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Abstract: This paper addresses the maximum coverage location problem in a generalized
setting, where both facilities (service areas) and regional demand are modeled as continuous
entities. Unlike traditional formulations, our approach allows for arbitrary shapes for both
service areas and demand regions, with additional constraints on facility placement. The
key novelty of this work is its ability to handle complex, irregularly shaped service areas,
including approximating them as unions of centrally symmetric shapes. This enables
the use of an analytical approach based on spatial symmetry, which allows for efficient
estimation of the covered area. The problem is formulated as a nonlinear optimization task.
We analyze the properties of the objective function and leverage the Shapely library in
Python 3.13.3 for efficient geometric computations. To improve computational efficiency, we
develop an extended elastic model that significantly reduces processing time. This model
generalizes the well-known quasi-physical, quasi-human algorithm for circle packing,
extending its applicability to more complex spatial configurations. The effectiveness of the
proposed approach is validated through test cases in which service areas take the form
of circles, ellipses, and irregular polygons. Our method provides a robust and adaptable
solution for various settings of practically interesting continuous maximum coverage
location problems involving irregular regional demand and service areas.

Keywords: regional demand; service areas; continuous maximum coverage location prob-
lem; extended elastic model; symmetry; circle; nonlinear optimization; Python libraries

1. Introduction

The location coverage problem is a core challenge in location analysis [1,2]. It is
typically classified as either the set covering problem (SCP) or the maximum coverage
location problem (MCLP), depending on the objective. In the SCP, the aim is to minimize
the cost of covering all user demand by placing facilities optimally [3]. The MCLP, in
contrast, seeks to maximize the amount of demand covered within a limited budget. The
MCLP has been widely studied in operations research and computational geometry. It
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has numerous applications, including environmental monitoring, image processing, video
surveillance, warning systems, maintenance services, and wireless sensor networks. The
classical MCLP formulation identifies optimal facility locations to serve a finite user set. A
user is considered covered only if they lie within a facility’s predefined coverage area.

Foundational studies [4,5] introduced the problem and explored its applications.
More comprehensive reviews can be found in [6,7]. MCLP models vary depending on
the placement space (discrete, network, or continuous), service zone shape, and demand
distribution. Discrete models are covered in [4,8,9], while network-based formulations are
analyzed in [10-12].

This study focuses on the continuous version of the MCLP (CMCLP), where facilities
can be placed anywhere in a continuous domain. Key contributions in this direction
include [13-17], which typically assume continuous service zones but discretized demand.
In contrast, we consider both service areas and demand to be continuous.

Some recent models extend classical MCLP to address new constraints. For example,
ref. [15] introduces a version of CMCLP with connectivity requirements between service
areas. This is relevant to spatial planning and is solved using a nonlinear mixed-integer
formulation. Another study [17] combines discrete and continuous facility types in a hybrid
model, solved via a branch-and-bound algorithm. Ref. [18] focuses on partial coverage
with variable service quality across continuous demand regions, using greedy heuristics
for the solution.

Despite these advances, few studies address fully continuous coverage problems
with arbitrary geometry. Most works, such as [19,20], assume regular shapes like circles
or rectangles. This is often due to the difficulty of modeling and solving problems with
complex geometric constraints in the CMCLP.

In this paper, we tackle the CMCLP with irregular and non-convex service areas. Our
approach is based on spatial symmetry (e.g., for circular items), approximating service
zones based on symmetric components. This allows for efficient objective function com-
putation without oversimplifying geometry. We also incorporate exclusion zones, further
enhancing the model’s practical relevance.

The CMCLP with arbitrary shapes is relevant to many industries. Traditional as-
sumptions of circular or rectangular service areas are insufficient in real-world scenar-
ios. Our generalized model supports non-standard geometries and addresses previously
infeasible problems.

Let us highlight several practical contexts where such problems arise, emphasizing
their importance and mathematical complexity.

Utilization of Industrial Waste in Lightweight Manufacturing. In industries such as textile
and leather manufacturing, production generates substantial amounts of material waste in
the form of irregularly shaped scraps. Optimally arranging these scraps to cover predefined
areas, such as in the production of insulation layers or composite materials, is a critical task.
The ability to model arbitrary shapes and rotations significantly reduces material waste
and supports sustainable production practices.

Thermal and Acoustic Insulation in Construction. Construction projects often involve
using leftover insulation materials with irregular shapes to cover complexly shaped areas.
Ensuring coverage with minimum gaps is vital for thermal and acoustic performance. This
application requires not only precise geometric modeling but also the capability to rotate
and reposition fragments to maximize efficiency.

Optimization in Solar Panel Assembly Using Recycled Materials. In renewable energy
systems, recycled materials are increasingly used for assembling solar panels. These
materials often have non-standard shapes due to their origin. Arranging such fragments
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on a limited surface area to maximize coverage and energy efficiency requires advanced
optimization techniques capable of handling arbitrary shapes.

Composite Material Production from Scrap Components. The creation of composite materi-
als often involves layering irregularly shaped scraps to achieve structural integrity while
minimizing waste. This problem aligns with coverage optimization and is particularly
challenging when the scraps are non-convex polygons.

Temporary Shelters and Post-Disaster Resource Allocation. During disaster recovery,
temporary shelters are often constructed using available materials with non-standard
geometries. Optimizing the placement of these materials to provide maximum coverage
with minimal resources is crucial for the efficient and rapid deployment of shelters.

Deploying Mobile Health Units. In response to epidemics and pandemics, the strategic
deployment of mobile health units and vaccination centers is critical to maximizing access
for affected populations while minimizing logistical constraints. Regional demand and
service areas often exhibit complex, arbitrary configurations due to factors such as road
network layouts, variations in population density, infection rates, or natural barriers like
rivers and mountains, all of which can impede accessibility. These irregular shapes signifi-
cantly complicate the design of coverage models, as traditional assumptions of uniform
service zones (e.g., circles or rectangles) fail to capture real-world spatial dynamics.

Thus, the focus on arbitrary facility shapes and taking into account the constraints
on their possible location directly contribute to advancing research in mathematical mod-
eling and optimization by addressing problems that were previously infeasible using
standard formulations.

This paper is structured as follows. Section 2 presents the formulation of the CMCLP
considering the arbitrary shapes of service areas and demand regions and proposes its
mathematical model as a nonlinear optimization problem. Section 3 focuses on the local
optimization stage, analyzing the properties of the objective function in the context of the
CMCLP. Section 4 introduces the concept of elastic modeling, inspired by both physical
and human-like interactions, and proposes an extended elastic model to estimate the local
extrema of the objective function. Section 5 presents numerical experiments, including a test
problem with 50 service areas of different shapes (circles, ellipses, and irregular polygons).
The effectiveness of the extended elastic model in local optimization is demonstrated,
and the approach is tested on the CMCLP under constraints on service area placement
parameters. The results and their interpretation are discussed in Section 6. Finally, Section 7
summarizes the main findings and outlines potential directions for future research.

2. Problem Formulation and Mathematical Model

Consider a demand region, (), and a family of facilities (service areas), S;,i € J,,. The
setJ, = {1,...,n} will be referred to as the index set. The objective is to determine the
placement of service areas S;, i € ], with respect to demand region () to optimize a given
criterion. The specifics of this problem depend on the choice of the objective function, the
characteristics of the service areas, and the constraints on their location. In this study, both
Qand S;,i € J,, are considered planar geometric facilities in the Euclidean plane, E2. The
objective function is defined as the area of region () covered by service areas S;,i € J,,
which is to be maximized.

Figure 1 illustrates a portion of demand region () that is covered by four service areas:
a non-convex polygon, a triangle, a circle, and an ellipse.
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Figure 1. Covered part of region Q).

Let Oxy denote a Cartesian coordinate system in the Euclidean plane, E2. The position
of demand region () is fixed within this system. For each service area, S;, an internal
reference, ¢, i € J,,, is specified, referred to as its pole. The location of S; is determined by
the coordinates (x;, Yi) of the pole, ¢;, and the angle, 8;, of rotation with respect to the Oxy
coordinate system (Figure 2). We define pi = (xi,y;, 6i) as the placement parameters of S;.
A service area, S;, with placement parameters, p, will be denoted as S;(p') and referred to
as a parameterized facility.

Figure 2. Placement parameters, pi = (xi,y;, 61), of facility S;.

Let us define a parameterized complex facility as

S(p) = N Usi(p!), M
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We introduce the characteristic function,

; 1, ifP € Si(p!);
AP p) = ilP.
i(P/pY) { 0, ifP ¢ Si(pl),
where P = (x,y) € E2.
Then, the function

up) = [ (1 - f[(l - Ni(P,pY)) ) dxdy @
Q

i=1

defines the dependence of the area of the parameterized complex facility, S(p), on the
placement parameters, p = (p!,...,p").

Thus, the continuous maximum coverage location problem, in general, can be formu-
lated as follows:

u(p) — max ©)

subject to
pED, (4)

where D is the feasible domain of the placement parameters, p = (p!,...,p").

The solution to such a problem is significantly more complex due to its high dimen-
sionality and multi-extremal nature. This complexity underscores the need to develop
specialized optimization methods that account for the unique characteristics of the objective
function (2). We propose an approach that combines local and global optimization methods.
At the local optimization stage, we leverage specific properties of the objective function,
u(p), derived from geometric considerations.

It is important to note that the choice of a local optimization method also depends on
the properties of the feasible domain, D. In this study, we focus on the CMCLP with and
without constraints on the placement parameters, emphasizing the analysis of the objective
function’s properties.

3. Local Optimization Stage for CMCLP

Let us now consider the features of the local optimization stage. Specifying the
objective function, p(p), analytically as a function of the placement parameters, p =
(pl, ..., p"), presents significant challenges. This task is extremely difficult, even for simple
shapes, such as circular demand region () and the service areas, S;,i € J,.

However, we can use computational geometry libraries for calculations, u(p), at fixed
values of the placement parameters, p = (p!,...,p"). An example is the Python Shapely
library [21], which allows for operations on geometric facilities using Boolean operators.
This package enables the construction of complex geometric facilities from basic shapes,
such as polygons, circles, and ellipses.

Importantly, the area of the complex geometric facility,

S(p) = N OSi(p') ©)

formed by unions and intersections of irregular polygons, circles, and ellipses can be
automatically calculated using this library. Python code for these calculations is provided
in [22,23].

Thus, to search for the local extrema of the function p(p), gradient-based local op-
timization methods using first-order differences can be applied. On the one hand, the
computational time for finding a local extremum depends on the proximity of the start-
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ing point to the actual extremum. Thus, it is important to form sufficiently good initial
approximations. On the other hand, we are interested in estimating the area of a complex
facility, S(p), without having to perform union operations on all of the individual facilities,
Si(p'),i € J,, that comprise it.

To solve the approximation problem, we propose an approach based on the following
property of the function p(p). For fixed placement parameters, p = (p!,...,p"), we can
apply the Inclusion-Exclusion Principle to express the following:

mes(s(p)) = mes 3 (i) ) =

—Zmes(QﬂS(”)) Elmes(QﬂS(f)')ﬂS(p)) ’
+ ¥ mes(QﬂS(f)‘)ﬂS (P) NSk(p ) ' ©

i<j<k

(=) Hnw((lmsﬂp ) NS (p )m..xwa(pnn

where mes(S) defines the area of the set, S.

By limiting the number of terms in the series (6), i.e., the number of facility overlaps,
Si(p'),i € J, we can estimate the area of the complex facility, S(p), significantly reducing
computational costs. This approach is well suited for solving the continuous maximum
coverage location problem with arbitrarily shaped facilities. Indeed, it is reasonable to
expect that, when maximizing the function p(p), the multiplicity of facility overlaps
will decrease.

4. Elastic Modeling Approach

Let us consider the following functions:

mo(p') = [ Ai(P,p!)dxdy 7)
QO

wi(p', p) = [ AP, p')A (P, pl)dxdy (8)

Formula (7) defines the dependence of the overlapping area between a parameterized
facility, S;(p'), and region Q) on the placement parameters, p'. Formula (8) determines the
dependence of the overlapping area of the parameterized facilities, S;(p') and S;(p'), on
their placement parameters, p' and p'.

We then define the function:

n—-1 n
ip) =Y mo(P) =Y. Y wiP p) 9)

i=1 i=1 j=i+1

According to Formula (6), the function {i(p) serves as an approximation of u(p) when
we restrict our analysis to double-overlapping regions and disregard higher-order overlaps.
Thus, the following optimization problem can be formulated:

i(p) — max, (10)

Solving Problem (10) provides an approximate solution to the unconstrained opti-
mization problem (3). The primary advantage of Model (10) lies in its significant reduction
in computational complexity compared to directly calculating pu(p) at fixed placement
parameters. Indeed, computing the overlapping area of two objects is much simpler than
calculating the area of a complex facility, S(p), as defined in Formula (5). This simplifica-
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tion is particularly critical when employing gradient-based optimization methods with
first-order differences.

We refer to Model (10) with the objective function of Formula (9) as the extended elastic
model [24] for Problem (3). The term “elastic” is used because the model is a generalization
of the well-known elastic (quasi-physical, quasi-human) model [25-27] applied to the Circle
Packing Problem [28,29].

Consider the Circle Packing Problem, formulated as follows. Given a circular container,
), with an undetermined radius, R, as well as n circles, S;,i € J,,, with known radii, rj,i € ],
let the center of () be the origin of the two-dimensional coordinate system, and let the
coordinate of the center of S; be p! = (x;, y;). The problem is to find a feasible placement
(non-overlapping and not exceeding the container) with the smallest container radius, R.

The objective can be formulated below:

R — min (11)
subject to
diO S R— i, ie ]n/ (12)
di]' > 1+, i,j E]n,j > 1, (13)
where

dio = \/x¢ +y7
dj = /(i — )" + (5 — )"

The elastic model of Problems (11)—(13) is based on its relaxation, assuming that the

objects are elastic and their overlapping and extension beyond the container is allowed.
The degree of overlap between facilities is determined by the so-called function extrusion
elastic potential energy, which has the form

n n—1 n
E(p',....p") = L Eo(p) + Y Y E(p'p), (14)
i=1 i=1j=i+1
where
Eio(pl) = maxz{O, R— T — di()} (15)
Eij (pi, p]) = maxz{o, I + ) — dl]} (16)

Squaring function max in Formulas (15) and (16) ensures the non-negativity and
differentiability of the function E(p!,...,p").
As a result, we arrive at the following nonlinear optimization problem:

E(pl,...,p") — min. (17)

This problem is treated as an auxiliary problem when solving Problems (11)-(13),
particularly when using the penalty function method.

Unfortunately, extending the elastic model ((15)-(17)) to the packing problem with
irregular facilities presents challenges due to the difficulty in determining the distances
between them. One possible solution is to use the phi-function method [30,31]. However,
well-known analytical formulas for phi-functions are primarily designed for positive
values [32,33]. For overlapping facilities, the corresponding phi-functions must be negative,
adding complexity to the problem.
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For the packing problem with arbitrarily shaped facilities, we propose using the
extended elastic model, assuming that

Eio(p') = mes(S;) — wio(p')
E;j(p',p') = w(p’,p)),

where the functions py,(p') and Hjj (p',p') are provided by Formulas (7) and (8), respectively.
Letr; <1, <...<r, <R Then, fori,j€]J,, j>i wehave

wi(ph, p)) = 0if djj > 1y +1j;
wi(p', p) = mf if dj <1y —rj;
Hio(p') = 0if djg > R+1;
kio(p', p°) = mrf if dip < R — 1.

Ifrj—ri <dj <rj+rorR—r <dj < R+rj, we can write

2.2, 12 2 2,12 2_2.,392)\2
iy .2 Re—r¢ +di0 - R—r; +di0 2 (R -1 +di0)
wio(p') = rfarccos = 1q e [T g
i0 (18)
2_p2. 92 22
2 rf —R*+dj r; —R°+dj
+R a?‘CCOSIZRdiU — T 2d
2 2,12
PN D I _ri""dij
ui (P, P) = rjarccos g
(19)

22,42 22,42
;=1 +dij -1 +dij

2 i Y _
“+r{arccos 7rdy 7d;

Note that Formulas (18) and (19) are more complex than (15) and (16), but the question
of how much better the packing of circles will be achieved by using them in Problem (17)
remains open. This issue falls outside the scope of our study, as it is more closely related to
the packing problem.

In the context of the CMCLP, the coverage area of region () plays a crucial role, which
limits the applicability of the elastic model ((14)—(17)). However, the use of the extended
elastic model is justified for both the packing and coverage problems with arbitrarily shaped
objects. In this case, Formulas (18) and (19) are valuable, as they enable the calculation of
the overlapping area of circular facilities.

It is worth mentioning that formulas for the overlapping area of ellipses are also known,
but we do not present them here due to their complexity. For two ellipses, the overlapping
area is determined by adding the areas of the corresponding sectors and polygons. The
intersection points of two general ellipses are found using Ferrari’s quartic formula, which
solves the polynomial resulting from combining the equations of the two ellipses.

5. Numerical Experiments

In this section, we provide a numerical justification for using the extended elastic
model in the CMCLP. A series of numerical experiments were conducted to substantiate
the feasibility of applying Model (10) for estimating local solutions to Problem (3). We
will consider the CMCLP both an unconstrained and constrained optimization problem.
The following computer configuration was used for the experiments: Intel Core i7-5557U
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processor (3.1 GHz, 2 cores, 4 threads), 16 GB DDR3 1866 MHz RAM, Intel Iris Graphics
6100 GPU with 1.5 GB of video memory, and a 512 GB SSD, running macOS 11.0 Big Sur.
For calculations, we used Python libraries. Specifically, Shapely was employed to
perform logical operations on geometric objects and to determine the areas of the resulting
complex objects, while scipy.optimize was utilized for the local optimization of the functions

w(p) and fi(p).

5.1. Solving Unconstrained Problem Using Extended Elastic Model

Let us analyze how closely the local solutions of unconstrained Problems (3) and (10)
align in terms of the objective function value when using the same optimization method
and starting point. For testing, demand region () was modeled as an irregular polygon, and
for the service areas, S;,i € J,,, n = 50 were arbitrary shapes. These included 30 polygons
with vertex counts ranging from three to eight, as well as 10 circles and 10 ellipses. The
vertex coordinates for region () and polygons S;,i € J3y are presented in Tables 1 and 2,
respectively. Table 2 also shows the area, mes(S;), of each facility, S;. The radii of the circles
and their areas are provided in Table 3, and the semi-axes of the ellipses and their areas are
listed in Table 4.

Table 1. Vertex coordinates of polygonal demand region Q.

i 1 2 3 4 5 6 7
Xj —60 —70 —210 —170 —40 180 200
Vi —175 —145 0 170 90 210 -20

We specifically designed polygonal demand region (2 so that its area closely approxi-
mates the sum of the areas of objects S;,1 € J5p. In particular, we have

50
mes(Q)=92241.4, ) " mes(S;) = 92300.
i=1

This approach to forming the initial data was chosen to preserve the unique character-
istics of the CMCLP, which represents an intermediate formulation between the packing
problem and the complete coverage problem. Specifically, given the data—such as the
curvature of the object boundaries and the non-convexity of the polygons—it is neither
feasible to achieve the acceptable packing of objects within the region nor to ensure its
complete coverage. However, the task of maximizing the region’s coverage remains highly
relevant and practical.

To validate the reliability of the results obtained using the extended elastic model,
we conducted a series of experiments comparing the local solutions to unconstrained
Problems (3) and (10). In these experiments, we randomly and uniformly generated the
placement parameters, p' = (%, ¥;,0;),1 € J50, of objects S;, i € Js0, ensuring that (%;,9;) € Q
and 6; € (0,27). Note that the angle parameter, 0;, is not required for circular objects.

To compute the overlapping area of circles and ellipses, we used known analytical
expressions, specifically, Formula (19), for circular objects. The overlapping area between a
polygon and other objects was calculated using the Python Shapely package.

To optimize the functions pu(p) and fi(p), starting with the starting point p =
(151, . ,1550), we selected the Broyden-Fletcher-Goldfarb—Shanno (BFGS) method [34],
implemented via the scipy.optimize package. The BFGS method was chosen for local opti-
mization as it offers a strong trade-off between accuracy and computational efficiency. Our
choice was further supported by prior experience with this method and recommendations
from researchers who have successfully applied it to packing problems. In the context
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of maximum coverage problems, BFGS demonstrated sufficient speed while effectively

navigating local extrema.

Table 2. Vertex coordinates of polygonal service areas S;—Sz.

X1yr X Y, X% Y3 X4 ¥y X5 Y5 X Yy X7 Y7 Xs yg Area
St 12 0 —10 18 —-11 -20 427
S, 35 0 -17 29 —-18 -31 1574.5
S; 40 O —-12 40 —-18 -38 2148
Sy 20 10 —-15 26 —16 —-28 953
Ss 31 0 —-15 26 —18 -31 1350
Se 24 0 0 23 =30 0 0 —22 1215
Sy 20 0 0 10 -22 0 0 —-17 567
Sg 34 0 0 30 —-25 0 0 —40 2065
So 40 0 0 30 —40 0 0 —35 2600
Sip 20 0 0 20 =25 0 0 —-25 1012.5
Sin1 17 0 11 35 -—-22 16 —24 -—-18 10 -—28 1824.5
S 30 0 5 16 —-18 13 -19 -14 8 —-25 1334.5
Si315 —10 9 19 -25 8 —-16 =21 0 —10 942.5
Si4 16 0 5 20 —-13 10 -19 -13 2 —-27 980
Si520 0 23 —-12 9 -20 —-14 5 —16 928.5
Si16 40 10 13 13 -3 33 —-30 10 —-11 -27 28 —22 2448
Si740 0 14 24 —20 20 —40 0 -1 -7 22 —37 2235.5
Sig31 0 23 4038 —18 31 -22 0 -13 -23 19 —-33 2884.31
Si19 28 0. 11 19 -15 27 =35 —-17 =30 13 —23 2267
Sy 10 0O 26 28 0 22 =23 0 -16 20 -14 1093
S»1 29 0 20 25 -7 29 -24 12 -27 —-13 -6 =27 13 -17 2162.5
S» 29 0 9 11 —4 19 —-18 9 —-34 —-16 —4 —11 20 —25 1394.5
S 29 0 12 16 -5 22 —-33 16 -30 -14 -3 -9 20 —25 1802
Sy 31 —10 14 18 -8 24 —24 -30 -5 -3 -—-13 11 —24 1549
S5 23 0 11 13 -6 22 -15 7 -17 -8 -7 =27 10 —-13 1104.5
Sy 14 —10 21 11 0 24 —33 24 -13 -10 —-11 -21 O =35 19 —29 1865.5
Syy 15 0 26 25 0 21 —22 21 -15 0 —18 —-16 0 —33 30 —30 1986
Sys 36 10 17 27 0 18 —-16 25 —-29 10 -31 =19 0 —-29 30 —20 2805.5
Sy 39 0 23 22 0 21 —-19 19 —-40 O -30 —-20 O —28 10 —10 2405
S30 30 0 30 30 0 30 —-15 20 25 0 -25 =25 0 —34 20 —20 27525
Table 3. Radii of circular service areas S31—Syp.
i Sa1 Ss2 Ss3 Ss4 Ss5 Ss6 Ss7 Sss Ss9 Su0
T 10.00 14.14 17.32 20.00 22.36 24.49 26.46 28.28 30.00 31.62
Area 314.16 628.32 94248  1256.64 1570.8 188496 2199.11 2513.27 2827.43 3131.59
Table 4. Semi-axes of elliptical service areas S41—Ss.
i Sy Sur Su3 Sua Sys5 Sue Suy Sug Sa9 Ss0
a; 10.00 14.14 17.32 20.00 22.36 24.49 26.46 28.28 30.00 31.62
b; 14.14 20.00 24.49 28.28 31.62 34.64 3742 40.00 42.43 44.72
Area 44429 888.58 1332.86 1777.15 2221.44 2665.73 3110.02 3554.31 3998.59 4442.88
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One example of a randomly chosen starting point, p' = (%, ¥;,0:),1 € Js0, and the
corresponding initial location of objects S;,i € J50 is shown in Figure 3. In this case, the
coverage area is 55,214.9. Note that in coverage problems, the quality of the solution is
often characterized by the coverage density, defined as the ratio of the covered area to the
total area of the region. For the initial location considered, the coverage density is 59.86%

150

100

-100

-150

-200 -150 -100 o 50 100 150 200

Figure 3. Initial service area locations.

Figure 4 illustrates the placement of service areas S;,i € J5y corresponding to the local
maximum of the objective function, {i(p), obtained using the extended elastic model for the
above starting point, p. In this case, the coverage area is 86,514.2, and the coverage density
increases to 94.11%. The time to find a local solution was 17 s.

150

100

-s0

~100

~150

~200 -150 -100 -50 o 50 100 150 200

Figure 4. Location of service areas corresponding to the local maximum of function fi(p).
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Table 5 lists the service area placement parameters, p = (p*,...,p>"), corresponding

to Figure 4.

Table 5. Service area placement parameters, p' = (x;, y;, 0;), for Figure 4.

i Xi Vi 0; i Xi i 0;

1 —18.564 34.094 1.976 26 —106.615 —84.286 —11.049
2 —80.873 51.592 —12.765 27 112.12 —48.375 —5.636
3 134.105 112.577 16.765 28 80.431 33.54 —8.316
4 —72.346 93.564 14.508 29 —122.525 3.761 5.587
5 125.248 62.101 —37.798 30 —75.632 5.948 —8.530
6 —100.86 108.227 9.913 31 —12.636 96.258

7 —86.107 —115.210 10.955 32 104.804 91.85

8 —20.518 —85.489 4.69 33 112.787 —2.262

9 75.678 —26.266 0.647 34 —45.85 26.699

10 —30.227 —6.888 —18.98 35 —44.854 —43.755

11 —135.585 —53.698 —9.42 36 —62.461 —85.768

12 70.766 133.496 —2.013 37 —90.638 —39.248

13 —113.915 48.275 —9.978 38 158.452 172.053

14 —165.444 —31.125 13.599 39 167.89 36.872

15 93.655 72.372 —10.108 40 —44.812 —133.226

16 —181.867 2.706 1.6813 41 89.069 107.085 —23.043
17 4.558 —46.62 14.479 42 20.054 —92.481 —16.458
18 —35.035 74.641 —10.862 43 172.108 128.199 16.73
19 162.955 81.355 —13.85 44 —170.929 93.231 —2.006
20 —1.348 —125.139 —3.829 45 59.379 —80.431 12.831
21 112.247 148.266 —1.909 46 —146.032 131.658 —12.047
22 31.192 —40.256 32.981 47 —161.354 46.376 —9.008
23 28.605 50.196 —0.292 48 160.758 —14.487 —6.683
24 —132.536 83.723 1.534 49 21.932 8.349 6.965
25 123.624 27.331 6.053 50 38.462 92.43 7.499

Note that there are no triple overlaps in Figure 4, meaning that p(p) = fi(p). Even
if triple overlaps existed, the solution error (i.e., ¢ = |u(p) — fi(p)|) would be determined
by the total area of the triple or higher-order overlaps. However, considering the value of
mes(Q)), the coverage density would only slightly decrease. This confirms the effectiveness
of the extended elastic model.

The local optimum of both function p(p) and function fi(p) strongly depends on the
choice of the starting point, p. To assess the average execution time for local optimization of
functions p(p) and fi(p), as well as to compare the corresponding covered areas of region
), we repeated the experiment multiple times with various randomly generated starting
points, p = (p!,...,p).

Our results indicate that finding the local maximum of function fi(p) using the ex-
tended elastic model took 15-20 s. In contrast, solving Model (3) showed significant
variability in execution time, ranging from 25 s to several minutes, depending on the start-
ing point. Moreover, in most cases, the extended elastic model produced a larger covered
area. We attribute this to the following observation: function p(p) has significantly more
local extrema than function fi(p), as it accounts for multiple object overlaps. Consequently,
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the optimization process for function p(p) can terminate quickly, but the quality of the solu-
tion often remains close to the initial one. In contrast, optimizing function fi(p) effectively
avoids unnecessary local extrema, resulting in a more robust solution. This conclusion is
supported by a comparative analysis of the optimization process for functions p(p) and
fi(p), including the number of iterations of the BEGS method and the time required to reach
a local solution from the same starting point.

Additionally, the solution to Problem (10) can be improved by using the obtained local
extremum as the starting point for optimizing function u(p). It is important to emphasize
that if the location of objects corresponding to the local optimum of function {i(p) does not
involve overlaps of multiplicity higher than two, then the local solutions of Problems (3)
and (10) are identical.

Remark 1. We have provided time estimates for solving the local optimization problem
for a single example. A natural question arises: how does the solution time change
depending on the number of objects, n, and their shapes? For insights into this, we refer to
the studies cited in [22,23], where these factors were analyzed, and corresponding graphs
were presented for up to 500 facilities. The corresponding Python code is provided in [35].
These studies indicate that when using the Python Shapely library, the shape of the objects
(except for circles) has little impact on the solution time, which is primarily determined by
the number, n. A sharp increase in computation time is observed when n > 100.

Remark 2. To validate the effectiveness of our approach, which is based on the gen-
eralized elastic model, we conducted multiple experiments by varying the number, n,
and shape of service areas S;,i € J,,. These experiments suggest that the obtained locally
optimal arrangement exhibits properties similar to those observed in the example discussed
above. In particular, the use of the extended elastic model significantly reduces the solution
time without compromising its quality. Of course, it is possible to specify certain initial
shapes and sizes of objects where the local optimum involves multiple overlaps of facilities.
However, such cases are usually very specific and require the development of specialized
methods. In contrast, our approach is universal, which makes it applicable to a wide range
of problem statements.

Naturally, local solutions to the optimization problem can later be utilized in the
process of their enumeration; i.e., they can be considered at the global optimization stage.
For the class of CMCLP with objects of arbitrary shape, the extended elastic model al-
lows for the highly accurate estimation of local solutions while significantly reducing the
computation time required to obtain them. Therefore, at the global optimization stage,
we can focus on identifying local solutions to Problem (10) rather than solving the more
complex Problem (3). Once these local solutions are found, they can be further refined using
local search metaheuristics. Typically, in such cases, a multi-start algorithm is employed,
where local extrema are repeatedly searched for from different starting points. Given the
complexity of the class of problems under consideration and the computational cost of
finding a local extremum, we believe that the use of a multi-start algorithm is justified.
Therefore, in the numerical experiments presented above, we focused on identifying a
local solution.

5.2. Solving CMCLP Under Constraints on the Placement Parameters

Let us consider an example of a locally optimal coverage of a demand region, (), under
constraints on the placement of service areas. As before, we assume that (2 is a polygon
whose coordinates are provided in Table 1 and that service areas S;, i € J5( are figures whose
shapes and sizes are provided in Tables 2—4. As restricted zones, we define nine circles with
a fixed radius of ry = 20, whose center coordinates, (X]Q, y]-O), j € Jo, are listed in Table 6.
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Table 6. Coordinates (xjo, y].o) of the centers of the circular restricted zones.

1 2 3 4 5 6 7 8 9
X/ 140 150 160 20 125 140 70 75 25
v} 15 35 90 40 25 75 110 40 20

Thus, the feasible domain, D, is determined by the system of inequalities:

- (i =) = (y; — )" <0 i € 5o, j € Jo. (20)

In this case, we deal with the constrained optimization problem ((3)—(4)).

To solve this problem, we follow a structured algorithm. At the local optimiza-
tion stage, we apply the extended elastic model, maximizing function fi(p) under
constraints (20). This is accomplished using the interior point method [36] from the
scipy.optimize package. For global optimization, we implement a multi-start approach,
where local extrema are repeatedly identified from different initial points generated accord-
ing to the previously described rule.

After completing this process, the best solution is selected as the new starting point,
from which we refine the local maximum of function u(p).

Our implementation includes a multi-start algorithm with 10 initial points. Figure 5
illustrates the final location of facilities S;,i € J59, while Table 7 details their placement
parameters, p = (p',...,p"). In the figure, restricted zones are highlighted in red. The
resulting coverage area is 87,693.48, with a coverage density of 95.07%. The total solution
time for the CMCLP was 543 s, including the final stage of function f optimization. On
average, obtaining a single local solution took approximately 50 s.

—200 -150 —100 0 50 100 150 200

Figure 5. Resulting locations of objects.
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Table 7. Service areas placement parameters, p' = (x;, y;, 0;), for Figure 5.
i X Vi 0; i X Vi 0;
1 -8.502 39937 —2.585 26 —-0.373 43.477 31.734
2 80.015 135.551  —42.043 27 —82.669 13.126 2.552
3 175917 83.439 18.937 28 —41.244  38.936 25.18
4 159.396  —-35.311 —1.575 29 —129.985 110.243 2.979
5 —43.031 —145.228 —0.792 30 —5.557 —75.13 12.732
6 27.477 —101.6 17.333 31 —195.73  29.811
7 —-58.755 —-76.709 —30.827 32 133.76 169.704
8 59.503 35.408 —45.961 33 180.966 15.908
9 —126.137 —59.955 6.966 34 41.509 117.407
10 —46.148 —100.526 —18.768 35 13.322 93.744
11 168.97 175.925 0.175 36 140.499 6.981
12 —88.699 —29.539 —10.572 37 —11.029 —120.293
13 63.977 —38.91 14.916 38 -50.409 —-37.317
14 —123.832  68.397 —1.333 39 154.008  128.428
15 30.872 59.556 8.041 40 68.011 85.882
16 57.508 —75.097 —34.011 41 110.648  125.008 —26.481
17 —161.617 122.677 8.227 42 180.332  —12.019 7.361
18 107.347  —41.319  32.078 43 —108.0563  40.141 —24.455
19 —178.791 —6.156 —8.141 44 158.325 46.035 —10.965
20 —25416 3161 —13.031 45 122.075 89.706 —31.805
21 105.312 44.601 —7.096 46 84.813 —2.018 12.431
22 —28.921 81.643 20.473 47 —132 —8.773 —4.977
23 -9273 82154 —11.670 48 —85.843  84.455 —15.522
24 -77.333 117792 -2.877 49 —163.947 52.121 21.284
25 112968  150.282  —13.289 50 22.548 —12.477 —16.906

6. Discussion

The uniqueness of this article lies in the exploration of the CMCLP with arbitrary
spatial shapes for demand regions and service areas. Existing approaches to solving such
problems have typically been limited to simple shapes like circles, rectangles, and regular
polygons. In these cases, analytical estimates of coverage density were achievable, and
solution methods, often heuristic, leveraged the properties of these simple shapes. However,
considering the sizes and shapes of demand regions and service areas provides a more
accurate and realistic representation of the phenomena and processes under investigation.

The study of the CMCLP with arbitrary-shaped facilities required the development
of new approaches to mathematical modeling and effective solution methods. The rapid
advancement of research in pattern recognition and image processing has fueled the
creation of software products focused on analyzing and manipulating spatial shapes. A
variety of libraries, such as SymPy, Shapely, CGAL, SpaceFuncs, and others, now allow for
efficient geometric information processing. This has, in turn, motivated the development
of new methods for solving the CMCLP using modern computational geometry packages.
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In this study, we achieved two key objectives: first, we formulated the CMCLP as
a nonlinear optimization problem, and second, we integrated existing computational
geometry packages with libraries implementing local and global optimization methods.
Although we used the Shapely and scipy.optimize libraries in Python for our experiments,
similar libraries are available for various high-level programming languages.

It is worth noting that the CMCLP was originally formulated as a general constrained
optimization problem ((3) and (4)). Our study demonstrates that the proposed approach
remains effective even in this more complex setting. We believe that this further reinforces
the significance of our findings and their potential applicability. It is worth noting that
we focus on a class of CMCLP, where the feasible domain, D, is canonically closed. This
excludes discrete or mixed formulations, which require specialized optimization methods.
In the continuous setting, the neighborhood of any point in D always contains a non-empty
set of feasible directions for improving the objective function, enabling gradient-based
optimization. The constrained CMCLP remains an important direction for future research.

At the same time, the extended elastic model proposed in this work shows promise
for significantly reducing computational costs when applied to continuous constrained
nonlinear optimization methods. Additionally, the importance of the extended elastic
model extends beyond coverage problems to encompass the practically significant class of
packing problems.

In packing problems, a key challenge is the formalization of non-overlap conditions
for objects. These conditions are typically expressed through a function that relates the
distance between objects to their placement parameters. For arbitrarily shaped objects,
especially when considering rotations, calculating the values of such a function becomes
extremely complex. In contrast, the extended elastic model naturally and efficiently for-
malizes non-overlap conditions by computing the overlapping area, offering a simpler yet
robust approach.

At the global optimization stage, we adopted a multi-start approach, which we con-
sider appropriate given the structure of our model and current computational constraints.
While relatively simple, this method has proven effective in producing high-quality so-
lutions for the considered class of CMCLP instances. Nevertheless, we fully recognize
the potential of metaheuristic algorithms—especially for tackling complex, non-convex
problems with large solution spaces. In fact, recent advances in this area offer powerful
frameworks that could be adapted to our setting.

There is a growing body of research exploring metaheuristic algorithms for large-scale
and hard variants of location problems. For instance, a fast adaptive metaheuristic for
large-scale facility location optimization is proposed in [37], demonstrating significant
computational efficiency. A hybrid metaheuristic for multi-objective location problems is
introduced in [38], combining global and local search mechanisms. Applications in wireless
network sensors are examined in [39], where a hybrid metaheuristic is used to maximize
coverage. A comprehensive review of metaheuristics for MCLP is provided in [40], covering
genetic algorithms, ant colony optimization, and swarm intelligence approaches. Further
relevant studies include [41], which addresses dynamic object location with metaheuristics,
and [42], which applies such methods to continuous coverage under irregular demand
distributions. A recent survey [43] further highlights developments in this area.

Applying the above approaches to the CMCLP with arbitrarily shaped service zones
and continuous demand distributions would require significant model-specific customiza-
tion and integration with geometric preprocessing. We view this as a promising avenue for
future research and plan to investigate how such algorithms can complement or enhance
our current approach in more complex or large-scale scenarios.
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7. Conclusions

In this study, we introduced a formulation of the CMCLP, where both service areas
and demand regions are defined in continuous space and may have arbitrary, irregular
shapes. Our model also includes constraints on the placement of service areas. The novelty
lies in combining continuous spatial modeling with the ability to process complex shapes.

We developed a mathematical model for this problem, formulating it as a nonlinear
optimization task. We examined the properties of the objective function, with calculations
performed using the Shapely library in Python, which allowed us to handle geometric
operations efficiently. The process of solving the CMCLP was divided into local and global
optimization stages. At the local optimization stage, we proposed the use of an extended
elastic model, which significantly reduced computational time by offering a more efficient
approximation method. This model is versatile, enabling its application to a wide range of
packing and coverage problems, especially those involving irregularly shaped objects. At
the global optimization stage, we employed a multi-start approach, which allowed us to
obtain a good approximation to the global solution, despite the challenges posed by the
non-convexity and irregularity of the problem. The results of our numerical experiments
justify the effectiveness of our proposed method for solving the CMCLP.

In future work, we plan to focus on the development of local search metaheuristics
and evolutionary methods for improving global optimization. We also aim to refine local
solutions within their neighborhoods. Additionally, we intend to apply the developed
methodology to tackle optimization problems involving packing and complete coverage
with variable service areas and demand region sizes. We believe that such research is highly
promising, as it leverages modern software tools for processing geometric information on
complexly shaped objects.
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