symmetry

Article

Attention-Based Mask R-CNN Enhancement for Infrared Image
Target Segmentation

Liang Wang '* and Kan Ren *

check for
updates
Academic Editors: Yunyi Yan and

Junxuan Wang

Received: 14 April 2025
Revised: 4 July 2025
Accepted: 8 July 2025
Published: 9 July 2025

Citation: Wang, L.; Ren, K.
Attention-Based Mask R-CNN
Enhancement for Infrared Image
Target Segmentation. Symmetry 2025,
17,1099. https://doi.org/10.3390/
sym17071099

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

Shaanxi Aerospace Technology Application Research Institute Co., Ltd., Xi’an 710100, China

Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and
Technology, Nanjing 210094, China

*  Correspondence: wangliang_fighting@163.com (L.W.); k.ren@njust.edu.cn (K.R.)

Abstract

Image segmentation is an important method in the field of image processing, while in-
frared (IR) image segmentation is one of the challenges in this field due to the unique
characteristics of IR data. Infrared imaging utilizes the infrared radiation emitted by ob-
jects to produce images, which can supplement the performance of visible-light images
under adverse lighting conditions to some extent. However, the low spatial resolution and
limited texture details in IR images hinder the achievement of high-precision segmenta-
tion. To address these issues, an attention mechanism based on symmetrical cross-channel
interaction—motivated by symmetry principles in computer vision—was integrated into
a Mask Region-Based Convolutional Neural Network (Mask R-CNN) framework. A
Bottleneck-enhanced Squeeze-and-Attention (BNSA) module was incorporated into the
backbone network, and novel loss functions were designed for both the bounding box
(Bbox) regression and mask prediction branches to enhance segmentation performance.
Furthermore, a dedicated infrared image dataset was constructed to validate the proposed
method. The experimental results demonstrate that the optimized model achieves higher
segmentation accuracy and better segmentation performance compared to the original
network and other mainstream segmentation models on our dataset, demonstrating how
symmetrical design principles can effectively improve complex vision tasks.

Keywords: infrared image segmentation; attention mechanism; mask R-CNN

1. Introduction

Image segmentation is one of the most important methods in the field of image
processing. It can classify the pixels of an input image and separate the target from
the background. It has been widely used in various fields such as disease diagnosis [1],
agricultural production [2], intelligent driving [3] and defect detection [4].

Usually, target segmentation methods are divided into traditional image segmentation
methods and image segmentation methods based on deep learning. Traditional image
segmentation methods include matched filtering, edge detection, threshold segmentation,
active contour model methods [5], and so on. In some special cases, they can achieve good
segmentation results. However, traditional segmentation algorithms are limited to surface
features of the image and cannot fully exploit deeper semantic information. This limitation
makes them less effective in today’s increasingly complex image backgrounds. With the
continuous development of deep learning methods, neural networks are applied in the
field of image segmentation gradually. They can address the limitations of traditional
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image segmentation techniques. In particular, convolutional neural networks have been
widely used. In 2014, Ross Girshick introduced the R-CNN [6] based on convolutional
neural networks, which laid a solid foundation for the development of convolutional neural
networks in the field of object detection. Later in 2015, Girshick R proposed Fast R-CNN [7]
to address the significant time consumption issues of R-CNN. By optimizing the way of
extracting features from candidate regions in R-CNN, Fast R-CNN improved the running
efficiency of the overall model to some extent. In 2016, Faster R-CNN [8] was proposed
by Shaoging Ren. Its novelty lies in the design of the Region Proposal Network (RPN)
to address the significant time burden caused by selective searching. Soon after, Mask
R-CNN [9] emerged based on Faster R-CNN. Mask R-CNN utilizes ROI Align instead of
ROI pooling to improve detection speed. Additionally, it incorporates a dedicated mask
branch in the output stage, enhancing its suitability for instance segmentation tasks.

In 2019, Bolya D et al. [10] introduced Yolact, an efficient segmentation network that
adopts a parallel mask branch to perform detection and generate prototype masks simulta-
neously. Each instance is assigned a set of mask coefficients which are linearly combined
with the prototypes to produce the final instance masks. Building on this idea, Chen H
proposed BlendMask [11] in 2020, which merges concepts from both Mask R-CNN and
Yolact. By appending a mask branch to the FCOS [12] framework and incorporating a
Blender module that fuses instance-level and semantic-level features, BlendMask achieves
improved segmentation accuracy and flexibility through the integration of top—down and
bottom-up information. A similar paradigm is followed by CondInst [13], which dynam-
ically generates a unique mask head for each instance and couples it with shared global
mask features to yield accurate instance masks. In the same year, Wang X et al. pro-
posed Solo [14], a different segmentation approach that directly predicts object categories
based on spatial position and shape, eliminating the need for bounding box proposals. Its
improved variant, Solov2 [15], further separates the mask head into kernel and feature
branches, allowing for dynamic mask prediction and incorporating Matrix NMS to accel-
erate inference. In 2021, BoxInst [16] was introduced as a weakly supervised extension
of CondlInst. It employs a novel loss formulation that enables training without relying
on pixel-level mask annotations, offering a more annotation-efficient alternative without
modifying the network structure. Developed more recently, Sparselnst [17] (2022) adopts
a sparse activation-based strategy, leveraging a compact set of instance activation maps
to perform instance segmentation more efficiently. By circumventing the traditional NMS
process, Sparselnst improves overall speed while maintaining segmentation quality.

Infrared image segmentation is a challenging task in image processing. Infrared
imaging utilizes the infrared radiation emitted by objects to produce images. It is less
affected by lighting conditions and exhibits stronger anti-interference capabilities. In certain
cases, infrared images can complement the performance of visible-light images under harsh
lighting conditions. However, due to the relatively low overall resolution of infrared
images, it is difficult to obtain highly precise infrared image details. Therefore, utilizing
neural networks for infrared image segmentation poses certain challenges. Currently, a
mainstream approach to handling the segmentation of infrared images is to combine the
feature information from both infrared and RGB images. Ha Q et al. [18] proposed MFNet,
which utilizes an encoder-decoder architecture to process image data. The encoder employs
a CNN network with dilated convolutions for feature extraction. Additionally, a short-cut
block is designed to combine the feature maps of both IR and RGB images in the decoder.
Inspired by MFNet, Sun Y et al. [19] adopted a similar architecture and chose ResNet as the
feature extraction module for the encoder. They also designed an Upception module in the
decoder to restore the image resolution. The experimental results demonstrated that this
method achieved better segmentation accuracy and faster processing speed compared to
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MFNet. Subsequently, Shivakumar [20] optimized the existing methods for RGB-T image
calibration and designed a dual-path CNN structure to integrate the features of RGB-T
images, further improving the algorithm’s processing speed. However, the aforementioned
methods do not address the issue of not utilizing infrared image feature information in
RGB-T segmentation fully. Meanwhile, the problem of the inability to obtain clear visible
images under harsh conditions remains unresolved. They also cannot reduce the additional
time required to perform operations such as image alignment in the preprocessing stage.

In recent years, deep learning-based infrared image segmentation has achieved notable
progress, driven by continuous improvements in neural network architectures. A range
of innovative methods have been proposed to tackle the challenges posed by the inherent
fuzziness of infrared features. For instance, Xiong H et al. [21] introduced a Multi-level
Attention Module (MAM) to strengthen intra-class feature representation using contextual
cues, while their CMCM algorithm was designed to suppress inter-class interference. To
further mitigate edge blurring in thermal imagery, they implemented a multi-level edge
enhancement strategy. However, this approach showed limited effectiveness when deal-
ing with small-scale infrared targets. Ren S et al. [22] focused on improving small-object
segmentation by fusing low-level details with high-level semantic information. They also
developed an edge enhancement technique based on explicit modeling to compensate for
detail loss during feature extraction. From a broader perspective, Junwei Hu et al. [23]
argued that segmentation should not be restricted to isolated object regions. They intro-
duced Prior Scene Understanding (PSU) into their SAPN network, enabling global context
modeling. While this approach reduced the influence of background variability, it did
not fully resolve the issue of target-background boundary ambiguity. To further improve
accuracy without excessive computational cost, Yu J et al. [24] enhanced the U-Net [25]
architecture using a hierarchical-split depth-wise separable convolution block, along with a
decoupled approach to convolution and batch normalization layers. This design offered
a better trade-off between performance and efficiency. Aiming to address information
degradation during resolution changes, Jiuzhou W et al. [26] proposed DFA-Net, a deep
feature aggregation network. By aggregating multi-level features and applying mean
filtering to suppress noise, their model achieved improved segmentation performance in
complex infrared scenes. Despite the progress of deep learning in infrared image segmen-
tation, several key challenges remain unresolved: accurate segmentation under complex,
multi-class IR backgrounds; effective feature representation in low-texture IR data; and
unstable training and poor convergence due to imbalance in object-background regions.
To address these issues, we propose a novel infrared segmentation framework built upon
Mask R-CNN, incorporating three key innovations:

o A Bottleneck-enhanced Squeeze-and-Attention (BNSA) module is designed and inte-
grated into the backbone network. Unlike prior works that adopt generic attention
mechanisms, the proposed BNSA module fuses both global contextual dependencies
and fine-grained local details while introducing a lightweight bottleneck structure to
reduce computational overhead. This structure is specifically optimized for infrared
characteristics, where edge clarity and background suppression are critical.

e Two compound loss functions are formulated to improve training stability and preci-
sion. First, Focal_SIoU Loss is constructed by combining the directional spatial IoU
(SIoU) Loss with Focal Loss, aiming to balance foreground-background contributions
and accelerate bounding box convergence—an aspect not previously explored in this
combination. Second, MBCE_Dice_LS Loss is proposed to jointly leverage pixel-level
(MBCE), region-level (Dice), and rank-based (Lovasz-Softmax) gradients in mask pre-
diction. While each component exists independently in the literature, our combined
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formulation targets the unique imbalance and misclassification patterns common in
IR segmentation.

e A dedicated IR segmentation dataset with four object classes (humans, cars, bicycles,
UAV5s) is built for evaluation. Unlike many prior datasets that focus on dual-modal
fusion (e.g., RGB-T), our dataset emphasizes single-modality IR scenes with complex
backgrounds and target occlusion.

These contributions go beyond simple component integration by tailoring architectural
and loss function design specifically for the unique demands of infrared object segmentation.
Extensive experiments demonstrate that our method outperforms both classical and state-
of-the-art models in terms of accuracy, robustness, and small-target sensitivity.

2. Related Work
2.1. Self-Infrared Dataset Production

In the process of algorithm research in deep learning, datasets play a very important
role. Whether it is model training optimization or algorithm performance evaluation,
specific datasets are used. Currently, there are few publicly available infrared image
datasets specifically designed for image segmentation that include the four classes of
objects we require: humans, cars, bicycles, and UAVs. Therefore, we collected images
using an infrared thermographic camera, annotated the targets, and created a dataset for
subsequent research.

We used the LA6110 high-performance uncooled infrared focal plane array (IRFPA)
camera to capture the images. After data annotation, enhancement, and cleaning, we
obtained a total of 2760 images. Figure 1 displays some of the infrared images included
in the dataset. These images generated by the infrared image detector are grayscale, and
their size is 640 x 512. In addition to the segmentation targets we need, the images also
contain interference such as buildings, vegetation, clouds, and other elements, which make
background segmentation more complex. To further assess the generalization capability of
our method, we also evaluate it on the publicly available FLIR thermal dataset.

Figure 1. Partial image display of infrared dataset.

2.2. Transfer Learning

Transfer learning has become a common strategy in deep learning to address the
problem of limited training data and to enhance model generalization capabilities [27].
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It involves leveraging models that have been pre-trained on large-scale public datasets,
enabling more efficient training and faster convergence for new tasks. Instead of training a
model from scratch, a pre-trained network serves as a starting point, which significantly
reduces the computational cost and improves performance, even when the target dataset
differs substantially from the source data. This flexibility makes transfer learning especially
useful in domains where annotated data are scarce.

In our work, we adopted the Mask R-CNN model pre-trained on the COCO dataset as
the base network. To maintain annotation consistency during training, we formatted our
custom infrared dataset using the same COCO-style annotation scheme.

3. Method
3.1. Overview of Principle of Mask R-CNN Model

Mask R-CNN is a two-stage object detection network that is developed based on the
Faster R-CNN network. The overall network structure is depicted in Figure 2, where the
blue box represents the original structure of Faster R-CNN, and the red box represents the
structure of Mask R-CNN. These two models share a similar structure; however, Mask R-
CNN uses the Rol Align method, whereas Faster R-CNN adopts the ROI pooling technique.
Additionally, Mask R-CNN introduces a parallel mask branch during the network’s output
stage. In the following sections, we will discuss the main structure and principles of Mask
R-CNN.

EOI pooling

Bhozx
|___+ s T g ____x _____ >
X |~

Reslet101/50 |— FFN |—) pro | Conr

>
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Figure 2. Overview diagram of Mask R-CNN network structure.

The backbone network of Mask R-CNN includes two parts: ResNet101/50 [28] and
FPN. The former constructs a five-layer convolutional structure to generate feature maps
of different scales for the input image, and the latter combines feature maps of different
scales to construct a feature pyramid. Feature maps at different scales are progressively
fused through a top—down sampling process, and output feature maps are generated
based on the specific structure shown in Figure 3. The output feature maps are processed
by a shared convolutional neural network in RPN to generate anchor boxes of various
sizes. Subsequently, the classifier will provide probabilities for each anchor box, indicating
whether it contains an object or background. Based on the scores of these probabilities,
a certain number of anchor boxes are filtered out by the Proposal module. In addition,
the Proposal module will also perform coordinate correction on the anchor boxes and
remove regions that extend beyond the image boundaries or have excessively small sizes.
Furthermore, it employs a technique called NMS to filter out duplicate candidate regions.
Finally, it generates a set of candidate regions, known as ROI. A new method of ROI Align is
used in Mask R-CNN. Since the ROIs output by the RPN may be of varying sizes, mapping
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them to the same dimensions can result in inconsistent receptive fields. To address this
issue, Faster R-CNN introduces the Rol pooling method. However, Rol pooling involves
rounding operations when resizing ROIs to a uniform size, which can lead to inaccuracies
in the localization results. ROI Align uses bilinear interpolation to address the issues
caused by rounding operations. This method allows for a more accurate determination
of the mapped ROI coordinates, improving the overall detection accuracy of the network
effectively.

Resnet50/101
cS

ca

P4
c3

C2

Cl

Figure 3. Diagram of backbone network architecture of baseline Mask R-CNN.

The last part of the Mask R-CNN network is the prediction head, which consists of the
class prediction part and Bbox prediction part from Faster R-CNN, along with the newly
added mask prediction part. The class prediction part is responsible for determining the
specific class probabilities of each target in the ROIL The total number of classes includes
both the target classes and the background class. The Bbox prediction part is used to
determine the final position of the detection boxes. It involves correcting the offset of the
input position coordinates to ensure accurate localization. The added mask prediction part
is responsible for obtaining the segmentation masks. It uses FCN to convert the input ROI
into a fixed-size mask image of K x 28 x 28, where K represents the number of classes in
the predicted input image. This enables precise segmentation of the target.

3.2. Improved Attention Mechanism Based on SA Module

The main purpose of the attention mechanism is to select the most salient information
from image data [29]. The Squeeze-and-Attention (SA) module [30] is derived from the
squeeze-and-excitation (SE) module [31]. It addresses the issue of pixel grouping in image
segmentation by introducing attention convolutional channels for pixel-level predictions.
This effectively enhances the performance of image segmentation.

Due to the nature of classical convolutional layers, their convolution operation on
images only utilizes local information from each pixel to generate feature maps, without
incorporating global image information. However, for a complete image, the different parts
of the image often have correlations with each other. This suggests that leveraging global
contextual features to guide the learning process can offer more informative cues for image
segmentation [32]. Therefore, the SA module considers reweighting through both global
and local aspects. The specific structure of the SA module is shown in Figure 4.
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Figure 4. A schematic diagram of the structure of the SA attention module.

The structure of the attention channel, as shown in Figure 4, can be represented by
Equation (1):

Xatin = UP(U(Xatm)) = Up (0 (Fattn(Apool (Xin); Qattn))) )

Among them, Up(-) is an upsampling function used to restore the size of the attention
channel’s output feature map. o(-) represents the Relu activation function. And Kauttn
represents the output of the attention channel Fyn (+). Fatn (+) is the attention convolutional
channel determined by (41, which consists of two convolutional layers. Additionally, an
average pooling function Apool(-) is used to perform downsampling on the input feature
map X;, € RCEXHXW The SA module as a whole can be formulated as follows:

Xout = Xattn * Xres + Xattn (2)

RCXHXW

where X,,; € represents the output feature map result, and X, is the output

result of the main convolution channel, obtained from Equation (3):
Xres = F((Xin); Q) 3)

F(-) represents the main convolution channel determined by ), which consists of two
convolutional layers.

To further reduce the parameter burden of adding the attention module, we integrated
the bottleneck [28] into the original SA module and named this new module BNSA. The
bottleneck structure helps compress and optimize the feature representations within the
SA module, resulting in more efficient utilization of parameters. As shown in the orange
section of Figure 5, we added an additional 1 x 1 convolutional module before and after
the main convolutional channels and attention convolutional channels within the original
SA module. These modules serve to scale the number of channels, thereby reducing
computational overhead while retaining essential information. Inspired by the form of the
bottleneck in ResNet, we used a1 x 1 convolution to scale the number of channels to 1/4
of the original convolution layer. The parameter quantity of a single convolution can be
calculated using Equation (4):

params = 1% % Ciy * Cout 4)
where 1 represents the size of the convolution kernel, and c;;, and ¢, represent the input
and output channel numbers of the convolution layer, respectively. For the SA module
that incorporates the bottleneck structure, the parameter count of the overall convolutional
modules is significantly reduced. This greatly alleviates the computational burden of the
model, resulting in more efficient model training and inference.

By incorporating global contextual information and capturing local details effectively,
the BNSA module improves the overall performance of image feature extraction. Therefore,
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CxHxW
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we integrated the BNSA module into the backbone network of Mask R-CNN. We inserted
the BNSA module between ResNet and FPN layers, as shown in Figure 6, and conducted
experiments to evaluate its performance. Based on the experimental results, we decided to
insert the BNSA module after the output of C3 and C4 layers of ResNet. In Figure 6, these
insertion modules are marked in yellow. The specific experimental procedure and results
will be explained in Section 4.2.

Input —» BN

T+1, C/4 33, C/4 3, /4 ™1, C CxHxW
CONV CONV CONV CONV
» BN » BN |—»| B [ —»X—»—»| Output
RELU RELU RELU RELU A A
1%1, C/4 33, C/4 33, C/4 %1, C
CONV CONV CONV CONV
Upsample
BN » BN —3| BN > BN
RELU RELU RELU RELU

Figure 5. BNSA module structural diagram.
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Figure 6. A diagram of the backbone structure of the improved Mask R-CNN with integrated BNSA
modules: res2-5 represent the feature map results obtained from the output of modules C2-C5 in

{7

ResNet, and res2’-5' represent the feature map results obtained after incorporating attention modules
at each level.

The performance of the BNSA module was found to be highly sensitive to the specific
insertion point within the backbone network. Through comparative experiments, it was
observed that placing the BNSA module in either too shallow (e.g., C2) or too deep layers
(e.g., C5) led to suboptimal results. The shallow layers primarily extract low-level features
with limited semantic information, making it difficult for attention mechanisms to focus
meaningfully. In contrast, the deepest layers contain highly abstract representations with
reduced spatial resolution, which may cause the attention module to overfit or amplify
noise, especially in low-texture infrared scenes. Inserting the BNSA module at intermediate
levels such as C3 and C4 allows for a better balance between semantic richness and spatial
detail, enabling more effective enhancement in target-relevant features. This experimental
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observation supports the design choice to integrate BNSA specifically at the C3 and C4
layers in our final architecture.

This design helps the network selectively enhance discriminative thermal features
while suppressing redundant channel responses, which is particularly beneficial for infrared
images where object boundaries are often blurred and texture details are limited.

3.3. Bounding Box Regression Loss Function Optimization

The Mask R-CNN network has a total of five types of losses, including classification
loss (loss_rpn_cls) and bounding box regression loss (loss_rpn_loc) belonging to the RPN,
as well as classification loss (loss_cls), bounding box regression loss (loss_box_reg), and
mask loss (loss_mask) belonging to the prediction head. Among these, two classification
losses use the cross-entropy loss function, while the two bounding box regression losses
use the Smooth L1 loss function. The mask loss uses the mean binary cross-entropy loss
function. In this section, we will explain the method of optimizing the bounding box
regression loss function belonging to the prediction head.

The Smooth L1 loss function can be calculated using Equations (5) and (6):

Lrgg(ti, l’l*) = smoothy(t; — tl*) (5)

0.5x%  |x| <1

6
|x] =05 |x|>1 ©)

smoothyq(x) = {

In Equation (5), i represents the index of an individual ground truth box in each batch
of images. t; is a vector representing the offset between the predicted bounding box and the
anchor box; t} is a vector with the same dimensions as t;, representing the offset between
the anchor box and the ground truth bounding box.

However, in practice, the Smooth L1 loss function simply calculates the numerical
difference between the predicted bounding box and the ground truth bounding box. As can
be seen from Equation (6), when |x| > 1, the first derivative with respect to x is a constant.
This constant derivative can have an impact on the descent of the loss value during late
stages of training, potentially preventing the network from achieving better convergence
results. To address this issue, we used a combination of SIoU Loss [33] and Focal Loss [34]
for optimization.

The rationale for combining Focal Loss with SIoU stems from their complementary
strengths in addressing different limitations of bounding box regression in infrared imagery.
SloU provides a direction-aware mechanism that penalizes misalignment between pre-
dicted and ground truth boxes, improving convergence in terms of geometric consistency.
However, it lacks adaptiveness in weighting samples of varying quality during training.
Infrared images often contain background clutter, weak object boundaries, and numerous
false proposals, which can skew the learning process if all samples contribute equally. To
alleviate this, Focal Loss is incorporated to dynamically down-weight poorly predicted
boxes and emphasize high-quality samples by introducing an IoU-based scaling factor.
This integration effectively suppresses the influence of noisy gradients from low-IoU boxes,
stabilizes training, and accelerates convergence, especially in complex infrared scenarios
with imbalanced sample distributions.

SloU builds on CloU [35] by considering the problem of direction mismatch between
the predicted bounding box and the ground truth bounding box. It provides a direction for
the predicted bounding box to approach the real box, thereby accelerating the convergence
speed of the network model. Specifically, SloU utilizes four penalty costs, including IoU
cost, Angle cost, Distance cost, and Shape cost, to guide the correct descent of the loss
value. Representing the Angle cost, A drives the predicted bounding box to move toward
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the horizontal /vertical distance closest to the ground truth bounding box. The formula is

shown in Equation (7):
T

A =1—2 x sin?(arcsin(x) — 1 ) (7)
x = % = sin(a) (8)

t 2 2 .
where 0 = \/(bé —be,) + (bfyt —be,) , Cy= max(bfy[, be,) — mm(bf}f, be,), (bé’j, bfyt) repre-
sents the center coordinates of the ground truth bounding box, (bc,, b, ) represents the

center coordinates of the predicted bounding box, and the remaining parameters used are
given in Figure 7.

Figure 7. SloU parameter description diagram. b and by represent the center points of the predicted
bounding box and the ground truth bounding box, respectively. ¢ represents the distance between the
two center points. C;, and Cy, represent the vertical and horizontal coordinate differences between the
two center points, respectively. Cy and Cy represent the width and height of the minimum bounding
rectangle for the ground truth bounding box and the predicted bounding box, respectively.

The calculation formula for the Distance cost A is shown in Equation (9). It calculates
the distance between the center points of two bounding boxes and is greatly affected by the
Angle cost. When the Angle cost decreases, the Distance cost also decreases correspondingly
and vice versa. The Shape cost (2 promotes the predicted bounding box to align its shape
more closely to the ground truth box, as shown in Equation (10).

A= Zt:x,y (1 o e—"r,ﬂf) (9)
—wt\ 0
Q= Zt:w,h (1 -¢ Wt) (10)
B —bey b b, 2 |o—wt| |h—hst|

where px = (=) Loy = () 7 =2- M0 =4 wo = Somnn W = iy
w and w$! represent the width of two bounding boxes, respectively, and h and h8' represent
the height of two bounding boxes, respectively.
Overall, SIoU Loss can be formulated as follows:
A+Q
Lspoy = 1 — IoU + % (11)
Focal Loss as described above is different from the Focal Loss used in classification
losses. It aims to enhance the contribution of well-regressed predicted boxes to the overall
regression loss. Due to the imbalance between foreground and background in an image,
the predicted bounding boxes that closely match the ground truth bounding boxes account
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for a small proportion in the overall prediction results. However, high-precision regres-
sion predictions should have a larger impact on the gradients during the model training
process [36]. And it is also necessary to suppress the weight proportion of the loss value
for poorly regressed predicted bounding boxes. To achieve this, we combined Focal Loss
with SloU Loss to obtain the optimized bounding box loss function formula, expressed as
Equation (12), where 7 is responsible for adjusting the degree of suppression of low-quality
prediction boxes.

LPoculfsloU = IOUYLSIOU (12)

3.4. Mask Loss Function Optimization

In Mask R-CNN, the mask loss utilizes the mean binary cross-entropy (MBCE) loss.
The mask prediction branch generates segmentation results based on the ROI results. For
each RO, it outputs k masks of size m x m, where k represents the total number of detected
object categories in an image. m represents the size of the mask image, which is typically
set to 28. Each mask prediction is associated with a specific object class. This means
that each mask image contains the predicted segmentation mask for objects of the same
class. To handle objects of category k, only the kth mask prediction is used to calculate the
loss by comparing it with the corresponding ground truth mask. This approach avoids
competition between different object categories effectively. It can be said that the mask
branch in the Mask R-CNN network converts the multi-class loss calculation problem into
multiple binary classification loss calculation problems. The specific formula is depicted in
Equation (13):

k m?
LWMFﬁ%Z )Y [—yi-log(x;) — (1 —y;) - log(1 — x;)] (13)
] i
where i represents the index of pixels in the mask image. x; € (0,1) is obtained by
applying the sigmoid function to the output mask pixel values. y; € {0,1} represents the
positive or negative sample value of the current mask pixel. 1¥ indicates that for objects
belonging to category k, the loss is calculated only between the kth mask prediction and
the corresponding ground truth. When the category is k, its value is set to 1, and when the
category is not k, its value is set to 0.

MBCE Loss is essentially a per-pixel loss calculation function that primarily computes
the loss based on local information within the image. However, when there is a severe
imbalance between foreground and background or significant variations in the sizes of
segmented objects in an image, MBCE Loss tends to learn the background or smaller
objects, resulting in incorrect segmentation results. To address this issue, we incorporate
Dice Loss [37] as a supplement to MBCE Loss. Dice Loss takes a global perspective and
tends to focus on learning larger objects, independent of the foreground-background ratio.
It complements MBCE Loss and is represented by Equation (14):

m2
k 2} xiyi
Lpice = Z(lk)(l - mzlimz) (14)
! Lxi+ Ly
1 1

In addition to MBCE Loss and Dice Loss, which both focus on learning the correct
classification of mask segmentation results, we also incorporate the Lovasz-Softmax loss
function [38] to complement the learning of differential features in cases of incorrect
classification. The Lovasz—Softmax loss function utilizes the concept of Lovasz extension,
where the generated predicted probability distribution results are expanded into ordered
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subsets belonging to different classes for loss computation. The following will explain this
in detail.

We define ¢ € R™*™ as the predicted label and y € R™*™ as the true label. The IOU
Loss between the predicted and true labels can be formulated as follows:

lcnyl
Alcy)=1- (15)
I cUy]
As an alternative to IoU Loss, Lovasz—Softmax loss in Mask R-CNN can be formulated
as follows:
k k m?
Lis = Z( )Af(xi,yi) Z Z (xi, yi) - G(xi, i) (16)
j j i

where f(x;,y;) is the error function of the prediction result defined by Equation (17);
c; € {0,1} denotes the predicted label of pixel i belonging to class k. G(x;,y;) = A(S;,y) —
A(Si-1,y); Si is the ordered set of segmented pixels corresponding to x;. x; is sorted in the
order of X(i=0) > X(i=1) > 2 X (o) 2 2 X (imm2)s then S; sorts the ¢; corresponding

to x; according to the sorting result, and S; = {C(izo)/ Cli=1)r """ +C(i=i) }

172(1', ifCinl

X;, otherwise

flxiyi) = (17)

In conclusion, the optimized loss_mask function is known as MBCE_Dice_LS Loss,
and is formulated as shown in Equation (18). It is worth noting that we multiplied L;; by a
coefficient of 0.1 to maintain consistency among the three loss values in terms of magnitude.

LmBcE_pice_1s = Lmace + Lpice +0.1L1s (18)

4. Experiment Results
4.1. Experimental Configuration and Evaluation Indicators

All experiments in this section were conducted in a software environment consisting
of Python 3.8 and PyTorch 1.10. Additionally, GPU acceleration was performed using
NVIDIA GeForce RTX 3090 Ti (ASUS, Suzhou, China) (arch = 8.6) during the experiments.
The dataset that was used in our experiments, as mentioned in Section 2, consists of a total
of 2760 images. And the dataset was divided into training and testing sets at an 8:2 ratio
with 2208 training images and 552 testing images. During the training process of our model,
a learning rate of 0.001 was set, and the warmup method was applied to adjust the initial
learning rate. The model was trained for a total of 100 epochs, and after the training, it was
tested to evaluate its performance.

In the experiments, we primarily adopted evaluation metrics commonly used in
the COCO dataset, namely mAP and Recall. These metrics were employed to assess
the performance of the algorithm models. For the network model, four parameters can
be obtained for object detection results: TP: true positive samples; TN: the number of
true negative samples; FP: the number of false positive samples; FN: the number of false
negative samples. These parameters can be used to calculate the Recall and Precision
values, as shown in Equations (19) and (20):

TP
Recall = TP+ EN (19)
TP
Precision = (20)

TP + FP
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(a)

Recall measures the proportion of correctly predicted samples among all samples,
while Precision measures the proportion of correctly predicted results among all predicted
results. AP is obtained by calculating the area under the Precision-Recall curve, where
Recall values are plotted on the horizontal axis and Precision values on the vertical axis.
And mAP is the average of AP values across different classes. It represents the overall
performance of the model. A higher mAP value indicates better accuracy of the model.
Additionally, mAP50 and mAP75 represent the mAP values when the IoU threshold exceeds
0.5 and 0.75, respectively. APs, APm, and API refer to the mAP of target areas in different
size ranges, with cutoff thresholds of 32 x 32 and 96 x 96.

4.2. Experiments and Ablation Analysis of the BNSA Attention Module

To evaluate the effectiveness of the proposed BNSA module, we conducted an ablation
study by inserting the module at different levels (C2-C5) of the ResNet backbone, as
illustrated in Figure 6. To qualitatively analyze its impact on feature representation, feature
maps from each ResNet layer were visualized using a representative image from our
dataset. For consistency, all feature maps were resized to the same resolution, and channels
with significant responses were selected for display, as shown in Figure 8.

res2 res3 res4 res>

Original

m adding the improved SA
attention mechanism

(b) (c) (d) (e)

Figure 8. Feature map visualization. (a) The original image; (b—e) the feature maps before and after
adding the BNSA module in the C2-C5 layers of ResNet, respectively. The top row represents the
feature map before adding the BNSA module, while the bottom row represents the feature map
after adding the BNSA module. (c,d) The improved feature extraction effect after adding the BNSA
module in the C3 and C4 layers. (b,e) The decreased feature extraction effect after adding the BNSA
module in the C2 and C5 layers.

In Figure 8, the upper row shows the original feature maps before BNSA insertion,
while the lower row shows the corresponding outputs after the BNSA module was added.
Notably, the feature maps at layers C3 and C4 exhibit enhanced contrast and more de-
fined semantic boundaries after applying BNSA, suggesting that attention has effectively
improved mid-level feature localization. In contrast, applying BNSA at layer C2 leads to
dispersed activation across irrelevant background regions, likely due to the large spatial
size and low-level nature of early features. Similarly, at layer C5, excessive abstraction and
smaller spatial resolution result in a loss of fine-grained detail, and the added attention
module introduces redundant noise that slightly degrades the output quality.

These visual observations are corroborated by the quantitative results in Table 1,
where inserting BNSA in C3 and C4 simultaneously yields the best performance across
most metrics. For comparison, we also evaluated the performance of the original Mask



Symmetry 2025, 17, 1099

14 of 21

R-CNN model without the BNSA module. As shown in Table 1, the baseline results are
consistently lower across all metrics, especially in mAP@75 and mAPs, confirming the
effectiveness of the attention mechanism in improving both precise localization and small-
object segmentation. This indicates that mid-level semantic features benefit the most from
the BNSA module, striking a balance between spatial detail and semantic abstraction.
Therefore, inserting the BNSA module at the C3 and C4 layers was adopted in the final
model configuration.

Table 1. An experimental comparison of the BNSA module inserted at different layers. The first
column from top to bottom represents the results of inserting the BNSA module at the C2, C3, C4,
and C5 layers and at both C3 and C4 layers simultaneously. Each row of the table presents the model
metrics corresponding to each method. The results reveal that, except for mAP@50, which achieves
the highest performance when the BNSA module is inserted at the C3 layer alone, all other metrics
exhibit optimal results when the BNSA module is inserted at both layers, C3 and C4.

Method mAP Recall mAP@50 mAP@75 mAPs mAPm mAPI

Without BNSA 63.400 0.684 95.820 73.164 55.832 74.703 75.565
C2layer + BNSA  64.397 0.691 96.527 75.256 57.414 75.142 75.173
C3layer + BNSA  64.922 0.696 96.728 78.051 57.454 75.075 75.102
C4layer + BNSA  64.662 0.694 96.311 76.990 57.961 75.450 75.167
C5 layer + BNSA  63.955 0.689 96.012 74.902 56.474 75.315 77419

C3and Cdlayers o ogs 608 96.006 78.589 58.070 75951  77.997
+ BNSA

4.3. Experiments of Bounding Box Regression Loss

To obtain the best effect for the model with Focal_SIoU Loss, we experimented with
different values of A and evaluated their impact on model accuracy. As shown in Figure 9,
considering various metrics, it can be observed that overall model accuracy reaches its
optimum when A is set to 0.5.

After determining the value of A, we conducted experiments to compare the model
accuracy of Mask R-CNN using its own Smooth L1 loss function with other IoU-based loss
functions. We also tested the combination of various IoU-based loss functions with Focal
Loss. The value of A was set to 0.5, as referenced in Figure 9. The experimental results are
presented in Table 2, demonstrating that Focal_SIoU Loss performed best in all indicators,
except for a slight inferior segmentation of large objects when compared to CloU Loss.

This performance gain can be interpreted from both geometric and optimization
perspectives. SloU improves upon loU-based losses by incorporating directional alignment
and distance penalties, which enhance the spatial consistency between the predicted and
ground truth bounding boxes. However, SIoU alone treats all regression samples equally,
making it susceptible to noisy or low-quality proposals—common in infrared scenes with
blurred edges or occlusion. The introduction of the Focal weighting term addresses this
limitation by emphasizing well-predicted boxes and down-weighting uncertain ones based
on their IoU quality. This selective focus accelerates convergence and improves regression
robustness, especially for small or low-contrast infrared targets. The results validate that
the combination of SIoU’s geometric awareness and Focal Loss’s sample re-weighting
contributes to more accurate and stable bounding box localization.
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Figure 9. Model metrics under different A values: (a) The Recall values under different A values;
when A is set to 0.5, the Recall reaches its peak. (b) The results of various mAPs under different A
values; when A is set to 0.5, the mAP is slightly lower than the value when A is set to 0.75. The rest of
the mAP values reach their peak. (a,b) The overall model accuracy is shown to reach its optimum
when A is set to 0.5.

Table 2. A comparison of the experimental results with different bounding box regression loss
functions. The first column, from top to bottom, represents seven different methods: Smooth
L1, CloU, EloU [34], SIoU, Focal_ClIoU (a combination of CIoU and Focal Loss), Focal_EIoU (a
combination of EloU and Focal Loss), and Focal_SIoU (a combination of SIoU and Focal Loss). Each
row of the table presents the model metrics corresponding to each method. The results indicate that
Focal_SIoU Loss performs optimally across all values, except for being slightly inferior to CIoU Loss
in the segmentation of large targets.

Method mAP Recall mAP@50 mAP@75 mAPs mAPm mAPI
Smooth L1 Loss 64.602 0.693 96.359 76.504 56.818 75.582 77.225
CIoU Loss 65.089 0.687 96.289 76.998 57.774 74.638 79.263
EloU Loss 66.188 0.696 96.321 78.979 58.952 75.621 78.352
SIoU Loss 65.287 0.688 95.785 76.133 57.514 75.865 76.079
Focal_CloU Loss  66.344 0.699 96.534 79.071 58.926 76.001 78.891
Focal_EloU Loss  64.695 0.684 95.779 74.812 57.105 74.177 72.501
Focal_SIoU Loss  67.115 0.708 96.865 79.852 59.671 77.120 78.705

4.4. Experiments of Mask Loss Function

We tested the mask loss optimization method mentioned in Section 3.4, based on
MBCE Loss. Firstly, we combined Dice Loss with MBCE Loss. From the results in Table 3,
it can be observed that the model achieved significantly improved accuracy in recognizing
large targets with this combination. Then, we further optimized the model by adding
Lovasz-Softmax loss, which learns the difference features of misclassified examples. The
experimental results show that the model achieved optimal performance in various metrics
by using the three loss functions simultaneously.

The effectiveness of the MBCE_Dice_LS loss function stems from the complementary
strengths of its components. MBCE enhances per-pixel classification accuracy, which is
essential for delineating fine mask details. Dice Loss mitigates the foreground-background
imbalance common in infrared datasets by rewarding region-level overlap rather than
pixel-wise agreement. Lovasz-Softmax directly optimizes the IoU score, aligning the
training objective with the evaluation metric. Their combination allows the model to jointly
learn local accuracy, shape integrity, and metric consistency. In infrared images where
object contours are often unclear and boundaries may be diffuse, this compound loss
helps maintain mask completeness while suppressing misclassification at object edges.
The ablation results confirm that no single loss function alone achieves the same balance
between detail preservation and segmentation reliability.
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Table 3. A comparison of the experimental results using different mask loss functions. The first
column of the table, from top to bottom, represents three methods: using MBCE Loss alone, the
combination of MBCE Loss and Dice Loss, and the combination of MBCE Loss, Dice Loss, and
Lovasz-Softmax loss, respectively. Each row of the table presents the model metrics corresponding to
each method. The results indicate that under the condition of using the combination of MBCE Loss,
Dice Loss, and Lovasz-Softmax loss, the model achieves optimal performance across all metrics.

Method mAP Recall mAP@50 mAP@75 mAPs mAPm mAPI
MBCE Loss 64.602 0.693 96.359 76.504 56.818 75.582 77.225
MBCE . 65.292 0.700 96.312 78.207 58.141 76.182 79.265
Loss+Dice Loss
MBCE
Loss+Dice Loss

66.480 0.708 96.548 79.679 59.189 76.935 80.878
+Lovasz-

Softmax loss

4.5. Comparison with Other Models

We proposed adding the BNSA module into the Mask-RCNN framework. Addi-
tionally, we used Focal_SloU Loss as the bounding box regression loss function and
MBCE_Dice_LS Loss as the mask loss function. To validate the effectiveness of our pro-
posed method, we compared it not only with Mask R-CNN but also with mainstream
segmentation network models such as BlendMask, CondlInst, BoxInst, Solov2, and Spar-
selnst. The results are shown in Table 4. To assess stability, we repeated key experiments
three times with different random seeds. The observed standard deviation of the mAP
values was below 0.3, indicating stable and consistent performance. In addition, we also
conducted a statistical analysis of the complexity of each model, represented by the train-
able parameters ‘params’ of the model. The larger the value of “‘params’, the higher the
complexity of the model. From the results in Table 4, it can be observed that although our
method has a large number of model parameters, all other metrics are the highest, except
for the segmentation accuracy of large objects. Compared to the original Mask R-CNN
module, our method improves mAP by 3.858%, Recall by 0.025, mAP@50 by 0.87%, and
mAP@75 by 5.774%.

Table 4. A performance comparison of different models. The first column lists te seven different
methods used, namely Mask R-CNN, BlendMask, CondlInst, BoxInst, Solov2, Sparselnst, and Ours.
Each row of the table presents the model metrics corresponding to each method. The results indicate
that our method achieves the highest metrics across all categories, except for the segmentation of
large targets where the accuracy is lower than that of Solov2.

Method mAP Recall mAP@50 mAP@75 mAPs mAPm mAPI params

Mask
R-CNN

BlendMask 65.350 0.701 96.189 77.781 56.881  76.867  80.988 35982 M
CondInst  57.389 0.624 96.042 58.268 48.629 72254 77.091 34564 M
BoxInst 27.978 0.371 68.117 19.437 24344  37.661 41480 34260 M
Solov2 57.489 0.612 88.798 61.682 44404 74971 84.671 46.540M
Sparselnst  46.400 0.518 88.100 41.000 36.900 58200 66.900 31.618M
Ours 68.460 0.718 97.229 82.278 61.798 77.394  80.007 53.865M

64.602 0.693 96.359 76.504 56.818 75582  77.225 44343 M

In addition to our self-constructed dataset, we evaluated our method on the FLIR ther-
mal dataset to assess generalizability. As shown in Table 5, our approach outperforms the
baseline Mask R-CNN network across all metrics, especially in mAP@75 and small-object
segmentation (mAPs), indicating good transferability across thermal imaging domains.
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Table 5. Performance on FLIR dataset.
Method mAP Recall mAP@50 mAP@75 mAPs mAPm mAPI
Mask R-CNN 63.135 0.720 91.283 56.847 44.382 60.372 68.948
Ours 65.672 0.741 92.259 60.278 48.283 63.843 70.378

More intuitive segmentation results are displayed in Figure 10. We have selected
three images from the dataset as examples. The red boxes indicate the parts of the results
that were missed or misidentified. From Figure 10a, it can be observed that our proposed
method detected all targets in the image and achieved more accurate overall segmentation
results, without producing scattered color blocks as observed in other models. In Figure 10b,
our method demonstrated its superiority in the segmentation of small targets. Even for
drone objects with very small areas, our method can identify and segment them with high
confidence. In Figure 10c, only the CondInst model and our method segmented multiple
nearby targets correctly and completely. Moreover, our method exhibits higher confidence
in the detection results compared to CondInst, ensuring the accuracy of segmentation.

In summary, our proposed method has certain advantages over other models in terms
of detection accuracy, classification, and segmentation performance for infrared object
detection. Compared to other mainstream instance segmentation models, the proposed
method shows clear advantages in infrared scenarios characterized by background clutter,
multi-class interference, and low target visibility. For example, CondInst and Solov2 rely
heavily on mask head prediction without sufficient spatial refinement, often resulting
in coarse or fragmented masks. BoxInst, while efficient in weakly supervised settings,
lacks fine localization capability due to its limited reliance on pixel-level guidance. In
contrast, our model benefits from the mid-level attention enhancement introduced by
the BNSA module, which strengthens feature concentration around targets. Moreover,
the redesigned loss functions contribute to stable training and precise mask boundary
extraction. As visualized in Figure 10, our method generates more complete and accurate
masks, especially for small objects such as UAVs and bicycles. This demonstrates the
effectiveness of the proposed approach in addressing the inherent challenges of infrared
image segmentation.

While the introduction of the BNSA attention modules leads to a slight increase in the
number of trainable parameters, their computational cost remains relatively low due to the
lightweight bottleneck structure. Moreover, since the modules are only inserted at selected
mid-level layers (C3 and C4), the impact on overall inference speed is minimal. In practice,
we observed that the increase in inference time per image was within an acceptable range,
while yielding notable gains in segmentation accuracy—particularly for small and difficult
infrared targets. Therefore, the performance—efficiency trade-off remains favorable.



Symmetry 2025, 17,1099

18 of 21

Original image

Mask R-CNN

BlendMask

CondInst

BoxInst

Solov2

Sparselnst

Ours

a

Figure 10. The segmentation results for different models. From top to bottom: the original image, the
Mask R-CNN segmentation result, the BlendMask segmentation result, the CondInst segmentation
result, the BoxInst segmentation result, the Solov2 segmentation result, the Sparselnst segmentation
result, and the segmentation result of our proposed method. (a) The segmentation results of humans,
cars, bicycles, and UAV. (b) The segmentation results of UAVs. (c) The segmentation results of
human and bicycles. The red box highlights areas of missed detection and misrecognition in the
segmentation results of each model. From the results, it is evident that our method exhibits the most
favorable segmentation effect, while the other models display varying degrees of missed detection
and misrecognition.

5. Conclusions

In this paper, we utilized Mask R-CNN as the underlying framework for infrared image
segmentation. We also added the BNSA module to the backbone network and optimized
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the bounding box regression loss and mask loss. The BNSA module incorporates global
information from infrared images through the attention channel for feature learning. It
enhances the segmentation accuracy of the model while introducing fewer parameters. The
bounding box regression loss function, named ‘Focal_SIoU Loss’, comprises two aspects.
One of them is the direction-guided nature of SIOU, and the other is the adjustment of the
weight of the anchor boxes using Focal Loss. This approach accelerates the convergence
speed of the network model. Further, the mask loss function of MBCE_Dice_LS Loss
enhances model performance by considering global, local, and misclassification aspects
without increasing model parameters. In addition, we created a new infrared image
dataset to validate our proposed method. The experimental results demonstrate that our
approach outperforms several mainstream segmentation networks in both accuracy and
segmentation performance for infrared target recognition. In addition to improvements on
our custom dataset, the model also shows consistent performance gains on the public FLIR
thermal dataset, demonstrating its potential for broader infrared applications. Nonetheless,
the proposed method still faces challenges, including relatively high model complexity and
limited deployment flexibility. While the proposed method achieves strong results, there
are still a few minor limitations worth noting. For example, although the BNSA module is
lightweight and efficiently designed, it still introduces a slight increase in parameter count
compared to the baseline. Additionally, the current framework does not explicitly consider
temporal coherence, which may be relevant for certain video-based infrared applications.
These aspects can be explored in future work to further enhance applicability.

In future work, we aim to make the model more suitable for deployment in prac-
tical infrared perception scenarios, such as UAV-based thermal monitoring, night-time
surveillance, and industrial equipment inspection. In these applications, fast and accurate
segmentation of low-contrast targets is critical. Therefore, future research will focus on
compressing the network structure, reducing computational overhead, and enabling real-
time inference on embedded platforms or edge devices with limited resources. In addition,
we plan to explore domain adaptation techniques to improve the model’s robustness across
varying thermal conditions and scene domains.
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