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Abstract

Inertial instability is a key process in the dynamics of rotating and stratified fluids, which
arises when the absolute vorticity of the flow becomes negative. This study explored the
nonlinear behavior of inertial instability by incorporating a hidden symmetry into the
equations of motion governing atmospheric dynamics. The atmosphere was modeled as a
complex system composed of interacting structural elements, each capable of oscillatory
motion influenced by planetary rotation and geostrophic shear. By applying a symmetry-
based framework rooted in projective geometry and Riccati-type transformations, we show
that synchronization and structural coherence can emerge spontaneously, independent of
external forcing. This hidden symmetry leads to rich dynamical behavior, including phase
coupling, quasi-periodicity, and bifurcations. Our results suggest that inertial instability,
beyond its classical linear interpretation, may play a significant role in organizing large-
scale atmospheric patterns through internal geometric constraints.

Keywords: inertial instability; nonlinear behaviors; SL(2,R) group; Riccati equation; symmetry

1. Introduction

Radjiative, chemical, and dynamic processes in the atmosphere contribute to shaping
the Earth’s climate. The Sun heats the Earth unevenly, with more energy reaching the
equator than the poles. This causes a net energy gain (positive deviation) at low latitudes
and a net loss (negative deviation) at high latitudes. To balance this, energy is transferred
from the equator toward the poles by winds and ocean currents. Even though the net
energy at the poles is negative (when averaged over the year), the actual amount of
solar energy received is still a positive number—just smaller than what is lost. This is a
subtle point: the deviation can be negative, but the incoming solar flux is always greater
than zero.

The general circulation of the atmosphere, by converting potential energy into kinetic
energy, supports this transfer and is influenced by several factors, such as the vertical
stratification of the atmosphere, the differential heating of oceans and continents, the
presence of mountain ranges (e.g., the Alps, Himalayas, and Rocky Mountains), which
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disturb the zonal flow and generate significant tropospheric disturbances, and the curvature
of the Earth, which shapes global wind patterns and circulation cells [1].

Inertial instability constitutes one of the fundamental forms of atmospheric insta-
bility; it occurs in contexts where rotational forces are no longer balanced by the local
distribution of mass and vorticity. It emerges when the velocity gradient or the configura-
tion of the potential vorticity (PV) field leads to a spontaneous redistribution of angular
momentum within the air mass, particularly in weakly stratified environments or at low
latitudes. In contrast to baroclinic instability—classically associated with the development
of extratropical cyclones and meridional energy transport—inertial instability is more
localized in nature and is inherently linked to the conservation of angular momentum in a
rotating system [2,3].

The general circulation of the atmosphere is described by the existence of three main
atmospheric circulation cells: the Hadley cell, which covers the area between the equator
and approximately 30—40° latitude and is responsible for the trade winds that carry warm
and humid air; the Ferrel cell, located between 30° and 60° latitude, which mediates the
transfer of air between the subtropical and polar regions; and the Polar cell, situated
between 60° and the poles, where cold air descends toward the surface and moves toward
lower latitudes [4-6] (see Figure 1).

@ Subtropical jet stream Polar jet stream

Hadley Cell Ferrel Cell 60° N Polar Cell 90° N

Figure 1. Representation of Hadley, Ferrel, and Polar cells using cross-section from Equivalent
Potential Temperature and Isotach map for 1°23’ S 0°13’ W-84°12" N 0°13' W (valid 31 January
2025 15:00).

Within the general circulation of the atmosphere, inertial instability plays a subtle yet
essential role in the generation and maintenance of coherent structures in the atmospheric
flow field. It contributes to the redistribution of momentum in tropical and subtropical
regions, thereby influencing the dynamical balance between the Hadley, Ferrel, and Polar
cells. Moreover, under extended nonlinear regimes, inertial instability may facilitate the
emergence of inertial-gravity waves and quasi-periodic modes that modulate the large-scale
structure of atmospheric circulation [2-6].

Figure 1 [7] illustrates the general circulation of the atmosphere in a meridional cross-
section, highlighting the three main cells: the Hadley, Ferrel, and Polar cells. The vertical
and horizontal air motions within these cells, indicated by the arrows in the figure, are
associated with variations in geostrophic wind and thermal gradients. In the transition
zones, where the geostrophic wind shear is strongest (e.g., near jet streams), the ideal
conditions for inertial instability can arise.

Thus, the global atmospheric circulation represents a dynamic and interdependent
system that regulates the transfer of energy and momentum on a planetary scale. Although
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the theory of general circulation has made remarkable progress, numerous questions remain
regarding the integration of moist processes and their impact on the global climate.

Inertial-gravitational instability contributes significantly to the organization of at-
mospheric motions, especially under strong horizontal shear in a rotating frame. This
instability, governed by imbalances between Coriolis effects and geostrophic shear, can
be captured by simplified local models, which we further explore through the lens of
symmetry and synchronization [8-12].

Baroclinic and barotropic instabilities are well-known mechanisms for the gen-
eration and development of eddy motions in the Earth’s atmosphere. Recent stud-
ies have used advanced methods, such as Rossby wave analysis [13], the Galerkin
method [14], and Lyapunov—-Arnold analysis [15], to better understand these phenom-
ena. Although several theories have been proposed to explain the evolution of atmospheric
instability, the research field still faces significant challenges from both theoretical and
observational perspectives. [2,3].

In the present study, using an extension of the single-particle model based on a hidden
symmetry of the equation of motion, we analyzed the implications of this symmetry in
the context of inertial instability dynamics. Within this framework, quasi-periodic modes
emerging from inertial interactions can be related to the large-scale organization of the
atmospheric general circulation, particularly in connection with the structural behavior of
the Hadley, Ferrel, and Polar cells.

This study explored the dynamics of inertial instability through the lens of a hidden
symmetry in the equation of motion, highlighting how this symmetry governs both the
frequency and phase synchronization among atmospheric structural units. By extending the
single-particle model and employing Riccati- and Stoler-type mathematical transformations,
we show that inertial instability can generate complex regimes ranging from damped
oscillations to deterministic chaos with direct implications for the stability and global
organization of atmospheric circulation. In this context, inertial instability is no longer
regarded as an isolated phenomenon, but rather as an emergent mechanism embedded in
the dynamic architecture of the atmosphere, which has structural relevance for its behavior
at the planetary scale.

2. Materials and Methods

In this study, we extend the classical single-particle approximation by incorporating
the implications of a hidden SL(2,R) symmetry in the governing equations of motion. Using
Riccati-type differential structures and projective geometry, we investigated emergent
behaviors associated with inertial instability in a rotating, stratified atmosphere. These
include synchronization phenomena such as phase coupling, quasi-periodic transitions, and
bifurcations, which arise from local imbalances in geostrophic shear and vorticity. Unlike
traditional models that linearize around balanced flows, our approach captures nonlinear
coherence across dynamically distinct atmospheric regions through geometric invariants.
By projecting the inertial dynamics onto the SL(2,R) group manifold, we constructed a
framework in which symmetry-preserving transformations generate structured transitions
between dynamical regimes.

Such an analysis is not isolated. Recent applications of SL(2,R) symmetry in complex
fluid systems support the use of this formalism in the context of inertial instability [16].
Moreover, studies such as [17,18] emphasized the foundational role of projective geometry
in physics, showing that homographic transformations preserve the structural form of
fundamental equations—validating their use in modeling the projective synchronization of
dynamically distinct regions within the atmosphere. Rebelo and Winternitz [19] demon-
strated that differential equations possessing SL(2,R) symmetry exhibit robust qualitative



Symmetry 2025, 17, 994

40f16

features under symmetry-preserving transformations, reinforcing our interpretation of
structural coherence as an emergent property governed by the Schwarzian derivative. In
addition, the work of Arkani-Hamed, Bai, and Lam [20] illustrated how complex dynamical
systems can be embedded within projective geometries and positive structures, offering
a contemporary theoretical basis for our application of projective parameters to describe
emergent synchronization patterns in inertially unstable flows.

Inertial-gravity waves and Rossby waves (associated with baroclinic instability) can
interact within nonlinear systems. In weakly stratified regimes or in the presence of strong
vertical shear, hybrid instabilities may emerge. Certain models such as those based on
the primitive equations or extended quasi-geostrophic formulations can be employed to
analyze the transition between weak baroclinic instability and inertially unstable regimes.
All computations were performed using GNU Octave 8.4.0 (Free Software Foundation,
Boston, MA, USA), a MATLAB-compatible open-source software.

2.1. Synchronizations/Desynchronizations and Atmospheric Dynamics

By generalizing the inertial motion of a particle moving horizontally in a flow cor-
responding to a zonal geostrophic basic state with velocity ug, and assuming that the
particle’s displacement does not perturb the pressure field, one obtains the equation of
motion (1), as detailed in Appendix A [8]:

2
T r(r- 52 )ov=o0 )
which represents the motion of a particle moving horizontally and meridionally in the
atmosphere. In our model, we assumed that the atmosphere can be assimilated, both
structurally and functionally, into a complex system in which its structural units are in
continuous interaction. This relation describes inertial oscillations in a sheared geostrophic
flow, where stability depends on the sign of the quantity f(f — aa%) It is important to note
that this formulation addresses inertial instability rather than baroclinic instability, as the
latter requires vertical shear %.

Equation (1) models the meridional oscillations of an air parcel under the influence
of planetary rotation and shear, which serve as a local representation of such instabilities.
Each atmospheric cell can thus be interpreted as an oscillatory unit whose dynamics are
governed by this fundamental differential equation.

The Coriolis force influences the winds in the Ferrel cell by causing their deflection,
which results in the prevailing westerlies between 30° and 60° latitude. In addition, the
polar jet stream influences mid-latitude weather patterns by steering storm systems and
affecting temperature contrasts. In summer, its northward shift generally leads to weaker
storm activity, while in winter, its southward displacement contributes to more frequent
and intense storms, cold spells, and precipitation events [2—4].

Rossby waves, whose propagation is enabled by the variation of the Coriolis parameter
with latitude (the so-called p-effect), play an essential role in large-scale atmospheric
dynamics. While the p-effect does not generate Rossby waves directly, it allows their
existence and provides the restoring force that governs their behavior. In a barotropic
environment, where density depends only on pressure, Rossby waves conserve absolute
vorticity. In contrast, in a baroclinic environment, where density depends on both pressure
and temperature, air parcels conserve potential vorticity under adiabatic and frictionless
conditions. These waves are fundamental in the development of mid-latitude weather
patterns and in the large-scale transport of energy and momentum in the atmosphere.
These waves facilitate the transport of energy and matter between atmospheric regions.
Barotropic instability is associated with horizontal variations in flow and contributes to the
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transfer of kinetic energy, while baroclinic instability is linked to vertical variations and
promotes the conversion of potential energy into kinetic energy. These mechanisms are
crucial for the formation of cyclones and atmospheric fronts.

Now, we must mention that Equation (1) originates from a classical inertial instability
derivation under the quasi-geostrophic framework [8]. These result from linearizing
the motion of a parcel displaced meridionally in a zonal geostrophic shear, using the
assumption that vertical motion is negligible compared to horizontal dynamics. While this
simplification focuses on horizontal accelerations in a rotating frame, it serves here as a
proxy for instability onset, allowing for analytical tractability and symmetry analysis (for
details, see Appendix A).

Although Equation (1) is a linear equation, certain nonlinear behaviors may result
not from the differential form itself but from symmetries induced by both the structure
of the equation and its solutions (we call this a hidden symmetry). Lie symmetries are
usually used to obtain analytical solutions of differential equations; their composition
under projective mappings (e.g., Riccati flows and Schwarzian derivatives) may induce
emergent behavior such bifurcations, period doubling, or intermittent dynamics. This
happens in extended dynamical settings, particularly in cases when non-autonomous or
connected systems undergo transformations, preserving their symmetry [21,22].

Using the notations

by—u, 2= f(f-28) 50 @)
y =1u, - f f ay
the differential Equation (1) becomes

d%u
S+ QPu=0 3
P (©)

The most general solution of Equation (3) can be written as
u(t) = he!(240) 4 he=i(OHe) § — /7 @)

where & is the complex conjugate of i. The quantities i and & give the initial conditions,
which are not the same for every point in space. More precisely, the various atmospheric
structural units corresponding to different points in space are in different states and have
different phases. A problem arises: is it possible to give a priori connection between the
parameters /1, it and e/(1+9) of the various atmospheric structural units at a given time?
Since Equation (4) is a solution of Equation (3), it allows us to give an affirmative answer to
this problem. Indeed Equation (3) possesses a hidden “symmetry” that can be expressed by
the homographic group: the ratio of two solutions of Equation (3) is a solution of Schwartz’s

equation [16,23-25]:
I 2
TN 1 TH 2
(%) -2(%) -2 ©

defines the derivative with respect to time.

"y
/

where the symbol

The homographic transformation connects the analytical solutions of the linear equa-
tion with the nonlinear behaviors of the atmosphere.

In the context of this study, it transforms a simple local model into a framework
capable of explaining the emergent organization of the global atmospheric circulation,
providing a bridge between advanced mathematics (SL(2,R)) and dynamical meteorology.

Equation (5) arises from the ratio of two linearly independent solutions of
Equation (3) (which is derived from Equation (1)). This ratio satisfies a Schwarzian dif-
ferential equation that is invariant under the homographic transformations. Physically,
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this captures how phase synchronization between atmospheric structural units occurs in a
system with inertial instability, which is governed by a shared underlying pulsation.

This construction implies that structural units (e.g., segments of an atmospheric cell)
within the atmosphere as a complex system can interact and synchronize not only through
explicit external forces, but also via a shared geometric symmetry. The ratio of the solutions
thus becomes an “internal message” of the system, encoding how the relative phases of
these structural units evolve over time. If two atmospheric structural units evolve such that
the ratio of their solutions remains invariant with respect to a homographic transformation,
they are said to be projectively synchronized—their individual evolutions differ, yet remain
geometrically coherent.

This approach provides a unified framework for understanding collective oscil-
lation modes, including intermittency, bifurcations, and nonlinear synchronization—
phenomena that are experimentally observable in atmospheric, electrical, and optical
systems [26-28]. From a practical standpoint, one can envision a network of “atmospheric
oscillators” that, although locally governed by linear equations, collectively give rise to
complex emergent behaviors—precisely what is observed in jet streams, planetary waves,
and stable climate cells.

This equation is invariant under the homographic transformation of 7(¢): any homo-
graphic function of 7 is itself a solution of Equation (5). As homography characterizes
projectivity on a straight line, it can be stated that the ratio of two solutions of Equation (3)
is a projective parameter for the set of atmospheric structural units of the same pulsation (2
from a given spatial region.

We can easily construct a convenient projective parameter, which would be in one-to-
one correspondence with the atmospheric structural unit. First, we observe a “universal”
projective parameter—the ratio of the fundamental solutions of Equation (3):

k = ¢2i(Qt+g) (6)

Any homographic function of this ratio will again be a projective parameter. Among

all the functions, the function B
h + hk

"= T3%

has, first of all, the advantage of being specific to each atmospheric structural unit. But not

)

only that, another function
W+ WK
/
H=—"""
()= ®
Is specific to another atmospheric structural unit.
The fact that Equations (7) and (8) are solutions of Equation (5) shows us that there is
a homographic relationship between them:

;T +p
T YT+ 6 ©)
Which, after it is clearly expressed, leads to the group equations [16]
h,_och—i—/% W:och—i—ﬁ k,_')/h—i—cSk (10)

- yh+6 Yhi+8  yh+0

In such a framework, Equation (10) is identified with the synchronization group of
atmospheric structural units. Through this group, the temporal adjustment of the dynamics
of the atmospheric structural units (i.e., the local dynamics) is achieved with the global
atmospheric dynamics. In practice, the atmospheric structural units adjust their behaviors



Symmetry 2025, 17, 994

7 of 16

so that they oscillate or vibrate synchronously. The structure of the group is typical of
SL(2R), i.e., of the form

A

[B1,By] = By, By, B3] = Bs, [Bs, B1] = —2B4 (11)
where Bk, k =1, 2, 3 are the infinitesimal operators of the group with the expressions

. 0 0 4 0 0

B 0 20 0

= — — = nN— h— B = 27 — — Wk—
1= Y + o By hah +haﬁl B3 =h Y +h YA +(h h)kak (12)

This group admits the differential 1- forms (absolutely invariant through the

group) [14-16]
(dk dh+dh _ dh

and differential 2-forms (metric):

_\2 _
ds? 2 dk  dh+dh dhdh
— = (wy — dwrwr :—<— = > +4 — (14)
kg ( ) k h—h (h _ h)

The existence of a parallel transport of angles in the Levi-Civita sense [16], which
corresponds to the constraint
wo = 0 (15)

which transforms Equation (14) as follows:

5 _
ds _ 4 dhdh (16)

K (n-7)"

Constraint (15) corresponds to in-phase synchronization of atmospheric structural
unities. Thus, we can explain such a situation.
Let us consider an atmospheric field described by the variables Y’ for which the metric

hy Y'Y! (17)
was discovered in an ambient metric space
7*PdX,dXg (18)
In such a context, the field equations derive from the variational principle:
5 / Ldo =0 (19)
where dv is the elementary volume, relative to the Lagrange function.

Yt aY!

L=z

(20)
In our case, metric (17) is given by Equation (16), and the field variables are  and .

Then, the Lagrangian results are

L VhVh 1)

(n-5)
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which, according to the variational principle (19), leads to the atmospheric field equations
(n=1)V2h = 2VhVh
(h - E) V2 = 2ViVi (22)
The solution of the first differentiable equation is written in the form

icoshy—e*i"‘sinhy

(23)

~cosh pte sinhy
with
Ap =0 (24)

and real and arbitrary a. Obviously, the variational principle (19) and the atmospheric field
Equations (22) respectively describe a harmonic mapping between the Euclidean space of
metric 7,4 and the upper half of the plane complex space—the Poincaré representation of
the hyperbolic plane with the metric given by Equation (16), known as the invariant metric
of the group SL(2,R).

2.2. Coherences/Decoherences in Atmospheric Dynamics

Let us reconsider Equation (9) which represents the homographic action of the matrix:

M= (i’; ?) (25)

The problem we want to solve is the following: find the relationship between the set
of matrices M and a set of values of T for which T/ remains constant (in this context, a
constant T’ (derivative of the projective parameter) identifies a specific class of solutions
where two atmospheric units evolve in such a way that their projective relationship remains
geometrically fixed. This condition corresponds to projective synchronization and is used
to define coherent dynamical relationships between regions). Geometrically, this means
finding the set of points («, B, v, 6) that uniquely corresponds to the parameter values 7.

Using Equation (9), our problem is solved by a Riccati differential equation that is
obtained as a consequence of the constancy of 7 [16], i.e.,

AT+ T 4 wryT+ w3 =0 (26)
where we use the notations
ydoa — ady ddoa — add + ydp — Bdy odp — pdé
W= By 2 25— By 3 S By (27)

It is easy to verify that the metric

gs2 — (xdb + 6do — dy — ydp)? _ dadd —dpdy

(28)
4(ad — By)? ad — Py
is directly related to the discriminant of the quadratic polynomial from Equation (26):
1
ds? = 1 (w% — 4w1w2> (29)
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The three differential 1-forms from Equation (27) construct a co-frame at any point in
the absolute space [16]. This co-frame allows us to translate the geometric properties of the
absolute space into algebraic properties in correlation with differential Equation (26).

Most of these properties concern the motion on geodesics of the metric. In this case,
differential 1-forms (21, (2, and (23 are exact differentials in the same parameter—the
length of the arc of the geodesic, for example, s. Along these geodesics, Equation (26)
transforms into an ordinary differential equation of the Riccati type (gauge of Riccati type):

d

?: = P(1), P(T) = o172 + 20T + a3 (30)
Here, parameters a1, a4, and a3 are constants that characterize a certain geodesic of

the family. The most general solution of Equation (30) is obtained using the procedure

from [16,17,29]. For this purpose, let us consider the roots of the quadratic polynomial be

incorporated in the right-hand side of differential Equation (30), i.e.,

ar i ar i 2
= = —A, :———fA,A: —a 31
T - + P o m ayas — a; (31)
Making the transformation
T—T
Y T—T ( )

it follows that y is a solution of the differential equation:
y =2y, y(s) = y(0)e'™ (33)

Now, if we conveniently express the initial condition y (0), we can give the general
solution of Equation (30) by simply inverting transformation (32), with the result

2iA(s—sp)
gt T (34)
1 +re21A(s—s0)

where 7 and s( are two real constants that characterize the solution. Using Equation (31),
we can write these solutions in real terms, that is

a A 2rsin2A(s — s ) 1—12
Y= LY - sin[2A( 0)] +i > (35)
a;  ap | 14724 2rcos[2A(s —sg)] 1+ 7%+ 2rcos[2A(s — sp)]

which explains a modulation of A by a Stoler transformation [30], which leads us to the
complex form of this parameter. Given the standard meaning of the Stoler transformation
in the current context, it refers to the coherence/decoherence of atmospheric structural
units in a given atmosphere (spatio-temporal correlation of local dynamics of atmospheric
structural units within the global dynamics of a given atmosphere). Moreover, if we adopt
the notation

r = cothy (36)
Equation (35) becomes
an A
__%2_. 2 37
y ay + ﬂ]ll} ( )
where ¥ has the expression
_ p—2iM(5—50) o5
v _ _icoshy e sinhy (39)

cosh pi + e2A(s=s0)ginhy
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The meaning of the complex parameter was given in the previous section (see
Equation (23)). For the moment, let us note that the coherence/decoherence process in the
dynamics of atmospheric structural units is assimilated here to a process of modulation
of A. More precisely, this process is a calibration of the difference between kinetic and
potential energy—the classical definition of the Lagrangian—which leads this quantity
to a perfect square. The physical significance of the perfect square Lagrangian is that it
describes a fundamental physical unit (in our case, an atmospheric structural unit) within a
complex system (in our case, the atmosphere), just as kinetic energy describes a free particle
in space. Under these conditions, identifying Equation (23) with Equation (38) results in
two-time scales, one corresponding to the time for the atmospheric structural unit and
another corresponding to the time for the atmosphere. In general, by using Equation (35),
various behaviors of the atmospheric structural units in the dynamics of atmosphere can be
highlighted: period doubling, damped oscillations, quasi-periodicity, intermittency, chaos,
etc., in accordance with [16].

In such a context, we present in Figure 2a,b the 3D and 2D dependences of Re (ya; + a3)
by s =t for A = Qyey = 3 and r = 0.5, which mimic quasi-periodic-type behaviors. In our
opinion, the tricellular model of general circulation of the atmosphere can be correlated
with the quasi-periodicity modes of atmospheric dynamics.

3D representation
to

2D representation
Qna=3

Amplitude

(b)

Figure 2. Quasi-periodic-type behaviors in atmospheric dynamics: (a) 3D representation; (b) 2D
representation and its correlation with the tricellular model of general circulation of the atmosphere.

In such a framework, the holographic behavior (the part reflects the whole and the
whole reflects the part) appears as a universal property of the dynamics of structures

in nature.
Let us consider the case
Bug
flf——2) <0 (39)
dy
Then, Equation (1) with the substitution becomes
1 Jou
m=f (ayg —f > (40)
which takes the form )
dsoy 1
=0 @

and admits the general solution

- t—tp t—tp
oy = (Syoch(T ) + VOTsh< T > (42)
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with dy,, Vo, andt( constants.
For (t — tp) < T, Equation (42) describes inertial motion in Galilei’s description:

Sy ~ dyy + Vo(t — to) (43)

For (t —tg) > T, Equation (42) has a limit that we find based on the following
mathematical procedure: we first derive the relation (42) with respect to time and eliminate
0yo between the initial and the derived relation. This results in

déy W oy t—1tp
pn ch(tTtO)Jthh( T ) (44)

This limit has the expression

d&y _ (Ly
G T (45)

Such a solution, for an ensemble of coherent atmospheric structural units, in our
opinion, corresponds to atmospheric jets.

In Figure 3, we present the bifurcation diagram in the context of an inertially unstable
atmosphere (where v is the integration degree between atmospheric structural unity for a
given atmosphere). In our paper, v represents a structural index parameter that quantifies
the relative spatial or dynamical position of an atmospheric unit within the system. It can
encode variables such as latitude, vertical level, or local frequency class depending on the
context of the synchronization analysis. Specifically, in the bifurcation diagrams, v serves as
a labeling axis for units or regions whose individual solutions are characterized by distinct
projective parameters 7(t), allowing us to track the emergence of coherent regimes and
identify zones of enhanced structural stability. Higher v values correlate to polar cells if
index v is believed to be proportional to latitude, for instance, intermediate values map to
the Ferrel cell. This lets v encode spatial phase information in the synchronizing analysis.

Density
40 | — 0.02660
35 Hadley Cell o
o _ - 0.01995
5 _ - 0.01663
Ferrel Cell .
S Subtropical -0.01330
20 Jetstream
4 - 0.009975
15 - Polar
| Jetstream - 0.006650
10 Polar Cell - 0.002325
5 -
] L—L g.000
0 -

2 3 4 5 6 7 8 9 10
Q

max

Figure 3. Tricellular model of the atmosphere correlated with the bifurcation map.

We also mention that this bifurcation diagram illustrates how coherent oscillatory
regimes emerge as functions of the local frequency (2 and a structural or spatial parameter
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v. Each stability “island” in the diagram corresponds to a preferred natural frequency,
associated with distinct atmospheric regimes such as the Hadley cell or the polar jet stream.

3. Results

The simplified dynamical model developed in this study captures the local response
of a meridionally displaced air parcel within a rotating, sheared geostrophic flow—relevant
to the onset of inertial instability. Although not derived from the full primitive-equation
framework, the model retains the essential dynamics required to describe local imbal-
ances between rotation and vorticity gradients. Reformulating the governing equation
into a standard second-order linear form enables the construction of two independent
solutions whose ratio defines a projective parameter governed by a Schwarzian differential
equation—an equation invariant under homographic transformations.

This mathematical structure reveals a hidden symmetry associated with the SL(2,R)
group, which governs geometric transformations of the solutions and leads to the emer-
gence of projective synchronization. Physically, this implies that local atmospheric units
may evolve coherently in phase space despite not being phase-identical. The resulting
bifurcation patterns illustrate how preferred dynamical regimes emerge across a range
of local frequencies and spatial conditions. The proposed framework thus complements
classical linear theory by offering a symmetry-based perspective on how inertial instability
can organize large-scale atmospheric structure.

4. Discussion

The present study offers a novel perspective on the nonlinear dynamics of atmospheric
flows by revealing the role of a hidden symmetry in the context of inertial instability, starting
from the single-particle model. This approach extends prior research in atmospheric
dynamics by incorporating advanced mathematical methods from [16,23-25], providing
a deeper understanding of the symmetry-driven mechanisms that govern the emergence
and evolution of inertially unstable regimes.

Figure 1 demonstrates the atmospheric circulation triad (Hadley, Ferrel, and Polar
cells) using Equivalent Potential Temperature cross-sections. In the interfacial zones,
where vertical shear of geostrophic flow is maximized, conditions become conducive to
inertial instability. Figures 2 and 3 illustrate how structural parameters (e.g., latitude-
dependent index v) modulate phase synchronization in atmospheric units. The non-
linear trajectories observed represent transitions between order and chaos—especially
when phase locking or frequency entrainment occurs between different cells. The pro-
jected synchronization mechanism suggests a novel interpretation of the tricellular model,
where atmospheric coherence emerges from group-theoretic invariants rather than strictly
thermodynamic drivers.

The results suggest a potential link between the quasi-periodic modes observed in
atmospheric circulation and the classical tricellular model of general circulation. Such
an interpretation aligns with previous studies on nonlinear atmospheric dynamics while
providing a new mathematical framework to describe both synchronization and coherence
mechanisms within the system.

However, the model picked in this study has certain limitations. It is based on a
simplified, differentiable equation of motion, which may not fully represent the complexity
of real atmospheric phenomena (although it does capture essential nonlinear effects).
Future research could explore more complex models, such as hydrodynamic or fractal-
based approaches, to extend our results to a broader range of atmospheric conditions.

Despite these limitations, the results contribute to the field by demonstrating how
hidden symmetries can be used to classify and predict different instability regimes in atmo-
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spheric dynamics. This perspective advances our understanding of inertial instability and
provides a mathematical framework for analyzing synchronization phenomena in complex
geophysical systems. Furthermore, testing these theoretical results together with large-scale
atmospheric data could refine our understanding of how nonlinear synchronization and
coherence mechanisms influence weather patterns.

5. Conclusions

This study highlights the fundamental role of inertial instability in shaping atmo-
spheric dynamics and momentum redistribution, emphasizing its nonlinear character. By
extending the single-particle model and incorporating a hidden SL(2,R) symmetry of the
equation of motion, we demonstrated that the synchronization of atmospheric structural
units involves a temporal calibration in both frequency (SL(2,R) group-based) and phase
(harmonic mappings).

Furthermore, the coherence of atmospheric dynamics is governed by Riccati-type
gauges, leading to self-modulations via Stoler-type transformations. These mechanisms
generate a variety of dynamic behaviors, including period doubling, damped oscillations,
quasi-periodicity, intermittency, and chaos. Our findings suggest that the tricellular model
of general atmospheric circulation can be correlated with the quasi-periodicity modes
observed in inertially unstable regimes, providing a deeper understanding of large-scale
flow structures.

Additionally, the introduction of hidden SL(2,R) symmetries and projective synchro-
nization provides a compelling geometric paradigm to analyze phase-locked behavior
among atmospheric structural units. This dual perspective—physical and geometric—
enables a deeper understanding of the emergence of quasi-periodic regimes and chaotic
transitions in planetary-scale circulation. Future studies should integrate moisture and la-
tent heat processes into this symmetry-based framework and explore numerical simulations
to validate the projected dynamics under real atmospheric conditions.
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Appendix A. Derivation of Equation (1)

“[...] A parcel put into horizontal motion in a resting atmosphere with constant
Coriolis parameter executes a circular trajectory in an anticyclonic sense. A generalization
of this type of inertial motion to the case with a geostrophic mean zonal flow can be derived
using a parcel argument similar to that used for the buoyancy oscillation.” (Holton, 2004,
page 204) [8].
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If the flow corresponding to the zonal geostrophic basic state is considered with
velocity ug, and it is assumed that the particle displacement does not perturb the pressure
field, then the approximate equations of motion between the initial position

Al
and the final one
Up=1u— g (A2)
Vf=70— 0

results in the system
du
i = for (A3)
{‘Z’ = —fup = f(ug —u)

We consider a particle that moves along with the geostrophic flow corresponding to
the basic state, which starts from position y = yp. If the particle is transversely displaced to
the current by a distance dy, a new zonal velocity u(yg + dy) will result from the integration
of Equation (A3)-first row.

u(yo+3y) dy o Yo+oy dy
N (a4
u(yo +dy) —u(yo) = foy (A5)
u(yo +dy) = u(yo) + fy (A6)

The geostrophic wind at the position (yo + y) can be approximated by

dug

ug(yo + 0y) = ug(yo) + 3y 5y (A7)

Substituting (A6) and (A7) into (A3)-second row, we obtain

d d? 0

= S0 = £ |ustn) + S0y ) - s (8)
d? d
o0 ==r(F-55)ov (A9)

It corresponds precisely to Equation (1) in this paper.

“Viewed in an inertial reference frame, instability results from an imbalance between
the pressure gradient and inertial forces for a parcel displaced radially in an axisymmetric
vortex. In the Northern Hemisphere, where f is positive, the flow is inertially stable pro-
vided that the absolute vorticity of the basic flow, is positive. In the Southern Hemisphere,
however, inertial stability requires that the absolute vorticity be negative. Observations
show that for extratropical synoptic scale systems the flow is always inertially stable, al-
though near neutrality often occurs on the anticyclonic shear side of upper-level jet streaks.
The occurrence of inertial instability over a large area would immediately trigger inertially
unstable motions, which would mix the fluid laterally just as convection mixes it vertically,
and reduce the shear until the absolute vorticity times f was again positive.” (Holton, 2004,
page 205-206) [8].

“[...] For typical atmospheric conditions, buoyancy tends to stabilize air parcels
against vertical displacements, and rotation tends to stabilize parcels with respect to
horizontal displacements. Instability with respect to vertical displacements is referred
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to as hydrostatic (or simply, static) instability (see [8] Section 2.7.3). For an unsaturated
atmosphere, static stability requires that the local buoyancy frequency squared be positive.
Instability with respect to horizontal displacements, however, is referred to as inertial
instability.” (Holton, 2004, page 279) [8].
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