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Abstract: This paper studies a model for competition between natural killer (NK) cells,
cytotoxic T lymphocytes (CTLs) and tumor cells, and evaluates the outcomes in the absence
and presence of chemotherapy treatment. The growth rate of the tumor is presumed
to follow the classical logistic law. The model particularly emphasizes the rate-limiting
recruitment of NK cells and CTL cells, which is activated by the presence of the tumor. It
additionally includes the activation of CTL cells through debris produced by the lysis of
tumor cells by NK cells, alongside the regulatory effect that NK cells have on CTL cells.
Additionally, the model incorporates the reciprocal decreases in cell populations resulting
from the interactions between tumor cells and immune cells, along with the impact of
chemotherapy on all three types of cells. We analyze the stability of the equilibrium points.
Utilizing parameter values that have been experimentally confirmed in the literature and
applying some elementary principles of singularity theory, we investigate the bistability
regimes anticipated by the model in the absence of chemotherapy, and evaluate the impact
of model parameters on this behavior. This mathematical analysis serves to evaluate the
effectiveness of chemotherapy treatment. We demonstrate that the interplay between the
biological parameters in the model and those associated with chemotherapy can result in a
range of treatment outcomes. The proposed mathematical analysis may serve as a valuable
tool in directing the development of strategies for treatment interventions.

Keywords: tumor–immune cells; natural killer (NK) cells; cytotoxic T lymphocytes (CTLs);
chemotherapy; modeling; bifurcation; bistability

1. Introduction
Cancer is still one of the foremost causes of mortality across the globe. The financial

implications of its management and treatment are particularly burdensome for the health
care systems in developing countries. In the year 2022, approximately 20 million new
cancer cases were reported globally, leading to close to 10 million deaths [1]. A considerable
volume of research is currently aimed at discovering innovative treatments and optimizing
the effectiveness of current therapeutic approaches [2]. Another important domain of
research focuses on the application of mathematical models in cancer studies. These models
serve as valuable instruments for comprehending complex regulatory processes and can
be employed to explore the factors that enhance the immune system’s ability to respond
effectively to tumor cells [3,4].

It is commonly understood that the innate and adaptive immune systems engage
with tumor cells by generating unique antigens that are absent in normal cells [5,6]. In the

Symmetry 2025, 17, 492 https://doi.org/10.3390/sym17040492

https://doi.org/10.3390/sym17040492
https://doi.org/10.3390/sym17040492
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym17040492
http://www.mdpi.com/2073-8994/17/4/492?type=check_update&version=2


Symmetry 2025, 17, 492 2 of 23

context of the cell-mediated immune response directed at tumor cells, the key participants
are natural killer (NK) cells and CD8+ cytotoxic T lymphocytes (CTLs) [7,8]. Activating
and inhibitory receptors work together to discern target cells, thereby facilitating the
activation of natural killer (NK) cells, which represent the primary line of defense for the
host body [9]. Conversely, adaptive immunity is contingent upon CTLs for the identification
and destruction of tumor cells [10].

The literature presents a variety of modeling approaches that are shaped by the specific
immune cell types under consideration, including NK cells, CD8+ T cells, and CD4+ T
cells, as well as the required analytical rigor. These methodologies encompass both lumped
parameter models, represented by ordinary differential equations (ODEs), and distributed
parameter models, described by partial differential equations (PDEs) [11–22].

Mathematical models with fractional order have also been proposed to model bio-
logical systems [23] and tumor–immune interactions [24]. This modeling approach has
the advantages of providing a description of the memory effects which are neglected in
classical integer-order mathematical models.

Several of the studies referenced earlier [11–22] concerning the mathematical mod-
eling of tumor–immune interactions have focused on examining the occurrences of
steady-state multiplicity within these interactions [15–21]. A notable contribution by
Kuznetsov et al. [15] involved the development of an early model that addressed the ex-
istence of multiple equilibria in the dynamics of tumor–immune cell interactions. The
model included two specific types of cells: effector cells, which serve as predators, and
tumor cells, which are considered the prey. The model predicted the existence of “dormant
cells”, characterized by their low concentrations of tumor cells, alongside “active cells”.
In addition, it brought attention to coexistence zones where “dormant cells” may elude
effector regulation and transition to an active phase [15].

Tessi et al. [16] formulated a model that encompassed the three critical cell types
participating in the tumor eradication process mediated by effector T cells: regulatory T
cells, helper T cells, and dendritic T cells. De Pillis and Radunskaya [17] subsequently
formulated and studied a model concerning tumor and immune cells, which was validated
through experimental methods. Their work illustrated the existence of regions of bistability
between the disease-free equilibrium and high tumor cell concentration. López et al. [18],
on the other hand, proposed and investigated a model addressing the interactions between
tumor cells and immune cells in the context of chemotherapy, showing strong agreement
with experimental results. Their research revealed the existence of bistability between a
healthy state and a malignant state, driven by several bifurcation mechanisms, such as
saddle-node and transcritical bifurcations. The research conducted by Makhlouf et al. [19]
focused on the stability of an ODE model that anticipated the interactions among tumor
cells, circulating lymphocytes, CD8+ T cells, CD4+ T cells, and natural killer cells, taking
into account the impact of chemotherapy. Song et al. [20] investigated the stability of a
model that outlined linear interactions between tumor cells and immune cells, highlighting
the crucial roles played by NK cells and CTLs in the immune surveillance mechanism.

Recently, Bashkirtseva et al. [21] expanded upon the system discussed in [9] by in-
cluding the effects of chemotherapy treatment. Their research identified both steady-state
multiplicity and periodic behavior within the examined model.

With respect to chemotherapy’s effects, various recent studies (e.g., [22]) have also
analyzed the stability of tumor–immune models that reflect the impact of monoclonal
antibody-targeted chemotherapy. This strategy may lead to fewer side effects for patients
relative to traditional chemotherapy approaches.

Most of the previously mentioned research employed numerical methods, particularly
continuation techniques [25], to construct bifurcation diagrams that represent the correla-
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tion between the model’s state variables and a designated system parameter. Although
these techniques offer certain advantages, they are constrained in their ability to fully
depict all branching phenomena that the model can demonstrate. This limitation becomes
increasingly evident when the model encompasses a large number of parameters.

The motivation for this study is rooted in the examination of whether a classical
model of tumor–immune interactions, augmented by the effects of chemotherapy, can
reveal more captivating dynamics than those that have been previously described in the
literature [17–21]. In our mathematical analysis, we apply elementary concepts from
singularity theory [26,27] to study the bistability regimes in the model. At steady state, the
model can be condensed into a single function. Consequently, the theory of singularity
can serve as a framework for categorizing different branching phenomena within the
model. This approach enables the development of practical branch sets that delineate the
areas of bistability and aids in analyzing the impact of model parameters on the outcomes
of the competition. Additionally, we show that the relative magnitude of the biological
parameters in the model, combined with those related to chemotherapy, can lead to a
spectrum of treatment outcomes. To our knowledge, this theory has not been previously
applied to study models of tumor–immune cell interactions.

The remainder of the paper is organized as follows. Section 2 introduces the model
and Section 3 discusses the uniqueness, positivity and boundedness of model solutions.
Section 4 investigates the stability of the tumor-free equilibrium. Section 5 focuses on the
model in the absence of chemotherapy, and Section 6 addresses the model with chemother-
apy. The last section encompasses a discussion.

2. The Model
The proposed model based on the work in [17] features interactions between two

immune cell types: natural killer (NK) cells and CD8+ T lymphocytes, with a tumor cell
population. The equations that define this model are presented in the following:

dT
dt

= αT(1 − βT)− cNKT − dLT − k1CT (1)

dNK
dt

= σ − eNK +
f T2NK

h + T2 − γgNKT − k2CNK (2)

dL
dt

= −mL +
pT2L

k + T2 − qLT − sNK L2 + rNKT − k3CL (3)

dC
dt

= −µC + u (4)

The variables NK (cells), L (cells), and T (cells) represent the populations of natural killer
cells, cytotoxic T lymphocytes, and tumor cells, respectively. Tumor cells are assumed to
grow following a logistic function described by a growth rate of α (day−1) and a carrying
capacity of 1

β (cells). The impact of NK cells and CTL cells in diminishing tumor cells
is represented by cNT and dLT, respectively, where c (1/cells.day) and d (1/cells.day)
correspond to the respective proportions of fractional tumor cells that are eliminated
by NK cells and CTLs. Furthermore, chemotherapy eliminates tumor cells at a rate of
k1 (m2/mg.day).

The population of NK cells, as described in Equation (2), grows at a rate of
σ (cells/day), which represents innate immunity, and dies at a rate of e (day−1). The
term ( f T2N/(h + T2)) denotes the recruitment of natural killer cells that is prompted
by the existence of the tumor. In this context, f (day−1) represents the maximum rate
of recruitment, while h (cells2) represents the steepness coefficient associated with this
recruitment process. Moreover, the presence of tumor cells results in the inactivation of
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NK cells. This inactivation is represented by (γNT), with the parameter γ (1/cells.day)
denoting the proportion of NK cells that become detached when they interact with tumor
cells. Additionally, NK cells are also affected by chemotherapy at a rate of k2 (m2/mg.day).

For CLT cells (Equation (3)), the parameter mL indicates the inactivation of CD8+

T cells, which occurs exclusively because of their natural mortality rate, given that it is
presumed that CD8+ T cells are absent when tumor cells are not present. The recruitment

of CLT cells is represented by the term pT2L
(k+T2)

, where p (day−1) denotes the maximum

recruitment rate and k (cells2) is the steepness coefficient associated with recruitment. Some
research disregarded this factor [18], whereas other studies utilized a more intricate Hill
function to illustrate the fractional tumor cell kill [17,19]. We selected this representation for
its straightforwardness and appropriateness. The term rNT corresponds to the stimulation
of CD8+ T cells by debris from natural killer lysed tumor cells [17]. The term sNL2 refers to
the regulatory influence of natural killer cells on CD8+ T cells. It points to the modulation
and inhibition of CD8+ T cell activity that occurs when there are abnormally high levels of
activated CD8+ T cells, which do not sufficiently respond to the cytokines available in their
vicinity [17]. The inactivation of CD8+ T cells is linked to their engagement with tumor
cells, which is represented as qET at a rate of q (1/cells.day). Additionally, CD8+ T cells
are also affected by chemotherapy at a rate of k3 (m2/mg.day).

The fourth equation (Equation (4)) describes how the concentration of the chemother-
apy drug changes over time, where µ (day−1) represents the decay rate of the chemotherapy
medication, while u (mg/m2.day) denotes the daily dose of the drug that is administered
to the patient.

The model is rendered dimensionless through the utilization of the following variables:

T̄ = βT, N̄K =
αNK

σ
, L̄ =

αL
σ

, C̄ =
C
C0

, t̄ = αt, c̄ =
cσ

α2 , d̄ =
dσ

α2 ,

k̄1 =
k1C0

α
, ē =

e
α

, f̄ =
f
α

, h̄ = hβ2, γ̄ =
γ

αβ
, k̄2 =

k2C0

α
,

m̄ =
m
α

, p̄ =
p
α

, k̄ = kβ2, q̄ =
q

αβ
, s̄ =

sσ2

α3 , r̄ =
r

αβ
, k̄3 =

k3C0

α
, µ̄ =

µ

α
, ū =

u
αC0

.

The dimensionless model becomes:

dT̄
dt̄

=T̄(1 − T̄)− c̄N̄K T̄ − d̄L̄T̄ − k̄1C̄T̄ (5)

dN̄K
dt̄

=1 − ēN̄K +
f̄ T̄2N̄K

h̄ + T̄2 − γ̄N̄K T̄ − k̄2C̄N̄K (6)

dL̄
dt̄

=− m̄L̄ +
p̄T̄2 L̄

k̄ + T̄2 − q̄L̄T̄ − s̄N̄K L̄2 + r̄N̄K T̄ − k̄3C̄L̄ (7)

dC̄
dt̄

=− µ̄C̄ + ū. (8)

The model has thus been rendered dimensionless to yield a unity value for both the
carrying capacity and the NK source rate. For responses (recruitment rates) of both NK
and CD8+ T cells, the dimensionless values f̄ and p̄ depend on the tumor growth rate
α. The same goes for dimensionless death rates (e) and (m) of the immune cells. For the
terms representing competition between the three types of cells, it can be seen that c̄ and
d̄ depend on the tumor growth rate α, while γ and q depend on both α and the carrying
capacity β. As to the dimensionless steepness coefficients (h̄) and (k̄) of recruitment curves
of the NK and CD8+ T cells, they both depend on β. The rest of the parameters s̄ and r̄
depend on α and/or β.
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It is known that the values of tumor growth rate α and carrying capacity β vary not
only with the type of tumors but also on their stages of development. Therefore, the
analysis of the dimensionless model through variations of its dimensionless parameters
around some experimentally validated values is a useful study that can be mapped with a
number of tumor cases and stages.

It is also important to highlight that there are connections between the descriptions
of such models describing tumor–immune interaction and symmetry concepts. Broadly
defined, symmetry signifies the invariance of a particular quantity under various trans-
formations. Accordingly, a notable property of this model is its invariance when certain
variable transformations are applied. This model could be transformed into another normal-
ized form for all populations, resulting in transformed variables such as T̄ = T

R , N̄K = NK
R ,

L̄ = L
R , with R being a reference cell number (generally taken to be R = 106 cells [15]). The

invariance of the equations’ structure can be shown to persist under these transformations.

3. Uniqueness, Non-negativeness and Boundedness of Solutions
In light of their biological nature, all values of the four state variables are non-negative.

This section presents the results pertaining to the uniqueness, positivity and boundedness
of the model solutions.

Theorem 1. Given the initial conditions (T̄(0) > 0, N̄K(0) > 0, L̄(0) > 0, C̄(0) > 0):

1. The solutions T̄(t̄), N̄K(t̄), L̄(t̄), and C̄(t̄) exist and are unique.
2. The solutions remain non-negative for all t̄ > 0.
3. The solutions are bounded, provided that ē(1 + h̄) > f̄ and m̄(1 + k̄) > p̄.

The proof for Theorem 1 is given in Appendix A. In light of these results, we determine
that the model is mathematically well-posed.

4. Analysis of Model Equilibria
At steady state, Equation (8) yields C̄ = ū

µ̄ . The tumor-free equilibrium is represented

as (T̄ = 0, N̄K = 1
ē+k̄2

ū
µ̄

, L̄ = 0). The Jacobian matrix is obtained by taking the derivatives of

Equations (5)–(9) with respect to T̄,N̄K,L̄ and C̄. Calling fi, (i = 1, 4) the right-hand sides of
Equations (5)–(9), the elements of the Jacobian matrix are:

∂ f1

∂T̄
= 1 − c̄N̄K − k̄1C̄ − d̄L̄ − 2T̄;

∂ f1

∂N̄K
= −c̄T̄;

∂ f1

∂L̄
= −d̄T̄;

∂ f1

∂C̄
= −k̄1T̄

∂ f2

∂T̄
= −ḡN̄K − 2 f̄ N̄K T̄3

(h̄ + T̄2)2 +
2 f̄ N̄K T̄
h̄ + T̄2 ;

∂ f2

∂N̄K
= −ē − k̄2C̄ − ḡT̄ +

f̄ T̄2

h̄ + T̄2 ;
∂ f2

∂L̄
= 0;

∂ f2

∂C̄
= −k̄2N̄K

∂ f3

∂T̄
= −q̄L̄ + r̄N̄K − 2p̄L̄T̄3

(k̄ + T̄2)2 +
2p̄L̄T̄
k̄ + T̄2 ;

∂ f3

∂N̄K
= −s̄L̄2 + r̄T̄;

∂ f3

∂L̄
= −k̄3C̄ − m̄ − 2s̄N̄K L̄ − q̄T +

p̄T̄2

k̄ + T̄2 ;
∂ f3

∂C̄
= −k̄3 L̄

∂ f4

∂T̄
= 0;

∂ f4

∂N̄K
= 0;

∂ f4

∂L̄
= 0;

∂ f4

∂C̄
= −µ̄. (9)



Symmetry 2025, 17, 492 6 of 23

When the Jacobian matrix is evaluated at the tumor-free equilibrium, it becomes:

J =


1 − k̄1u

µ̄ − c̄µ̄

(ēµ̄+k̄2ū) 0 0 0

− ḡµ̄

ēm̄u+k̄2ū −ē − k̄2ū
µ̄ 0 − k̄2µ̄

(ēµ̄+k̄2ū)
µ̄r̄

(ēµ̄+k̄2ū) 0 − (m̄µ̄+k̄3ū)
µ̄ 0

0 0 0 −µ̄.

. (10)

The eigenvalues corresponding to the Jacobian matrix are:

λ1 = −µ, λ2 = −ē − k̄2ū
µ̄

, λ3 = −m̄ − k̄3ū
µ̄

, λ4 =
−k̄1k̄2ū2 + µ̄(k̄2 − ēk̄1)ū + µ̄2(ē − c̄)

µ̄(ēµ̄ + k̄2ū)
. (11)

It can be seen that λ1, λ2 and λ3 are always negative. As for λ4, its sign can be deduced
from the analysis of the quadratic equation:

a2u2 + a1u + a0 = 0 (12)

a2 = −k̄1k̄2, a1 = µ̄(k̄2 − ēk̄1), a0 = µ̄2(ē − c̄). (13)

Non-trivial equilibrium points can be derived by determining L̄ from the steady state
equation of Equation (5),

L̄ =
µ̄ − c̄N̄Kµ̄ − µ̄T̄ − k̄1ū

d̄r̄µ
, (14)

and solving for N̄K from Equation (6),

N̄K =
1

ē + ḡT̄ − f̄ T̄2

(h̄+T̄2)
+ k̄2ū

µ̄

. (15)

Substituting Equations (14) and (15) in Equation (7), can be shown to yield a polynomial
F(T̄) in T̄ of order 13. Among the coefficients of the polynomial, only the leading term
d̄ḡ3µ̄5q̄ is positive. The rest of the coefficients (shown in the supplementary materials)
can be seen to be either positive or negative. Applying Descartes’ rule shows that the
polynomial can have a maximum of 13 positive solutions. However, further analytical
manipulation is almost impossible since the expression of coefficients is quite cumbersome,
as there is a large number of parameters in the model. The solution of the polynomial
and other related equations is carried out numerically using continuation methods of
MACONT [28], a graphical MATLAB [29] package for the interactive bifurcation analysis
of dynamical systems.

Throughout the numerical analysis, attention was paid to selecting model parameters
to ensure they corresponded effectively to real cases. The selection process was based
on the experimental findings detailed in reference [17]. The values are associated with
human clinical trials in which participants diagnosed with metastatic melanoma under-
went treatment with carefully selected tumor-reactive T cells [30]. The following values
are selected:
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C0 = 103 mg.m−2, α = 4.31 × 10−1 day−1, β = 1.020 × 10−9 cells−1, c = 6.41 × 10−11 cells−1day−1

d = 1.24 × 10−4 day−1, e = 4.12 × 10−2 day−1, f = 1.25 × 10−2 day−1, g = 3.42 × 10−6 cells.day−1 (16)

h = 2.027 × 107 cells2, k = 5.58 × 107cells2, m = 7.46 × 10−1 day−1, p = 1.1 × 10−1 day−1

q = 1.42 × 10−6 cells−1day−1, r = 1.1 × 10−7 cells−1day−1, s = 3.00 × 10−10 cells−2day−1

σ = 7.5 × 104 cells.day−1.

The corresponding dimensionless values are:

c̄ =2.59 × 10−5, d̄ = 50, ē = 9.56 × 10−2, f̄ = 2.9 × 10−2, ḡ = 7.78 × 103, h̄ = 2.1 × 10−11. (17)

k̄ = 5.81 × 10−11, m̄ = 1.73, p̄ = 2.55 × 10−1, q̄ = 3230, s̄ = 21.1, r̄ = 250.

5. Bifurcation Analysis in Case of no Chemotherapy
In the absence of chemotherapy, i.e., ū = 0, the model tumor-free equilibrium is

(T̄ = 0, N̄K = 1
ē , L̄ = 0). The eigenvalues λi of the Jacobian matrix corresponding to this

equilibrium state are

λ1 = −ē, λ2 = −m̄, λ3 = 1 − c̄
ē

. (18)

Consequently, when c̄ > ē, the third eigenvalue consistently remains negative, ensuring
that the tumor-free equilibrium is perpetually stable. For c̄ < ē, the tumor-free state is
always unstable.

The non-trivial equilibria in the case of no chemotherapy (ū = 0) can be shown to be
also defined by a polynomial F(T̄) of order 13 in T̄. For this type of equation, the singularity
theory defines a number of singularities. We limit ourselves to the hysteresis singularity.
The parameter γ̄ showing the inactivation of NK cells by tumor cells is chosen, for example,
as the main bifurcation parameter.

The requirements for the appearance/disappearance of a hysteresis loop are:

F = FT̄ = FT̄T̄ = 0. (19)

Furthermore, several other derivatives must retain non-zero values, specifically Fγ̄, FT̄γ̄,
and FT̄T̄T̄ .

The hysteresis boundary can be constructed in any parameter space but it is more
convenient to show it in the (c̄, ē) diagram since the equation (c̄ = ē) defines the stability
of the tumor-free equilibrium. Figure 1 shows the branch set consisting of the hysteresis
boundary (solid line) and the dashed line c̄ = ē, for the rest of the model parameters values
in Equation (17). The figure is divided into three regions (A), (B) and (C). Region (A) is
above the hysteresis curve. Region (B) is above the line (c̄ = ē) and below the hysteresis
curve, while region (C) is below the line of hysteresis and below the line (c̄ = ē). The
different behavior expected in these regions is discussed next.

Figure 2 shows a sample of the bifurcation diagram in region (A) of Figure 1, obtained
for (c̄ = 2.59 × 10−5, ē = 4.7). A unique non-trivial steady state exists for all values of γ̄

and the tumor-free equilibrium is always unstable (since c̄ < ē). Under these conditions,
the immune system is unable to suppress the tumor. This is consistent with a system that
has a very poor immune response to the cancer.

When crossing the hysteresis line to region (B) of Figure 1, two limit points LP1

and LP2 are born. The situation is shown in Figure 3, for instance, for (c̄ = 2.59 × 10−5,
ē = 9.56 × 10−2). The tumor-free equilibrium is still unstable (since c̄ < ē). There are
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three branches and the best outcome to hope for is for the system to settle on the low-
tumor-cell state. Values of γ̄ smaller than LP1 lead to the low-tumor-cell equilibrium.
When γ̄ is situated between LP1 and LP2, the system exhibits bistability. This implies that
the external activation of the immune system, which might be perceived as bolstering
the immune response (for example, via immunostimulation or changes in initial condi-
tions), can actually prove to be counterproductive, potentially transitioning the system
from a low-tumor-cell state to a high-tumor-cell state. Once the second limit point (LP2)

is surpassed, the solutions of the system consistently stabilize at a high concentration
of tumor cells. An example of bistability is shown in Figure 4 for γ̄ = 3000. Startup
conditions (T̄, N̄K, L̄) = (10−4, 0.1, 0.01) lead the system to settle on the low-tumor-cell
conditions, while changes only to initial tumor conditions to (T̄ = 5 × 10−4) lead to the
high-tumor-cell conditions.

When crossing the line (c̄ = ē) of Figure 1 to region (C), the tumor-free equilibrium
becomes stable (c̄ > ē), but there is the appearance of a third limit point. For some values
of γ̄, five steady states are possible, of which three are stable. Figure 5 shows an example
of the bifurcation diagram for (c̄ = 2.59 × 10−5, ē = 9.56 × 10−7). If γ̄ is smaller than LP1,
then the tumor is completely suppressed as the system settles on the stable tumor-free
equilibrium. For values of γ̄ between LP1 and LP2, there is bistability between the tumor-
free equilibrium and the high-tumor-cell steady state. For γ̄ between LP2 and LP3, there is
coexistence of three stable steady states: the tumor-free equilibrium, the low-tumor-cell
state, and a high-tumor-cell steady state. The system may settle on either equilibrium
depending on the location of initial conditions relative to the basin of attractions of each
equilibrium. For values of γ̄ larger than LP3, there is bistability between the tumor-free and
the high-tumor-cell equilibria.

When the tumor-free equilibrium is stable, the objective of treatment should be to
guide the system into the basin of attraction associated with the stable equilibrium of
zero tumors.

The different behavioral regions depicted in Figure 3 can be charted according to
any model parameters. Figures 6 and 7 show the loci of the limit points. Each branch
corresponds to a limit point and the hysteresis is expected between the two branches.
Figure 5 shows that if any of the parameters c̄, d̄, ē, or f̄ increase, the hysteresis region
widens. This suggests that fluctuations in any of these parameters, whether they manifest as
increases or decreases, will affect the range of bistability with respect to γ̄, either broadening
or narrowing it. (Note that the cusp point for the effect of c̄ (Figure 6a) occurs for negative
values of γ̄). Moreover, while hysteresis is expected for any values of c̄ and d̄, hysteresis
is expected only for values of ē and f̄ larger than critical values (above the cusp points).
Figure 7 shows similar behavior for the effect of r̄ and q̄. The effect of m̄ shows that
bistability in terms of γ̄ decreases as m̄ is increased, and beyond the cusp point, the
bistability disappears. This sensitivity analysis shows that all the model parameters have a
significant effect on the existence/disappearance of bistability.
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Figure 1. Branch set in the case of no chemotherapy at the dimensionless parameter values in
Equation (17). Hysteresis (solid line) and c̄ = ē (dashed line). Region (A) is above the hysteresis curve
(solution uniqueness). Region (B) is above the line (c̄ = ē) and below the hysteresis curve, while
region (C) is below the line of hysteresis and below the line (c̄ = ē). Regions (B,C) exhibit some form
of bistability.
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Figure 2. Bifurcation diagram for region (A) of Figure 1 for (c̄ = 2.59 × 10−5, ē = 4.7) and the rest of
system parameters in Equation (17); solid line (stable branch); dashed line (unstable branch).
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Figure 3. Bifurcation diagram for region (B) of Figure 1 for (c̄ = 2.59 × 10−5, ē = 9.56 × 10−2) and the
rest of system parameters in Equation (17); solid line (stable branch); dashed line (unstable branch).
LP (static limit point).
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Figure 4. Time traces showing bisability Figure 3 for γ̄ = 3000. (a) Initial conditions (T̄, N̄K , L̄) =
(10−4, 0.1, 0.01) lead to low-tumor-cell conditions, while (b) (T̄, N̄K , L̄) = (5 × 10−4, 0.1, 0.01) lead to
high-tumor-cell conditions.
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Figure 5. Bifurcation diagram for region (C) of Figure 1 for (c̄ = 2.59× 10−5, ē = 9.56× 10−7) and the
rest of system parameters in Equation (17); solid line (stable branch); dashed line (unstable branch);
LP (static limit point).
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Figure 6. Two parameter continuation diagrams showing the effect of model parameters on the loci
of limit points of Figure 3. The nominal values of system parameters are defined in Equation (17).
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Figure 7. Two parameter continuation diagrams showing the effect of model parameters on the loci
of limit points of Figure 3. The nominal values of system parameters are defined in Equation (17).

6. Bifurcation Analysis in Case of Chemotherapy
When subjected to chemotherapy, the model’s tumor-free steady state has three neg-

ative eigenvalues, with the fourth eigenvalue specified by Equations (12) and (13). The
quadratic Equations (12) and (13) present the following cases:

• ē > c̄ and ē < k̄2
k̄1

. In this scenario, both a0 and a1 are positive values. Given that a2 (as

indicated in Equation (13)) is consistently negative, the discriminant ∆ = a2
1 − 4a2a0

remains positive at all times. Given that the product of the roots, expressed as a0
a2

, is
negative, and their sum, − a1

a2
, is positive, it follows that there is a singular positive so-

lution, referred to as ū1, for Equation (12). This implies that the tumor-free equilibrium
is stable for all values of ū exceeding ū1.

• ē > c̄ and ē > k̄2
k̄1

. In this instance, a0 is a positive quantity and a1 is negative. The

discriminant is consistently positive. The product of the roots, expressed as a0
a2

, is
negative, and their sum, − a1

a2
, is also negative. This situation resembles the previous

case, as there is only one positive solution, labeled ū1, to Equation (12), and the
tumor-free equilibrium is stable for all values of ū that are greater than ū1.

• ē < c̄ and ē < k̄2
k̄1

. In this instance, a0 is negative, and a1 is positive. The discriminant,

∆ = a2
1 − 4a2a0, can be either positive or negative. When it is positive, there are

two positive solutions, ū1 and ū2, resulting in an unstable tumor-free equilibrium
for values of ū that lie between ū1 and ū2. On the other hand, if the discriminant is
negative, the tumor-free equilibrium is always stable.

• ē < c̄ and ē > k̄2
k̄1

. In this instance, a0 and a1 are both negative. The discriminant
can be either positive or negative. If the discriminant is positive, it indicates the
absence of positive solutions, and the tumor-free equilibrium is always stable. On the
other hand, if the discriminant is negative, the stability of the tumor-free equilibrium
is guaranteed.

The condition ∆ = 0 corresponds to (k̄2 − ēk̄1)
2 = 4k̄1k̄2(c̄ − ē). The hysteresis boundary

Equation (19) is also constructed in the parameter space (ē, c̄). Figure 8 shows the complete
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branch set (in logarithmic scale on the y-axis) comprising the hysteresis boundary and the
curves ∆ = 0 and ē = c̄. We can distinguish between four qualitatively different bifurcation
diagrams, depicted as (A), (B), (C), and (D).

Region (A) is located above the hysteresis curve. Region (B) is located below the
hysteresis curve and above the line (c̄ = ē) (displayed as the curve in the logarithmic plot).
Region (C) covers the domain below the line (c̄ = ē) and also the domain below the curve
of ∆ = 0. Both of these domains (indicated by (C)) yield the same qualitative behavior,
as will be shown next. Region (D) is, on the other hand, bounded from above by the line
(c̄ = ē) and from below by the curve ∆ = 0.

For the construction of bifurcation diagrams corresponding to the aforementioned
regions, it is preferable to designate the intensity of chemotherapy (ū) as the bifurcation
parameter. The dimensional values of k1 = 0.9 and k2 = k3 = 0.6 (m2/mg.day) were taken
from [17]. The dimensionless values are k̄1 = 2100 and k̄2 = k̄3 = 1390.

The first situation corresponds to region (A). Figure 9 shows the bifurcation diagram
obtained, for example, for (c̄ = 2.59 × 10−5, ē = 100). For this case, the tumor-free
equilibrium is stable beyond a critical point (the only positive solution to the quadratic
equation (Equations (12) and (13))). If the chemotherapy drug intensity is increased beyond
the critical point, the system solutions stabilize at the tumor-free equilibrium.

When crossing the hysteresis line into region (B) of Figure 8, two limit points are born.
Figure 10 shows an example of the bifurcation diagram for (c̄ = 2.59 × 10−5, ē = 0.1). The
tumor-free equilibrium is still stable above a critical point. In this case, values of drug
intensity ū smaller than LP1 are unable to suppress the high amounts of tumor cells. For
values of ū between LP1 and LP2, there is bistability between the low-tumor-cell and the
high-tumor-cell equilibria. Only values of ū larger than LP2 lead to complete suppression
of the tumor. Figure 11 illustrates an example of bistability of Figure 10 for ū = 0.6 × 10−3.
Initial conditions (T̄, N̄K, L̄, C̄) = (10−5, 0.05, 0.01, 0.003) lead to low-tumor-cell conditions,
while perturbing T̄ to 0.5 makes the system jump to high-tumor-cell conditions.

Region (C) of Figure 8 covers the domain below the line (c̄ = ē) and also the domain
below the curve of ∆ = 0. In the domain bounded by the line (c̄ = ē) and the curve
∆ = 0, the sign of ∆ is positive but the two roots are negative. In the domain below
∆ = 0, the value of ∆ is negative, and therefore, no real root exists. In both cases, the roots
are not meaningful, and in the two domains, the tumor-free equilibrium is always stable.
Figure 12 shows an example of bifurcation obtained with (c̄ = 0.3, ē = 0.1). A saddle-node
bifurcation can be seen. When the intensity of the chemotherapy drug (ū) exceeds the
threshold level, the tumor cells are eradicated. Conversely, when the drug intensity falls
below this threshold, a bistable state is observed between the tumor-free equilibrium and
the elevated presence of tumor cells.

In region (D) of Figure 8, and since there are two positive roots to the quadratic
equation (Equation (12)), the tumor-free equilibrium is unstable between the two points
ū1 and ū2 (indicated by arrows) in the bifurcation diagram of Figure 13 obtained with
(c̄ = 0.15, ē = 0.001). For drug intensity levels lower than ū1, the tumor-free equilibrium
is stable, leading to its coexistence with high tumor cell counts. In the interval between
ū1 and ū2, the tumor-free state becomes unstable, but there is the appearance of a stable
low-tumor-cell state, which coexists with the high-tumor-cell steady state. When the drug
intensity exceeds ū2 and is below the limit point, the tumor-free equilibrium stabilizes
once more, reintroducing a bistability condition with the high-tumor-cell state. Only drug
intensity values that are greater than the limit point can fully eliminate the tumor cells.

The influence of model parameters on the position of the limit point depicted in
Figure 12 is illustrated in Figures 14 and 15. It can be seen from Figure 14 that the limit
point is almost insensitive to even large changes in all model parameters except γ̄ and p̄.
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An increase in the value of γ̄ will increase the range of bistability, and therefore, larger drug
intensity is needed to completely move the system to stabilize on the tumor-free equilibrium.
The effect of an increase in p has the opposite effect, where higher values of p̄ would reduce
the width of the bistability region. In Figure 15, the impact of chemotherapy-related
parameters on the limit point’s location is presented. As predicted, k̄1 (tumor-associated)
decreases with rising values of ū, while k̄2 (NK-associated) increases. This implies that
greater values of k̄1 or reduced values of k̄2 will diminish the amount of chemotherapy
required to eliminate the tumor. It is significant to note that the limit point is not influenced
by k̄3 (CTL-associated).
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Figure 8. Branch set in the case of chemotherapy at the dimensionless parameter values in
Equation (17). Hysteresis (green), line (c̄ = ē) (black) and ∆ = 0 (red). Region (A) is located above
the hysteresis curve (solution uniquness). Region (B) is located below the hysteresis curve and above
the line (c̄ = ē). Region (C) covers the two domains below the line (c̄ = ē) and also the region below
the curve of ∆ = 0. Both of these regions (indicated by (C)) yield the same qualitative behavior as far
as the disease-free state is concerned. Region (D) is bounded from above by the line (c̄ = ē) and from
below by the curve ∆ = 0.
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Figure 9. Bifurcation diagram in region (A) of Figure 8 for model with chemotherapy for
(c̄ = 2.59 × 10−5, ē = 100) and the rest of system parameters in Equation (17). Solid line (stable
branch); dashed line (unstable branch); LP (static limit point); P1 point of change of stability of
the tumor-free equilibrium.
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Figure 10. Bifurcation diagram in region (B) of Figure 8 for model with chemotherapy for
(c̄ = 2.59 × 10−5, ē = 0.1) and the rest of system parameters in Equation (17). Solid line (stable
branch); dashed line (unstable branch); LP (static limit point); P1 point of change of stability of the
tumor-free equilibrium.
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Figure 11. Time traces showing bisability (Figure 10) for ū = 0.6 × 10−3. (a) Initial conditions
(T̄, N̄K , L̄, C̄) = (10−5, 0.05, 0.01, 0.003) lead to low-tumor-cell conditions; (b) initial conditions
(T̄, N̄K , L̄, C̄) = (0.5, 0.05, 0.01, 0.003) lead to high-tumor-cell conditions.
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Figure 12. Bifurcation diagram in region (C) of Figure 8 for model with chemotherapy for
(c̄ = 0.3, ē = 0.1) and the rest of system parameters in Equation (17). Solid line (stable branch);

dashed line (unstable branch); LP (static limit point).
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Figure 13. Bifurcation diagram in region (D) of Figure 8 for model with chemotherapy for
(c̄ = 0.15, ē = 0.001) and the rest of system parameters in Equation (17). Solid line (stable branch);
dashed line (unstable branch); LP (static limit point); P1 and P2 points of change of stability of the
tumor-free equilibrium.
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Figure 14. Two parameter continuation diagrams showing the effect of model parameters on the locus
of the limit point of Figure 10. The nominal values of system parameters are defined in Equation (17).
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Figure 15. Two parameter continuation diagrams showing the effect of model parameters on the locus
of the limit point of Figure 10. The nominal values of system parameters are defined in Equation (17).

7. Biological Interpretation of Results
Without the influence of immunotherapy or chemotherapy, the model demonstrated

the ability to predict bistability, even when subjected to slight alterations in its parameters.
In real biological systems, the populations of immune cells and tumor cells are not uniform;
instead, they comprise various subpopulations, each characterized by distinct parameter
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values that govern their behavior. Consequently, fluctuations in these parameter values are
highly probable.

Through the application of bifurcation analysis, we were able to attain a profound
insight into the dynamics of the system as a whole. Additionally, this analysis successfully
highlighted certain parameter values within the model that serve as critical thresholds,
beyond which the patient’s system evolves into a stable, tumor-free equilibrium.

When chemotherapy is not being administered, it has been observed that the stability
of the tumor-free equilibrium relies entirely on the comparative values of the NK-induced
tumor death rate (c̄) and the NK cell death rate (ē). When the tumor-free steady state
exhibits instability (c̄ > ē), the optimal expectation is to achieve a reduction in tumor
size, thereby allowing the system to stabilize at a lower level of tumor cells. However,
the phenomenon of bistability could obstruct this desired outcome, as a limited number
of tumor cells may successfully evade immune detection, which could drive the system
towards a higher concentration of tumor cells.

In scenarios where the tumor-free equilibrium is stable (c̄ < ē), the system can
be sustained at this equilibrium provided that the immune cells are highly effective in
eradicating cancer cells. However, for specific model parameters, a state of bistability
may emerge between the high tumor cell population and the tumor-free equilibrium,
as the immune system’s efficiency diminishes, resulting in the presence of the tumor
without its eradication.

The complexity of the tumor microenvironment is considerable, and the phe-
nomenon of immune escape significantly influences tumor development. To achieve a
lasting tumor-free condition, any therapeutic approach must not only alleviate the tumor
burden but also alter the systemic parameters involved. The aim of therapy design may
be to focus on the bifurcation points revealed in our analysis, which is consistent with
findings in [17,18]. In this light, immunotherapy can be regarded as a treatment that
changes systemic parameters, particularly by providing a lasting enhancement to the
cytolytic function of immune cells [17]. In addition, adaptive cell transfer can serve to
increase the quantity of immune cells, while therapies based on cytotoxic T-lymphocytes
(CTLs) can be utilized to improve immune surveillance in the context of developing
tumors. Some therapeutic approaches are designed to stimulate the response of cytotoxic
T-lymphocytes by linking immune-activating adjuvants, such as viruses or bacteria, to
the patient’s own irradiated tumor cells [20].

Practical diagrams were also constructed that can help in the design process of model
parameters, as to avoid the bistability region altogether or to reduce it. All model parame-
ters (either those associated with NK or CTLs) were found to have a significant effect on the
occurrence/disappearance of bistability. This indicates that both natural killer (NK) cells
and cytotoxic T lymphocytes (CTLs) are essential components in the immune surveillance
of tumors.

The involvement of chemotherapy treatment adds a layer of complexity to the situation.
The model forecasts various scenarios that are solely influenced by the relative im-

portance of the biological parameters of the system, denoted as c̄ and ē, as well as the
chemotherapy parameters k̄1 and k̄2, in conjunction with the dose of the administered drug, ū.

For certain combinations of the previously mentioned parameters, the tumor-free
equilibrium remains consistently stable. Bistability between the tumor-free state and a high
concentration of tumor cells is dominant, and only values of ū that exceed the saddle-node
critical point will entirely eliminate the tumor.

For other combinations, there exists a critical value of ū such that any value below
this threshold results in an unstable tumor-free equilibrium. This implies that drug
levels of ū that are lower than this critical point cannot effectively inhibit tumor growth.
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Beyond this threshold, bistability occurs, and the attraction basins can be influenced by
the model parameters.

Finally, certain values of the parameters (c̄, ē, k̄1, k̄2) revealed the existence of a middle
unstable region in terms of ū. Bistability with elevated tumor cell levels is observed either
above or below this region, while values of ū that fall between the two critical points lead
to the appearance of a low-tumor-cell-concentration steady state and its coexistence with
the high-tumor-cell steady state.

It is worth comparing our results to those in the literature. The work in [21] showed
not only the existence of bistability but also multistability characterized by the coexistence
of multiple non-trivial steady states in addition to the disease-free equilibrium. Their
results are similar to the ones we obtained, although their model was a simpler two-
dimensional model, where the effect of chemotherapy was accounted for by a nonlinear
function CT

(1+T) . The work in [17,18] used similar models to the one used here, except that a
more intricate Hill function was used to describe the fractional tumor cell kills, while the
effect of chemotherapy was described by an exponential kill model with a time-delayed
concentration, i.e., k(1− e−C). Both studies showed that in the absence of chemotherapy, the
bistability between the disease-free equilibrium and a malignant state is driven by several
bifurcation mechanisms such as saddle-node and transcritical bifurcations. No hysteresis
was found, in contrast to our studies. The authors [17,18] also concurred that therapies like
immunotherapeutic vaccines, which alter the parameter values of the dynamical system,
offer significant advantages. These therapies have the potential to permanently modify the
stability characteristics of the system, thereby reducing the likelihood of disease recurrence.
This is the same conclusion reached by our analysis.

8. Conclusions
This research utilized elementary principles of singularity theory to illustrate cer-

tain local bifurcation phenomena that can be predicted by a well-known mathematical
model representing the interactions between tumor and immune cells. In the absence of
chemotherapy, the model predicted bistability in the form of hysteresis across various bio-
logical parameters, wherein dormant tumor cells evade immune regulation and transition
to an active state.

The analysis also indicated that variations in the intensity of chemotherapy drug are
associated with the occurrence of bistability, notably in the form of saddle-node bifurcation
and hysteresis.

Within the framework of chemotherapy, we have established that the parameters influ-
encing the emergence of various bifurcation phenomena are, firstly, biological parameters,
consisting of the rate at which NK cells induce tumor death and the death rate of NK cells
themselves. Secondly, chemotherapy parameters involve the drug’s lethal effect on both
the tumor and NK cells, along with the dose of the drug. The remaining model parameters
influence these bifurcation behaviors by either enlarging or reducing the areas of bistability,
and altering the basins of attraction of the competing attractors.

It was also shown that the complex interplay between the biological parameters of the
model and the chemotherapy parameters can lead to a number of scenarios. Certain com-
binations of these parameters indicated that drug levels falling below a critical threshold
are insufficient to suppress the tumor. Conversely, when drug levels exceed this critical
threshold, bistability is observed.

Some parameter combinations have shown that, within a certain chemotherapy drug
range, the tumor-free equilibrium is invariably unstable and a low-tumor-cell equilibrium
appears that coexists with the high-tumor-cell steady state. This situation implies that
while small drug doses establish the coexistence of the desired disease-free state with the
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high-tumor-cell state, increasing the drug dose would form an unfavorable condition where
a low tumor cell concentration coexists with a high tumor cell concentration.

Finally, this study was limited to the steady-state behavior. Periodic behavior (Hopf
points) was not found in numerical simulations but cannot be ruled out given the large
number of parameters. The role of CD4+ T cells could also be added to the model. Moreover,
the applicability of these mathematical models goes beyond the comprehension of how
biological parameters or chemotherapy influence the occurrence of various bifurcations.
Following the identification of these patterns, the next phase is to employ these models to
investigate a range of other issues, including the evaluation of the most effective rate of
drug administration during patient treatment. This is particularly significant for mitigating
the risk of drug toxicity.
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Nomenclature

c fractional tumor cells killed by NK cells (cells−1 day−1)
d fractional tumor cell kill by CD8+ T cells (day−1)
e death rate of NK cells (day−1)
f maximum NK cell recruitment rate by tumor cells (day−1)
h steepness coefficient of the NK cell recruitment curve (cells2)
k steepness coefficient of the CD8+ T cell recruitment curve (cells2)
k1 fractional tumor cells killed by chemotherapy (day−1)
k2 fractional NK cells killed by chemotherapy (day−1)
k3 fractional CD8+ T cells killed by chemotherapy (day−1)
m death rate of CD8+ T cells (day−1)
p maximum CD8+ T cell recruitment rate (day−1)
q CD8+ T cell inactivation rate by tumor cells (cells−1 day−1)
r rate at which CD+8 cells are stimulated as a result of tumor killed by NK cells (cells−1 day−1)
s regulatory function by NK cells of CD8+ T cells (cells−2 day−1)
u dose of chemotherapy drug (mg m−2day−1)
C concentration of chemotherapy drug in blood (mg m−2)
C0 reference value for C (mg m−2)
L population of CD+8 T cells (cells)
NK population of NK cells (cells)
T population of tumor cells (cells)
α tumor growth rate (day−1)
β inverse of tumor carrying capacity (cells−1)
γ NK cell inactivation rate by tumor cells (cells−1 day−1)
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µ rate of chemotherapy drug decay (day−1)
σ constant source of NK cells (cells day−1)
¯(.) dimensionless variable

LP static limit point
NK natural killer cells

Appendix A.
Appendix A.1. Proof of Theorem 1

1. Existence and Uniqueness: The right-hand side of the system is continuous and
differentiable on R4

+ = {(T̄, N̄K, L̄, C̄) : T̄ ≥ 0, N̄K ≥ 0, L̄ ≥ 0, C̄ ≥ 0} and hence
locally Lipschitzian [31]. Therefore, the solution (T̄(t), N̄K(t), L̄(t), C̄(t)) of the model
with initial conditions T̄(0) ≥ 0, N̄K(0) ≥ 0, L̄(0) ≥ 0, C̄(0) ≥ 0 exists and it is unique.

2. Positivity: Using the method of variation of constants, for the second model equation
(Equation (6)), we have

N̄K(t) =N̄K(0)e
∫ t̄

0

[
f̄ T̄2(ξ̄)

s̄+T̄2(ξ̄)
−ē−γ̄T̄(ξ̄)−k̄2C̄(ξ̄)

]
+

∫ t̄

0
e
∫ t̄

θ̄

[
f̄ T̄2(ξ̄)

s̄+T̄2(ξ̄)
−ē−γ̄T̄(ξ̄)−k̄2C̄(ξ̄)

]
dξ̄

dθ̄, (A1)

implying N̄K(t̄) ≥ 0 for t̄ > 0 provided that N̄K(0) ≥ 0.
The same can be applied for L̄(t̄) in Equation (7), while Equation (8) can be solved
directly:

C̄(t̄) =C̄(0)e−µ̄t̄ +
ū
µ̄
(1 − e−µ̄t̄), (A2)

implying that L̄(t̄) ≥ 0 and C̄(t̄) ≥ 0 for t̄ > 0 provided that L̄(0) ≥ 0 and C̄(0) ≥ 0.
For T̄(t̄), when T̄(t̄) = 0, we have dT̄

dt̄ (t̄) = 0, which means hyperplane T̄ = 0 is
invariant, implying T̄(t̄) ≥ 0 for t̄ > 0 provided that T̄(0) ≥ 0.

3. Boundedness: Equation (5) yields:

dT̄
dt̄

≤T̄(1 − T̄) (A3)

Integration yields

T̄(t̄) ≤ 1
1 + ( 1

T̄(0) − 1)e−t̄
. (A4)

We conclude that

lim
t̄→∞

sup[T̄(t̄)] = 1 (A5)

From Equation (A2), we conclude that

lim
t̄→∞

sup[C̄(t̄)] =
ū
µ̄

(A6)

As for N̄K, we have:

dN̄K
dt̄

=1 − ēN̄K +
f̄ T̄2N̄K

h̄ + T̄2 − γ̄N̄K T̄ − k̄2C̄N̄K ≤ 1 +
f̄ T̄2N̄K

h̄ + T̄2 − ēN̄K. (A7)
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Using Equation (A5), we have that

T̄2

h̄ + T̄2 ≤ 1
h̄ + 1

. (A8)

Therefore

dN̄K
dt̄

≤1 +
f̄

h̄ + 1
N̄K − ēN̄K. (A9)

Integrating yields

N̄K ≤ 1 + h̄
ē(1 + h̄)− f̄

+ N̄K(0)e
− (ē(1+h̄)− f̄

1+h̄ )t̄. (A10)

Thus, provided that ē(1 + h̄) > f̄ , we have

lim
t̄→∞

sup[N̄K(t̄)] =
1 + h̄

ē(1 + h̄)− f̄
. (A11)

As for L̄,

dL̄
dt̄

=− m̄L̄ +
p̄T̄2 L̄

k̄ + T̄2 − q̄L̄T̄ − s̄N̄K L̄2 + r̄N̄K T̄ − k̄3C̄L̄ ≤ −m̄L̄ +
p̄T̄2 L̄

k̄ + T̄2 + r̄N̄K T̄ (A12)

Integrating and using the bounds on T̄ (Equations (A5) and (A8)) and N̄K Equation
(A11) yields

L̄(t̄) ≤ r̄(1 + h̄)(1 + k̄)
(ē(1 + h̄)− f̄ )(m̄(1 + k̄)− p̄)

+ L̄(0)e−
(m̄(1+k̄)− p̄)t̄

1+k̄ . (A13)

Therefore, provided that m̄(1 + k̄) > p̄, we have

lim
t̄→∞

sup[L̄(t̄)] =
r̄(1 + h̄)(1 + k̄)

(ē(1 + h̄)− f̄ )(m̄(1 + k̄)− p̄)
(A14)

References
1. Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229.
2. Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges.

Ecancermedicalscience 2019, 13, 961. [PubMed]
3. Brady, R.; Enderling, H. Mathematical Models of Cancer: When to predict novel therapies, and when not to. Bull. Math. Biol.

2019, 81. 3722.
4. Rockne, R.C.; Scott, J.G. Introduction to Mathematical Oncology. JCO Clin. Cancer Inform. 2019, 3, 1–4. [CrossRef]
5. Apavaloaei, A.; Hardy, M.P.; Thibault, P.; Perreault, C. The origin and immune recognition of tumor-specific antigens. Cancers

2020, 12, 2607. [CrossRef]
6. Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune

evasion. Nat. Rev. Cancer 2021, 21, 298. [PubMed]
7. Stephen, L.; Huntington, N.D. Cytotoxic T Lymphocytes and Natural Killer Cells, in Clinical Immunology, 5th ed.; Rich, R.R., Fleisher,

T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 247–259.e1,
8. Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol.

2018 18, 671.
9. Coënon, L.; Geindreau, M.; Ghiringhelli, F.; Villalba, M.; Bruchard, M. Natural Killer cells at the frontline in the fight against

cancer. Cell Death Dis. 2024, 15, 614.
10. Hongbo, C.; Pepper, M.; Thomas, P.G. Principles and therapeutic applications of adaptive immunity. Cell 2024, 187, 2052.

http://www.ncbi.nlm.nih.gov/pubmed/31537986
http://doi.org/10.1200/CCI.19.00010
http://dx.doi.org/10.3390/cancers12092607
http://www.ncbi.nlm.nih.gov/pubmed/33750922


Symmetry 2025, 17, 492 23 of 23

11. Bellomo, N.; Li, N.K.; Maini, P.K. On the foundations of cancer modelling: Selected topics, speculations, and perspectives. Math.
Models Methods Appl. Sci. 2008, 18, 646.

12. Mohammad Mirzaei, N.; Tatarova, Z.; Hao, W.; Changizi, N.; Asadpoure, A.; Zervantonakis, I.K. A PDE model of breast tumor
progression in MMTV-PyMT Mice. J. Pers. Med. 2022, 12, 807. [CrossRef]

13. Ghaffari Laleh, N.; Loeffler, C.M.L.; Grajek, J.; Staňková, K.; Pearson, A.T.; Muti, H.S. Classical mathematical models for prediction
of response to chemotherapy and immunotherapy. PLoS Comput. Biol. 2022, 18, e1009822. [CrossRef]

14. Malinzi, J.; Basita, K.B.; Padidar, S.; Adeola, H.A. Prospect for application of mathematical models in combination cancer
treatments. Inform. Med. Unlocked 2023, 23, 100534. [CrossRef]

15. Kuznetsov, V.; Makalkin, I.; Taylor, M.; Perelson, A. Nonlinear dynamics of immunogenic tumors: Parameter estimation and
global bifurcation analysis. Bull. Math. Biol. 1994, 56, 295. [CrossRef] [PubMed]

16. Robertson-Tessi, M.; Elkareh, A.; Goriely, A. A mathematical model of tumor-immune interactions. J. Theor. Biol. 2012, 294, 56.
[CrossRef] [PubMed]

17. de Pillis, L.G.; Radunskaya, A.E. Modeling tumor-immune dynamics. In Mathematical Models of Tumor-Immune System Dynamics;
Eladdadi, A., Kim, P., Mallet, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 59–108.

18. López, A.G.; Seoane, J.M.; Sanjuán, M.A.F. A validated mathematical model of tumor growth including tumor-host interaction,
cell-mediated immune response and chemotherapy. Bull. Math. Biol. 2014, 76, 2884. [CrossRef] [PubMed]

19. Makhlouf, A.M.; El-Shennawy, L.; Elkaranshawy, H.A. Mathematical modelling for the role of CD4+ T cells in tumor-immune
interactions. Comput. Math. Methods Med. 2020, 718, 7602. [CrossRef]

20. Song, G.; Tian, T.; Zhang, X. A mathematical model of cell-mediated immune response to tumor. Math. Biosci. Eng. 2020, 18, 373.
[CrossRef]

21. Bashkirtseva, I.; Chukhareva, A.; Ryashko, L. Modeling and analysis of nonlinear tumor-immune interaction under chemotherapy
and radiotherapy. Math. Meth. Appl. Sci. 2022, 45, 7983. [CrossRef]

22. Das, A.; Dehingia, K.; Ray, N.; Sarmah, H.K. Stability analysis of a targeted chemotherapy-cancer model. Math. Model Control.
2023, 3, 116. [CrossRef]

23. Kashif, M.; Singh, M. Existence, uniqueness and Ulam-Hyers stability result for variable order fractional predator-prey system
and it’s numerical solution. Appl. Numer. Mat. 2025, 207, 193. [CrossRef]

24. Feng, X.; Liu, M.; Jiang, Y.; Li, D. Dynamics and stability of a fractional-order tumor-immune interaction model with B-D
functional response and immunotherapy. Fractal Fract. 2023, 7, 200. [CrossRef]

25. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: New York, NY, USA, 1990.
26. Golubitsky, M.; Stewart, I.; Schaeffer, D.G. Singularities and Groups in Bifurcation Theory. Appl. Math. Sci. 1988, 2, 69.
27. Ajbar, A.; Alhumaizi, K. Dynamics of the Chemostat A Bifurcation Theory Approach; Chapman and Hall/CRC: New York, NY, USA, 2011.
28. Dhooge, A.; Govaerts, W.; Kuznetsov, Y.A.; Meijer, H.G.E.; Sautois, B. New features of the software MatCont for bifurcation

analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 2008, 14, 147.
29. MATLAB. Version 9.4.0 (R2018a); The MathWorks Inc.: Natick, MA, USA, 2018.
30. Dudley, M.E.; Wunderlich, J.R.; Robbins, P.F.; Yang, J.C.; Hwu, P.; Schwartzentruber, D.J. Cancer regression and autoimmunity in

patients after clonal repopulation with antitumor lymphocytes. Science 2002, 298, 850. [CrossRef]
31. Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos; Academic Press:

Cambridge, MA, USA, 2012

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/jpm12050807
http://dx.doi.org/10.1371/journal.pcbi.1009822
http://dx.doi.org/10.1016/j.imu.2021.100534
http://dx.doi.org/10.1007/BF02460644
http://www.ncbi.nlm.nih.gov/pubmed/8186756
http://dx.doi.org/10.1016/j.jtbi.2011.10.027
http://www.ncbi.nlm.nih.gov/pubmed/22051568
http://dx.doi.org/10.1007/s11538-014-0037-5
http://www.ncbi.nlm.nih.gov/pubmed/25348062
http://dx.doi.org/10.1155/2020/7187602
http://dx.doi.org/10.3934/mbe.2021020
http://dx.doi.org/10.1002/mma.7706
http://dx.doi.org/10.3934/mmc.2023011
http://dx.doi.org/10.1016/j.apnum.2024.08.019
http://dx.doi.org/10.3390/fractalfract7020200
http://dx.doi.org/10.1126/science.1076514

	Introduction
	The Model
	Uniqueness, Non-negativeness and Boundedness of Solutions
	Analysis of Model Equilibria
	Bifurcation Analysis in Case of no Chemotherapy
	Bifurcation Analysis in Case of Chemotherapy
	Biological Interpretation of Results
	Conclusions
	Appendix A
	Appendix A.1

	References

