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Abstract: Multifactor uncertain differential equations (MUDEs) are effective tools to model
dynamic systems under multi-source noise. With the widespread use of MUDEs, parameter
estimation as the bridge between the observed data and the MUDE becomes increasingly
important. Thus, how to estimate unknown parameters in a MUDE under a multi-source
noise environment is a challenge. To address this, this paper innovatively proposes a
moment method to estimate the unknown parameters in a MUDE and illustrates two
numerical examples to show the process of estimating parameters. Furthermore, since
the system or environment is complex and constantly changing, the parameters in the
MUDE are not constants but time-varying functions in many cases. Therefore, parameter
estimation for time-varying functions is another challenge. In order to deal with this, this
paper develops a method of parameter estimation for time-varying functions in the MUDE
based on the moment method. As an application, this method of parameter estimation for
time-varying functions is used to model China Merchants Bank stock.

Keywords: uncertainty theory; moment method; multifactor uncertain differential equation;
parameter estimation; time-varying function; stock market

1. Introduction
1.1. Background on SDEs and UDEs

Stochastic differential equations (SDEs) are aimed at modeling the time evolution of
a dynamic system under random influence. They have been widely used in fields such
as physics, medicine, biology, economics, finance, geophysics, oceanography, and others.
Once the form of the SDE is determined to model a dynamic system, it typically contains
unknown parameters. Since the equation itself is not completely known without the es-
timated parameters, it is even more impossible to obtain the result we want by using
random analysis, which shows that parameter estimation in SDEs is important and funda-
mental. Many researchers have proposed lots of methods. In linear homogeneous SDEs,
Taraskin [1] presented maximum likelihood estimation. In nonlinear homogeneous SDEs,
Kutoyants [2] studied maximum likelihood estimation and Bayes estimation, Prakasa [3]
proposed maximum probability estimation, Lanska [4] investigated minimum contrast
estimation, Yoshida [5] introduced M-estimation, and Dietz and Kutoyants [6] studied min-
imum distance estimation. In nonlinear nonhomogeneous SDEs, Kutoyants [2,7] studied
maximum likelihood estimation and Bayes estimation.
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However, SDEs may fail to model the time evolution of a dynamic system when the
white noise is described by a Wiener process because the variance of the noise tends to
infinity. For example, Liu [8] pointed out two paradoxes in applying stochastic differential
equations to stock prices, and Yang and Yao [9] proposed some paradoxes about applying
stochastic heat equations in modeling real heat conduction. To deal with this issue, the
Liu process as a likeness of the Wiener process was proposed by Liu [10]. If the white
noise is described by a Liu process, then the variance of the noise is 1 rather than infinity.
And for this reason, uncertain differential equations (UDEs) driven by the Liu process
were established by Liu [10]. Furthermore, Ye [11] and Zhu [12] explored the theoretical
basis of uncertain partial differential equations driven by the Liu process. Until now, UDEs
have been applied in many fields, such as finance (Liu [8], Jia et al. [13]), optimal control
(Zhu [14]), differential games (Yang and Gao [15]), and so on.

1.2. Literature Review

As UDEs find increasing applications, parameter estimation has become increasingly
important. In different kinds of UDEs, parameter estimation has been studied extensively
during the recent years. In first-order UDEs, Yao and Liu [16] investigated moment estima-
tion, Liu [17] proposed generalized moment estimation, Yang et al. [18] studied minimum
cover estimation, and Sheng et al. [19] investigated least squares estimation. In high-order
UDEs, Liu and Yang [20] discussed moment estimation. Then, Ye and Liu [21] employed an
uncertain hypothesis test [22] to test whether or not a UDE fits the observed data. As appli-
cations of UDEs, the moment method was employed to estimate the unknown parameters
in an uncertain SIR model by Chen et al. [23] and those in an uncertain SEIAR model by
Jia and Chen [24] to study COVID-19 spread. Moreover, Lio and Liu [25] studied how
to estimate the unknown initial value of an uncertain differential equation based on ob-
served data. Furthermore, UDEs have also applied in many fields, such as physics [26,27],
chemistry [28], and finance [29,30].

These studies focused on UDEs driven by only one Liu process. This will limit the
model to considering noise interference from only one source. However, in many cases,
a system tends to be disturbed by multiple sources of noise. For example, in a system
composed of multiple components, each component will be disturbed by noise, and then
the entire system will be disturbed by multi-source noise. In this case, multifactor uncertain
differential equations (MUDESs) (Li et al. [31]) are effective tools to model the system
performance. As powerful tools for studying the time evolution of a dynamic system
under multi-source noise, MUDEs are widely used in finance, engineering, and other fields.
In order to combine observational data to conduct MUDESs, how to estimate unknown
parameters in MUDEs is an important topic. To address this, Liu and Yang [32] studied
parameter estimation in a pharmacokinetic model based on a MUDE. For a more general
MUDE, Zhang et al. [33] tried to estimate unknown parameters by using approximate
linear substitution. Wu and Liu [34] used the least squares estimation method to estimate
unknown parameters in a MUDE and Liu and Zhou [35] applied a MUDE to modeling an
RL Electrical Circuit.

1.3. Research Gap and Contribution

The existing literature on parameter estimation of MUDEs suggests that parameter
estimation methods only apply to specific MUDEs or do not make full use of distribution
information. In addition, there is a lack of discussion on the estimation of MUDEs in the
case of time-varying parameters. The contribution of this paper is to introduce a new
method, i.e., the moment method, to estimate unknown parameters in MUDEs. Moreover,
to deal with the situation where the parameters in the MUDE are not constants but time-
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varying functions since the system is complex and constantly changing, this paper further
study the parameter estimation for time-varying functions in the MUDE. As an application,
this method of parameter estimation for time-varying functions is used to model China
Merchants Bank stock.

The rest of this paper is organized as follows. Section 2 introduces an approach about
how to employ the moment method to estimate unknown parameters in a MUDE. Section 3
illustrates two numerical examples to show the process of estimating unknown parameters
in the MUDE. Section 4 further develops parameter estimation for time-varying functions in
the MUDE, which is summarized as an algorithm in Section 5. As an application, Section 6
applies this approach of parameter estimation for time-varying functions to modeling
China Merchants Bank stock. Finally, some conclusions are made in Section 7.

2. Parameter Estimation

This section tries to explore the parameter estimation in a UDE containing multiple
uncertain processes, i.e., a MUDE.

Definition 1 ([31]). Suppose Ci¢, Cay, - - -, Cpyy are independent Liu processes, and f,$1,82,** ,§n
are measurable functions. Then,

dX; = f(t, Xp)dt + ) gi(t, X¢)dCy 1)
iz

is called a multifactor uncertain differential equation. A solution is an uncertain process X; that
satisfies (1) identically in t.

In the practical application of a MUDE, how to estimate the unknown parameters in a
MUDE that fits the observed data as much as possible is a core problem. Let us consider
a MUDE ;
dX; = f(t, X;,0)dt + Y gi(t, X, 0)dCy 2)
i=1
where Cy4, Cot, - -+ ,Cyt are independent Liu processes, and f,g1,$2,- -+ ,gn are known
functions, but 8 are unknown vectors of parameters. Suppose

XtyrXtyy o0t s Xty
are observed values of X; at the times t1,ty,- - -, ty, with t] < tp < --- < tj, respectively.
Note that for each j, the multifactor uncertain differential Equation (2) has a different form,

n
X = Xt + f(t), X, 0) (b1 — ;) + ;81‘(%, Xi;,0)(Cit,, — Cit,),
i=

ie.,
n

Xt]-_H - th - f(t]/ Xt]-/ 9)(t]+1 - t]) = Zgl(t]/ Xt]-/ 9)(Citj+1 - Citj)'
i=1
Dividing both sides of the above equation by
n
] |gl(t]/ th/ 9) | (tj+1 - t])/

1
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we obtain

n

i(t:, Xt.,0)(Cyp. . — Cyy.
xtﬁl—x—f(-xt.,e><t]-+1—tj>_§gl“ 10 (Gt = Cit) o
_ i |

n
2 &i(tj, Xi;, 0)[(tj11 — tj) Y 18i(t, X, 0)[(tj11 — 1)
= i=1

Substitute Xt]. and Xt]. ., with the the observed data Xt and Xtjy in the (3), and write

Xt — Xp. — f(ti,x¢.,0)(tisq — t;
hj(ﬂ): f,+1n £ f(] £ )(]+1 ])’

Z ‘gl(t]/ Xt]., 6)|(t]+] — t])
i=1

and
n
l;gl t]/ Xt / lt Cit]')

6= .
2 |gi( t]rxt t]+1 - tj)

On the one hand, it follows from (3) that for each j with1 < j < m —1, hj(B) can be
regarded as a sample of ¢j- On the other hand, since Cy4, Cy;, - - - , Cyyt are independent Liu

processes, we have
n

Zg (tj, xt;, O)N (0, tj11 — t;)
Gj~ =
Z|g1 t],xt, ]+1 _tj)

’M=

I
—

N(O’ ‘gi(tj, xtj/ 9)|(t]'+1 — t]))

Y18t xe;, 0)|(t41 — 1)
i=1
N(O, Y 18i(tj, xt, 0)[ (tj1 — fj))

n
Z |g1 t]/ Xt; .0 t]+1 - t])
i=1

N(0,1

forj=1,2,--- ,m—1. Thatis, g]-,j =1,2,---,m —1identically follow a standard normal
uncertainty distribution N (0,1). Thus, hj(B), j=1,2,---,m—1canberegarded asm — 1
samples of the standard normal uncertainty distribution A/ (0,1). Next, we will employ the
moment method to estimate the unknown parameters. Since for each positive integer k,
the k-th sample moment is

1 m—1 '
e IR
j=1

and the k-th population moment of A/(0,1) is

(2) [ (2
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the moment estimate 6 should solve the system of equations

k
1 m—1 " \B 1 P k
F}; i (0) = <n> | (1nH> da, k=12 ,p, (4)

where p is the number of unknown parameters. As supplementary knowledge of popula-
tion moments, the k-th population moments [36] of an uncertain variable ¢ with the inverse
uncertainty distribution ®~! are

1 k
ky _ -1
E[¢H] = /0 (¢7(2)) da
where k is a positive integer. For example, if an uncertain variable ¢ ~ N (0,1), then we

~ V3. a
@ He) = Tring

have

and Ma et al. [37] provided the calculation formulas for the k-th moments of a standard
normal uncertain variable, i.e.,

Eleh = (@k/ol (lnl”‘a)kdw = (26~ 2)33|By,

where By are the k-th Bernoulli numbers, k = 1,2, - -, respectively. Specially, we have
E[&¥] = 0 for any positive odd number k, and

2
2

Elg) = 2.

Bl =1, EY 4

Then, let us summarize the above process with the following corollaries.

Theorem 1. Consider a multifactor uncertain differential equation

n
dX; = f(t, X, 0)dt + ) _ gi(t, X, 0)dCy (5)
i=1

where Cy4, Coy, - - -, Cpy are independent Liu processes, and f,g1,82, - - -, gn are known functions,
but 0 are unknown vectors of parameters. Suppose Xt,, Xt,, - - - , Xy, are observed values of X at the
times t1,tp, -+ - , by, With t1 < tp < --- < ty,, respectively. Then, the moment estimate of 0 is the
solution of the system of equations

1 m=1 xf/'Jr] - Xt]. _f( j’ th, 6) (tj+1 - t]) £ o é ¢ 1 [ k
m—1 3 ( Y 18i(t, x, 0)|(ti1 — 1)) A\ /0 <ln1 —04) e ©)

j=1

fork=1,2,---,p, where p is the number of unknown parameters.

Proof. It follows from (4) that the moment estimate of 0 is the solution of the system (6).
The corollary is proved. O

Corollary 1. Consider a multifactor uncertain differential equation
dXy = pdt + 1dCqy + 02 X dCyy (7)

where C1; and Cy; are two independent Liu processes, and y,o1 > 0 and oo > 0 are unknown
parameters. Suppose Xt,, Xt,, -+ - , Xt,, are observed values of X; at the times t1,tp,- - -, ty, with
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t] <ty < --- < ty, respectively. Then, the moment estimate of y, 0, and oy is the solution of the
system of equations

1 mil xtj+1 - xl‘j - .u(tj+1 - tj) —0
m—1 = (loa] + [o2xg|) (11 — £5)
i Xt — X —p(t j+1 t]) -1 8)
=\ (el + |¢72xt Dt —t))
i Xt — (t]+1 - t]) —0
=\ (lou] + |f72xt D(tiv1—t)

Proof. Since there are only three unknown parameters in (7) and the first three moments
of N'(0,1) are 0,1,0, the system of Equation (6) becomes (8). It follows from Theorem 1
that the moment estimate of y, 07, and o7 is the solution of the system of Equation (8).
The corollary is proved. O

Corollary 2. Consider a multifactor uncertain differential equation
dX; = cos(prt + pup Xy )dt + sin(o7 X¢)dCqy + cos(02 X )dCot 9)

where Cyy and Cy; are two independent Liu processes, and yy, pp, 01 > 0 and oo > 0 are unknown
parameters. Suppose Xt,, Xt,, - - - , Xt,, are observed values of X; at the times t1,t,- - - , t, with
t <ty < - < ty, respectively. Then, the moment estimate of yy, po, o1, and oy is the solution of
the system of equations

1 "=l xy,, — xy —cos(patj + poxy) (b1 — )

m—1 = (Isin(orxy;)| + [ cos(oaxt)[) (1 — )

=0

2
1 mil Xtiq — Xt; — cos(yltj + HaXt, )( i+1— f]') _q
m—1 a (I sin(orxg;)| + [ cos(oaxt;)[) (tj+1 — 1)

(10)

C
i( e ))>3:0

sm((flxt )|+ [ cos(oaxt)[) (tj 41 — ¢

i ( o — Xt, — cos(pt; + poxy
= )l

|s1n((71xt | + [ cos(o2xi,

Dt —t )) 21
)(tﬁ—l - t])

Proof. Since there are only four unknown parameters in (9) and the first four moments of
N(0,1) are 0,1,0,21/5, the system of Equation (6) becomes (10). It follows from Theorem 1
that the moment estimate of 1, yp, 01, and o3 is the solution of the system of Equation (10).
The corollary is proved. O

Corollary 3. Consider a multifactor uncertain differential equation
dX; = (a — bXy)dt + pdCyy + o X dCyy (11)

where Cy; and Cy; are two independent Liu processes, and a,b, u > 0 and o > 0 are unknown
parameters. Suppose Xt,, Xt,, - - - , Xt,, are observed values of X; at the times t1,t,- - -, ty, with
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<ty <---
system of equations

1 m=l Xt;

Xy T

]

a— bxt].)(th —

t])

m—1 =

Xt —

]

([p] + loxe ) (441 —

a— bxt].)(th

i’])

j=1

1 mil xtj-H_
m—1 (Il + loxg ) (b — ¢

= bx)) (tj1

(e

= bxy) (tj1

(e

|V\ + |Uxt D(tip1—t

_t],) 27
) ) -
—t]') 3_
) ) Y

IMHIUxt Dt —t

—f]') 4_§
) 5

< tp, respectively. Then, the moment estimate of a, b, y and o is the solution of the

(12)

Proof. Since there are only four unknown parameters in (11) and the first four moments of
N(0,1) are 0,1,0,21/5, the system of Equation (6) becomes (12). It follows from Theorem 1
that the moment estimate of 1, yp, 07 and o7 is the solution of the system of Equation (12).

The corollary is proved. O

3. Numerical Examples

Example 1. Let us apply the method in Section 2 to estimating the unknown parameters y,oq > 0

and oy > 0 in the multifactor uncertain differential equation

dX; = pdt + 07dCq; + 02 X;dCoy

(13)

based on the observed data shown in Table 1 and Figure 1, which are generated by the simulation of

the following equation:

dX; = 1.5dt + 1.5dCy; + 2X;:dCoy.

Table 1. Observed data in Example 1.

t 0.24 0.49 0.84 1.1 1.33 1.58 1.8 2.05 2.44
Xt 3.74 4.85 3.95 4.31 1.67 1.17 1.98 2.36 2.03
t 2.7 3.08 3.34 3.62 3.98 4.35 4.57 4.81 5.15
Xt 3.13 5.16 2.73 3.14 5.72 6.48 10.23 10 11.88
t 5.43 5.68 5.95 6.28 6.61 6.94 7.23
Xt 14.51 13.39 10.09 5.94 7.96 8.53 10.92
Tt
15+
12+
9 —
6 I
3 I
| ! |
0 2 4 6 t

Figure 1. Observed data in Example 1.
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It follows from Corollary 1 that the moment estimate of y, 01 and oy is the solution of the
system of equations
1 & x

2
242(

o — Xy — (i — t)
lo1] + |oaxt ) (t41 — t))

=0
JH1 T

i % Xtipn — -1
24 S\ (lon] + |‘72xt (41—

— Wt — tj)

( )
1 & Xt — —u(t j+1 /)
242< o >> =0

]

(lon] + Iszt ) tj

By using Matlab (Matlab R2020a, optimization toolbox), we can calculate that the root of the above
system of equations is

nw=17472, o1 =14513, o0, =19155.
Thus, the multifactor uncertain differential equation should be
dX; = 1.7472dt + 1.4513dCy; + 1.9155X;dCy;.

The mean relative error between the estimated value and the real value of the parameters is

1.5 1.5 2
3

1.7472 — 1.5 ‘ ‘ 14513 - 1.5 ‘ ‘ 1.9155 -2

MRE = ‘ ‘ = 0.0798.

This indicates that the estimated value is close to the real value, and thus the estimate is appropriate.

Example 2. Let us apply the method in Section 2 to estimating the unknown parameters
U1, 2,01 > 0, and oo > 0 in the multifactor uncertain differential equation

dX; = COS(]/ﬂt + ]/lQXt)dt + Sin(0'1Xt)dC1t + COS(U’zxt)dCZt (14)

based on the observed data shown in Table 2 and Figure 2, which are generated by the simulation of
the following equation:

dX; = COS(f + Xt)dt + sin(Xt)dCU + COS(Xf)dCzt.
Tt

9.5

4.5

3.5

3 —
0 2 4 6 8
Figure 2. Observed data in Example 2.
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Table 2. Observed data in Example 2.
t 0.32 0.53 0.77 0.98 1.22 1.48 1.73 2.03 2.39
Xt 3.58 3.74 3.57 3.51 3.29 3.47 3.6 3.56 3.5
t 2.66 3.05 3.37 3.62 3.88 4.13 4.47 4.67 4.89
Xt 3.28 2.99 3.37 3.39 3.81 4.39 5.53 542 5.39

t 5.27 5.64 5.89 6.29 6.5 6.76 7
Xt 5.02 4.83 4.81 4.23 4.61 5.15 4.99

It follows from Corollary 2 that the moment estimate of y1, yp, 01 and o, is the solution of the
system of equations

1 & x

25T

2
1 & [ x,, — xt; —cos(prtj + poxy ) (t1 — t))
21 L =1

i1 T Xy T Cos(yltj + ]/tzxt]-)(tjﬂ - tj)

. =0
| s1n(¢71xt/.)| + cos(azxt].) |)(tj+1 - t])

(] sm((flxt )|+ |cos((72xt WDt — t5)

)
(
12 (i, — x — cos(uty + i) (e — )\
24]§< <|sm<o-1xt>|+|cos<azxt>\><t]+1 ) ) -0
)
(

4
1 i Xty — cos(ylt + paxt, (]+1 — t‘) 21
24 (] sm((ﬁxt )| + [cos(o2xt)]) (11 — ;) 5°

By using Matlab (Matlab R2020a, optimization toolbox), we can calculate that the root of the above
system of equations is

11 = 1.0802, up = 0.9798, 01 = 1.0910, 02 = 0.9199.
Thus, the multifactor uncertain differential equation should be
dX; = cos(1.0802¢ + 0.9798X;)dt + sin(1.0910X;)dCy + cos(0.9199X;)dCy;.

The mean relative error between the estimated value and the real value of the parameters is

1.0802— 1|  [0.9798 — 1| , |1.0910 —1| 09199 —1
+ + +

1 1 1 1

MRE = ‘ ‘ = 0.0679.

4

This indicates that the estimated value is close to the real value, and thus the estimate is appropriate.

4. Parameter Estimation for Time-Varying Functions

The theory of mean reversion emphasizes that stock price shows a certain property
of mean reversion in the long run, although it is affected by many factors. In the financial
field, mean reversion theory is widely used and has proven to be effective. Poterba and
Summers [38] supported this view by analyzing the US stock market. On the other hand,
the noise of stock price growth is partly due to price factors related to the stock’s own price,
and partly due to price factors unrelated to the stock’s own price. In order to describe these
two sources of different noise, the stock price X; is usually modeled by the multifactor
mean-reverting model (11) in uncertain finance, i.e.,

dX; = (a — bX;)dt + udCyy + 0 X dCoy.
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However, since the situation in the real stock market is complex and rapidly changing,
the parameters a, b, y1, o are not constants but time-varying functions. Although the general
trend makes stock price subject to the multifactor mean-reverting model, the parameters of
the multifactor mean-reverting model may change over time. Thus, it is more appropriate
to assume that the stock price X; follows the general multifactor mean-reverting model,

dXt = (at — tht)dt + “I/ltdCu + O'tXtdCZt. (15)

Suppose x,, Xt,, - - - , Xt,, are observed data of stock price X; at the times t1,tp,- - - , ty,
with t; < tp < --- < t, respectively. The main idea of estimating a;, by, ji1, 0; based on

the observed data x,, xt,,- - - , x4, is to suppose that a;, by, jis, 0t remain constant over a

small time interval, and thus, in each time interval, they can be estimated with the moment
method discussed in Section 2. The detailed process is as follows.
First, let us estimate ay,, by, pt,, 03, with the data x4, x,, - - -, x4, where k is a given

step. Suppose the model (15) has a different form,
Xt]'_H - Xt]' + (at] - btlxtj) + ]’ltl (Clt]qu - Cltj) + Ut1th (Cth+1 - Cth)/ ] - 1/ 2/ T /k -1

It follows from Corollary 3 that the moment estimate of a;,, by, pit,, 03, solves the system of
equations

1 K dx, —xy — (ay —byxe) (b — t)
k—1 ([t |+ ow 2 (tj1 — 8)

=1
2
L\ (xtm — Xt — (“tl - btlxtj>(tf+1 _ tj) =1
: =

=0

k=1 j=1 |.uf1| + |‘7t1xfj’)(tj+1 _tj)
3
1 = Xt — X — (ar, — bl‘1xfj)(tj+1 - tj) ~0
k=15 (I ]+ lom xe ) (i1 — £7)

k=15 [ | + Lot ) (£41 = ) o5

4
1 k_i <xt]'+1 - xtj - (atl - btlxtj)(tj+1 - t]) o 21
(

Next, let us estimate a,, by,, pit,, 01, with the data x,, xt5,- -+, x4, It follows from
Corollary 3 that the moment estimate of as,, by,, yi+,, 01, solves the system of equations

1 & xyy —xy — (A — byxe) (i1 — 1)

1k

j=2 <|.ufz| + |0t2xtj‘)(tj+1 - t]')

2
1 k xtHl — xtj — (atz — btzxtj)(tj+1 — t]) _1
—1&

=0

i (Ipea| + lowxy ) (1 — 1)

3
1 i Xty — Xt — (A, — by xe) (t41 — 1) _o
k=15 (Ime | + o xe [) (1 — 1)
4
1 k <xtj+1 - xt]' - (atz - btzxtj)(tj+1 - tj)) o 2].

E=1 5\ Tl T ows g — 1)

As an analogy, we can obtain the estimated values a;,, by, yt,, 01, wherei = 1,2,--- ,m —
k+ 1.

5. Algorithm for General Multifactor Mean-Reverting Model

The following algorithm is designed to summarize the method of parameter estimation
for time-varying functions discussed in the previous section.
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400

380
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Step 1: With the data x;,, x4,, - - - , xt,, and a given step k, foreach i (i = 1,2,--- ,m —
k + 1), calculate the moment estimate of a;,, by, jit,, 03, by solving the system of Equation (12)

based on the data x;,, x; e, Xt

it17 " itk—2°

Step 2: Foreachi (i =1,2,--- ,m — k + 1), calculate the forecast value £;, by
1
2 = / Xtda,
0 1

and the confidence interval [Xf , th, -F ] at a given confidence level B, where X, is the a-path
of (15) with the initial point x;,.

In order to select the step k of the above algorithm, we focus on the prediction error
(PE) of the last actual data x¢,,, and want to minimize that prediction error. Thus, we define

PE(k) = |xt, — %4,

where £, is the forecast value of x;, based on the k data in front of x,,, i.e., x; Xt

m—k+17 " tm—k+27

--+,xt, - Then, the solution of the following minimization problem
mkin PE(k)
is the step to choose.

6. Application to China Merchants Bank Stock

The data included in this study are the closing price of China Merchants Bank for
300 trading days from 3 April 2019 to 29 June 2020. The unit is CNY 0.1 (see Figure 3a).
Suppose that the closing price of China Merchants Bank follows a general multifactor
mean-reverting model (15). Then, we employ the algorithm in Section 5 to simulate to
obtain parameter estimations and predictions.

20

‘ ‘
—closing price

. . . 2 3 4 5 6 7 8 9 10 11 12 13 14 15

50

100

150 200 250 300 k

(a) (b)

Figure 3. (a) Closing price of China Merchants Bank. (b) Prediction error (PE) with respect to step k.

At first, we calculate the PE(k) for each step k with 1 < k < 15, which is shown in
Figure 3b. When k = 4, PE(k) reaches the minimum 2.64. Thus, we take the step k = 4.
By following the algorithm in Section 5 and taking a confidence level of B = 80%, we
obtain the forecast price and forecast high and low prices of China Merchants Bank shown
in Figure 4, the parameter estimations of 4; and b; shown in Figure 5, and the parameter
estimations of y; and oy shown in Figure 6. From Figure 4, we can see the forecast high and
low prices are basically symmetrical with respect to the real price. From Figures 5 and 6,
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the parameters in multifactor mean-reverting model (15) change greatly, which indicates
that they are not constants but time-varying functions.

The forecast value of the closing price of China Merchants Bank on the next trading
day (i.e., 30 June 2020) is 337.67, and the 80%-confidence interval is

[320.96,354.12].

The actual closing price on 30 June 2020 was 337.2, with the low and high prices on that
day being 336.4 and 339.6, respectively. From the view of forecast results, our method is
efficient. In addition, on the one hand, for eachi = 5,6, - - - , 300, if the real stock price x;,
falls in the corresponding 80% confidence interval [Xg'z, Xg'g], then the prediction at time
t; is considered to be successful. Then, that is 278 successes in total. The correct rate of

forecasting is
278

~ 2%
On the other hand, for each i = 5,6, - - - ,300, compute the mean relative error between the
predicted stock prices and the real stock prices,

r = 93.6%.

MRE — b 3o [

= 0.49%,
296 =

th.

where £, and x;, are the predicted stock price and the real stock price, respectively. This
index means that the difference between the predicted stock price and the real stock
price is 0.49% on average, which indicates that our method and the prediction effect are
generally efficient.

420

400 1
380
360
340 |

320

300

—real closing price

—real closing price 280 forecast high price
—forecast price ——forecast low price
1 1 1 1 1 260 1 1 1 1 1
50 100 150 200 250 300 0 50 100 150 200 250 300
(a) (b)

Figure 4. Results of forecast: (a) Forecast price. (b) Forecast high and low prices.



Symmetry 2025, 17, 620 13 of 15
6 w | w ‘ w ‘ 0.05
\‘ ( | | | | M ﬂ “ M ﬂ 0.04 [
ﬂH | \ H “\W “ Wth "‘ \J\ Hﬁ M‘h’ ' |
| v'w AT =t ” N
ST O ST T L
- ‘ ‘ ‘ ‘ \“ ‘ y ‘ Hb ‘M v & 001 L‘M‘ “‘h ‘ \uH ‘ u‘ﬂ‘ ﬂ\ “\ n\“ “\‘ MM“ ‘\‘ H v\”
oJ V i | | V]‘ o‘v"v“‘.e\ﬁ Vi LA
*‘ | \J oo | V \ Al
“ -0.02 1 b
a 0 56 1 60 1 50 260 250 300 -0.030 56 1 (SO 1 éO 260 25;0 300
time time
(a) (b)
Figure 5. Parameter estimations of a; and b;: (a) Time-varying parameter 4;. (b) Time-varying
parameter b;.
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Figure 6. Parameter estimations of y; and o;: (a) Time-varying parameter ;. (b) Time-varying
parameter o;.

7. Conclusions

MUDEs are effective tools to model dynamic systems under multi-source noise.
With the widespread use of MUDEs, how to estimate unknown parameters in a MUDE has
become an important research topic. To address this, this paper innovatively introduced
an approach to employ the moment method to estimate parameters in a MUDE under the
framework of uncertainty theory. Then, two numerical examples were illustrated to show
the estimation process.

Furthermore, traditional parameter estimation methods are limited to the fact that the
parameters in the MUDE are fixed constants. However, since the system or environment is
complex and constantly changing, the parameters in the MUDE are not constants but time-
varying functions in many cases. In order to deal with the situation where the parameters
in the MUDE are not constants but time-varying functions, this paper further studied the
parameter estimation for time-varying functions in a MUDE. As an application, this method
was used to model China Merchants Bank stock.
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In the future, the research frontiers MUDEs can be approached in two directions.
One is the research innovation of estimation methods. Researchers can further apply the
generalized moment method in parameter estimation of MUDESs to make up for the defect
that the equations of moment estimation may have no solution. In addition, more methods
of MUDESs can be studied, such as initial value estimation, maximum likelihood estimation,
consistency of estimators, and non-gaussian moments. The other is the expansion of
application field. Since MUDEs are tools to deal with multi-source noise, they can be used
for system modeling in multi-complex scenes and multi-noise environments. Thus, the
application fields of MUDEs can be expanded, such as economics, system modeling, and
reliability analysis.
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