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Abstract: The field of remote sensing target detection has experienced rapid development
in recent years, demonstrating significant value in various applications. However, gen-
eral detection algorithms still face many key challenges when dealing with directional
target detection: firstly, conventional networks struggle to accurately represent features of
rotated targets, particularly in modeling the slender shape characteristics of high-aspect-
ratio targets; secondly, the mismatch between the static label allocation strategy and the
feature space of dynamic rotating targets leads to bias in training sample selection under
extreme-aspect-ratio scenarios. To address these issues, this paper proposes a single-stage
Shape-Aware Dynamic Alignment Network (SADA-Net) that collaboratively enhances de-
tection accuracy through feature representation optimization and adaptive label matching.
The network’s design philosophy demonstrates greater flexibility and complementarity
than that of previous models. Specifically, a Dynamic Refined Rotated Convolution Module
(DRRCM) is designed to achieve rotation-adaptive feature alignment. An Anchor-Refined
Feature Alignment Module (ARFAM) is further constructed to correct feature-to-spatial
misalignment. In addition, a Shape-Aware Quality Assessment (SAQA) strategy is pro-
posed to optimize sample matching quality based on target shape information. Experiment
results demonstrate that SADA-Net achieves excellent performance comparable to state-
of-the-art methods on three widely used remote sensing datasets (i.e., HRSC2016, DOTA,
and UCAS-AOD).

Keywords: object detection; adaptive feature alignment; dynamic label assignment strategies

1. Introduction
With the swift progress of deep learning, the enhanced feature extraction ability of

convolutional neural networks has further facilitated advancements in remote sensing
object detection [1–5]. As one of the core research directions in the field of computer
vision, this field plays a crucial role in real-world applications such as disaster monitoring,
urban planning, and military reconnaissance. The primary objective is to accurately identify,
classify, and localize targets of interest within remote sensing imagery [6–8], enabling timely
decision-making and situational awareness across various domains. In remote sensing
images, targets are mostly oriented differently and arranged closely [9,10], which makes
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the adaptability of general object detection frameworks poor. The horizontal anchor boxes
often contain a lot of background interference and result in the problem of multiple targets
being selected simultaneously, leading to a significant decline in detection performance.
Therefore, how to effectively detect oriented objects in remote sensing images has become a
current research hotspot. Recently, several works have aimed to enhance the representation
of oriented bounding boxes in remote sensing object detection. This is mainly achieved by
developing specialized detection frameworks, such as R3Det [11], Rotated RetinaNet [12],
and RoI Transformer [13], as well as oriented box encoding techniques, such as sliding
vertex offset [14], short side offset [15], and midpoint offset box encoding [16]. In addition,
to further improve the performance of these methods, researchers have also proposed a
variety of loss functions, including CSL [17], KLD [18], and KFIoU [19].

Although the above methods exhibit high precision in detecting most targets, the
detection accuracy for certain specific types of targets (e.g., bridges, ports, ships, etc.) is still
unsatisfactory. We believe that the root of the problem lies in the fact that existing methods
overlook the differences in shape information between different types of targets, especially
the distinction between high-aspect-ratio targets and regularly shaped targets. Here, the
shape information we mentioned refers to the ratio of the long side to the short side of the
ground-truth bounding box of the target object, which can be intuitively represented by
a mathematical formula: SI = min(w,h)

max(w,h) , where w and h represent the width and height of
the ground-truth bounding box, respectively, and the value range of SI is (0,1]. We classify
all objects into two categories, with 1 > SI > 1

2 for regularly shaped targets and SI ≤ 1
2 for

high-aspect-ratio targets, as shown in Figure 1.
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Existing methods perform well in detecting regularly shaped targets, but when faced 
with rotated targets with large aspect ratio variations, the detection accuracy significantly 
decreases. There are two main reasons for this: 

Figure 1. Shape information distinction. The green box represents the ground-truth bounding box. w,
h denote the width and height of the ground-truth bounding box, SI represents the shape information,
SI greater than one-half indicates a regularly shaped target, and SI less than one-half is expressed as a
high-aspect-ratio target. (a) Regularly shaped target (b) High-aspect-ratio target.

Existing methods perform well in detecting regularly shaped targets, but when faced
with rotated targets with large aspect ratio variations, the detection accuracy significantly
decreases. There are two main reasons for this:

(1) Feature misalignment: The convolutional features of traditional backbone networks
are usually aligned based on fixed receptive field orientations, making it difficult to adapt
to directionally oriented targets with high aspect ratio differences, resulting in poor feature
extraction effects. Even if convolutional alignment or anchor box alignment operations
are introduced in subsequent steps, they cannot compensate for the loss of local edge
information of the target caused by the initial fixed convolution method, thereby affecting
the overall quality of feature extraction. This is because all subsequent operations, such
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as feature fusion and resampling, are based on the feature maps extracted by the initial
backbone network. Therefore, in the object detection framework, the backbone network
that initially extracts target features is crucial for improving model accuracy.

(2) Static label allocation: In the process of anchor box regression, high-aspect-ratio
rotated targets are extremely sensitive to angle regression. Even a slight angular deviation
can cause a significant increase in the deviation between the predicted and ground truth
boxes, especially when the shape information value is small, as shown in Figure 2. This
situation leads to an increase in false negatives during sample selection. Even with high
classification scores, due to poor regression performance, Intersection over Union (IoU)
between the predicted and ground truth boxes is below the preset threshold, causing
targets that should be positive samples to be misclassified as negative samples. This
misclassification results in an imbalance between positive and negative samples, which in
turn negatively affects the overall detection performance.
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Figure 2. In (a,b), the green boxes represent the ground-truth bounding boxes, while the burgundy
and yellow boxes represent the predicted boxes rotated by 15◦ and 30◦, respectively. The overlapping
areas of the burgundy and yellow boxes indicate IoU with the ground-truth bounding boxes. It is
evident that the impact of the rotation angle on ships with a high aspect ratio is much greater than
that on planes with regular shapes.

To address this challenge, we approach from two aspects: high-quality feature ex-
traction and rational label allocation. We believe that high-quality feature extraction is
the foundation of oriented object detection, while rational label allocation can further en-
hance the detection performance. We propose a single-stage Shape-Aware Dynamic Align-
ment Network (SADA-Net), which consists of two modules and one matching strategy:
Dynamic Refined Rotation Convolution Module (DRRCM), Anchor Refinement Feature
Alignment Module (ARFAM), and Shape-Aware Quality Assessment (SAQA) matching
strategy. Specifically, the DRRCM in the backbone network can accurately predict the
weight and angle of the rotational convolution kernel using the Data-Enhanced Spatial
Attention Module (DESAM). Subsequently, the predicted parameters are combined to
generate a convolution kernel that adaptively adjusts according to the pose information of
the oriented target, achieving accurate alignment with the target features and producing
direction-sensitive feature maps. The ARFAM in the detection head quickly generates high-
quality modified prediction anchor boxes on the direction-sensitive feature map through
the regression branch, serving as guidance to dynamically adjust the position of the feature
sampling points, thus further achieving precise feature alignment. High-quality direction-
ally adaptive features are extracted through the collaborative work of the double alignment
convolution module. In the label allocation process, based on the high-quality feature maps
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and modified prediction anchor boxes generated above, the SAQA method dynamically
adjusts the IoU threshold based on the target’s shape information for training sample
selection and calculates the centroid-adaptive distance to add quality information to the
selected positive samples, thereby optimizing the training sample selection. Experiments
conducted on commonly used public datasets such as HRSC2016, DOTA, and UCAS-AOD
demonstrate that our method can maintain good detection performance.

The main contributions of this paper can be summarized as follows:
1. We propose a novel object detection framework, SADA-Net, to generate high-quality

directionally adaptive features and regression prediction anchor boxes and couple efficient
sample selection strategies to obtain excellent detection performance.

2. A flexible dynamic rotation convolution module is proposed, which can be easily
embedded into the backbone networks of many detectors to extract high-quality basic
features for oriented targets.

3. A reasonable sample matching strategy, using sample shape information and
potential sample quality to optimize training samples, thus solving the inconsistency
between classification and regression.

2. Related Work
2.1. Remote Sensing Object Detection

Objects in natural scenes mostly exhibit characteristics such as arbitrary orienta-
tions, significant scale variations, and dense distributions [10,20]. General object detection
methods using horizontal anchors face the same issue, as their horizontal bounding box
localization fails to accurately describe the pose diversity of remote sensing targets. To
enable detectors to precisely detect oriented objects, researchers have proposed methods
like angle prediction and preset rotated anchor boxes to improve regression, albeit with
increased computational complexity. Ma et al. [21] proposed the Rotated Region Proposal
Network (RRPN), which introduces rotated candidate boxes into the Region Proposal
Network (RPN) architecture to detect tilted or non-axis-aligned targets. They adopt (x,
y, w, h, θ) as positional parameters for rotated bounding boxes, generating anchor boxes
with varying scales, aspect ratios, and rotation angles. Fine-tuning these parameters yields
angle-aware candidate regions. Ding et al. [13] designed the RoI Transformer, which uses
a lightweight fully connected layer to learn geometric parameters of Rotated Regions of
Interest (RRoI) from Horizontal Regions of Interest (HRoI), effectively avoiding the need to
design numerous RRoIs for oriented object detection. Xu et al. [14] generated rotated anchor
boxes by sliding the four vertices of horizontal anchor boxes. Xie et al. [16] proposed the
midpoint offset method, displacing the midpoints of the upper and right edges of horizontal
anchor boxes and refining them to obtain more accurate rotated anchor boxes. Compared
to these methods, the proposed SADA-Net improves the feature representation of the
entire network. First, the DRRCM in the backbone network generates direction-sensitive
features, significantly reducing the complexity of modeling oriented targets. Second, the
ARFAM in the detection head further refines features to efficiently extract discriminative
and semantic features of target boundaries. Finally, the high-quality feature maps are
dynamically assigned labels through the SAQA matching strategy, effectively alleviating
the inconsistency between regression and classification.

2.2. Feature Extraction for Object Detection

Feature extraction is a crucial component of object detection, as the effectiveness of
feature extraction by the network directly impacts the quality of model training. Azimi
et al. [22] designed an image cascade network that generates four input images of different
scales through bilinear interpolation, enabling the model to extract multi-scale features.
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Liu et al. [23] added convolutional modules after each stage of Swin-Transformer [24],
combining the local properties of CNNs with the global properties of Transformers to
extract richer foundational features. Sun et al. [25] introduced a feedback connection into
the feature fusion network to enhance the model’s ability to represent multi-scale features.
Chalavadi et al. [26] proposed a multi-scale object detection network (mSODANet) that
uses parallel dilated convolutions to construct a hierarchical structure, extracting contex-
tual features of different objects at multiple scales and fields of view. LMO-YOLO [27]
proposed a multi-linear scaling method and introduced dilated convolutions to maintain a
large receptive field, combined with multi-scale feature fusion to enhance feature learning
capability. To extract refined features, Zheng et al. [28] proposed a Feature Pyramid Trans-
former (FPT), which transforms, rearranges, concatenates, and convolves features within
the feature pyramid. However, these methods still struggle to achieve satisfactory detection
performance when handling complex and diverse oriented targets. Unlike the aforemen-
tioned approaches, we propose a dual-layer feature alignment technique. First, the DRRCM
adaptively adjusts convolutional kernels based on the pose information of oriented targets
to achieve preliminary alignment of target features. Second, the ARFAM dynamically
adjusts the positions of feature sampling points guided by refined predicted anchor boxes,
further enhancing convolutional alignment. These two convolution techniques work collab-
oratively at different stages, effectively addressing the spatial inconsistency between axial
convolution features and objects in arbitrary orientations, thereby extracting high-quality
directionally adaptive features.

2.3. Sample Selection for Object Detection

In detection networks, high-quality feature extraction is undoubtedly crucial as it
provides a solid foundation for subsequent model training. However, the sample selection
process is equally critical, exerting a decisive influence on both training efficacy and final de-
tection performance. Most object detectors conventionally adopt fixed IoU threshold-based
matching strategies to select positive and negative samples during training [29]. However,
this fixed metric approach often demonstrates poor adaptability when confronted with
significant inter-sample variations—such as target scale diversity, shape variability, and
background complexity—leading to suboptimal detection outcomes [30]. Consequently, dy-
namic sample selection strategies have gained increasing attention. Li et al. [31] proposed an
Adaptive Points Assessment and Assignment (APAA) scheme, which dynamically selects
the top-k samples with the highest quality scores as positive training samples by evaluating
point sets across four dimensions: classification quality, localization accuracy, orientation
consistency, and point correlation. Ming et al. [32] introduced Dynamic Anchor Learning
(DAL), which comprehensively evaluates the localization potential of anchors through
dynamic assignments based on predefined matching scores. AR-BCL [33] employs aspect
ratio-based bidirectional encoded labels to address the detection problem of near-square
objects. Zeng et al. [34] proposed an angle classification method, AR-CSL, which introduces
the SkewIoU values of objects with different aspect ratios under angular deviations for label
smoothing, thereby achieving more reasonable angle label modeling. This paper employs
the SAQA method for label assignment, which comprehensively integrates the target’s
shape information and center-point information to enable more flexible sample selection.

3. Methodology
The overall architecture of SADA-Net is illustrated in Figure 3. First, it adopts the

DRRCM as the backbone network to dynamically adjust convolutional kernels for aligning
arbitrarily oriented objects, thereby extracting preliminary aligned features. Subsequently,
the ARFAM performs anchor refinement to guide convolutions in acquiring more precise



Symmetry 2025, 17, 779 6 of 21

aligned features. Finally, leveraging the high-quality feature maps and refined anchor
boxes generated through the above stages, the SAQA strategy dynamically assigns labels
and evaluates sample quality, ensuring optimal matching between candidate boxes and
their corresponding ground-truth labels. This approach effectively avoids the inconsistency
between regression and classification, thereby enhancing detection performance. The
detailed implementation of SADA-Net is elaborated below.
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3.1. Dynamic Refined Rotation Convolution Module

In most existing remote sensing object detectors, the convolutional structures used
in the backbone network adopt axis-aligned or preset fixed rotation angles for feature
extraction of targets. However, objects in natural scenes are often placed at arbitrary angles.
Therefore, standard convolutional kernels struggle to precisely match the contours of non-
axis-aligned targets, making it difficult to effectively extract high-quality features from
these arbitrarily oriented objects.

In order to avoid the fixed convolution mode of standard convolution and enhance the
representation ability of the target, thus achieving accurate object detection. We propose
a Dynamic Refined Rotation Convolution Module (DRRCM). The overall structure of
DRRCM is shown in Figure 4 below.
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We designed a Data-Enhanced Spatial Attention Module (DESAM) to generate a
spatial mask through pooling, concatenation, convolution transformation, and sigmoid
activation function to weight the fused features and highlight the important spatial regions.
Then, the weighted fused features are average pooled and input into the kernel angle
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prediction branch and the kernel weight prediction branch. This module can make the
network more accurately focus on the key feature positions in rotating object detection and
then accurately generate the predicted weights and angles of the rotating kernels.

Specifically, we first efficiently capture spatial relationships by applying channel-wise
average pooling and max pooling (denoted as Pavg(·) and Pmax(·), respectively) to the
feature map F obtained from depthwise convolution:

Savg = Pavg(F),Smax = Pmax(F) (1)

where Savg and Smax are the spatial feature descriptors obtained through average pooling
and max pooling, respectively. To facilitate the information interaction between different
spatial descriptors, the concatenated pooled features (with 2 channels) are transformed into
Cin spatial attention maps using a convolutional layer F2→Cin(·).

S′ = F2→Cin([Savg; Smax]) (2)

where Cin represents the number of input channels. For each spatial attention map S′, a
sigmoid activation function is applied to obtain an individual spatial mask S′

i for each
convolutional kernel.

S′
i = sigmoid

(
S′) (3)

Then, the spatial masks are used to weight the features after depthwise convolution,
which are subsequently compressed into a C-dimensional feature vector through global
average pooling Vcin.

Vcin = Pavg
(
S′

i × F
)

(4)

Then, the pooled feature vectors are sent into two branches, respectively.
The first branch predicts the rotation kernel angle, where the feature vector is input

into this branch and processed through Dropout, a linear layer, Softsign activation, and
multiplication by a scale factor to obtain a set of angles θi:

θi = K(So f tsign(zθ)) (5)

where zθ is the linear layer without a bias term, ensuring that angle prediction depends
solely on variations in the input features and avoids learning biased angles. K =

( p
180.0 × π

)
is a scaling factor used to expand the rotation range, and the parameter p is used to adjust
the angle range, with a default value of 40.

The second branch is for rotating kernel weight prediction. By inputting the feature
vectors into this branch and through Dropout, a linear layer, and Sigmoid activation, a set of
weights λi are obtained.

λi = sigmoid(za) (6)

where za is a bias set for the linear layer to improve the flexibility of the model.
DESAM is initialized from a truncated normal distribution with a mean of zero and

a standard deviation of 0.2 in order to assist the model in converging more rapidly and
to reduce instability at the beginning of training. The implementation of the rotational
convolution function is elaborated on below.

The rotation angle θi parameter generated by the above DESAM prediction reparam-
eterizes the weights inside the convolution kernel, allowing the convolution kernel to
dynamically adjust according to different input feature maps, achieving adaptive rotation:

Y′
i = rotate(Yi,−θi) (7)
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W ′
i = interpolation

(
Wi, Y′

i
)

(8)

which Yi represents the coordinates of the original sampling points. Y′
i represents the new

sampling point coordinates after the original sampling point Yi is rotated counterclockwise
by an angle θi to achieve the convolution kernel and feature alignment. W ′

i represents the
reparameterized convolution kernel. interpolation(·) represents the bilinear interpolation,
which is used to calculate the weight value of the new position after the rotation of the Wi

convolution kernel.
The reparameterized convolution kernel is then multiplied by the corresponding λi

weight and summed, and then convolved with the input feature map to finally generate
high-quality direction-aware features Y:

Y = F · ∑n
i=1 λiW ′

i (9)

Through the DRRCM, the convolution kernel can adaptively adjust according to the
different orientations of objects in the input feature map, thereby efficiently capturing the
features of multi-directional objects in the image. Especially when detecting objects in aerial
images that are densely arranged and have large scale differences, high-quality feature
extraction is crucial for accurate classification and precise localization.

3.2. Anchor Refinement Feature Alignment Module

Based on the high-quality feature maps generated by DRRCM in the backbone network,
Anchor Refinement Feature Alignment Module (ARFAM) is employed to further refine
anchor points through a regression operation. The refined anchor parameters are then
used to compute an offset field, enabling the dynamic adjustment of aligned convolution
sampling points. This process generates feature representations that are more precisely
aligned with the target object, as shown in Figure 5.
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First, unlike most dense anchor sampling methods, we only preset a single initial
square anchor at each position on the feature map. This anchor is then refined into a
high-quality oriented anchor through the regression branch, thus reducing the need to
preset a large number of anchors on the feature map, which helps to reduce computational
complexity. The offset for predicting the anchor box regression target is as follows:

∆xg =
(xg−x)·R(θ)

w ; ∆yg =
(yg−x)·R(θ)

h

∆wg = log(wg
w ); ∆hg = log( hg

h )

∆θg =
θg−θ

π + k

(10)

where (x,y,w,h,θ) represent the center coordinates, width, height, and angle parameters of
the initial anchor. (xg,yg,wg,hg,θg) represent the parameters (same as above) of the ground-
truth bounding box. (∆xg,∆yg,∆wg,∆hg,∆θg) represent the offsets between the ground-truth
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bounding box and the initial anchor. By regressing these offsets, the model can adjust
the initial anchor to a corrected predicted anchor box that is closer to the ground-truth
bounding box. R(θ) represents the rotation transformation matrix used to convert the center
coordinates of the ground-truth bounding box to the coordinate system relative to the initial
anchor. K is the scaling factor used to adjust the angle value, ensuring that the rotation
angle remains within a reasonable range.

Secondly, in order to achieve feature extraction for the oriented target, we adjust the
feature sampling point position to realize dynamic convolution alignment guided by the
modified prediction anchor box. This method adds an offset o calculated from the modified
prediction anchor box to the original sampling points of the standard convolution:

o = ∑
pn∈R

(
1
S
(c +

1
k
(w, h) · pn)RT(θ)− (p0 + pn)) (11)

Here, S denotes the stride, and c, w, and h represent the corrected predicted an-
chor box’s center coordinates (cx,cy), width, and height. (p0 + pn) denotes the position
of the conventional sampling point for standard convolution, with p0 and pn repre-
senting the two-dimensional coordinates and relative offset of this sampling point, re-
spectively. R signifies the regular grid [(px, py)] of standard convolution; for instance,
R = [(−1, 1), (−1, 0), . . . , (0, 1), (1, 1)] would indicate a 3 × 3 convolution kernel with a
dilation rate of 1.

Then, the dynamic alignment convolution combines the offset and input features x
such that the sampled point location can be adjusted based on the shape and orientation of
the predicted anchor box to better match the geometry of the actual target.

Y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn + o) (12)

where Y(p0) represents the value of the output feature map at position p0. w(pn) is the
weight of the convolutional kernel at position pn. x(·) represents the input feature map.

The model is able to extract high-quality feature representations from the input image
through a dual-layer feature alignment technique. Its backbone network dynamically
refines the preliminary feature extraction of rotational convolution, and the anchor point
refinement feature alignment convolution in the detection head further refines the features.
These features not only contain the basic information of the target but are also enhanced at
the detail level, providing an effective feature basis for subsequent positioning.

3.3. Shape-Aware Quality Assessment

In previous sections, we introduced the extraction of sensitive features with coding
direction information in SADA-Net and its further alignment feature refinement process
after anchor box correction, but in the actual training process of the model, it was found
that there are still problems of inconsistency between regression and classification tasks,
that is, high classification scores cannot guarantee the accurate positioning of detection.
This problem has been widely studied in many articles [35–37], and some discussions are
traced back to the uncertainty of bounding box regression and localization [37]. We believe
that the bias between classification and regression primarily stems from the unreasonable
selection of training samples, and we further solve this problem from the perspective of
utilizing target shape information and evaluating sample quality.

Most of the existing detectors usually select positive anchors for training according to a
fixed IoU threshold between the anchor and the ground-truth bounding box [29]. However,
such sample selection methods often ignores the shape information of the target and fails
to make potential distinctions in the quality of the selected positive samples.
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To address the above issue, we employ the shape-aware quality assessment (SAQA)
method in the training stage. The implementation of this method is introduced in detail in
the following parts of this section.

Specifically, firstly, the IoU threshold is adaptively adjusted according to the shape in-
formation of the target, and dynamic sample selection is realized. The formula is as follows:

DIoU
i = (µ + σ)e−1/(SI·ω) (13)

where DIoU
i represents the IoU threshold for dynamically selecting samples. µ represents

the mean IoU value of the candidate samples. σ represents the standard deviation of
the IoU values of the candidate samples. ω is the weighting parameter used to control
the influence of aspect ratio on the weight factor. SI represents the shape information of
the target.

Then, the selected positive samples are refined by introducing centroid-adaptive
distance to evaluate the location and add the quality information. In detail, the centroid-
adaptive distance value δs

ij is calculated using Euclidean distance from sample point to
object center and the side length information of the object.

δs
ij = (

(xi − xj)
2

hi
+

(yi − yj)
2

wi
)

1
2

(14)

where (xi,yi) represents the center coordinates of the ground-truth bounding box, (xj,yj)
represents the coordinates of the sample point, and hi and wi represent the height and
width of the ground-truth bounding box, respectively.

Next, after obtaining the centroid-adaptive distance value, the quality score Qij of the
positive sample is calculated.

Qij = e 1
/
(1+δs

ij) (15)

In this way, the quality of samples is distinguished by introducing centroid-adaptive
distance. The smaller the distance value, the closer the sample point is to the target
center, and the higher its quality score. Therefore, using this distance value allows for a
more accurate evaluation of each positive sample’s quality, thereby optimizing the sample
selection process.

The SAQA method fully utilizes the geometric properties of the target and the potential
quality of the samples, ensuring the reasonable selection of positive samples during the
training process. This improves the consistency between regression and classification,
thereby enhancing the overall performance of the detector.

4. Experiments and Analysis
4.1. Datasets

The experiments were conducted on three publicly available high-resolution remote
sensing datasets: HRSC2016, DOTA, and UCAS-AOD.

The HRSC2016 dataset, released by Liu et al. [38] in 2016, is a dataset for optical
remote sensing image ship detection. It consists of images collected from Google Earth of
six iconic harbor locations, containing only two types of scenes: offshore and nearshore
ships. The dataset comprises 1061 images with a total of 2976 object instances. The spatial
resolution of the images ranges from 0.4 to 2 m, with pixel dimensions varying from
300 × 300 to 1500 × 900. In our experiments, all images are resized to 512 × 800 pixels.
A total of 617 images are utilized for model training, with 436 and 181 images allocated
to the training and validation sets, respectively, while the remaining 444 images are used
for testing.
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The DOTA dataset, proposed by Xia et al. [39] in 2018, is a large-scale benchmark
dataset for aerial image object detection tasks. The dataset includes 2806 high-resolution
aerial images with original image resolutions ranging from 800 × 800 to 4000 × 4000 pixels,
containing 188,282 finely annotated instances. It covers 15 object categories: airplane
(PL), baseball field (BD), bridge (BR), ground track field (GTF), small vehicle (SV), large
vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), tank (ST), soccer field (SBF),
roundabout (RA), harbor (HA), swimming pool (SP), and helicopter (HC). To evaluate the
model’s adaptability to different scales, we conducted both single-scale and multi-scale
training. In the single-scale training, images were cropped with a stride of 824 pixels. For
multi-scale training, images were first rescaled using three scaling factors (0.5, 1.0, and 1.5),
followed by cropping at each scale with a consistent stride of 512 pixels. Ultimately, all
original images were segmented into 1024 × 1024 pixel patches.

The UCAS-AOD dataset, released by Zhu et al. [40] in 2015, is an remote sensing
dataset for oriented aircraft and vehicle detection, containing 1510 images collected from
Google Earth. It includes a total of 1000 images of airplanes and 510 images of vehicles,
with an approximate resolution of 659 × 1280 pixels and 14,596 instances. The dataset has
not been officially divided by the authors. We randomly divided it into a test set with 453
images, a validation set with 302 images, and a training set with 755 images.

4.2. Implementation Details

In the proposed SADA-Net, the backbone network adopts ResNet-50 [41], and we
introduce our designed DRRCM to extract features within its structure. We use feature
pyramids from P3 to P7 for detecting multi-scale targets. For each feature point on the
feature map, only one regression anchor is set, and the scale is four times the total stride
size. Data augmentation includes random flipping and random rotation. Our weight decay
and momentum are set to 0.0001 and 0.9, respectively. The model is trained using the
SGD optimizer with an initial learning rate of 0.0025. The model is trained for 36 epochs
on the HRSC2016 dataset, 12 epochs on the DOTA dataset, and 72 epochs on the UCAS-
AOD dataset. Ablation studies are conducted on the HRSC2016 dataset, as it mainly
focuses on detecting ships in remote sensing images, which have significant aspect ratio
and scale variations, making it more suitable for testing the detection performance of our
model. In the ablation study, all images are resized to 512 × 800 for training. To ensure a
fair comparison with other methods, the mAP metric defined in the PASCAL VOC 2007
challenge [42] is used across all three datasets. We use the MMDetection [43] toolbox to
train the model on an RTX 2080Ti GPU, with a total batch size of 2. Each experiment is
conducted multiple times, and the stable value is taken as the final result.

4.3. Ablation Studies
4.3.1. Evaluation of Different Components

To analyze the impact of different components designed in SADA-Net, we conducted
experiments on the HRSC2016 dataset using a controlled variable approach. All experi-
ments were performed with the same settings to ensure the rigor of the experiments. The
experimental results for each component are shown in Table 1. Using only the DRRCM,
the detection performance improved by 1.79% compared to the baseline, indicating that
DRRCM can more effectively extract high-quality feature representations for accurate detec-
tion performance. When both DRRCM and ARFAM were used, the detection performance
reached 84.89% mAP, an improvement of 9.67%, which demonstrates that even with just
one preset anchor point, guiding the convolutional feature alignment using high-quality
corrected anchors can further efficiently extract high-quality feature representations while
optimizing the anchor points. This indicates that these two methods not only do not conflict
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but also progressively extract higher-quality feature representations in a more effective
manner, significantly improving detection performance. When all three components—
DRRCM, ARFAM, and SAQA—were used, the detection performance improved by an
additional 4.69%. It is clear that in the label assignment process, SAQA made reasonable
sample selections based on the high-quality feature map and optimized anchor boxes,
ultimately achieving 89.58% mAP, an improvement of 17.94% over the baseline, proving the
effectiveness of our framework. Some heatmap visualization results, as shown in Figure 6,
intuitively demonstrate that our network can respond more accurately to the target object
region compared to the baseline model.

Table 1. Influence of each component of SADA-Net.

Baseline Different Variants

DRRCM
√ √ √

ARFAM ×
√ √

SAQA × ×
√

mAP 71.64 73.43 84.89 89.58
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4.3.2. Effectiveness Evaluation of DRRCM

To evaluate the effectiveness of our designed DRRCM, we conducted comparative
experiments on the HRSC2016 dataset for the backbone integrated with different DRRCMs.
In the experiment, we compared the performance of the standard convolution module
based on ResNet-50 backbone with several different versions of the backbone integrated
with DRRCM. The experimental results are shown in Table 2. We replaced all 3 × 3 standard
convolution modules in 3 residual blocks of Stage4 of ResNet-50 with DRRCM, and it can
be seen that the detection effect was improved by 0.29%, which indicates that the DRRCM
we proposed can better extract object features. Further, by replacing all 3 × 3 standard
convolution modules in 3 and 6 residual blocks corresponding to Stage4 and Stage3 of
ResNet-50 with DRRCM, the detection effect was further improved to 72.66%. This fully
demonstrates the continuous improvement of detection performance brought by the multi-
level optimization capture of target features with the expansion of the DRRCM integration
range. Finally, when we replaced all 3 × 3 standard convolution modules in 3, 6 and
4 residual blocks corresponding to the last three stages of ResNet-50 with DRRCM, the
final detection effect reached 73.43% mAP, which is a 1.79% improvement over the baseline
backbone without replacement. These experimental results fully verify the advantages of
DRRCM in improving object detection performance.
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Table 2. Ablation study on the proposed DRRCM.

Method Backbone mAP

RetinaNet [12]

R50 71.64
R-50-DRRCM_S4 71.93

R-50-DRRCM_S4 + S3 72.66
R-50-DRRCM_S4 + S3 + S2 73.43

Note: (“R-50-DRRCM_S4” indicates that we replaced all 3 × 3 standard convolution modules in Stage 4 of
ResNet-50 with DRRCM. The “+” symbol denotes the addition of the required replaced “Stage.”).

4.3.3. Evaluation of the Effect of ARFAM

We explored the effects of using different numbers of ARFAM on the network design.
The experimental results are shown in Table 3. Through experiments, we conclude that
ARFAM can improve the detection performance of SADA-Net, but more modules are not
better. The number of ARFAMs is set to 2, and the detection effect is the best, reaching
an mAP of 89.58%. When the number of ARFAMs continues to increase from 2 to 3–4,
the detection effects decrease by 0.15% and 0.64%, respectively, and it can be seen that
the performance of the model shows a trend of slow decline. We speculate that a deeper
network structure does not bring the expected improvement for small object detection
that requires a small receptive field. On the contrary, a deeper network may lead to an
excessively large receptive field, so that the spatial information of small targets is over-fused,
and important local details are lost, thereby affecting the detection effect of small targets.

Table 3. Ablation study for ARFAM.

Method DRRCM ARFAM SAQA mAP

SADA-Net R-50-DRRCM_S4 + S3 + S2

1
√

88.74
2 89.58
3 89.43
4 88.94

4.3.4. Effectiveness Evaluation of SAQA

We compare the detection performance of different label matching strategies on the
SADA-Net structure. The results in Table 4 show that our proposed SAQA label matching
method achieves the best performance in the object detection task. Compared with the
traditional MaxIoU method, SAQA improves the mAP by 8.53% and also improves the
mAP by 1.79% compared to the ATSS method. SADA-Net has strong feature expression
ability and can efficiently extract high-quality rotation invariant features. The built-in SAQA
method combines the shape information of the target on this basis, adaptively adjusts the
IoU threshold and evaluates the sample quality information, and effectively improves the
matching quality of positive samples, thus optimizing the consistency of classification and
localization, further improving the overall detection performance. The experimental results
verify the key role of SAQA in the SADA-Net structure, which significantly improves the
accuracy of object detection.

Table 4. Effect of different label assignment strategies.

Method Label Assignment mAP

MaxIoU [12] 81.05
SADA-Net ATSS [29] 87.79

SAQA 89.58
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4.3.5. Multi-Scale Performance Evaluation

To evaluate the performance of the model under different input resolutions, we con-
ducted a comprehensive comparative experiment on the HRSC2016 dataset, assessing the
detection performance of the classical detector RetinaNet and our proposed SADA-Net, as
shown in Table 5. When using RetinaNet (with ResNet-50 as the backbone) and setting the
input resolution to 512 × 800, the model achieved only 71.64% mAP. Although it offered a
relatively fast inference speed (16.7 FPS), its detection accuracy was limited. In contrast,
SADA-Net achieved a significantly higher mAP of 89.58% at the same input resolution
(512 × 800), outperforming RetinaNet by 17.94%, which demonstrates the superior repre-
sentational capability of our model in extracting features of rotated objects. Furthermore,
SADA-Net achieved mAPs of 88.43%, 89.39%, and 88.06% at input resolutions of 512 × 512,
800 × 800, and 1024 × 1024, respectively, verifying its stability and robustness under
multi-scale input conditions. Although SADA-Net has a larger number of parameters and
computational cost (72.58 M parameters and up to 281.46 G FLOPs), it consistently main-
tains an inference speed above 9.0 FPS across different resolutions, thereby balancing high
accuracy with reasonable efficiency. These results suggest that SADA-Net can consistently
deliver high-precision outputs even under significant resolution variation, demonstrating
strong practical applicability in scenarios requiring high-accuracy detection, such as remote
sensing imagery.

Table 5. Comparison of different input resolutions on the HRSC2016 dataset.

Method Backbone Size mAP Params (M) FLOPs (G) FPS

RetinaNet [12] R-50 512 × 800 71.64 36.13 163.84 16.7

SADA-Net R-50-DRRCM

512 × 512 88.43

72.58

70.36 10.1
512 × 800 89.58 110.04 9.9
800 × 800 89.39 172.06 9.6

1024 × 1024 88.06 281.46 9.0

5. Results and Analysis
Results on HRSC2016: The HRSC2016 dataset contains a large number of rotated ship

images with high aspect ratio, multi-scale, and arbitrary orientation, which can fully verify
the detection performance of our model for high-aspect-ratio oriented targets. Our method
achieves competitive performance on the HRSC2016 dataset. As shown in Table 6, using
R-101-DRRCM as the backbone network and adjusting the input image to 512 × 800 pixels,
our method achieves the highest mean average precision (mAP) of 90.05%. Even when
using the lighter R-50-DRRCM, our method still achieves an mAP of 89.58%. It is worth
noting that our method uses only one square anchor at each position of the feature map, but
it still outperforms frameworks that preset a large number of rotated anchors at each point
of the feature map. For example, R2CNN presets 21 anchors and R3Det presets 126 anchors.
Compared with their best detection results, we use only one anchor and do not use data
augmentation strategies for training and testing, which achieve increases of 16.51% and
0.32%, respectively. These results show that it is not necessary to preset a large number of
rotated anchor boxes of different scales for oriented object detection. More importantly,
it is essential to extract high-quality basic features and optimize high-quality prediction
anchor boxes, and on this basis, select reasonable sample training for target recognition.
Some qualitative results are shown in Figure 7.
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Table 6. Comparison experiments of HRSC2016.

Methods Backbone Size Anchor mAP

R2CNN [44] R-101 800 × 800 21 73.07
RRPN [21] R-101 800 × 800 54 79.08
RRD [45] VGG16 384 × 384 13 84.30

RoI-Trans. [13] R-101 512 × 800 5 86.20
DAL [32] R-101 416 × 416 3 88.95

R-RetinaNet [12] R-101 800 × 800 121 89.18
R3Det [11] R-101 800 × 800 126 89.26

CFC-Net [46] R-101 800 × 800 1 89.50
SADA-Net R-50-DRRCM 512 × 800 1 89.58

SADA-Net (aug) R-50-DRRCM 512 × 800 1 90.03
SADA-Net (aug) R-101-DRRCM 512 × 800 1 90.05

Note: (‘aug’ represents data augmentation; ‘Anchor’ refers to the number of preset anchor points at each position
on the feature map).
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(2) Results on UCAS-AOD: To further validate the effectiveness of the proposed
SADA-Net, a series of experiments were conducted on the UCAS-AOD dataset. The results
presented in Table 7 demonstrate that our method outperforms the other detectors in
terms of performance, achieving an mAP of 90.00%. Specifically, the detection results for
the categories of cars and airplanes are 89.42% and 90.57%, respectively, both reaching
the highest detection accuracy for these categories. This demonstrates that the proposed
method exhibits strong robustness for densely arranged small objects, further validating its
superior performance. Some qualitative results are shown in Figure 8.

Table 7. Comparative detection results on the UCAS-AOD dataset.

Methods Car Airplane mAP

YOLOv3 [47] 74.63 89.52 82.08
R-RetinaNet [12] 84.64 90.51 87.57
Faster RCNN [48] 86.87 89.86 88.36

RoI-Trans. [13] 88.02 90.02 89.02
RIDet-O [49] 88.88 90.35 89.62
SADA-Net 89.42 90.57 90.00
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(3) Results on DOTA: As shown in Table 8, our proposed method demonstrates
superior detection performance compared to other advanced methods, achieving an mAP
of 79.60%. Through our proposed SI criterion, we divide the 15 target categories in the
dataset into two typical categories: high-aspect-ratio targets (BR, GTF, LV, SH, and HA)
and regularly shaped targets (PL, BD, SV, TC, BC, ST, SBF, RA, SP, and HC). The data from
the experiments show that this method excels in the detection of high-aspect-ratio targets,
achieving the best detection accuracy in all five subcategories; meanwhile, in the detection
of regularly shaped targets, seven out of ten subcategories reached the best comparison
level, which fully validates the robustness of our method in dealing with the diversity of
target orientation and shape variability. It should be emphasized that the improvement
of detection accuracy for remote sensing targets with extreme aspect ratio features such
as BR and LV is particularly significant, with increases of 4.64% and 4.59%, respectively,
compared to the second best method. The qualitative visualization results shown in Figure 9
further demonstrate that this method has a significant advantage in detection effects under
different scales, dense arrangement, and complex background conditions.
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Table 8. Comparative experiments on the DOTA dataset.

Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

RoI-Trans. [13] R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CAD-Net [50] R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

DRN [51] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
O2-DNet [52] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04

BWP-Det-M [53] R-50 89.36 78.91 51.06 65.34 61.41 77.35 76.23 89.34 85.36 82.00 57.22 61.60 65.67 64.23 67.34 71.42
R3Det [11] R-101 89.54 81.99 48.46 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.97 59.82 65.44 67.46 60.05 71.69

SCRDet [54] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
FADet [55] R-101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.64 53.40 65.42 74.17 69.69 64.86 73.28
R3Det [11] R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

ARS-DETR [34] R-50 86.97 75.56 48.32 69.20 77.92 77.94 87.69 90.50 77.31 82.86 60.28 64.58 74.88 71.76 66.62 74.16
S2A-Net [56] R-101 88.70 81.41 54.28 69.75 78.04 80.54 88.04 90.69 84.75 86.22 65.03 65.81 76.16 73.37 58.56 76.11
CSL-F [17] R-152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
DAL [32] R-50 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95

SADA-Net (aug) R-101-DRRCM 89.99 75.77 49.94 77.83 70.24 82.41 89.08 90.71 66.62 88.46 73.07 65.04 71.97 57.95 42.36 72.76
SADA-Net (aug) R-50-DRRCM 90.00 77.05 48.34 78.49 71.91 84.13 89.02 90.71 69.37 88.20 71.16 66.87 65.15 61.39 46.79 73.24

SADA-Net (aug + ms) R-50-DRRCM 90.03 87.19 57.16 85.09 77.16 86.55 90.20 90.64 72.88 89.75 80.55 69.34 77.42 68.50 70.43 79.53
SADA-Net (aug + ms) R-101-DRRCM 90.16 83.14 59.67 84.01 78.26 87.00 90.17 90.72 73.37 89.57 78.05 75.07 77.19 68.67 68.92 79.60
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6. Conclusions
This paper proposes a single-stage Shape-Aware Dynamic Alignment Network (SADA-

Net) for the problem of directional object detection in remote sensing images. The frame-
work optimizes feature representation, anchor point refinement, and training sample
selection, significantly improving detection performance. Specifically, SADA-Net extracts
high-quality orientation-sensitive features by adaptively adjusting convolution kernel
parameters, effectively capturing the rotation characteristics of the target; secondly, by
optimizing the anchor point generation mechanism, it ensures the spatial accuracy of the
prediction box, significantly improving the feature alignment accuracy. Finally, in the sam-
ple selection strategy, combining target shape information and sample quality evaluation,
it realizes the dynamic selection of positive samples, thereby enhancing the consistency
between regression tasks and classification tasks. Experimental results show that SADA-
Net achieves excellent detection performance on three benchmark datasets: HRSC2016,
DOTA, and UCAS-AOD, with mAP reaching 90.05%, 79.60%, and 90.00%, respectively,
fully verifying the effectiveness and advancement of this method in the task of directional
object detection in remote sensing images.
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