓ0
I J = G0A GΓAI J , G0A =


1
α

(
ξ A − 1

c2 nA
)

(on BE)

1
α

ξA (on BG),

G0A = −χA, GΓ4I J = −
1
2
(
χJ ∂I ln α + χI ∂J ln α

)
,

together with Equation (28) for ξ and Equation (35) for a and Equation (56) for K, produce
the desired result.

With the use of Equation (28), one consequence of Equation (59) is that Equation (53),
valid for vector fields u, v tangent to S, simplifies to

Duv = Duv− K(u, v) χ (on BE or BG), (60)

of the same form as Equation (48) on E (though the vector version of χ on BE or BG differs
from that on E , even though the covector versions χ are the same). Referring back to
Equation (54), another consequence of Equation (59) is that the equations for Dχ and Dn

required later can be expressed

Dχ =


1
c2 K − a⊗ χ +

1
2

a⊗ ξ +
1
2

ξ ⊗ a (on BE)

− a⊗ χ +
1
2

a⊗ ξ +
1
2

ξ ⊗ a (on BG),

Dn = −K − 1
2

a⊗ n − 1
2
n ⊗ a (on BE or BG).

(61)

Moreover,

Dξ = −1
2

a⊗ χ +
1
2

χ⊗ a (on BE or BG), (62)

thanks to Equation (28), with trace

D · ξ = DA ξA = 0 (on BE or BG). (63)

And indeed Dξ = Dχ in the case of BG, as expected from Equation (28).
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As on E , the time evolution of the 3-metric γ is once again given in terms of K. With
the use of a calculation similar to that on E but using quantities appropriate to BE or BG,
the Lie derivative of γ along m,

LmγI J = mA DAγI J + γAJ DIm
A + γIA DJm

A (on BE or BG),

results in
Lmγ = −2 α K (on BE or BG) (64)

as also found previously on E . (The ‘quantities appropriate to BE or BG’ are D and m,
instead of ∇ and m on E .) The similarly calculated result

Lm
←−γ = 0 (on BE or BG) (65)

found previously on E holds also on BE or BG, yielding the same important consequence
that, for any tensor field T tangent to S, the evolved tensor field LmT is also tangent to S.

It is worth emphasizing that, even though the leaves S are of codimension 2, such that
in a generic case two independent extrinsic curvature tensors might have been expected,
the Bargmann extensions of Poincaré and Galilei physics are such that the two extrinsic
curvature tensors are related via a constant factor; there are no new degrees of freedom
introduced, a result not unexpected in hindsight. In the case of BG, where c → ∞, this
constant factor is 0; that is, L vanishes, even while K does not. Therefore, equations
henceforth will be expressed in terms of K in this paper in order to make factors of c
explicit, so as to manifestly exhibit the relation between Poincaré and Galilei physics, as, for
example, in Equation (61).

6. Obtaining Physical Laws on Bargmann Spacetimes
The presentation thus far has considered the 4-metric g on an Einstein spacetime E ,

and the 5-metric G on a Bargmann spacetime BE or BG; the decompositions of these and
other tensors according to a foliation of spacetime into spacelike position space leaves with
3-metric γ; and multiple interpretations of the extrinsic curvature tensor K, which has
been shown here to be the same on BE or BG as on E . Apart from a few allusions to the
motion of material particles, for the most part it is geometry that has been discussed to this
point, in particular aspects related to spacetime foliations. Physics does not really enter the
picture until physical laws are given in the form of tensor equations on spacetime.

How are physical laws embodying a unified perspective on Poincaré and Galilei
physics on curved Bargmann spacetimes BE and BG to be obtained? Recall the general
strategy mentioned in Section 1: first, re-express a known physical law on the usual
Einstein spacetime E as a law with the same physical content but in a form appropriate
to Bargmann–Einstein spacetime BE ; and second, consider a c → ∞ limit of that law
appropriate to the closely related Bargmann–Galilei spacetime BG. The first step of this
procedure—the encoding on BE of known Poincaré physics on E—might be accomplished
by reverse-engineering equations that express the decoding of physics on BE back to physics
on E . Such decoding expressions involve an operator ←−g ∗ that relates tensors on BE to
tensors on E , in a manner characterized by important comparisons and contrasts with the
operators←−γ ∗ in Equations (27) and (34), which respectively project tensors from spacetime
E or BE to a position space slice S.

In order to understand these comparisons and contrasts, it is helpful first to review the
several relationships between tensors on spacetimes E or BE and tensors on a leaf S of the
spacetime foliation; this review then fosters a working understanding of the relationships
between tensors on spacetime E and tensors on spacetime BE . The entire matter is unlocked
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through the following key insight: the structure of a Bargmann spacetime is such that it
furnishes relationships between tensors on E and BE that are partly analogous to those
associated with the embedding of the leaves S in E or BE , but with the roles of (p, 0) tensors
(including vectors) and (0, q) tensors (including 1-forms) reversed.

Following the elucidation of these relationships and some properties of the decoding
operator ←−g , a proposed procedure for reverse engineering physical laws on Einstein
spacetime E to yield tensor relations on Bargmann–Einstein spacetime BE is described and
illustrated with an elementary example.

6.1. Relationships Between Tensors on Spacetime E or BE and Tensors on Position Space Leaves S
Here the several relationships between tensors on spacetimes E or BE and tensors

on a leaf S of the spacetime foliation will be recalled. Begin with relationships that exist
naturally by virtue of the embedding of S in E or BE : the push-forward of a vector field (or,
more generally, any (p, 0) tensor field) from S to E or BE , and the pull-back of a 1-form (or,
more generally, any (0, p) tensor field) from E or BE to S . Then, consider the relationships
in the opposite directions, which differ in that they make explicit reference to 1-forms
and vector fields normal to S. These relations are the projection of a vector field (or, more
generally, any (p, 0) tensor field) from E or BE to S , and the extension of a 1-form (or, more
generally, any (0, q) tensor field) from S to E or BE . They exist thanks to the operator←−γ in
Equations (25) and (32). It will prove consistent to adopt a naming convention in which
tensors that originate on S are denoted with the same symbol when they are regarded as or
extended to tensors on E or BE , while tensors induced on or projected to S that originated
on E or BE are given a different symbol.

Consider first the push-forward of a vector field v on S to the spacetime E or BE . Note
that S may be regarded either in isolation as a manifold in its own right or as a submanifold
embedded in E or BE . As a vector field on S regarded in isolation as a manifold in its own
right, at any point, v gives the tangent vector to some curve in S , and it is represented by a
3-column

[
vi]. When S is regarded as a submanifold embedded in E or BE , that curve in S

and its tangent vector are now a curve that still lies in the submanifold S and a vector in E
or BE that now happens to be tangent to the submanifold S . In coordinates adapted to the
foliation, v regarded as a vector in spacetime is now represented by a 4-column (for E) or
5-column (for BE) with additional vanishing components, since the vector does not ‘point
away’ from S:

[vµ] =

[
0

vi

]
(on E),

[
vI
]
=


0

vi

0

 (on BE).

The convention is that the same symbol (in this case, v) is used to denote the vector field on
S in isolation and its push-forward to a vector field on E or BE that happens to be tangent
to S embedded in E or BE .

Consider next the pull-back of a 1-form ω from E or BE to a leaf S of the foliation. At
any point, ω is a real-valued function of vectors tangent to E or BE , and is represented by a
4-row [ων] (on E) or 5-row

[
ωJ

]
(on BE). The pull-back of ω to S amounts to the restriction

of its domain to vectors tangent to S . As S may be considered in isolation as a manifold in
its own right, it is conventional to denote this restricted function as a 1-form on S using a
different symbol—say, for instance, λ in the present example—even though its components
are precisely the same as the position space components of ω with respect to coordinates
adapted to the foliation: [

λj
]
=

[
ωj

]
(on S).
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That is, in coordinates adapted to the foliation, while the push-forward of a vector involves
simply padding the time and action components with zeros, the pull-back of a form involves
simply deleting the time and action components. The obvious example of a pull-back of
a form in the present work is the 3-metric γ on S, whose components with respect to
coordinates adapted to the foliation are simply

[
γij

]
=

[
gij

]
(for E) or

[
γij

]
=

[
Gij

]
(for BE).

This is what has been meant by prior statements that the Einstein metric g or the Bargmann
metric G on spacetime induces a 3-metric γ on the leaves of the foliation.

Turn now to the first ‘opposite direction’ operation, the projection of a vector field
from E or BE to a leaf S of the foliation. A vector field A on E or BE , can be decomposed
into pieces tangent to S and normal to S:

A = an n + a (on E), A = an n + a + aξ ξ (on BE).

The vector field A is represented as the 4-column or 5-column

[Aµ] =

[ 1
α an

ai − 1
α an βi

]
(on E),

[
AI

]
=


1
α an

ai − 1
α an βi

−aξ

 (on BE).

That is, use of the projection operator←−γ given by Equations (25) or (32) yields the vector
field a = ←−γ · A tangent to S. When S is regarded in isolation as a manifold in its own
right, a is represented by the 3-column

[
ai]. But when S is regarded as a submanifold of

spacetime, a is represented by the 4-column or 5-column

[aµ] =

[
0

ai

]
(on E),

[
aI
]
=


0

ai

0

 (on BE).

In general, the projection to S involves ‘information loss’; and as illustrated here, the con-
vention is that different symbols are used to denote the original vector field in spacetime
and its projection to a leaf of the foliation, unless the original vector field in spacetime
already happens to be tangent to S.

Turn finally to the second ‘opposite direction’ operation, the extension of a 1-form
on S to E or BE . A 1-form σ on S regarded in isolation as a manifold in its own right is
represented by a 3-row

[
σj
]
. Regarded as a function on vectors, an extension of σ to an

expanded domain beyond vectors on S requires additional information (in contrast to the
case of projection, which generally deletes information). In the present case of extending σ

to E or BE when S is regarded as a submanifold, the ‘extra information’ is simply that the
value of σ vanishes for vectors normal to S. This is accomplished by writing

σ = σ
(←−γ (.)

)
= σ · ←−γ ,

with σ on the left the extension to E or BE and the expression on the right the original tensor
on S , with←−γ guaranteeing only vector arguments tangent to S . Another way to think about
this is to imagine σ on S being raised to the 3-vector field←−σ = ←→γ · σ, pushed forward
to E or BE (acquiring vanishing time and action components), and then lowered back to
a 1-form with the spacetime metric, either σ = g · ←−σ or σ = G · ←−σ . On E for example,
in components this sequence of operations corresponds to σν = gνα γαb σb = σb γb

ν. Thus
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(see the components of←−γ in Equations (25) and (32)), the extension is represented by the
4-row or 5-row

[σν] =
[
σa βa σj

]
(on E),

[
σJ
]
=

[
σa βa σj 0

]
(on BE). (66)

The acquired non-vanishing time component ensures that σ · n = 0, consistent with the
extended σ remaining tangent to S. Note that the convention is that the same symbol is
used for both the original 1-form on S and its extension to E or BE .

6.2. Relationships Between Tensors on Spacetime E and Tensors on Spacetime BE
With this review of the relationships between tensors on spacetimes E or BE and

tensors on a leaf S of the spacetime foliation in mind, a comparison and a contrast with
the relationships between tensors on spacetime E and tensors on spacetime BE are in
order. As mentioned above, the structure of a Bargmann spacetime is such that it furnishes
relationships between tensors on E and BE that are partly analogous to those described
above associated with the embedding of the leaves S in E or BE , but with the roles of (p, 0)
tensors (including vectors) and (0, q) tensors (including 1-forms) reversed.

Consider first a push-forward type of relationship. As described above, vector fields
(and (p, 0) tensor fields generally) on S can also be regarded as tensor fields on E or BE ,
and in practical terms, they are placed into this new setting by adding vanishing time
components, and also action components in the case of BE . But as emphasized in Paper I,
the nature of the Bargmann groups is such that 1-forms (and (0, q) tensor fields generally,
that is, multilinear forms) on 4-dimensional spacetime are treated in precisely this way, that
is, set directly in 5-dimensional Bargmann spacetime with vanishing action components,
such that they retain their identity as the ‘same’ tensors in the new setting. Important
examples from Paper I include the Einstein metric g on M (and here, E) and the time
form τ on G, which retain their causality-governing function in the Bargmann spacetimes
BM and BG (and here, the curved Bargmann spacetimes BE and BG). The 2-forms of
electrodynamics are additional examples from Paper I. Notice the retention of the same
symbol to denote the ‘same tensor’.

Consider next a pull-back type of relationship. As described above, 1-forms (and (0, q)
tensor fields generally) on E or BE induce corresponding covariant tensor fields on S by
restricting their domain to vectors tangent to S , and in practical terms, the components of
these induced tensors are simply the position space components of the originating tensors
on E or BE . But the nature of the Bargmann groups is such that vector fields (and (p, 0)
tensor fields generally) on 5-dimensional Bargmann spacetime can be treated in precisely
this way, that is, as inducing corresponding contravariant tensor fields on 4-dimensional
spacetime whose components are simply the traditional spacetime components of the
originating tensors on 5-dimensional spacetime. Notable examples include the 5-velocity
U inducing the 4-velocity U, and the inverse 5-metric

←→
G inducing the inverse 4-metric←→g

(Poincaré physics) or degenerate inverse ‘4-metric’←→γ (Galilei physics). Notice the use of a
different symbol to denote the induced tensor.

Turn now to a projective type of relationship, which in the partial analogue relating
tensor fields on BE to tensor fields on E will be called ‘decoding’ rather than ‘projection’.
As described above, in the reverse direction of the push-forward operation, vector fields
(and (p, 0) tensor fields generally) on E or BE can be projected to S via contraction with
the projection tensor←−γ , which is the mixed-index version of the extension of the induced
3-metric γ on S back to E or BE . It turns out that there exists a ‘decoding operator’ ←−g
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partly analogous to the projection operator←−γ . To begin to see this, notice first that the
5-metric G on BE ‘encodes’ the push-forward of the 4-metric g on E as follows:

G = g + c2 ξ ⊗ ξ, GI J = gI J + c2 ξ I ξ J ,

or
g = G− c2 ξ ⊗ ξ, gI J = GI J − c2 ξ I ξ J , (67)

a relation confirmed directly from the component expressions in Equation (1), padded with
vanishing action components, and Equations (16) and (29). Raising the index yields

←−g = δ− c2 ξ ⊗ ξ, gI
J = δI

J − c2 ξ I ξ J , (68)

where in this context δ is the identity tensor on BE . If G is said to be the ‘Bargmann
encoding’ of g, then←−g provides the decoding:

g = −→g ·G · ←−g , gI J = gI
A GAB gB

J = GAB gA
I gB

J , (69)

as confirmed via direct computation. This is projection in part, in the sense that the action
components vanish on the left-hand side (←−g is a non-invertible operator); but instead of
being simply deleted, the action components are recombined with the time components in a
particular way, hence the designation ‘decoding operator’ rather than ‘projection operator’.
The other fundamental example is the spacetime momentum. Recall that the kinetic-energy–
momentum–mass covector Π on BE is the Bargmann encoding of the push-forward of the
total-energy–momentum P on E , separating mass from kinetic energy:

Π = P + mc2 ξ, ΠJ = PJ + mc2 ξ J ,

or
P = Π−mc2 ξ, PJ = ΠJ −mc2 ξ J , (70)

as confirmed from Equation (12), padded with vanishing action component, and
Equations (24) and (29). Once again,←−g provides the decoding:

P = Π · ←−g , PJ = ΠA gA
J ,

as confirmed via direct computation. Note again the use of a different symbol to denote the
projected or decoded tensor.

Turn finally to an extension type of relationship. As described above, in the reverse
direction of the pull-back operation, 1-forms (and (0, q) tensor fields generally) on S can be
extended to E or BE by applying the projection operator←−γ to vector arguments before an
evaluation of the form, and defining the extension of the 1-form by absorbing the projection
operator into the form itself. But the nature of Bargmann groups is such that it is vector
fields (and (p, 0) tensor fields generally) that can be extended from E to BE in a similar
way using the decoding operator←−g . This can be conceptualized in a manner analogous
to one of the ways extensions are discussed above. Begin with a vector field, w on E ,
represented by a 4-column [wµ]. Its extension to BE is obtained by lowering w on E to
the 1-form w = g ·w, pushing it forward to BE (acquiring vanishing action components),
and then raising it back to the vector field w =

←→
G ·w on BE . In components, this sequence

of operations corresponds to wI = GIA gAβ wβ = gI
β wβ. Using the components of←−g in
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Equation (68), along with Equation (29) for ξ, the result is that the extension is represented
by the 5-column [

wI
]
=

[
wµ

c2 χα wα

]
.

This is reminiscent of the extension of a 1-form from S to E or BE in Equation (66), in that,
unlike the push forward, the extension involves the acquisition of an additional nonzero
component. Note again that the same symbol is used to denote the original tensor on E
and its extension to BE . As an example, consider the extensions of the fiducial observer
4-velocity n and general 4-velocity U from E to BE , represented by the 5-column

[
nI
]
=

[
nµ

c2

]
,

[
U I

]
=

[
Uµ

c2 ΛV

]
. (71)

These differ in the last component from the 5-columns

[
n I
]
=

[
nµ

0

]
,

[
UI

]
=

[
Uµ

c2 (ΛV − 1)

]

representing the fiducial observer 5-velocity n and general 5-velocity U, which is why it
was necessary to use different symbols as insisted in Section 2.2: the extension of a vector
on E to BE is not the same as its Bargmann encoding on BE . In fact, the proper relationship
between 4-velocities on E and 5-velocities on BE is one of decoding, rather than extension:

n =←−g · n, U =←−g ·U, (72)

as can be shown via direct calculation with the above component expressions. (Of course,
fiducial observer 4- or 5-velocities correspond to general 4- or 5-velocities for 3-velocity
V = 0.) Using Equation (68) in Equation (72) yields

n = n − c2 ξ,

and then Equation (28) gives
n = −c2 χ,

thus confirming that a vector version of Equation (5) on E holds for the extension of the
fiducial observer 4-velocity n on E to BE .

6.3. Properties of the Decoding Operator

Some relations involving the decoding operator←−g are worth noting. It is idempotent:

←−g · ←−g =←−g , gI
A gA

J = gI
J . (73)

It nullfies ξ, making←−g non-invertible:

ξ · ←−g = 0,

←−g · ξ = 0,

ξA gA
J = 0,

gI
A ξA = 0.

(74)

It preserves χ:
χ · ←−g = χ,

←−g · χ = χ,

χA gA
J = χJ ,

gI
A χA = χI .

(75)
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It transforms n in a manner reminiscent of Equation (5):

n · ←−g = −c2 χ,

←−g · n = −c2 χ,

nA gA
J = −c2 χJ ,

gI
A nA = −c2 χI .

These relations follow from Equation (68) for ←−g and the mutual contractions in
Equations (30) and (31). Moreover, its divergence vanishes,

D · ←−g = 0, DA gA
J = 0, (76)

thanks to the vanishing divergence of ξ in Equation (63) and the fact that Dξ in Equation (62)
has no action component.

Similar to Equations (27) and (34) for the generalized projection operator ←−γ ∗ for
arbitrary tensors, these observations about decoding and extension using←−g give rise to
the generalized decoding operator(←−g ∗T)I1 ...Ip

J1 ...Jq
= gI1

A1
. . . gIp

Ap
TA1 ...Ap

B1 ...Bq gB1
J1

. . . gBq
Jq

(on BE) (77)

that gives the decoding to E of a (p, q) tensor T on BE .
This generalized decoding operator appears in an important relation between tensor

gradients on BE and E , similar in spirit to Equation (45) relating tensor gradients on
spacetime to tensor gradients on position space leaves. Consider a tensor T on BE that is
decoded to E , that is, such that←−g ∗T = T, so that all possible contractions with ξ and ξ

vanish. Then, the relation
∇T =←−g ∗DT (on BE) (78)

holds, where ←−g ∗ is given by Equation (77). The reasoning is similar to that leading to
Equation (45): it must be shown that←−g ∗Dg = 0, and then the uniqueness of the Levi-Civita
connection can be invoked to deduce that←−g ∗D = ∇. Indeed, it is the case that

(←−g ∗Dg
)

KI J = gC
K gA

I gB
J DC

(
GAB − c2 ξAξB

)
= 0 (on BE)

thanks to DG = 0 and Equation (74).

6.4. Reverse Engineering Poincaré Physics on BE from Poincaré Physics on E
Given physical laws on Einstein spacetime E , the resources and a proposed procedure

to be used for encoding them on Bargmann–Einstein spacetime BE can now be summa-
rized. First, there are three key encodings that arise in connection with the construction
of Bargmann spacetime itself presented in Section 2.2: the 5-velocity U as the Bargmann
encoding of the 4-velocity U, the Bargmann metric G as the Bargmann encoding of the
Einstein metric g, and the kinetic-energy–momentum–mass Π as the Bargmann encod-
ing of the total-energy–momentum P. (It is worth emphasizing again that the Bargmann
encoding U of U is not the same as the extension of U and that the push-forwards of g
and P are not the same as their Bargmann encodings G and Π.) And second, there is the
clear understanding developed above of the relationships between tensors on E and on
BE : the push-forward of (0, q) tensor fields and the extension of (p, 0) tensors from E to
BE , and the pull-back of (p, 0) tensors and decoding of (0, q) tensors from BE to E . The
generalized decoding operator←−g ∗ is key to these relationships. The proposed procedure
is to take a physical law on E , use the known Bargmann-encoded entities to write it as
the decoding of an expression on BE using the decoding operator←−g ∗, and—with luck or
perhaps a bit of additional information—reverse-engineer the resulting decoding to work
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out the encoding of the physical law on BE . What makes the reverse-engineering possible is
that the first term of←−g in Equation (68) is the identity operator, which allows unprojected
tensor expressions on BE to appear; the second term of←−g gives terms that one might hope
to explicitly compute.

Consider an elementary example as a warm-up exercise and by way of illustration:
What is the Bargmann-encoded version on BE of the equation g(U, U) = −c2 expressing
the normalization of a 4-velocity U on E? It was already noted in Section 2.2 that the answer
is G(U,U) = 0, but this result is obtained here by using the decoding operator←−g . The
easily-confirmed relation

ξ ·U = 1, ξA UA = 1 (79)

will be a useful lemma. First, take the equation on E , and set it in BE by pushing forward g
and extending U. In so doing, U acquires an action component according to Equation (71),
but it contributes nothing because the action components of the push-forward of g vanish:

−c2 = gαβ Uα Uβ

= gAB UA UB.

Next, introduce quantities appropriate to the Bargmann perspective by using Equations (69)
and (72) to express g and U as the decodings of G and U:

−c2 = GCD gC
A gD

B gA
E gB

F U
E UF

= GCD gC
E gD

F U
E UF

in which the idempotence property of Equation (73) has been used. Now comes the
reverse engineering step, enabled via Equation (68) for the decoding operator, along with
the normalization of ξ from Equation (30) and the repeated application of the lemma of
Equation (79):

−c2 = GCD

(
δC

E − c2 ξC ξE

)(
δC

E − c2 ξC ξE

)
UE UF

= GCD UC UD − c2,

thus arriving at the expected result, G(U,U) = 0. Again, notice that it is the identity tensor
δ in the first term of Equation (68) for the decoding operator←−g that enables the desired
reverse engineering of physical laws on BE from physical laws on E , in this example by
allowing the term GCD UC UD to appear.

7. Dynamics of an Elementary Particle
The dynamics of a free classical particle—that is, a non-quantum particle with a definite

trajectory subject to no force other than gravitation implied by spacetime curvature—provides
a first opportunity to explore the possibility of strong-field Galilei physics on BG, deduced
from Poincaré physics on BE, derived in turn from Poincaré physics on E. Here the word
‘elementary’ means that the particle has no internal degrees of freedom and, therefore, in
particular constant mass. Spacetime equations and their 1 + 3 (on E) and 1 + 3 + 1 (on BE and
BG) decompositions are derived. (It is worth noting that the evolution equations for particle
3-momentum covector p presented here are considerably simpler than the equations for the
physical 3-velocity vector V presented, for instance, in [22].) The lapse function α, shift vector
β, 3-metric γ, and extrinsic curvature K are taken as given. These may embody gravitational
fields of arbitrary strength, appearing not only in the equations for a particle on E and on BE
but in the very similar equations for a particle on BG as well.
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7.1. Dynamics of an Elementary Particle on Einstein Spacetime E
On Einstein spacetime E the worldline of a free particle satisfies the geodesic equation

∇←−P P = 0 (on E). (80)

Here P is the total-energy–momentum 1-form and
←−
P is the inertia-momentum vector field

along the particle worldline, whose 1 + 3 decompositions are given in Section 2.1. Specialize
to an elementary material particle of constant mass m. Because

←−
P = m U, where U is the

particle 4-velocity, the equation of motion can also be expressed

∇U P = 0 (on E). (81)

Contraction with −n yields an equation of motion for the particle total energy Ep. This will
depend on the particle 3-momentum p, whose equation of motion is given by projecting
Equation (81) to position space slices S with contraction with←−γ . With p in hand, the particle
trajectory

(
xi(t)

)
is determined by the kinematical relation

1
α

dxi

dt
=

c2

Ep
pi − 1

α
βi (on E), (82)

which follows from Equation (10) relating the physical 3-velocity V to the coordinate
3-velocity v, and the relation between V and←−p in Equation (13). Referring to Appendix A.1
for derivations, the evolution of the particle total energy and 3-momentum as measured by
the fiducial observers turn out to be

1
α

dEp

dt
= −c2←−p · D ln α +

c2

Ep
K
(←−p ,←−p

)
(on E), (83)

1
α

dpj

dt
= −Ep

∂ ln α

∂xj +
pa

α

∂βa

∂xj −
c2 pa pb

2Ep

∂γab

∂xj (on E). (84)

Thus, given the metric fields α, βi, γij as functions of t along with initial conditions for xi

and pj, Equations (82) and (84) are sufficient to determine the trajectory of a particle on
E ; and with the addition of the extrinsic curvature components Kij implied by the metric
fields, Equation (83) provides a convenient equation for the evolution of the particle energy.

7.2. Dynamics of an Elementary Particle on Bargmann Spacetimes BE and BG
The equation determining the worldline of a particle in spacetime provides a first

opportunity to demonstrate the strategy or procedure described in Section 6 for deducing
physical laws in a theory of strong-field gravity consistent with Galilei relativity: first,
translate a physical law on the usual Einstein spacetime E into a law with the same phys-
ical content but in a form appropriate to Bargmann–Einstein spacetime BE ; and second,
consider the c → ∞ limit of that law appropriate to the closely related Bagmann-Galilei
spacetime BG.

The first step in this example is to find the analogue of Equation (80) for particles on
BE—an equation to be expressed in terms of the relative-energy–momentum–mass 1-form
Π on BE from Section 2.2 instead of the total-energy–momentum 1-form P on E , and the
Levi-Civita connection D associated with the Bargmann metric G instead of ∇ associated
with the Einstein metric g. Noting the relations between P and Π in Equation (70) and
between ∇ and D in Equation (78), the desired translation will be given by

0 = ∇←−P P =←−g ∗D←−
Π

(
Π · ←−g

)
. (85)
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Use Equations (68) and (77) for the decoding operators and the idempotence of ←−g in
Equation (73) to compute

0 = gA
B gC

A ΠB DC

(
ΠD gD

J

)
= gC

B ΠB DC

(
ΠD gD

J

)
=

(
ΠC −mc2 ξC

)
DC

(
ΠJ −mc2 ξ J

)
.

Two of the four terms here involve Dξ, given by Equation (62). One of these, m2c4 ξC DCξ J ,
vanishes because the C = 4 component of DCξ J vanishes. Noting also that

−ξC DCΠJ = D4ΠJ = −GΓA
J4 ΠA = ΠA

GΓA
J4 ξA = ΠA DJξ

A = ΠA DJξA

and that Dξ is antisymmetric, the result is

0 = ΠA DA ΠJ − 2 mc2 ΠA DA ξ J

or
D←−

Π
Π = mc2

(←−
Π · a

)
χ−mc2

(←−
Π · χ

)
a (on BE). (86)

This is the equation for the wordline of an elementary particle on BE analogous to
Equation (80) for particles on E .

The first thing to notice about Equation (86) is that, unlike the situation on E in which
the worldline is geodesic with respect to the Einstein spacetime metric g, the particle
worldline on BE is not geodesic with respect to the Bargmann spacetime metric G—that is,
the right-hand side does not vanish. (That worldlines of massless particles apparently are
geodesic with respect to G is a notable apparent exception but not one of immediate present
focus.) In fact, it seems that the translation to Bargmann spacetime involves a remarkable
reversion of Einstein’s perspective on gravitation to one more like Newton’s, in this respect:
whereas Einstein turned things upside down by saying that it is the fiducial observers who
are gravitationally accelerated (see Equation (37)), while the freely falling particles they
observe experience no gravitation (see Equation (80)), in Bargmann spacetime the fiducial
observers are geodesic (see Equation (41)) and therefore analogous to Newton’s inertial
observers, while the particles they observe are subject to an explicit gravitational force (the
right-hand side of Equation (86)).

This may seem like good news, a development in sympathy with the second stage
of the procedure proposed here, which is to move from Poincaré physics on BE to Galilei
physics on BG. But despite efforts to tame the presence of c in Poincaré physics by encoding
g as G and P as Π via the artifice of Bargmann spacetime, Equation (86) presents an
immediate apparent obstacle to a c→ ∞ limit, namely the factor of c2. This comes from the
decoding operator←−g given by Equation (68), and is ultimately traceable to the −c2 α2 term
in g reasserting itself (see also Equation (67)). Regard this as a signal that the nature of the
c→ ∞ but strong-field limit pursued here will need to be further clarified, but postpone
this reckoning by drawing inspiration from the weak-field limit. It is well known that
the correspondence with Newton gravity is obtained with α = 1 + ϕ/c2 with |ϕ|/c2 ≪ 1,
where ϕ is the Newton gravitational potential. Allow for a strong-field generalization of
this by writing

α = exp
(

ϕ

c2

)
, a = D ln α =

1
c2 Dϕ, (87)
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which corresponds to the weak-field limit when ϕ/c2 ≪ 1 but is not limited to that. In
terms of this strong-field version of a gravitational potential ϕ, and assuming m ̸= 0 so as
to write

←−
Π = mU in the directional derivative, the particle worldline equation for material

particles of constant mass becomes

DU Π =
(←−

Π · Dϕ
)

χ−
(←−

Π · χ
)

Dϕ (on BE or BG), (88)

analogous to Equation (81) on E . This now appears suitable for adoption on BG, as well as
on BE . It is the firstfruits of the present quest for physical laws featuring potentially strong
gravity consistent with Galilei relativity.

Turn now to the 1 + 3 + 1 decomposition of Equation (88). Contraction with −n
once again yields an energy equation, but one for the particle kinetic energy ϵp, which
is well-defined on BG, as well as on BE (and E), rather than the particle total energy Ep,
as was the case on E . Contraction with←−γ again yields the evolution of 3-momentum p,
and the particle trajectory is then given via the kinematical relation

1
α

dxi

dt
=


c2

Ep
pi − 1

α
βi (on BE),

1
m

pi − 1
α

βi (on BG).

(89)

For BE , this is the same as on E , and for BG, it is the obvious c2 → ∞ limit. Referring to
Appendix A.2 for derivations, the evolution of the particle kinetic energy and 3-momentum
as measured via the fiducial observers turn out to be

1
α

dϵp

dt
=


−←−p · Dϕ +

c2

Ep
K
(←−p ,←−p

)
(on BE),

−←−p · Dϕ +
1
m

K
(←−p ,←−p

)
(on BG)

(90)

1
α

dpj

dt
=


−
Ep

c2
∂ϕ

∂xj +
pa

α

∂βa

∂xj −
c2 pa pb

2Ep

∂γab

∂xj (on BE),

−m
∂ϕ

∂xj +
pa

α

∂βa

∂xj −
pa pb
2 m

∂γab

∂xj (on BG).

(91)

Given Equation (87) and the fact that Ep = ϵp + mc2, where mc2 is constant, the equations
on BE are the same as Equations (83) and (84) on E , and the equations on BG are the obvious
c→ ∞ limits.

There are a couple of loose ends to address. First, while explicit factors of c have
been eliminated from the equations presented here for particle worldlines on BG, from
Equation (87) it is clear that instances of c2 persist through its presence in α. Noting that
ϕ/c2 ∼ GM/c2R, where G is the gravitational constant and M and R are characteristic mass
and length scales, characterize a strong-field c→ ∞ limit by the additional demand that
G → ∞ as well, in such a way that G/c2 remains constant. Finally, note that Equation (88)
has an additional component, the action component projected out via contraction with ξ.
In the present case of constant particle mass m, this simply gives 0 = 0.

8. Dynamics of a Simple Fluid
The dynamics of a simple fluid provides a second opportunity to explore strong-field

Galilei physics on BG, deduced from Poincaré physics on BE , derived in turn from Poincaré
physics on E . Here, the word ‘simple’ means that, microscopically, the fluid consists of
classical material particles of a single type, and of constant mass m. Spacetime equations
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are given, along with 1 + 3 (on E) and 1 + 3 + 1 (on BE and BG) decompositions in the form
of balance equations for particle number, energy, and momentum. The lapse function α,
shift vector β, 3-metric γ, and extrinsic curvature K are taken as given. These embody
gravitational fields of arbitrary strength, appearing not only in the equations for a fluid on
E and on BE but in the very similar equations for a fluid on BG as well.

8.1. Dynamics of a Simple Fluid on Einstein Spacetime E
Consider a simple fluid on E , regarded macroscopically as a continuous medium,

but which microscopically consists of classical particles of constant mass m. Describe the
fluid in terms of kinetic theory (see, e.g., [4]).

The fluid kinematics—the description of where fluid elements are, and how fast they
are moving—is given in terms of the particle number flux N. This is the 4-vector field

N =
∫

f
←−
P dPm

=
∫

f
(Ep

c2 n +←−p
)

c2 dp
(2πh̄)3 Ep

=
∫

f
(
n + Vp

) dp
(2πh̄)3

(92)

where f (X, p) = f
(
Xµ, pj

)
is the Lorentz-invariant particle distribution function (particle

density in phase space restricted to the mass shell), dPm is the Lorentz-invariant 3-volume el-
ement in momentum space, and

←−
P is the particle inertia-momentum given in Equation (14).

The 1 + 3 decomposition of N is immediate:

N = N n + N V , (93)

where
N =

∫
f

dp
(2πh̄)3 , V =

1
N

∫
f Vp

dp
(2πh̄)3 (94)

are the particle number density and average 3-velocity of the fluid measured by
fiducial observers:

N = χ · N, N V =←−γ · N.

Comoving observers—observers ‘riding along’ with the fluid—have 4-velocity U propor-
tional to N itself and given in terms of the average 3-velocity:

N = n U, U = ΛV (n + V). (95)

Here, the scalar field n is the particle number density measured by comoving observers:
when noting the quantities

χ
U
= − 1

c2 U, ←−γU = δ−U ⊗ χ
U

(on E)

analogous to their fiducial observer counterparts and useful for 1 + 3 decompositions
according to comoving observers, it is evident that

n = χ
U
· N.

With the use of Equation (95), it is clear that

N = χ · N = ΛV n (on E) (96)
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relates the number densities N and n measured by fiducial and comoving observers.
Particle conservation is expressed by

∇ · N = 0 (on E). (97)

Thanks to the well-known identity gΓα
να = ∂ν ln

√−g and referring to Equation (3), this
can be expressed in terms of components as

0 = ∇ · N =
1√−g

∂

∂Xα

(√
−g N(nα + Vα)

)
=

1
α
√

γ

∂

∂t
(
√

γ N) +
1

α
√

γ

∂

∂xa (
√

γ N(α Va − βa)).

More geometrically,

1
α
√

γ

∂

∂t
(
√

γ N) +
1
α

D · (N(α V − β)) = 0 (on E) (98)

expresses particle conservation on E in terms of the 3-divergence of the particle 3-flux
tangent to the leaves S of the foliation.

The fluid dynamics—the prescription of what governs the fluid element motion—is
given in terms of the total-energy–momentum flux T , the (1, 1) tensor field

T =
∫

f
(←−

P ⊗ P
)

dPm. (99)

This is manifestly self-adjoint; its raised-index and lowered-index versions are symmet-
ric. Using Equation (12) for the energy-momentum P and Equation (14) for the inertia-
momentum

←−
P , its 1 + 3 decomposition is

T = −E n⊗ χ + n⊗ S−Q⊗ χ− Σ, (100)

in which the total energy density scalar field E, the 3-momentum density 1-form S, the total
energy flux 3-vector field Q, and the 3-stress (1, 1) tensor field Σ measured via fiducial
observers are

E =
∫

f Ep
dp

(2πh̄)3 , S =
∫

f p
dp

(2πh̄)3 ,

Q =
∫

f Ep Vp
dp

(2πh̄)3 , Σ = −
∫

f
(
Vp ⊗ p

) dp
(2πh̄)3 .

(101)

(Note that the ‘stress tensor’ Σ is the negative of a ‘momentum tensor’.) A consequence of
T being self-adjoint is that

Q = c2←−S , S =
1
c2 Q. (102)

This relation between total energy flux and momentum density is a manifestation of the
equivalence in Poincaré physics between energy and mass (up to a factor of c2).

Because constitutive relations (e.g., an equation of state) relate quantities measured by
comoving observers, it is important to consider the alternative decomposition

T = −eU ⊗ χ
U
+

1
c2 U ⊗ q− q⊗ χ

U
− σ, (103)

in which the total energy density e, heat 3-flux q, and 3-stress σ are measured by comoving
observers. In general, a fluid is dissipative even without shocks; a perfect fluid is one for
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which, in the absence of shocks, there are no heat exchange and no shear stresses between
neighboring comoving fluid elements (no thermal conductivity or shear viscosity), and no
inelastic compression of comoving fluid elements (no bulk viscosity). Mathematically,
this translates into a vanishing heat 3-flux, and a 3-stress that is isotropic according to
comoving observers:

q = 0, σ = −p←−γU (perfect fluid),

where p is the pressure.
Quantities measured by fiducial observers are projected out of Equation (100) through

appropriate contractions with χ and←−γ . The substitution of Equation (103) into these contrac-
tions yields

E = −χ · T · n

= ΛV
2 e+

2
c2 ΛV V · q− 1

c2 V · σ · V

for the total energy,

S = χ · T · ←−γ

=
1
c2

(
ΛV

2 eV + ΛV

(
q · ←−γ

)
+

1
c2 ΛV (V · q)V − V · σ · ←−γ

)
for the 3-momentum density,

Q = −←−γ · T · χ

= ΛV
2 eV +

1
c2 ΛV

(
q · V

)
V + ΛV

(←−γ · q)−←−γ · σ · V
for the total energy 3-flux, and

Σ = −←−γ · T · ←−γ

= − 1
c2

(
ΛV

2 eV ⊗ V + ΛV V ⊗
(

q · ←−γ
)
+ ΛV

(←−γ · q)⊗ V
)
+←−γ · σ · ←−γ

for the 3-stress, or

E = ΛV
2 (e+ p)− p,

S =
1
c2 ΛV

2 (e+ p)V ,

Q = ΛV
2 (e+ p)V ,

Σ = − 1
c2 ΛV

2 (e+ p)V ⊗ V − p←−γ

(perfect fluid on E) (104)

in the case of a perfect fluid, relating quantities measured by fiducial observers to those
measured by comoving observers. From this point forward a perfect fluid will be assumed
for simplicity.

In the absence of an external force (apart from gravitation implied by the spacetime
curvature of E), total-energy–momentum balance is expressed by

∇ · T = 0 (on E). (105)
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The total energy balance is obtained via contraction with −n, and the balance of 3-
momentum is obtained via contraction with←−γ , resulting in

1
α
√

γ

∂

∂t
(
√

γE) +
1
α

D · (αQ− E β) = −←−S · Dϕ−−→Σ : K (on E) (106)

1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α

Da
(
−α Σa

j − βa Sj
)
= − E

c2 Djϕ +
1
α

Sa Djβ
a (on E) (107)

See Appendix B.1 for details.
To make contact with physics on Bargmann spacetimes BE and BG, it will prove

convenient to derive a balance equation for kinetic energy, rather than total energy. This
is achieved by separating that portion of energy associated only with the microscopic
particles’ very existence, that is, the energy due to the particle mass m. The total energy
density and 3-flux measured by fiducial observers separate into

E = E + mc2 N,

Q = Q + mc2 N V ,
(108)

where
E =

∫
f ϵp

dp
(2πh̄)3 ,

Q =
∫

f ϵp Vp
dp

(2πh̄)3

(109)

are the kinetic energy density and 3-flux measured by fiducial observers. Meanwhile, the
total energy density measured by comoving observers separates into

e = e + mc2 n,

where e is the kinetic energy measured by comoving observers, here called the internal
energy density. Thus, in terms of the internal energy density e, pressure p, and particle
number density n measured by comoving observers,

E = E−mc2 N

= ΛV
2 (e + p)− p + mc2 n ΛV (ΛV − 1)

(perfect fluid on E) (110)

is the kinetic energy density, and

Q = Q−mc2 N V

=
(

ΛV
2 (e + p) + mc2 n ΛV (ΛV − 1)

)
V

(perfect fluid on E) (111)

is the kinetic energy 3-flux, both specialized here to a perfect fluid. The terms in which c2

appear in these expressions for E and Q cause no trouble as c→ ∞, because they limit nicely
to the Galilei bulk or macroscopic kinetic energy density m n γ(V , V)/2. With a constant
particle mass m, the subtraction of mc2 times Equation (98) for particle conservation from
Equation (106) for total energy balance yields the balance equation

1
α
√

γ

∂

∂t
(
√

γ E) +
1
α

D · (α Q− E β) = −←−S · Dϕ−−→Σ : K (on E) (112)

for the kinetic energy density. This is the same as Equation (106) for the total energy balance,
but with the total energy density, E, replaced with the kinetic energy density E and the
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total energy 3-flux Q replaced with the kinetic energy 3-flux Q; the geometric source terms
are unchanged.

8.2. Dynamics of a Simple Fluid on Bargmann Spacetimes BE and BG
The kinematics and dynamics of a simple fluid on E were given in the previous

subsection via the divergences of a particle number 4-vector field N and total-energy–
momentum flux (1, 1) tensor field T . Analogous objects and their divergences will similarly
give the kinematics and dynamics of a simple fluid on BE or BG.

The fluid kinematics on BE or BG is given in terms of a particle number flux 5-vector field

N =
∫

f
←−
Π dPm

= N n + N V − Z ξ

(on BE or BG). (113)

This is similar to Equations (92) and (93) for N on E , but with the extended inertia–
momentum–kinetic-energy

←−
Π given by Equation (23) replacing the inertia-momentum

←−
P

given by Equation (14). Because
←−
P = m U and

←−
Π = mU, it is clear from Equation (72)

that N is the Bargmann encoding of N and that the decoding relation

N =←−g ·N, N I = gI
A NA (114)

holds. The particle number density N = χ ·N and physical 3-velocity V = N−1(←−γ ·N)
measured by fiducial observers have the same meaning here as in Equation (94) on E . The
particle number density measured by fiducial observers is related to that measured by
comoving observers by

N =

ΛV n (on BE)

n (on BG),

the relation on BE agreeing with Equation (96) on E . There is also an additional
action component

Z =



∫
f

c2 ϵp

Ep

dp
(2πh̄)3 (on BE),

∫
f

ϵp

m
dp

(2πh̄)3 (on BG),

Z = −n ·N (on BE or BG).

The scalar field Z is not a quantity encountered in fluid dynamics as traditionally formu-
lated. It will play an intermediate role in the 3-momentum equation below, but here, it
disappears from the particle conservation law on BE or BG. This is most easily seen in the
direct computation

D ·N =
1√
−G

∂

∂XA

(√
−G NA

)
=

1√−g
∂

∂Xα

(√
−g Nα

)
= ∇ · N = 0.

Note that Equations (3) and (18) for the metric determinants g and G, and the fact that partial
derivatives with respect to action coordinate X4 vanish, have been employed. Therefore,

D ·N = 0 (on BE or BG) (115)
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is the spacetime particle conservation law on BE or BG. It is clear from the above derivation
that its 1 + 3 + 1 decomposition is

1
α
√

γ

∂

∂t
(
√

γ N) +
1
α

D · (N(α V − β)) = 0 (on BE or BG), (116)

precisely the same as Equation (98) on E . As a warm-up for energy-momentum con-
servation, and by way of illustrating some examples of what happens in these sorts of
calculations, consider an alternative derivation using the more formal procedure deduced
in this paper for translating physics on E to physics on BE , articulated in Section 6 and
demonstrated in Section 7 in connection with particle dynamics. Use the relation between
D and ∇ in Equation (78), and recall from Equation (114) that the vector field N is the
decoding of N:

0 = ∇ · N =←−g ∗D ·
(←−g ·N)

,

or
0 = gB

A DB

(
gA

C NC
)

=
(

δB
A − c2 ξB ξA

)
DB

((
δA

C − c2 ξA ξC

)
NC

)
.

This gives four terms, only one of which survives. The first is

δB
A DB

(
δA

C NC
)
= DA NA.

The second term is

−δB
A DB

(
ξA ξC NC

)
= −DA

(
ξA ξC NC

)
= − ξC NC DA ξA − ξA DA

(
ξC NC

)
= 0,

because DA ξA = 0 according to Equation (63) and ξA DA
(

ξC NC) = −∂4
(

ξC NC) = 0.
The third term is

−c2 ξB ξA DB

(
δA

C NC
)
= −c2 ξB DB

(
ξA NA

)
+ c2 NA ξB DB ξA

= 0

because the first term is just a vanishing partial derivative with respect to X4, and DB ξA

in the second term has no B = 4 component according to Equation (62). The final term is

c4 ξB ξA DB

(
ξA ξC NC

)
= c4 ξB DB

(
ξA ξA ξC NC

)
− c2 ξC NC ξB ξA DB ξA

= 0

because the first term is yet another vanishing partial derivative with respect to X4, and in
the second term, again, DB ξA has no B = 4 component (and is also antisymmetric, not
to mention that also ξA DB ξA = DB

(
ξA ξA)/2 = 0 since ξA ξA = 1/c2, a constant).

With the first term DA NA above being the only one that survives, Equation (115) as
the Bargmann spacetime encoding of particle number conservation is confirmed by this
alternative calculation.
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The fluid dynamics on BE or BG is given in terms of a kinetic-energy–momentum–
mass-density (1, 1) tensor field,

T =
∫

f
(←−

Π ⊗Π
)

dPm

= − E n ⊗ χ + n ⊗ S + m N n ⊗ n

−Q⊗ χ − Σ + m N V ⊗ n

+ Y ξ ⊗ χ − ξ ⊗Q − m Z ξ ⊗ n.

(117)

This is similar to Equations (99) and (100) for T on E, but with the extended inertia–
momentum–kinetic-energy

←−
Π given by Equation (23) replacing the inertia–momentum

←−
P

given by Equation (14) and the kinetic-energy–momentum–mass Π of Equation (24) replacing
the total-energy–momentum P of Equation (12). Similar to N being the Bargmann encoding
of N, so also, here T is the Bargmann encoding of T, such that the decoding relation

T =←−g ·T · ←−g , T I
J = gI

A TA
B gB

J (118)

holds. In addition to N and V and Z, which have already appeared in the particle density
5-flux N, the 3-momentum density S and 3-stress Σ are precisely the same as in Equa-
tion (101) on E ; the latter are related to quantities measured by comoving observers by

S =


ΛV

2
(

m n +
1
c2 (e + p)

)
V (perfect fluid on BE),

m n V (perfect fluid on BG),

Σ =


−ΛV

2
(

m n +
1
c2 (e + p)

)
V ⊗ V − p←−γ (perfect fluid on BE),

−m n V ⊗ V − p←−γ (perfect fluid on BG),

agreeing with Equation (104) on E in the case of BE . But instead of the total energy
density E and 3-flux Q from Equation (101), the kinetic energy density E and 3-flux Q
already introduced in Equation (109) appear naturally, the latter once as a vector Q in the
combination Q⊗ χ and once as a 1-form Q in the combination ξ ⊗Q, both of which will
prove important. These are related to quantities measured by a comoving observer by

E =


ΛV

2 (e + p)− p + m n c2 ΛV (ΛV − 1) (perfect fluid on BE),

e +
1
2

m n γ(V , V) (perfect fluid on BG),

Q =


(

ΛV
2 (e + p) + m n c2 ΛV (ΛV − 1)

)
V (perfect fluid on BE),(

e + p +
1
2

m n γ(V , V)

)
V (perfect fluid on BG),

agreeing with Equations (110) and (111) on E in the case of BE . And just as a new quantity,
Z, was introduced above in connection with N, the new quantity
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Y =



∫
f

c2 ϵp
2

Ep

dp
(2πh̄)3 (on BE),

∫
f

ϵp
2

m
dp

(2πh̄)3 (on BG),

Y = n ·T · n (on BE or BG)

enters here. As with Z, the scalar field Y is not a quantity encountered in fluid dynamics as
traditionally formulated. Together with Z, it will turn out to play an intermediate role in
the 3-momentum equation through the combination

E =


1
c2 Y + m Z (on BE),

m Z (on BG),
(119)

which follows from their definitions in terms of integrals over momentum space. Finally,
from the display of the 1 + 3 + 1 decomposition of T in Equation (117), it is apparent that
the ‘time column’ −T · n is a kinetic energy vector, the ‘position space columns’ T · ←−γ are
3-momentum vectors, and the ‘action column’

T · ξ = mN, TI
A ξA = mN I (120)

is a mass flux vector given in terms of the particle number flux N already considered.
Consider next the spacetime law on BE satisfied by the kinetic-energy–momentum–

mass-density tensor field T obtained by reverse-engineering the law on E . Use again
the relation between D and ∇ in Equation (78), and recall from Equation (118) that the
(1, 1) tensor field T is the decoding of T:

0 = ∇ · T =←−g ∗D ·
(←−g ·T · ←−g )

, (121)

or
0 = gB

A DB

(
gA

C TC
D gD

J

)
=

(
δB

A − c2 ξB ξA

)
DB

((
δA

C − c2 ξA ξC

)
TC

D

(
δD

J − c2 ξD ξ J

))
.

For temporary convenience, write

T̃I
J = TI

A gA
J = TI

A

(
δA

J − c2 ξ A ξ J

)
= TI

J −mc2 N I ξ J ,

noting the use of Equation (120). Then, the above equation reads more compactly as

0 =
(

δB
A − c2 ξB ξA

)
DB

(
T̃A

J − c2 ξA ξC T̃C
J

)
.

Consider the two terms arising from the two terms inside the covariant derivative. Take
the second term first, as it ends up vanishing. It is

−c2
(

δB
A − c2 ξB ξA

)
DB

(
ξA ξC T̃C

J

)
.

The first part of this second term is

−c2 δB
A DB

(
ξA ξC T̃C

J

)
= −c2 ξA DA

(
ξC T̃C

J

)
= c2 D4

(
ξC T̃C

J

)
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where DA ξA = 0 was used in the first line. The second part of the second term is

c4 ξB ξA DB

(
ξA ξC T̃C

J

)
= −c4 D4

(
ξA ξA ξC T̃C

J

)
+ c4 ξA ξC T̃C

J D4 ξA

= −c2 D4

(
ξC T̃C

J

)
because ξA ξA = 1/c2 and D4 ξA = 0. Thus, these two parts of the second term sum to
zero. Return then to the first term:(

δB
A − c2 ξB ξA

)
DB T̃A

J = δB
A DB T̃A

J − c2 ξB ξA DB T̃A
J .

The first part of this first term is

δB
A DB T̃A

J = DA

(
TA

J −mc2 NA ξ J

)
= DA TA

J −mc2 NA DA ξ J

because m is constant and DA NA = 0 (particle conservation). The second part of the first
term is

−c2 ξB ξA DB T̃A
J = c2 ξA D4 T̃

A
J

= −c2 ξA
GΓB

J4 T̃
A

B

= c2 ξA T̃A
B DJ ξB

= mc2 NB DJ ξB

thanks to substitution for T̃A
B, the fact that ξB DJ ξB = 0, the symmetry of TAB, and

Equation (120). From the antisymmetry of DJ ξB in Equation (62), the first and second parts
of the first term combine so that

0 = DA TA
J − 2 mc2 NA DA ξ J ,

or
D ·T = mc2 (N · a) χ−mc2

(
N · χ

)
a, (122)

or even
D ·T = m (N · Dϕ) χ−m

(
N · χ

)
Dϕ (on BE or BG), (123)

in which Equation (87) renders the result suitable for BG as well as BE . This equation for
fluid dynamics is a second example of a spacetime law featuring potentially strong gravity
consistent with Galilei relativity. As seen previously in the case of particle motion, in the
Bargmann perspective there is an explicit gravitational source term on the right-hand side,
not coincidentally of the same structure as that appearing in Equation (88).

Details of the 1 + 3 + 1 decomposition of Equation (123) are given in Appendix B.2.
Kinetic energy balance is obtained via contraction with −n, yielding

1
α
√

γ

∂

∂t
(
√

γ E) +
1
α

D · (α Q− E β) = −←−S · Dϕ−−→Σ : K (on BE or BG), (124)

precisely the same as Equation (112), obtained somewhat more artificially on E where the
balance of total energy in Equation (106) is more natural. The balance of 3-momentum is
obtained via contraction with←−γ , resulting in
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1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α

Da
(
−α Σa

j − βa Sj
)

=


−
(

m N +
E
c2

)
Djϕ +

1
α

Sa Djβ
a (on BE),

−m N Djϕ +
1
α

Sa Djβ
a (on BG).

(125)

Taking into account the decomposition of the total energy density E in Equation (108),
this is precisely the same as Equation (107) on E . In the present case of a simple fluid
composed of classical particles of constant mass m, the action component of Equation (123)
obtained via contraction with ξ turns out to be a mass conservation law redundant with
particle conservation.

9. Conclusions
If the consideration of the motion of a material particle in 3-dimensional position space

led to Galilei relativity, and investigation of the propagation of light led to Poincaré relativity
understood in the context of 4-dimensional spacetime, a retrospective reconsideration of
the motion of a material particle leads to a more unified perspective on Poincaré and Galilei
relativity on a 5-dimensional extended spacetime—Bargmann-Einstein spacetime BE in
the case of Poincaré physics, and Bargmann-Galilei spacetime BG in the case of Galilei
physics. The extra dimension plays no independent physical role implying new degrees of
freedom, but, being associated with the kinetic energy per unit mass of a material particle
(see Equation (15)), it enables Galilei physics to be expressed in terms of a spacetime tensor
formalism that respects the separation of mass and kinetic energy. This paper builds on
Paper I by working this out in curved spacetime, extending the usual 1 + 3 formulation of
Poincaré general relativity on Einstein spacetime E to a 1 + 3 + 1 setting suitable for both
BE and BG. Indeed, the basic strategy throughout is to translate known Poincaré physics on
a curved 4-dimensional spacetime into a 5-dimensional setting, where the corresponding
Galilei physics can be deduced by a c→ ∞ limit.

A prime benefit of this ‘Bargmann’ perspective is that the geometry (here, including
curvature) of both BE and BG is governed by a 5-metric G (see Equation (16)), conferring
the several blessings a spacetime metric affords: metric duality of tensors, a Levi-Civita
connection, and a Levi-Civita volume form. It is worth reiterating, however, that the
forms g (for Poincaré physics) and τ (for Galilei physics) that govern causality and the
measurement of proper time in a 4-dimensional setting retain this role in the 5-dimensional
setting. That the 4-metric g on E governs not only spacetime geometry but causality and
time measurement as well, while on BE and BG these responsibilities are divided between
the 5-metric G and either g or τ respectively, is one way in which the Bargmann approach
requires Poincaré physics to ‘give something up’ for the sake of a more unified perspective
yielding greater insight into Galilei physics.

A foundational example of the way the Bargmann perspective enables a tensor for-
malism for Galilei physics is the unification of energy and momentum (and mass) in a
covector or 1-form. As noted in Paper I, a 4-velocity or (multiplying by particle mass) a
vector 4-momentum in the form of inertia-momentum, is not a problem for Galilei physics.
But taking the metric dual (by g) to obtain the covector or 1-form 4-momentum P—the
total-energy–momentum of Equation (12)—is a feat of Poincaré physics that Galilei physics
cannot replicate on a 4-dimensional spacetime. The magic of the Bargmann approach
is that taking the metric dual (by G) of the inertia–momentum–kinetic-energy 5-vector
mU of Equation (23) yields the kinetic-energy–momentum–mass covector or 1-form Π of
Equation (24) in which mass is disentangled from kinetic energy by removing it from the
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first component and moving it to the fifth component without a factor of c2. Of course, that
the equivalence up to a factor of c2 of inertia and total energy is no longer manifest is a
second way in which the Bargmann approach requires Poincaré physics to ‘give something
up’ for the sake of a more unified perspective, yielding greater insight into Galilei physics.

While physical laws expressed in terms of tensor fields on spacetime embody rela-
tivistic invariance, comparison with experiment requires tensor decompositions consistent
with the way humans experience time evolution in position space. This is, of course, at
the heart of the 1 + 3 formalism on E and the 1 + 3 + 1 formalism on BE or BG featuring a
foliation of spacetime into position space leaves. Prominent tensor fields associated with
the foliation and tensor decomposition include the 4-velocity field n (on E , see Equation (7))
or 5-velocity field n (on BE or BG, see Equation (21)) of fiducial observers, orthogonal to
position space leaves in a timelike direction; and the 1-form χ (see Equations (6) and (20))
dual to these, in the sense that χ · n = 1 and χ · n = 1. An important difference between
n on E and n on BE or BG is manifest in their directional derivatives along themselves
(Equations (37) and (41), respectively): fiducial observers are accelerated on E , while fidu-
cial observers are geodesic on BE or BG. On BE or BG, the vector field ξ (anti-)parallel to
the new action coordinate axis (see Equation (28)) also points away from the position space
leaves, satisfying n · ξ = 1 but also χ · ξ = 0. These vector fields and 1-forms appear in
the operator←−γ (see Equations (25) and (32)) that projects vector fields and 1-forms to the
position space leaves. This appears in a generalized projection operator,←−γ ∗, for all tensors
on E (see Equation (27)) or on BE or BG (see Equation (34)), including by relating spacetime
gradients of tensors tangent to position space leaves to gradients tangent to the leaves (see
Equation (45)).

In this projective relationship between tensor gradients on spacetime and tensor gradi-
ents on the position space leaves, the piece—or pieces, in the case of Bargmann spacetimes—
that are projected out serve to define extrinsic curvature (see Equations (46) and (53)),
which is also related to the gravitational ‘kinematics’ referenced in the title of this paper.
The label ‘kinematics’ refers to the fact that the standard 1 + 3 formalism of Poincaré
general relativity locates the gravitational degrees of freedom in the 3-metric γ on the
position space leaves, with the extrinsic curvature tensor K serving as a kind of ‘velocity’ of
these gravitational degrees of freedom (see Equation (50)), a relationship confirmed in the
1 + 3 + 1 formalism undertaken here (see Equation (64)). Meanwhile, the evolution of the
projection operator normal to the leaves vanishes (see Equations (51) and (65)), with the
important consequence that tensors tangent to the leaves remain tangent to the leaves.
Turning back to geometry, extrinsic curvature tensors carry information about the way
the leaves of a foliation are embedded in the ambient manifold, in that they describe the
variation along the leaves of vector fields or 1-forms normal to the leaves; the resulting
relations in Equation (49) and Equations (61) and (62) are key to the 1 + 3 and 1 + 3 + 1
decomposition of physical laws expressed in terms of spacetime tensor fields. In the gen-
eral case of a foliation of a manifold into leaves of codimension 2, one might expect two
independent extrinsic curvature tensors corresponding to the two directions normal to
the leaves. Remarkably—or perhaps inevitably, in hindsight—even though the position
space leaves of BE and BG are of codimension 2, the geometry of Bargmann spacetimes is
constrained in such a way that the two extrinsic curvature tensors are essentially the same
(related by a constant factor, see Equation (59)); and moreover, with K on BE or BG precisely
matching K on E (compare Equations (57) and (58) with Equation (52)). The similarity of
Equation (60) on BE or BG to Equation (48) on E , in contrast to the apparent difference
between Equations (53) and (46), is one manifestation of there effectively being only one
extrinsic curvature tensor. This outcome, and the associated consistency of gravitational
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kinematics on Bargmann spacetimes with that seen in the standard 1 + 3 formulation of
Poincaré relativity, is one of the signal results of this paper.

The working out of gravitational ‘dynamics’ in the context of the Bargmann spacetimes
BE and BG—the constraint equations, and the evolution of the extrinsic curvature K, as these
result from the Einstein equations on E encoded on BE—is left for the next installment in
this series. Therefore, without equations relating the components of G on BG to the energy–
momentum–mass content thereon, comparisons of the conjectured strong-field Galilei general
relativity with particular applications of Poincaré general relativity are not yet possible; such
considerations are outside the scope of this paper, and are left for future work.

But this paper prepares for that next step by proposing a procedure, described in
Section 6, through which known physical laws on E can be translated to BE , which might
be hoped or expected to be amenable to a c→ ∞ limit yielding physical laws on BG. The
procedure involves a ‘decoding’ operator←−g (see Equation (68)) and its generalization←−g ∗
(see Equation (77)) relating tensors on BE to tensors on E . They are partly analogous to
the projection operators←−γ and←−γ ∗ discussed previously, which project tensor fields on
spacetime to the position space leaves. The basic idea is to express a known physical law
on E as the ‘decoding’ of an expression on BE and then ‘reverse engineer’ this expression
to obtain the ‘encoding’ of this physical law on BE . The term ‘decoding’, rather than
‘projection’, is coined because action components are not simply deleted in going from BE
back to E , but recombined with the time component—a reversal of the kind of separation
effected in the Bargmann approach of, for instance, mass from total energy, or the lapse
function from the 4-metric.

By way of example, and as an application of the 1 + 3 + 1 curved Bargmann spacetime
geometry proposed here, assuming that the lapse function α, shift vector β, 3-metric γ,
and extrinsic curvature K associated with the 4-metric g and 5-metric G are given, this
reverse engineering procedure is applied to physical laws for two systems: the dynamics of
an elementary particle, and the dynamics of a simple fluid.

For the dynamics of a material particle, the physical law in terms of spacetime tensors
can be expressed as Equation (81) on E and by Equation (88) on BE or BG. On the right-hand
side in the latter case, Equation (87), inspired by (but by no means limited to) the weak-field
limit, has been employed. The 1+ 3 decomposition on E and the 1+ 3+ 1 decomposition on
BE give the same results (in a simpler formulation than that presented, for instance, in [22]),
confirming the physical equivalence of the Bargmann encoding of this dynamical law. It
also gives sensible results for BG without a restriction on the strength of the gravitational
fields, although it appears that retaining nonlinear terms would require a limit in which
also G → ∞ as c → ∞ in such a way that G/c2 remains constant. But despite matching
results for the decomposed equations, the spacetime tensor laws of Equations (81) and (88)
reflect very different perspectives: in referencing a = Dϕ = D ln α/c2 on the right-hand
side, the Bargmann-encoded Equation (88) reverts the Einstein perspective of accelerated
fiducial observers (see Equation (37)) and geodesic material particles (see Equation (80)) to
a Newton-like perspective of geodesic fiducial observers (see Equation (41))—analogous to
Newton’s inertial observers—and accelerated material particles subject to a gravitational
force. In the case of Poincaré physics, strictly speaking, Equation (88) should not be
regarded as an invariant spacetime tensor law, since a arises from the foliation which is
supposed to be freely chosen by virtue of coordinate freedom. This would be a third way
in which the Bargmann approach requires Poincaré physics to ‘give something up’ for the
sake of a more unified perspective yielding greater insight into Galilei physics. But in the
case of Galilei physics with expectations of absolute time, it would not be surprising for the
foliation to turn out to be fixed, such that Equation (88) actually is an invariant spacetime
tensor law.
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The other example concerns the dynamics of a simple fluid composed of a single type
of microscopic particle of constant mass, with the 4-fluxes (on E) or 5-fluxes (on BE or BG)
characterizing the fluid given by momentum moments of a scalar distribution function.
The particle number flux N on E (see Equation (92)) and N on BE or BG (see Equation (113)),
and the 1+ 3 and 1+ 3+ 1 decompositions (see Equations (98) and (116)) of their vanishing
divergences (see Equations (97) and (115)) are essentially kinematical in nature, in that
they define and describe the fluid and its motion. They basically are to the fluid what the
definition of 4-velocity U (on E) or 5-velocity U, and the trajectory relation (Equations (82)
and (89)), are to a material particle; indeed, the particle flux defines the fluid 4-velocity or
5-velocity, the proportionality factor being the particle density measured by a comoving
observer. The fluid dynamics is given in terms of the 4-momentum flux T on E (see
Equation (99)) and 5-momentum flux T on BE or BG (see Equation (117)); the latter might
be expected to appear in the encoding to BE of the Einstein equations on E , to be considered
in the next installment in this series. The spacetime dynamical law—the divergence of
these (1, 1) tensor fields, given by Equation (105) on E and by Equation (123) on BE or
BG—is analogous to Equations (81) and (88) for a material particle mentioned previously.
Indeed, the gravitational force appearing on the right-hand side of Equation (123) on BE or
BG is like that for a material particle in Equation (88). And as was the case for a material
particle, the 1 + 3 decomposition on E and the 1 + 3 + 1 decomposition on BE give the
same results, again confirming the physical equivalence of the Bargmann encoding of this
dynamical law.

A few words are in order on how the approach taken here differs from or relates to
previous work. Previous work in a 5-dimensional spacetime setting has allowed weak-
field Newton gravity to be incorporated into the Levi-Civita connection associated with
a spacetime 5-metric G [3,7,14]. In the schematic diagram in Figure 1 of Paper I, the
spacetime of that theory is denoted BN ; and based on a comparison of their differing
5-metrics, the spacetime BG being explored in this series is indicated in that figure to be
qualitatively different.

More can now be said about an important distinction between the weak-field, linear
gravitation of BN and the potentially strong-field, nonlinear gravitation of BG. There is
freedom in the choice of spacetime connection (covariant derivative) when one generalizes
from flat spacetime to curved spacetime. In the mathematical language of the reduction of
a frame bundle, a spacetime symmetry group—here, the Poincaré group or Galilei group—
acts ‘vertically’ within each fiber of the frame bundle (relating bases of the spacetime tangent
space at a single point of spacetime), while the connection acts ‘horizontally’ (relating bases
at neighboring spacetime points). A natural choice is to constrain the connection by
requiring that it be ‘compatible’ with tensors that are invariant under the action of the
symmetry group, in the sense of requiring that their covariant derivatives vanish. In the
present case, the invariant tensors under the Bargmann-Poincaré and Bargmann-Galilei
groups are the metric G and the action vector ξ, so that compatibility for both would
require DG = 0 (the condition defining a Levi-Civita connection) and also Dξ = 0. This is
the choice that leads to BN . The spacetime BG explored here also features a Levi-Civita
connection (DG = 0), but the 5-metric derived from particle kinematics in the 1 + 3
formulation of Poincaré relativity yields Dξ ̸= 0; see Equation (62). The conjecture here is
that this relaxation of a ‘compatibility’ requirement on ξ may allow a Levi-Civita connection
in the 5-dimensional setting to embody strong-field Galilei gravitation.

This may turn out to be related to work generalizing standard weak-field Newton–
Cartan Galilei gravitation on 4-dimensional spacetime to strong-field Galilei gravitation by
allowing the connection—not a Levi-Civita connection, since there is no spacetime metric—
to include torsion (e.g., [16–21]). The Frobenius condition for a 4-dimensional spacetime
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to be foliated into a family of spacelike hypersurfaces is τ ∧ dτ = 0, where τ is the time
form mentioned above. Standard weak-field Newton-Cartan theory uses a torsion-free
connection, which happens to be equivalent to dτ = 0 [23]. This is, of course, stronger than
necessary to satisfy the Frobenius condition. In the works cited above, the requirement that
the connection be torsion-free is relaxed to allow so-called ‘twistless torsion’ compatible
with the Frobenius condition. Whether this is directly related to the present work is not
explored here, but it is intriguing to note that the antisymmetry of the right-hand side of
Equation (62), together with the fact that χ → ξ on BG, gives Equation (62) a rotational
(and, in that sense, ‘torsional’) character.

As noted briefly in Section 1, a strong-field Galilei general relativity could serve as
a useful approximation in astrophysical scenarios such as core-collapse supernovae. In
this system, gravity associated with the nascent neutron star is enhanced at the 10–20%
level by energy density and pressure, along with nonlinearity; perhaps this could be
accommodated while enjoying the simplifications of setting aside ‘Minkowski’ bulk fluid
flow and the back-reaction of gravitational radiation. (This approach might conceptualized
as ‘microscopically Poincaré’ but ‘macroscopically Galilei’.) And while it remains to be
seen what the equations governing curvature (the ‘Einstein equations’) on BG turn out
to be in the sequel to this paper, strong-field Galilei gravitation encoded in twistless
torsion on 4-dimensional spacetime gives an indication of what might be expected. For
example, the c→ ∞ but strong-field formalism of [17] is argued in [18] to be a low-speed
expansion about the ‘static sector’ of Poincaré general relativity, in effect a resummation
with respect to gravitational strength of the usual (weak-field) post-Newtonian series.
While not expressed exactly this way in those works, an inspection of the strong-field but
‘Galilei’ reinterpretation of the Schwarzschild geometry in [17], and the strong-field but
‘Galilei’ expansion of the Kerr geometry and Oppenheimer–Snyder collapse in [18], shows
that indeed they involve limits in which both G → ∞ and c→ ∞ such that G/c2 remains
constant, as deduced here.
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Appendix A. Decomposition of Elementary Particle Dynamics
Appendix A.1. Decomposition of Elementary Particle Dynamics on E

Consider first the energy equation, given by

0 = −(∇U P) · n

= −∇U(P · n) +←−P ·∇U n.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
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Address the first and second terms in turn. Using Equation (11) for dt/dτ along the
worldline in order to obtain evolution with respect to the coordinate t native to the 1 + 3
foliation, the first term is

∇UEp =
dEp

dτ
=

ΛV

α

dEp

dt
=

Ep

mc2
1
α

dEp

dt
.

Thanks to Equation (49) for ∇n and Equation (38) for a, the second term in the energy
equation is

1
m
←−
P · (−K − a⊗ n) · ←−P = − 1

m
K
(←−p ,←−p

)
+

Ep

m
←−p · D ln α,

and note that K and a = D ln α are tangent to S. Putting both terms together yields

1
α

dEp

dt
= −c2←−p · D ln α +

c2

Ep
K
(←−p ,←−p

)
(on E)

for the evolution of the particle total energy as measured by the fiducial observers.
Turning to the momentum equation,

0 = (∇U P) · ←−γ

= ∇U
(
P · ←−γ

)
−←−P ·∇U γ

= ∇U p +
(←−

P ·∇U n
)

χ +
(←−

P · n
)
∇U χ,

thanks to Equation (26) for γ and the fact that ∇g = 0 for the Levi-Civita connection ∇.
The three position space components of this equation provide the information of interest;
note that χj = 0 in the middle term, and there remains

0 = (∇U p)j − Ep

(
∇U χ

)
j
.

Address the first and second terms in turn. The first term is

(∇U p)j = Uα∇α pj

= Uα ∂α pj −Uα gΓβ
jα pβ.

Similar to what was seen in the energy equation above, the first part of the first term
is simply

Uα ∂α pj =
Ep

mc2
1
α

dpj

dt
.

The second part of the first term is

−Uα gΓβ
jα pβ = − 1

m

(
Ep

c2 nα + pα

)
gΓβ

jα pβ

= −
Ep

mc2

(
∇jnβ − ∂jnβ

)
pβ −

1
m

gΓβjα pβ pα

=
Ep

mc2

(
pa Kaj −

1
α

pa ∂jβ
a
)
+

1
2m

pa pb ∂jγ
ab.
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As to the second term in the momentum component equation,

−Ep

(
∇U χ

)
j
= −Ep Uα∇αχj

=
Ep

mc2

(
Ep ∂j ln α− pa Kaj

)
.

Combining the pieces of the first and second terms yields

1
α

dpj

dt
= −Ep

∂ ln α

∂xj +
pa

α

∂βa

∂xj −
c2 pa pb

2Ep

∂γab

∂xj (on E)

for the evolution of the particle 3-momentum components as measured by the
fiducial observers.

Appendix A.2. Decomposition of Elementary Particle Dynamics on BE and BG
Begin with the energy equation obtained via the contraction of Equation (88) with −n:

−(DU Π) · n = −←−p · Dϕ,

where only the first term of the right-hand side of Equation (88) contributes. On the
left-hand side,

−(DU Π) · n = −DU(Π · n) +
←−
Π ·DUn

=


Ep

mc2
1
α

dϵp

dt
− 1

m
K
(←−p ,←−p

)
+

ϵp

mc2
←−p · Dϕ (on BE),

1
α

dϵp

dt
− 1

m
K
(←−p ,←−p

)
(on BG),

in which Equation (61) for Dn was employed, and on BG the ϵp/mc2 term has been dropped
after substitution for aj from Equation (87). Put the left- and right-hand sides together
to find

1
α

dϵp

dt
=


−←−p · Dϕ +

c2

Ep
K
(←−p ,←−p

)
(on BE),

−←−p · Dϕ +
1
m

K
(←−p ,←−p

)
(on BG)

for the evolution of the particle kinetic energy as measured by the
fiducial observers.

The momentum equation is obtained from the contraction of Equation (88) with←−γ :

(DU Π) · ←−γ =


−

Ep

mc2 m Dϕ (on BE),

−m Dϕ (on BG),

where only the second term of the right-hand side of Equation (88) contributes. On the
left-hand side,

(DU Π) · ←−γ = DU

(
Π · ←−γ

)
−←−Π ·DUγ

= DUp +
(←−

Π ·DUn
)

χ +
(←−

Π · n
)
DUχ +

(←−
Π ·DUξ

)
n +

(←−
Π · ξ

)
DUn
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thanks to Equation (33) for γ and the fact that DG = 0 for the Levi-Civita connection D.
Because χj = 0 and nj = 0, the only terms that contribute to the position space components
of interest are (←−γ ·DU Π

)
j = (DUp)j − ϵp

(
DUχ

)
j
+ m(DUn)j.

New additional terms vanishing, the first term of the left-hand side ends up giving the
same result as on E (in the case of BE):

(DUp)j =


Ep

mc2

(
1
α

dpj

dt
+ pa Kaj −

1
α

pa ∂jβ
a
)
+

1
2m

pa pb ∂jγ
ab (on BE),

1
α

dpj

dt
+ pa Kaj −

1
α

pa ∂jβ
a +

1
2m

pa pb ∂jγ
ab (on BG).

The second and third terms of the left-hand side combine to give

−ϵp

(
DUχ

)
j
+ m(DUn)j =


−

Ep

mc2

(
pa Kaj +

ϵp

c2

)
(on BE),

− pa Kaj (on BG).

Put the left- and right-hand sides together to find

1
α

dpj

dt
=


−
Ep

c2
∂ϕ

∂xj +
pa

α

∂βa

∂xj −
c2 pa pb

2Ep

∂γab

∂xj (on BE),

−m
∂ϕ

∂xj +
pa

α

∂βa

∂xj −
pa pb
2 m

∂γab

∂xj (on BG)

for the evolution of the particle 3-momentum components as measured by the
fiducial observers.

Appendix B. Decomposition of Simple Fluid Dynamics
Appendix B.1. Decomposition of Simple Fluid Dynamics on E

The total energy balance is obtained via the contraction of Equation (105) with −n:

0 = −
(
∇αTα

β

)
nβ

= −∇α

(
Tα

β nβ
)
+ Tα

β∇αnβ.

The first term is

−∇α

(
Tα

β nβ
)
=

1
α
√

γ

∂

∂t
(
√

γE) +
1

α
√

γ

∂

∂xa (
√

γ (αQa − E βa))

and the second term is
Tαβ∇αnβ = Σab Kba + Sa ∂ϕ

∂xa .

More geometrically,

1
α
√

γ

∂

∂t
(
√

γE) +
1
α

D · (αQ− E β) = −←−S · Dϕ−−→Σ : K (on E)

expresses total energy balance on E in terms of the 3-divergence of a 3-flux tangent to the
leaves S of the foliation.
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The balance of 3-momentum is obtained via the contraction of Equation (105) with←−γ :

0 =
(
∇αTα

β

)
γβ

ν

= ∇α

(
Tα

β γβ
ν

)
− Tα

β∇αγβ
ν.

The position space components ν = j contain the information of interest. The first term is

∇α

(
Tα

β γβ
j

)
=

1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α
√

γ

∂

∂xa

(√
γ
(
−α Σa

j − βa Sj
))

− gΓβ
jα nα Sβ +

gΓβ
jα Σα

β.

The first connection coefficient term is

− gΓβ
jα nα Sβ = −

(
∇νnβ − ∂νnβ

)
Sβ

= Sa Kaj −
1
α

Sa ∂jβ
a.

The second connection coefficient term is

gΓβ
jα Σα

β = Γbja Σab

=
1
2

Σa
b γbc ∂jγca.

The second term of the above 3-momentum balance equation is

−Tαβ∇αγβj = −Sa Kaj +
E

c2 ∂jϕ.

Putting the pieces of the first and second terms of the 3-momentum balance equation
together yields

1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α
√

γ

∂

∂xa

(√
γ
(
−α Σa

j − βa Sj
))

= − E

c2
∂ϕ

∂xj +
1
α

Sa
∂βa

∂xj −
1
2

Σa
b γbc ∂γca

∂xj ,

expressed completely in terms of partial derivatives. More geometrically,

1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α

Da
(
−α Σa

j − βa Sj
)
= − E

c2 Djϕ +
1
α

Sa Djβ
a (on E)

expresses 3-momentum balance on E in terms of the 3-divergence of a 3-flux tangent to the
leaves S of the foliation.

Appendix B.2. Decomposition of Simple Fluid Dynamics on BE
The kinetic energy balance is obtained vai the contraction of Equation (123) with −n:

−(D ·T) · n = −m N V · Dϕ,
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where only the first term of the right-hand side of Equation (123) contributes. As to the
left-hand side,

−(D ·T) · n = −
(
DAT

A
B

)
nB

= −DA

(
TA

B nB
)
+TA

B DAn
B.

The first term on the left-hand side is

−DA

(
TA

B nB
)
=

1
α
√

γ

∂

∂t
(
√

γ E) +
1

α
√

γ

∂

∂xa (
√

γ (α Qa − E βa)).

In the second term on the left-hand side, it is interesting to compare Dn in Equation (61)
on BE or BG with ∇n in Equation (49) on E . The former has two terms involving the
acceleration a, whereas the latter only has one. On BE or BG, one of those acceleration
terms contracts with the Q⊗ χ term in Equation (117) and the other contracts with the
ξ ⊗ Q term, each contributing equally. The result for the second term on the left-hand
side is

TAB DAnB = Σab Kba +
1
c2 Qa ∂ϕ

∂xa .

Putting the first and second terms of the left-hand side together with the right-hand
side yields

1
α
√

γ

∂

∂t
(
√

γ E) +
1
α

D · (α Q− E β) = −←−S · Dϕ−−→Σ : K (on BE or BG),

precisely the same as Equation (112), obtained somewhat more artificially on E , where the
balance of total energy in Equation (106) is more natural. The contravariant 3-momentum←−
S emerges on the right-hand side, thanks to Equation (108) relating Q and N V to Q,

and Equation (102) relating Q to
←−
S .

The balance of 3-momentum is obtained via the contraction of Equation (123) with←−γ :

(D ·T) · ←−γ = −m N Dϕ,

where only the second term of the right-hand side of Equation (123) contributes. As to the
left-hand side, (

(D ·T) · ←−γ
)

J =
(
DAT

A
B

)
γB

J

= DA

(
TA

B γB
J

)
−TA

B DAγB
J .

The position space components J = j contain the information of interest. The first term of
this left-hand side is

DA

(
TA

B γB
j

)
=

1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α
√

γ

∂

∂xa

(√
γ
(
−α Σa

j − βa Sj
))

− GΓB
jA nA SB + GΓB

jA ΣA
B + GΓB

jA ξA QB.

The first and second connection coefficient terms give the same results as seen in the
analogous terms on E , and the third connection coefficient term ends up vanishing:

GΓB
jA ξA QB = QB DjξB = 0.
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The second term on the left-hand side of the above 3-momentum balance equation turns
out to be

−TAB DAγBj = −Sa Kaj + E aj =


−Sa Kaj +

E
c2 ∂jϕ (on BE),

−Sa Kaj (on BG),

where, on BG, the E/c2 term has been dropped after substitution for aj from Equation (87).
On BE , this is like the corresponding term on E , but with total energy density E replaced
here with kinetic energy density E. Half of this term is due to the combination of the scalar
fields Y and Z shown in Equation (119). Putting the pieces of the first and second terms
of the left-hand side of the 3-momentum balance equation together with the right-hand
side yields

1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α
√

γ

∂

∂xa

(√
γ
(
−α Σa

j − βa Sj
))

=


−
(

m N +
E
c2

)
∂ϕ

∂xj +
1
α

Sa
∂βa

∂xj −
1
2

Σa
b γbc ∂γca

∂xj (on BE),

−m N
∂ϕ

∂xj +
1
α

Sa
∂βa

∂xj −
1
2

Σa
b γbc ∂γca

∂xj (on BG)

expressed completely in terms of partial derivatives. More geometrically,

1
α
√

γ

∂

∂t
(√

γ Sj
)
+

1
α

Da
(
−α Σa

j − βa Sj
)

=


−
(

m N +
E
c2

)
Djϕ +

1
α

Sa Djβ
a (on BE),

−m N Djϕ +
1
α

Sa Djβ
a (on BG)

expresses 3-momentum balance on BE or BE in terms of the 3-divergence of a 3-flux tangent
to the leaves S of the foliation. Taking into account the decomposition of the total energy
density E in Equation (108), this is precisely the same as Equation (107) on E .

Finally, Equation (123) contains an additional component, the action component ob-
tained via contraction with ξ. As was the case with elementary particle motion, for constant
particle mass m, the action component yields 0 = 0. The contraction of Equation (123) with
ξ yields

(D ·T) · ξ = 0,

where the right-hand side of Equation (123) makes a vanishing contribution. As to the
left-hand side,

(D ·T) · ξ = D · (T · ξ)−−→T : Dξ.

The first term on the left-hand side is

D · (T · ξ) = D · (mN) = mD ·N = 0

thanks to constant m, and particle conservation. Along with this, the second term on the
left-hand side also vanishes:

−−→T : Dξ = −TAB DAξB = 0
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because
−→
T is symmetric and Dξ is antisymmetric. Thus, in the present case of a simple fluid

composed of classical particles of constant mass m, the action component of Equation (123)
turns out to be a mass conservation law redundant with particle conservation.
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