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Abstract: This paper introduces a new class of harmonic functions defined through a
generalized symmetric q-differential that acts on both the analytic and co-analytic parts of
the function. By combining concepts from symmetric q-calculus and geometric function
theory, we develop a framework that extends several well-known operators as special
cases. The main contributions of this study include new criteria for harmonic univalence,
sharp coefficient bounds, distortion theorems, and covering results. Our operator offers
increased flexibility in modeling symmetric structures, with potential applications in com-
plex analysis, fractional calculus, and mathematical physics. To support these theoretical
developments, we provide concrete examples and highlight potential directions for future
research, including extensions to higher-dimensional settings.

Keywords: analytic functions; univalent functions; harmonic functions; q-symmetric
calculus; q-symmetric differential operator

1. Introduction and Preliminaries
The field of symmetric q-calculus has garnered increasing interest due to its applica-

bility in various branches of mathematics and mathematical physics, fractional calculus,
geometric function theory (GFT), and quantum mechanics [1]. It is well known that the
derivative of a differentiable function f can be approximated by the symmetric q-derivative,
which is believed to generally exhibit superior convergence properties compared to those of
the q-derivative, although further research is required to confirm this. Originating from the
concept of q-calculus developed in the early 20th century, the symmetric variant introduces
more refined operator behaviors that are particularly suited to studying function classes
with inherent symmetry properties.

Foundational work by Jackson [2] laid the groundwork for the q-analogue of classical
differential and integral operators. The concept of q-starlike functions was first introduced
by Ismail and his colleagues in 1990 [3]. Their pioneering work laid the foundation for sub-
sequent research in this area, establishing q-starlike functions as a significant topic of study
within the broader field of geometric function theory. Since then, the notion of q-starlike
functions has been extensively explored and developed, leading to a deeper understanding
of their properties and applications in various mathematical contexts. In a related study,
Arif et al. [4] employed convolution techniques to define the q-Noor integral operator,
subsequently applying it to identifying new subclasses of analytic functions. Furthermore,
in [5], the authors applied q-calculus operator theory to establishing the q-analogue of the
differential operator and explored a new subclass of analytic functions. Srivastava et al. [6]
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used the q-derivative operator to define a class of k-symmetric harmonic functions. Numer-
ous mathematicians have contributed to this field by defining new subfamilies of analytic
functions, often through the use of q-fractional integral and differential operators.

Several notable advancements have stemmed from the application of symmetric q-
calculus in geometric function theory. Kanas et al. [7] introduced symmetric q-analogues of
differential operators to define novel classes of starlike and convex functions. The foun-
dational work by Kanas et al. set the stage for subsequent studies that have expanded
the scope of symmetric q-calculus. Building upon these developments, Khan et al. [8]
have revisited and refined the generalized symmetric conic domain by incorporating the
principles of symmetric q-calculus. Their research has contributed to the evolution of math-
ematical techniques and broadened the applicability of symmetric q-calculus in geometric
function theory and beyond. In their research, Khan et al. introduced a novel class of
q-starlike functions, expanding the scope of geometric function theory by incorporating
the principles of symmetric q-calculus. Their study also yielded significant insights into
the properties of the symmetric q-operator, various types of q-starlike and q-convex func-
tions, and innovative approaches for extending the conic domain. These findings have
contributed to a deeper understanding of the interplay between q-calculus and function
theory. In a subsequent study, Sabir et al. [9] developed a systematic approach to analyzing
m-fold symmetric functions in relation to symmetric q-calculus. By leveraging this operator,
they were able to explore several key results concerning m-fold symmetric bi-univalent
functions, further enriching the theoretical framework of q-calculus in geometric function
theory. Additionally, Khan et al. [10] advanced the concept of the symmetric q-derivative
operator for multivalent functions, uncovering new and significant applications of this
operator. Their work provided a foundation for further research into the role of symmetric
q-calculus in complex function analyses. In recent work, Khan et al. [11] applied fundamen-
tal concepts from symmetric q-calculus and the theory of conic regions to introduce a new
form of generalized symmetric conic domains. Building on this framework, they defined
a novel subclass of symmetric q-starlike functions within the open unit disk U. Their
research not only expanded the theoretical foundation of symmetric q-starlike functions
but also led to the establishment of several new results in this area, further contributing
to the development of geometric function theory. For more up-to-date work on this topic,
consult [12–14].

Despite these advancements, the application of symmetric q-calculus to the theory of
harmonic univalent functions has received considerably less attention. Most of the existing
results are confined to purely analytic settings, with little exploration of the co-analytic
components essential to harmonic mappings. This leaves an important gap in the literature,
especially given the broader importance of harmonic functions in complex analyses and
their numerous geometric and physical applications.

To address this gap, we introduce a new family of harmonic functions associated with

a generalized symmetric q-differential operator, denoted by R̃n,s,λ
q . This operator extends

the classical Ruscheweyh operator and the Al-Oboudi operator through the appropriate
selection of the parameters and limits. Our operator is specifically designed to act on
both the analytic and co-analytic parts of harmonic mappings, thereby capturing the full
complexity of their geometric structure.

This study establishes sufficient and necessary coefficient conditions for harmonic

functions to belong to the class R̃Hn,s,λ
q (α). We derive sharp coefficient bounds, distortion

results, and covering theorems, offering a comprehensive geometric characterization of
this new function class, paving the way for further developments in both theoretical and
applied contexts.
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To allow for more accurate comprehension of this paper, we will bring up some
essential notations and concepts. The assumption we make throughout this paper is that
0 < q < 1, N ={1, 2, 3, . . .}.

The theory of q-analogue or q-extensions of classical formulas and functions originates
from the key observation that (see [2])

lim
q→1−

1 − qn

1 − q
= n

which justifies referring to the quantity 1−qn

1−q as the basic number, commonly denoted
by [n]q.

The symmetric q-number [̃n]q (see [15]) is defined as

[̃n]q =
q−n − qn

q−1 − q
, for n ∈ N and [̃0]q = 0. (1)

It is essential to highlight that as q → 1−, the symmetric q-number does not reduce into
the standard q-number, which often appears in the context of q-deformed quantum mechanical
simple harmonic oscillators [16], but rather approaches n, similar to the standard one, though
the definitions differ.

The symmetric q-number shift factorial (see [15]) is defined as

[̃n]q! =

{
[̃n]q · ˜[n − 1]q · ˜[n − 2]q · ·[̃1]q, for n = 1, 2, ...;

1, for n = 0.
(2)

One can see that [̃n]q! → n! as q → 1−.
Let A represent the class of functions h(z) which are analytic within the unit disk

U = {z ∈ C | |z| < 1}, and let A0 be the subclass of A consisting of functions h that are
normalized such that h(0) = 0 = h

′
(0)− 1 and has the power series representation

h(z) = z +
∞

∑
j=2

ajzj, z ∈ U. (3)

The symmetric q-derivative operator D̃qh(z) (see [15]) acting on functions h(z) ∈ A0

is defined as follows:

D̃qh(z) =


h(qz)−h(q−1z)

z(q−q−1)
, z ̸= 0, q ̸= 1, z ∈ U;

h
′
(0), for z = 0.

(4)

Note that D̃qh(z) → h
′
(z) as q → 1−.

From (4), we have D̃qzn = [̃n]qzn−1, and a power series of D̃qh when h(z) = z +
a2z2 + . . ., is

D̃qh(z) = 1 +
∞

∑
j=2

[̃j]qajzj−1. (5)

It is straightforward to verify that the following properties hold [7]:
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D̃q(h(z) + g(z)) = D̃qh(z) + D̃qg(z)

D̃q(h(z)g(z)) = g
(

q−1z
)

D̃qh(z) + f (qz)D̃qg(z) = g(qz)D̃qh(z) + f
(

q−1z
)

D̃qg(z)

D̃q

(
h(z)
g(z)

)
=

h(qz)D̃qg(z)− g
(
q−1z

)
D̃qh(z)

g(q−1z)g(qz)

D̃qh(z) = D̃q2 h
(

q−1z
)

The applications of the symmetric q-difference operator defined above play a crucial
role in deriving the symmetric Ruscheweyh operator, which is specifically formulated
for the analytic function h. This operator extends the classical differential techniques by
incorporating symmetric q-number properties, ensuring balanced transformations. The
definitions of the Al-Oboudi differential operator, the Ruscheweyh differential operator, the
symmetric Al-Oboudi operator, and the symmetric Ruscheweyh operator for h are given by

Definition 1 (Al-Oboudi [17]). For h ∈ A, h(z) = z + ∑∞
j=2 γjzj, λ ≥ 0, and n ∈ N, the

operator Ds
λ is defined by Ds

λ : A → A,

D0
λh(z) = h(z)

D1
λh(z) = (1 − λ)h(z) + λzh′(z) = Dλh(z)

...

Ds
λh(z) = (1 − λ)Ds−1

λ h(z) + λz(Ds
λh(z))′ = Dλ

(
Ds−1

λ h(z)
)

, for z ∈ U.

Remark 1. If h ∈ A, h(z) = z + ∑∞
j=2 γjzj, then Ds

λh(z) = z + ∑∞
j=2[1 + (j − 1)λ]sγjzj, for

z ∈ U.

Note that if h ∈ A, λ ≥ 0 and n ∈ N, the symmetric q-operator D̃s
λ is defined by

Ds
λ : A → A, D̃s

λh(z) = z + ∑∞
j=2

(
1 − λ + [j]qλ

)s
γjzj, for z ∈ U.

Definition 2 (Ruscheweyh [18]). For h ∈ A, h(z) = z + ∑∞
j=2 , n ∈ N, the Ruscheweyh

differential operator Rn is defined by Rn : A → A,

R0h(z) = h(z)

R1h(z) = zh′(z)

...

(n + 1)Rn+1h(z) = z(Rnh(z))′ + nRnh(z), z ∈ U.

Remark 2. If h ∈ A, h(z) = z + ∑∞
j=2 ηjzj, then

Rnh(z) = z +
∞

∑
j=2

(n + j − 1)!
n!(j − 1)!

ηjzj, z ∈ U. (6)

Definition 3 ([19]). Let h ∈ A. Denote by R̃n
q the symmetric Ruscheweyh q-differential operator

defined as

R̃n
q h(z) = z +

∞

∑
j=2

˜[j + n − 1]q!

[̃n]q! ˜[j − 1]q!
ηjzj, z ∈ U, 0 < q < 1, (7)

where [̃n]q and [̃n]q! are defined in (1) and (2).
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Remark 3. Since [̃n]q! → n! as q → 1−, it follows that if q → 1− in the previous definition,
we obtain

lim
q→1−

R̃n
q h(z) = z + lim

q→1−

[
∞
∑

j=2

˜[j+n−1]q !

[̃n]q ![̃j−1]q !
ηjzj

]
= z +

∞
∑

j=2

˜[j+n−1]q !

[̃n]q ![̃j−1]q !
ηjzj = Rnh(z),

(8)

where Rnh(z) is the Ruscheweyh differential operator defined in (6) and has been studied by many
authors (see [9,20–24]).

We present a novel symmetric q-operator, denoted as R̃n,s,λ
q , with the following definition:

Definition 4. Let

R̃n,0,λ
q h(z) = Rn

q h(z),

R̃n,1,λ
q h(z) = (1 − λ)Rn

q h(z) + λzD̃q

(
Rn

q h(z)
)

,

...

R̃n,s,λ
q h(z) = R̃n,1,λ

q

(
R̃n,s−1,λ

q h(z)
)

, (9)

for n, s ∈ N, 0 < q < 1, λ ≥ 0, z ∈ U.
Assuming h ∈ A is represented by (3), we can derive the following from (9):

R̃n,s,λ
q h(z) = z +

∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
ajzj, (10)

for n, s ∈ N, 0 < q < 1, λ ≥ 0, z ∈ U.

Remark 4. Since [̃n]q! → n! as q → 1−, it follows that if q → 1− in (10), we obtain

lim R̃n,s,λ
q h(z)

q→1−
= z + lim

q→1−

[
∞
∑

j=2

(
1 − λ + [̃j]qλ

)s ˜[j+n−1]q !

[̃n]q ![̃j−1]q !
ajzj

]
=

= Rn,s
λ h(z),

(11)

where the operator Rn,s
λ was defined and studied by Andrei L. in [23].

We recall the definition of the convolution (Hadamard) product for two analytic
functions in the open unit disk. Given two analytic functions in the open unit disk U,
namely w(z) = z + ∑∞

j=2 wjzj and v(z) = z + ∑∞
j=2 vjzj, their Hadamard product (also

known as the convolution) of w(z) and v(z), denoted by (w ∗ v)(z), is defined as

w(z) ∗ v(z) = (w ∗ v)(z) = z +
∞

∑
j=2

wjvjzj.
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Remark 5. The symmetric q-operator R̃n,s,λ
q is the Hadamard product of the symmetric Al-Oboudi

differential q-operator D̃s
q,λ and the symmetric Ruscheweyh q-differential operator R̃n

q ,

R̃n,s,λ
q f (z) =

(
D̃s

q,λ ∗ R̃n
q

)
f (z) = z +

∞

∑
j=2

(
1 − λ + [j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
λjγjzj =

z +
∞

∑
j=2

(
1 − λ + [j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
ajzj,

where we have introduced the notation aj = λjγj, for j ≥ 2.

Proposition 1. For natural numbers n and s, where 0 < q < 1, λ ≥ 0 and z ∈ U, the operator

R̃n,s,λ
q h(z) adheres to the following mathematical equality:

z
(

D̃q

(
R̃n,s,λ

q h(z)
))

= z +
∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]qajzj (12)

Proof. We can infer from (10)

D̃q

(
R̃n,s,λ

q h(z)
)

=
R̃n,s,λ

q h(qz)− R̃n,s,λ
q h

(
q−1z

)
(q − q−1)z

=
1

z(q − q−1)

qz − q−1z +
∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
qj − q−j

)
ajzj


= 1 +

∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

qj − q−j

q − q−1 ajzj−1

= 1 +
∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]qajzj−1.

Hence, the following identity holds for the operator R̃n,s,λ
q :

z
(

D̃q

(
R̃n,s,λ

q h(z)
))

= z +
∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]qajzj. (13)

This concludes the proof.

Proposition 2. For natural numbers n and s, with 0 < q < 1 and z ∈ U, the operator R̃n,s,1
q

fulfills the following equation:

z
(

D̃q

(
R̃n,s,1

q h(z)
))

= R̃n,s+1,1
q h(z). (14)
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Proof. We can derive from (13), with λ = 1,

z
(

D̃q

(
R̃n,s,1

q h(z)
))

= z +
∞

∑
j=2

[̃j]q
s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]qajzj

= z +
∞

∑
j=2

[̃j]q
s+1 ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
ajzj

= R̃n,s+1,1
q h(z).

The proof is completed.

Remark 6. Based on its definition, it is clear that the operator R̃n,s,λ
q can be transformed into

several well-known operators by appropriately selecting specific parameter values. Notably, when

q → 1− , the symmetric q-operator R̃n,s,λ
q is converted into the differential operator Rn,s

λ introduced

and studied in [23]. For λ = 0, the symmetric q-operator R̃n,s,λ
q is reduced into the symmetric

Ruscheweyh q-operator [19]. Furthermore, for q → 1− , the symmetric q-operator R̃n,s,λ
q is

converted into the Ruscheweyh operator [18]. Additionally, under the specific conditions where
λ = 0, n = 0, and q approaches 1−, the q-operator Rn,s,λ

q assumes a distinct form. In this limiting
case, it has been established that the operator coincides with that introduced by Al-Oboudi [17].
These transformations highlight the relevance and novelty of our generalization.

A continuous function f = u + iv is a complex-valued harmonic function defined in
U, where u and v are real-valued harmonic functions within U. The function f (z) can be
expressed as the sum of two components, f = h + g, where h and g are both analytic in U.
The function h is referred to as the analytic part of f , and g is known as the co-analytic part.
The function h belongs to the subclass A0, defined in (3), and g belongs to the class A, with
the following power series expansion:

g(z) =
∞

∑
j=1

bjzj, z ∈ U, |b1| < 1. (15)

A condition that is both necessary and sufficient for the function f to be locally
univalent and sense-preserving in the domain U is that

∣∣∣h′
(z)
∣∣∣ is greater than

∣∣∣g′
(z)
∣∣∣ at every

point in U and the harmonic function f = h + g will be normalized if f (0) = 0 = f
′
(0)− 1.

This condition ensures that the Jacobian determinant of the function f is positive, which is
essential for f to be both locally univalent and orientation-preserving in U.

Let H the class of sense-preserving univalent harmonic functions f = h + g in U,
where h and g are defined above. We point out that H reduces to the well-known class of
normalized univalent functions if the co-analytic component of f is identically zero.

Following the pioneering work of Clunie and Sheil-Small [25] on harmonic mappings,
a significant body of research emerged focused on various types of complex-valued har-
monic univalent functions. Their influential study served as a catalyst for subsequent
investigations, leading to numerous publications that delved into the unique characteristics
and properties of these functions. Specifically, the distinctive features of several subclasses
of harmonic univalent functions were thoroughly examined in a series of works [26–32].
This research has greatly enriched our understanding of harmonic mappings and their
applications in complex analyses and geometric function theory.
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The primary objective of this article is to introduce and define the symmetric q-
derivative operator by employing the principles of symmetric q-calculus in the context of
complex functions that are harmonic within the domain U. Furthermore, this study aims
to establish precise coefficient bounds, derive distortion theorems, and obtain significant
covering results related to these harmonic functions. We introduce and formally define the
symmetric q-differential operator specifically for harmonic functions by using the symmet-
ric q-derivative operator defined above (8). The definition is structured to align with the
principles of symmetric q-calculus, ensuring its applicability to functions that are harmonic
within the given domain. The formulation of this operator is presented as follows.

R̃n,s,λ
q f (z) = R̃n,s,λ

q h(z) + R̃n,s,λ
q g(z), (16)

where

R̃n,s,λ
q h(z) = z +

∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
ajzj, (17)

R̃n,s,λ
q g(z) =

∞

∑
j=1

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
bjzj, (18)

and

z
(

D̃q

(
R̃n,s,λ

q f (z)
))

= z
(

D̃q

(
R̃n,s,λ

q h(z)
))

− z
(

D̃q

(
R̃n,s,λ

q g(z)
))

. (19)

Drawing inspiration from the contributions of Jahangiri [33], Zhang et al. [34],
Khan et al. [35], Abubakar et al. [14], and Al-Shbeil et al. [36], this paper introduces novel
subclasses of harmonic univalent functions, defined using the newly established symmetric
q-differential operator.

For 0 ≤ α < 1, let R̃Hn,s,λ
q (α) represent the family of harmonic functions f = h + g

that fulfills the requirements

Re


z
(

D̃q

(
R̃n,s,λ

q h(z)
))

R̃n,s,λ
q f (z)

 ≥ α, z ∈ U, (20)

where R̃n,s,λ
q f (z) is given by (16). Additionally, let the subclass of R̃Hn,s,λ

q (α) be denoted

by R̃Hn,s,λ
q (α), which comprises the harmonic functions f = h + g , where h and g take the

following form:

h(z) = z −
∞

∑
j=2

ajzj and g(z) =
∞

∑
j=1

bjzj, z ∈ U, |b1| < 1, where aj, bj ≥ 0. (21)

By means of (13), R̃Hn,s,1
q (α) represents the family of harmonic functions f = h + g

that complies with the conditions
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Re

 R̃n,s+1,1
q f (z)

R̃n,s,1
q f (z)

 ≥ α, z ∈ U. (22)

In the next section, we derive necessary and sufficient conditions that characterize

the harmonic functions within the class R̃Hn,s,λ
q (α), providing a comprehensive frame-

work for their classification. Furthermore, we explore the geometric properties of the

functions in R̃Hn,s,λ
q (α) by proving distortion theorems, which offer crucial insights into

the behavior and bounds of these functions. Additionally, we identify and analyze the

extreme points of the functions in R̃Hn,s,λ
q (α), further enriching our understanding of their

structural properties.

2. The Main Results
In the theorems below, we will establish coefficient bounds for harmonic functions

that belong to the classes R̃Hn,s,λ
q (α) and R̃Hn,s,λ

q (α).

Theorem 1. Let f = h + g , 0 ≤ α < 1, 0 < q < 1, λ ≥ 0, z ∈ U and

1
1 − α

∞

∑
j=1

((
[̃j]q − α

)∣∣aj
∣∣+ ([̃j]q + α

)∣∣bj
∣∣)(1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
≤ 2, (23)

where the functions h and g are defined in (3) and (15). In this case, the function f is harmonic and

univalent in U and belongs to the class R̃Hn,s,λ
q (α) if it satisfies the inequality (23). The equality

in (23) applies for the harmonic function

f (z) = z +
∞

∑
j=2

(1 − α)[̃n]q![̃j − 1]q!(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q − α

)Ajzj

+
∞

∑
j=1

(1 − α)[̃n]q![̃j − 1]q!(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q + α

)Bjzj, (24)

where
∞

∑
j=2

∣∣Aj
∣∣+ ∞

∑
j=1

∣∣Bj
∣∣ = 1.

Proof. Initially, it is necessary to demonstrate that the function f = h + g is locally
univalent and preserves the orientation within U. To this end, it suffices to prove that the

second complex dilatation, w, of f satisfies the condition |w| =

∣∣∣∣∣∣
D̃q

(
R̃n,s,λ

q g(z)
)

D̃q

(
R̃n,s,λ

q h(z)
)
∣∣∣∣∣∣ < 1 in U.

This holds true for z = reiθ ∈ U. We obtain
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∣∣∣∣D̃q

(
R̃n,s,λ

q h(z)
)∣∣∣∣ ≥ 1 −

∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]q
∣∣∣aj

∣∣∣rj−1

≥ 1 −
∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]q
∣∣∣aj

∣∣∣
≥ 1 −

∞

∑
j=2

1
1 − α

˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
1 − λ + [̃j]qλ

)s(
[̃j]q − α

)∣∣∣aj

∣∣∣
≥

∞

∑
j=1

1
1 − α

˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
1 − λ + [̃j]qλ

)s(
[̃j]q + α

)∣∣∣bj

∣∣∣
≥

∞

∑
j=1

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]q
∣∣∣bj

∣∣∣ ≥
≥

∞

∑
j=1

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
[̃j]q
∣∣∣bj

∣∣∣rj−1

≥
∣∣∣∣D̃q

(
R̃n,s,λ

q g(z)
)∣∣∣∣, z ∈ U.

So, if q → 1− , then
∣∣∣∣D̃q

(
R̃n,s,λ

q h(z)
)∣∣∣∣ ≥ ∣∣∣∣D̃q

(
R̃n,s,λ

q g(z)
)∣∣∣∣ in U, and it follows that

the function f = h + g is locally univalent and sense-preserving in U. To establish
that f is univalent in U, we employ an argument originally presented by the author in
reference [31]. Consider two distinct points z1 and z2 in U, meaning z1 ̸= z2. Since U is
simply connected and convex, we can construct a parameterized path between these points
given by z(t) = (1 − t)z1 + tz2, for 0 ≤ t ≤ 1. For the case where z1 ̸= z2, we can express

Re

 D̃q

(
R̃n,s,λ

q f (z2)

)
− D̃q

(
R̃n,s,λ

q f (z1)

)
z2 − z1

 >

1∫
0

Re
(

D̃q

(
R̃n,s,λ

q h(z)
))

−
∣∣∣∣D̃q

(
R̃n,s,λ

q g(z)
)∣∣∣∣dt.

Conversely, we note that

Re
(

D̃q

(
R̃n,s,λ

q h(z)
))

−
∣∣∣∣D̃q

(
R̃n,s,λ

q g(z)
)∣∣∣∣

≥ Re
(

D̃q

(
R̃n,s,λ

q h(z)
))

−
∞

∑
j=1

˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
1 − λ + [̃j]qλ

)s
[̃j]q
∣∣∣bj

∣∣∣
≥ 1 −

∞

∑
j=2

˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
1 − λ + [̃j]qλ

)s
[̃j]q
∣∣∣aj

∣∣∣− ∞

∑
j=1

˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
1 − λ + [̃j]qλ

)s
[̃j]q
∣∣∣bj

∣∣∣
≥ 1 −

∞

∑
j=2

1
1 − α

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
[̃j]q − α

)∣∣∣aj

∣∣∣−
−

∞

∑
j=1

1
1 − α

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
[̃j]q + α

)∣∣∣bj

∣∣∣ ≥ 0.



Symmetry 2025, 17, 721 11 of 20

Thus, the function f is univalent in U. However, we still need to establish that
inequality (20) holds under the assumption that the coefficients of the univalent harmonic
function f = h + g satisfy the condition given in (23). We are required to prove that

Re


z
(

D̃q

(
R̃n,s,λ

q f (z)
))

R̃n,s,λ
q f (z)

 = Re


z
(

D̃q

(
R̃n,s,λ

q h(z)
))

− z
(

D̃q

(
R̃n,s,λ

q g(z)
))

R̃n,s,λ
q h(z) + R̃n,s,λ

q g(z)

 ≥ α. (25)

Let

X(z) = z
(

D̃q

(
R̃n,s,λ

q h(z)
))

− z
(

D̃q

(
R̃n,s,λ

q g(z)
))

= z +
∞

∑
j=2

[̃j]q
(

1 − λ + [̃j]qλ
)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
ajzj −

∞

∑
j=1

[̃j]q
(

1 − λ + [̃j]qλ
)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
bjzj,

and

Y(z) = R̃n,s,1
q f (z) = R̃n,s,λ

q h(z) + R̃n,s,λ
q g(z)

= z +
∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
ajzj +

∞

∑
j=1

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
bjzj,

Taking into account that Re(w) ≥ α necessarily and sufficiently if |1 + w − α| ≥
|1 − w + α|, it is adequate to establish that

|X(z) + (1 − α)Y(z)| − |X(z) + (1 − α)Y(z)| ≥ 0 (26)

The left-hand side of the inequality (26) becomes

|X(z) + (1 − α)Y(z)| − |X(z)− (1 + α)Y(z)|

=

∣∣∣∣∣∣(2 − α)z +
∞

∑
j=2

(
[̃j]q + 1 − α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
ajzj

−
∞

∑
j=1

(
[̃j]q − 1 + α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
bjzj

∣∣∣∣∣∣
−

∣∣∣∣∣∣−αz +
∞

∑
j=2

(
[̃j]q − 1 − α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
ajzj

−
∞

∑
j=1

(
[̃j]q + 1 + α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
bjzj

∣∣∣∣∣∣
≥ (2 − α)|z| −

∞

∑
j=2

(
[̃j]q + 1 − α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !

∣∣aj
∣∣|z|j

−
∞

∑
j=1

(
[̃j]q − 1 + α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !

∣∣bj
∣∣|z|j

−α|z|
∞

∑
j=2

(
[̃j]q − 1 − α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !

∣∣aj
∣∣|z|j

−
∞

∑
j=1

(
[̃j]q + 1 + α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !

∣∣bj
∣∣|z|j

≥ 2(1 − α)|z|

2 −
∞

∑
j=1

 [̃j]q − α

1 − α

∣∣aj
∣∣+ [̃j]q + α

1 − α

∣∣bj
∣∣(1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !
|z|j−1

.
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≥ 2(1 − α)

2 − 1
1 − α

∞

∑
j=1

((
[̃j]q − α

)∣∣aj
∣∣+ ([̃j]q + α

)∣∣bj
∣∣)(1 − λ + [̃j]qλ

)s ˜[j + n − 1]q !

[̃n]q ![̃j − 1]q !

 (27)

Applying condition (23), we see that this expression is non-negative, which finalizes

the proof that f ∈ R̃Hn,s,λ
q (α).

The functions expressed by (24) are in R̃Hn,s,λ
q (α) because

∞

∑
j=1

 ˜[j + n − 1]q!
(
[̃j]q − α

)
(1 − α)[̃n]q![̃j − 1]q!

(
1 − λ + [̃j]qλ

)s∣∣aj
∣∣+ ˜[j + n − 1]q!

(
[̃j]q + α

)
(1 − α)[̃n]q![̃j − 1]q!

(
1 − λ + [̃j]qλ

)s∣∣bj
∣∣


= 1 +
∞

∑
j=2

∣∣Aj
∣∣+ ∞

∑
j=1

∣∣Bj
∣∣ = 2. (28)

This completes the proof of our theorem.

Several examples of functions satisfying the conditions of this class are provided below.

Example 1. The function f = h + g expressed as

f (z) = z +
∞

∑
j=2

Xjzj +
∞

∑
j=1

Yjzj

with

Xj =
(1 + v)(1 − α)[̃n]q![̃j − 1]q!cj

2(j + v)(j + v − 1)
(

1 − λ + [̃j]qλ
)s ˜[j + n − 1]q!

(
[̃j]q − α

)
and

Yj =
v(1 − α)[̃n]q![̃j − 1]q!cj

2(j + v)(j + v − 1)
(

1 − λ + [̃j]qλ
)s ˜[j + n − 1]q!

(
[̃j]q + α

)
belongs to the class R̃Hn,s,λ

q (α), for v > −1, 0 ≤ α < 1, q ∈ (0, 1), cj ∈ C with
∣∣cj
∣∣ = 1. Indeed,

we are aware that

∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
[̃j]q − α

)∣∣Xj
∣∣

+
∞

∑
j=1

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
[̃j]q + α

)∣∣Yj
∣∣

≤
∞

∑
j=2

(1 + v)(1 − α)

2(j + v)(j + v − 1)
+

∞

∑
j=1

v(1 − α)

2(j + v)(j + v − 1)

=
(1 + v)(1 − α)

2

∞

∑
j=2

1
(j + v)(j + v − 1)

+
v(1 − α)

2

∞

∑
j=1

1
(j + v)(j + v − 1)

=
(1 + v)(1 − α)

2

∞

∑
j=2

(
1

j + v − 1
− 1

j + v

)
+

v(1 − α)

2

∞

∑
j=1

(
1

j + v − 1
− 1

j + v

)
= 1 − α.
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So,

1
1 − α

∞

∑
j=1

((
[̃j]q − α

)∣∣aj
∣∣+ ([̃j]q + α

)∣∣bj
∣∣)(1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
≤ 2

Example 2. To illustrate the sufficient coefficient condition stated in Theorem 1, consider the
parameter values q = 0.5, n = 1, s = 1, λ = 0.5, α = 0.2, j = 2, and v = 1 in the previous
example. Let c2 = 1. So,

X2 =
2(1 − 0.2)

12
(

0.5 + [̃2]0.5

)
[̃2]q!

(
[̃2]q − 0.2

) ≈ 0.01325

and

Y2 =
(1 − 0.2)

12
(

1 − 0.5 + [̃2]q0.5
)
[̃2]0.5!

(
[̃2]0.5 + 0.2

) ≈ 0.00564

belong to the class ˜RH1,1,0.5
0.5 (0.2). For j = 2, the corresponding term in the inequality from

Theorem 1 evaluates to approximately 0.25, which is well within the admissible upper bound of 2.
This confirms that the condition is satisfied for this choice of parameters and supports the validity of
the theorem in practice.

Example 3. The function f = z + βz , with |β| < 1, belongs to the class R̃Hn,s,λ
q (α), for

0 ≤ α < 1, q ∈ (0, 1) Indeed, as the analytic part of f is h(z) = z and the co-analytic part is
g(z) = βz , it is straightforward to show that the relation (24) is satisfied.

The following theorem provides the necessary and sufficient conditions for the har-

monic functions f = h + g to belong to R̃Hn,s,λ
q (α)

Theorem 2. Let f = h + g and condition (23) be fulfilled for 0 ≤ α < 1, where the functions h
and g are defined in (3) and (15). The function f is harmonic and univalent in U and is a member

of the class R̃Hn,s,λ
q (α) if and only if it satisfies inequality (23).

Proof. Let f ∈ R̃Hn,s,λ
q (α). Due to the fact that R̃Hn,s,λ

q (α) is a subclass of R̃Hn,s,λ
q (α), the

proof is complete once we demonstrate the “only if” part of the theorem. Put differently,
for functions f = h + g , we will demonstrate that if condition (25) is satisfied, then the
coefficients of the function f fulfill the inequality.

Let us first denote

M =
(

1 − λ + [̃j]qλ
)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

Additionally, we observe that condition is equivalent to

Re


(1 − α)z −

∞
∑

j=2
M
(
[̃j]q − α

)
ajzj −

∞
∑

j=1
M
(
[̃j]q + α

)
bjzj

z −
∞
∑

j=2
Majzj +

∞
∑

j=1
Mbjzj

 ≥ 0 , z ∈ U.

Accordingly, by taking z on the positive real axis, where 0 ≤ z = r < 1, we arrive at
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1 − α −
∞
∑

j=2
M
(
[̃j]q − α

)
ajrj−1 −

∞
∑

j=1
M
(
[̃j]q + α

)
bjrj−1

1 −
∞
∑

j=2
Majrj−1 +

∞
∑

j=1
Mbjrj−1

≥ 0 , z ∈ U. (29)

If condition (23) is not satisfied, then the numerator in Equation (29) becomes negative
for values of r that are sufficiently close to 1. As a result, some z = r in the interval (0, 1)
exists for which the left-hand side of inequality (23) is negative. However, this does not

align with the imposed condition that f ∈ R̃Hn,s,λ
q (α). Since this contradiction arises from

assuming that condition (23) does not hold, we conclude that condition (23) must indeed
be valid. Thus, the proof is complete.

Remark 7. When q → 1−, Theorems 1 and 2 reduce to the classical setting previously established
in the literature. In this context, the "classical case" specifically refers to the study of harmonic
starlike functions defined in the open unit disk. In contrast, the theorems established in this work
offer greater flexibility for modeling harmonic mappings and allow for a more general coefficient
structure. As an illustrative example, Theorems 1 and 2, under the parameter specialization q → 1−,
λ = 0, and s = 1, coincide with well-known criteria for harmonic starlike functions, as found in the
work of [31] and others.

Corollary 1. Let f = h + g , 0 ≤ α < 1, 0 < q < 1, z ∈ U. Then, the function f belongs to the

class R̃Hn,s,1
q (α) if and only if

1
1 − α

∞

∑
j=1

((
[̃j]q − α

)∣∣aj
∣∣+ ([̃j]q + α

)∣∣bj
∣∣)[j]sq ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
≤ 2.

Proof. For λ = 1 in Theorem 1, we obtain the corollary

The closed convex hull of R̃Hn,s,λ
q (α), denoted as clco R̃Hn,s,λ

q (α), represents the

smallest closed set that fully encompasses R̃Hn,s,λ
q (α). More formally, it is defined as the

intersection of all closed convex sets that contain R̃Hn,s,λ
q (α). This construction ensures

that clco R̃Hn,s,λ
q (α) is the minimal closed convex superset of R̃Hn,s,λ

q (α) with respect to set
inclusion. In the following theorem, we establish a characterization of the extreme points

of the closed convex hull clco R̃Hn,s,λ
q (α),which play a fundamental role in understanding

the geometric and structural properties of this set.

Theorem 3. The function f = h + g ∈ clco R̃Hn,s,λ
q (α) if and only if

f (z) =
∞

∑
j=1

(
xjhj(z) + yjgj(z)

)
,

where

h1(z) = z and hn(z) = z −
(1 − α)[̃n]q![̃j − 1]q!(

1 − λ + [̃j]qλ
)s ˜[j + n − 1]q!

(
[̃j]q − α

) zj, for j = 2, 3, . . . (30)
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gn(z) = z +
(1 − α)[̃n]q![̃j − 1]q!(

1 − λ + [̃j]qλ
)s ˜[j + n − 1]q!

(
[̃j]q + α

) zj, for j = 1, 2, 3, ... (31)

and
∞

∑
j=1

(
xj + yj

)
= 1, xj ≥ 0, yj ≥ 0. (32)

Notably, the extreme points of R̃Hn,s,λ
q (α) are the functions designated in (30) and (31).

Proof. For xj, yj described (32), we acquire

f (z) =
∞

∑
j=1

(
xj + yj

)
z −

∞

∑
j=2

(1 − α)[̃n]q![̃j − 1]q!(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q − α

) xjzn

+
∞

∑
j=1

(1 − α)[̃n]q![̃j − 1]q!(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q + α

)yjzn.

This leads to

∞

∑
j=2

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q − α

)
(1 − α)[̃n]q![̃j − 1]q!

aj +
∞

∑
j=1

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q + α

)
(1 − α)[̃n]q![̃j − 1]q!

bj

=
∞

∑
j=2

xj +
∞

∑
j=1

yj = 1 − x1 ≤ 1.

Hence, f = h + g ∈ clco R̃Hn,s,λ
q (α).

Reversely, allow f = h + g ∈ clco R̃Hn,s,λ
q (α). Consequently, by assigning

xj =

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q − α

)
(1 − α)[̃n]q![̃j − 1]q!

aj, j = 2, 3, ...

yj =

(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!
(
[̃j]q + α

)
(1 − α)[̃n]q![̃j − 1]q!

bj, j = 2, 3, ...

where
∞
∑

j=1

(
xj + yj

)
= 1, xj ≥ 0, yj ≥ 0, we arrive at functions of the form (30) and (31),

fulfilling the requirement.

Remark 8. When q → 1−, Theorem 3 naturally transitions to a classical result, aligning with
earlier findings in the literature. See, for instance, the exposition provided by Jahangiri [31].

Moving forward, we present the subsequent distortion bounds, which play a crucial

role in establishing a covering result for R̃Hn,s,λ
q (α). These bounds provide fundamental

constraints on the geometric properties of the set and serve as key tools in analyzing
its structure. By leveraging these results, we derive a covering theorem that ensures an

effective description of R̃Hn,s,λ
q (α) in terms of well-defined bounding regions.
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Theorem 4. If the function f = h + g ∈ R̃Hn,s,λ
q (α), then for |z| = r < 1, we obtain the

distortion bounds

| f (z)| ≥ (1 − |b1|)r −
[̃n]q!(

1 − λ + [̃2]qλ
)s ˜[1 + n]q!

 1 − α

[̃2]q − α
− 1 + α

[̃2]q − α
|b1|

r2,

| f (z)| ≤ (1 + |b1|)r +
[̃n]q!(

1 − λ + [̃2]qλ
)s ˜[1 + n]q!

 1 − α

[̃2]q − α
− 1 + α

[̃2]q − α
|b1|

r2. (33)

Proof. We will prove only the right-hand inequality, as the proof for the left-hand inequality
follows similarly from the argument used for the right-hand side. By taking the absolute
value of f (z), we obtain

| f (z)| =

∣∣∣∣∣z + ∞

∑
j=2

ajzj +
∞

∑
j=1

bjzj

∣∣∣∣∣ ≤ (1 + |b1|1)z +
∞

∑
j=2

(
aj + bj

)
|z|n ≤ (1 + |b1|)r +

∞

∑
j=2

(
aj + bj

)
r2

≤ (1 + |b1|)r +
1 − α

[̃2]q − α

[̃n]q!(
1 − λ + [̃2]qλ

)s ˜[1 + n]q!

·
∞

∑
j=2

 [̃2]q − α

1 − α

(
1 − λ + [̃2]qλ

)s ˜[1 + n]q!

[̃n]q!
aj +

[̃2]q − α

1 − α

(
1 − λ + [̃2]qλ

)s ˜[1 + n]q!

[̃n]q!
bj

r2

≤ (1 + |b1|)r +
1 − α

[̃2]q − α

[̃n]q!(
1 − λ + [̃2]qλ

)s ˜[1 + n]q!

(
1 − 1 + α

1 − α
|b1|
)

r2

≤ (1 + |b1|)r +
[̃n]q!(

1 − λ + [̃2]qλ
)s ˜[1 + n]q!

 1 − α

[̃2]q − α
− 1 − α

[̃2]q − α
|b1|

r2.

The proof is now complete.

Example 4. The function f = z + βz , with |β| < 1, belongs to R̃Hn,s,λ
q (α), so for |z| = r < 1,

we obtain the distortion bounds (1 − |β|)r ≤ | f (z)| ≤ (1 + |β|)r.

Accordingly, we obtain the following covering property.

Corollary 2. Let f ∈ R̃Hn,s,λ
q (α). We acquire

w : |w| <

(
[̃2]q − α

)
˜[n + 1]q

(
1 − λ + [̃2]qλ

)s
− (1 − α)(

[̃2]q − α
)

˜[n + 1]q
(

1 − λ + [̃2]qλ
)s

−

(
[̃2]q − α

)
˜[n + 1]q

(
1 − λ + [̃2]qλ

)s
− (1 + α)(

[̃2]q − α
)

˜[n + 1]q
(

1 − λ + [̃2]qλ
)s b1

 ⊂ f (U). (34)



Symmetry 2025, 17, 721 17 of 20

Proof. By applying the left-hand inequality from the above theorem and taking the limit
as r → 1, we obtain that

(1 − b1)−
1

˜[n + 1]q
(

1 − λ + [̃2]qλ
)s

 1 − α

[̃2]q − α
− 1 + α

[̃2]q − α
b1


= (1 − b1)−

1
˜[n + 1]q

(
1 − λ + [̃2]qλ

)s(
[̃2]q − α

) [(1 − α)− (1 + α)b1]

=
(1 − b1)

(
[̃2]q − α

)
˜[n + 1]q

(
1 − λ + [̃2]qλ

)s
− (1 − α) + (1 + α)b1

˜[n + 1]q
(

1 − λ + [̃2]qλ
)s(

[̃2]q − α
)

=


(
[̃2]q − α

)
˜[n + 1]q

(
1 − λ + [̃2]qλ

)s
− (1 − α)(

[̃2]q − α
)

˜[n + 1]q
(

1 − λ + [̃2]qλ
)s

−

(
[̃2]q − α

)
˜[n + 1]q

(
1 − λ + [̃2]qλ

)s
− (1 + α)(

[̃2]q − α
)

˜[n + 1]q
(

1 − λ + [̃2]qλ
)s |b1|

 ⊂ f (U).

Thus, we obtain the required result.

In what follows, we demonstrate that R̃Hn,s,λ
q (α) remains closed under convex combi-

nations of its elements, meaning that if two or more elements belong to R̃Hn,s,λ
q (α), then

any convex combination of these elements also remains within the set. This property
ensures the preservation of the structural characteristics under linear blending, reinforcing

the convex nature of R̃Hn,s,λ
q (α) within the given mathematical framework.

Theorem 5. The family R̃Hn,s,λ
q (α) is closed under convex combination.

Proof. Considering i = 1, 2, . . . , assume that fi ∈ R̃Hn,s,λ
q (α), with

fi(z) = z −
∞

∑
j=2

ai,jzj +
∞

∑
j=1

bi,jzj. (35)

Consequently, according to Theorem 1, we establish that

∞

∑
j=2

(
[̃n]q − α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
ai,j +

∞

∑
j=1

(
[̃n]q + α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
bi,j ≤ 1. (36)

Considering ∑∞
i=1 pi = 1, with 0 ≤ pi ≤ 1, the convex combinations of fi can be

expressed in the form of

∞

∑
i=1

pi fi(z) = z −
∞

∑
j=2

(
∞

∑
i=1

piai,j

)
zj +

∞

∑
j=1

(
∞

∑
i=1

pibi,j

)
zj. (37)

Employing inequality (23), we determine



Symmetry 2025, 17, 721 18 of 20

∞

∑
j=2

(
[̃n]q − α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
∞

∑
i=1

piai,j

)
(38)

+
∞

∑
j=1

(
[̃n]q + α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!

(
∞

∑
i=1

pibi,j

)
(39)

=
∞

∑
i=1

pi

 ∞

∑
j=2

(
[̃n]q − α

)(
1 − λ + [̃j]qλ

)s ˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
ai,j (40)

+
∞

∑
j=1

(
[̃n]q + α

)(
1 − λ + [̃j]qλ

)
˜[j + n − 1]q!

[̃n]q![̃j − 1]q!
bi,j

 ≤
∞

∑
i=1

pi ≤ 1. (41)

Hence, ∑∞
i=1 pi fi ∈ R̃Hn,s,λ

q (α).

Closing Comments and Reflections

The study of symmetric q-calculus in connection with geometric function theory (GFT),
particularly in the context of harmonic univalent functions, is a relatively recent and devel-
oping area of mathematical research. Harmonic functions are central to modern complex
analyses, with applications in minimal surface theory, fluid dynamics, and elasticity. De-
spite its potential significance, this field remains largely unexplored, with only a limited
body of published work available.

Some recent articles have contributed to the expanding field of harmonic function
theory by incorporating symmetric q-calculus operators, offering new perspectives and
generalizations of classical results. In [35], Khan et al. introduced a new subclass of
harmonic functions using symmetric q-calculus theory. Their study establishes novel
results that generalize the existing findings, particularly by defining harmonic q-starlike
functions associated with symmetrical points and Janowski functions. The recent study [14]
develops a new generalized symmetric q-difference operator and applies it to defining
a subclass of meromorphic harmonic functions. This paper investigates the properties
of this subclass and its relation to existing function classes. The article [36] develops a
new generalized symmetric q-difference operator and applies it to defining a subclass of
meromorphic harmonic functions. This paper investigates the properties of this subclass
and its relation to existing function classes.

In the present paper, we employ symmetric q-calculus to introduce and analyze new
classes of harmonic univalent functions, expanding the existing framework of geometric
function theory. Our methodology is centered around a newly defined symmetric q-
differential operator, which is specifically designed to handle the complexities of harmonic
functions in the complex plane. The theoretical implications of this operator are manifold:
it allows for a unifying framework encompassing several known operators as special cases;
it facilitates the derivation of sharp bounds and structural theorems; and it is particularly
suitable for modeling physical systems exhibiting time-reversal or bilateral symmetry,
as encountered in quantum mechanics and fractional calculus. Thus, the present work
represents a novel contribution to both symmetric q-calculus and harmonic function theory.
This operator serves as a powerful tool for characterizing and studying these functions.

Using this approach, we establish a series of fundamental results that contribute
to the understanding of harmonic univalent functions. In particular, we derive sharp
coefficient bounds, which offer precise constraints on the function parameters; distortion
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theorems, which describe how functions behave under conformal mappings; and covering
results, which provide insights into the geometric structure and range of these functions.
These findings not only enhance the theory of harmonic univalent functions but also open
new possibilities for further developments in symmetric q-calculus and its applications in
geometric function theory.

The framework developed in this paper opens several promising directions for future
research. One natural extension involves the generalization of the proposed symmetric
q-differential operator to harmonic functions in higher-dimensional complex spaces, such
as Cn, where the theory of several complex variables and pluriharmonic mappings may
offer new challenges and applications. Additionally, the interplay between the operator

R̃n,s,λ
q and fractional symmetric q-calculus suggests the potential for further investigations

into fractional harmonic mappings and their geometric behavior. Another line of inquiry
could focus on applying the current results to problems in mathematical physics, particu-
larly in models exhibiting bilateral symmetry or nonlocal interactions. Finally, exploring
other subclasses of harmonic functions through convolution techniques or subordination
principles may reveal deeper structural insights and unify different areas within geometric
function theory.
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