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Abstract: The excellent “mirror” effect of medium and high-strength aluminum alloy
profiles from the 6-series, achieved through anodizing, is highly valued by customers.
Metallographic analysis is a key method for predicting the anodizing effect. However, tradi-
tional metallographic analysis methods suffer from unstable accuracy and low efficiency. To
address these issues, this paper successfully develops a metallographic grading system by
constructing a dataset and integrating computer vision with machine-learning techniques.
Based on grain classification, the system automatically determines the metallographic grade
by analyzing the proportion of good grain areas. After applying SMOTE sampling and
10-fold cross-validation to the machine-learning algorithm, we conducted a comparative
analysis of the model’s performance from the perspectives of accuracy, good grain recall
rate, bad grain recall rate, and AUC. The XGBoost model, selected as the final predictive
model from 18 machine-learning models due to its superior performance, achieved a grain
classification accuracy of 96.21% and a good grain recall rate of 98.07%. Both the accuracy
and good grain recall standard deviations were less than 0.02. These results indicate that
the model can effectively distinguish between good and bad grains with high robustness.
Additionally, the average time for metallographic grading is less than 9 s. In comparison to
the instability of traditional manual grading, this method significantly enhances both the
accuracy and efficiency of metallographic analysis while also reducing grading costs.

Keywords: metallographic grating; aluminum alloy; computer vision; machine learning;
aluminum profiles for mobile phones; anodizing quality prediction; automated inspection;
high gloss

1. Introduction
A variety of materials are used in mobile phone structural components, such as glass,

plastic, steel, aluminum alloy, titanium alloy, etc. Among them, since Apple Inc. first
utilized aluminum alloy as the back cover and frame material for the iPhone 5 in 2012,
this material has gained widespread adoption due to its superior physical properties and
ease of processing. According to statistics, the global annual smartphone shipments have
remained stable at over 1.1 billion units over the past decade, driving the consumption of
more than 350,000 tons of aluminum alloy annually, accounting for approximately 0.5% of
global aluminum production. In recent years, “mirror” anodizing treatment has emerged
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as the preferred finishing solution for high-end smartphone frames. During the production
process, aluminum profile suppliers typically use metallographic analysis to predict the
“mirror” effect after anodizing in order to control production quality. This predictive ability
is based on the strong correlation between microstructural features and anodizing perfor-
mance: grain size and the morphology of second-phase particles significantly influence
the growth rate of the oxide film and the surface gloss after treatment [1,2]. By revealing
microstructural features such as grain boundaries and second-phase distributions through
etching, metallic inspection enables qualitative or semi-quantitative analysis of crucial
parameters like grain size and particle morphology. This, in turn, allows for a qualitative
assessment of anodizing outcomes. However, since a reliable quantitative relationship be-
tween metallographic analysis and anodizing has yet to be established, most manufacturers
still primarily rely on expert judgment for metallographic analysis. This evaluation process
is prone to human factors such as fatigue and subjective bias, which can lead to distorted
results [3,4].

In recent years, the rapid development of computer vision and machine-learning
technology has provided technical support for efficient analysis of metallographic structure
information of complex metal materials [4]. Naik et al. [5] identified different metallur-
gical phases in heat-treated steel and extracted the texture features and pixel intensity
of metallurgical phases. Dali C et al. [6] developed a semi-supervised learning frame-
work to efficiently identify second-phase components in aluminum alloy metallography.
Rusanovsk et al. [7] employed deep semantic segmentation techniques to segment and
repair impurities, as well as to identify and quantify grain boundaries in metallographic
images. Katika H et al. [8] used morphological manipulation and threshold processing
techniques to achieve fine segmentation of microstructure. Majumdar S et al. [9] used the
improved U-Net architecture to accurately segment different microstructure features in
metal images. Germain et al. [10] used ImageJ 1.53e for image threshold segmentation and
extracted the roundness, aspect ratio, and other features of graphite from graphite particles.
Wen et al. [11] used the TransUnet to segment metallographic images and extract hole and
grain features from cable melt mark images. At present, most metallographic rating meth-
ods are mainly completed from three aspects: grain size, microstructure and nonmetallic
inclusion, and decarburization layer and nitriding layer [12]. Wang Sen et al. [13] adopted
the method of metallographic grain size grading based on deep learning to improve the
efficiency and accuracy of the rating. Song Yue et al. [14] automatically calculated the
number of grain size levels by deep learning method and realized automatic grain size
rating. However, Su Chen [15] used the deep learning framework to segment the resid-
ual austenite and martensite microstructures and realized the grade determination of the
residual austenite and martensite.

The aforementioned research methods are effective in extracting the grains and mor-
phologies of the second phase in the as-cast state; however, their research dimensions
remain relatively limited. Given that the anodization effectiveness of aluminum alloys is
influenced by multiple factors with intertwined interactions, accurately identifying and
selecting feature values closely related to the anodization process has become the primary
focus of our study. Unlike the as-cast state, the second-phase microstructures of aluminum
alloy profiles, after processes such as deformation, solution treatment, aging heat treatment,
etc., often lose their typical morphologies at the micron scale. Few studies have focused
on such alloy states, necessitating the exploration of diverse models and algorithms to
correlate metallographic analysis results with anodization performance. Additionally, the
semi-supervised learning frameworks and deep learning frameworks employed in these
methods may demand substantial computational resources. Deep semantic segmentation
techniques often rely on large volumes of high-quality training data, and data annotation
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can be costly. While ImageJ is user-friendly, significant manual intervention and parameter
adjustments may be required. Algorithms such as gradient-based boundary segmentation
and morphological or thresholding techniques are highly sensitive to parameter settings,
requiring meticulous parameter tuning to achieve optimal results.

Because of the difference in the research materials, the morphology of the phase and
size are not taken as the main research objects. At present, there is little research on the
feature analysis and rating of such metallographic images. In light of this, this paper
proposes an innovative solution that integrates computer vision and machine-learning
technologies. Leveraging Python 3.8.8 and its third-party libraries, the method extracts
multiple statistical features of grains to achieve automatic recognition and grading of
metallographic images from the perspective of grain characteristics.

The objective of our research is to develop an automatic metallographic image grading
system. We anticipate that this system will be more efficient and reliable than manual
grading for quality assessment of 3C aluminum alloy profiles, achieving a metallographic
grading accuracy exceeding 90%, with image grading time controlled within 10 s to enable
high-quality automated detection. Further, the program package and deployment are com-
pleted, and the metallographic rating system is developed, which lays a solid foundation
for efficient and large-scale metallographic analysis and quality control. It is anticipated
that the metallographic grading system will reduce labor costs.

2. Materials and Methods
2.1. Metallographic Sample Making and Metallographic Analysis

Samples with different anodic “mirror” effects were taken from the customer’s
production line, such as a–c in Figure 1. These samples were made of EN AW-6013
(EN 573-3:2019+A2:2023) aluminum alloy, and its composition is shown in Table 1. The
samples were measured using a gloss meter, as illustrated in Figure 2, yielding distinct
gloss values. For the specimens shown in Figure 1a–c, the measured gloss values were
559 GU, 509 GU, and 411 GU, which were classified as premium, qualified, and substandard
samples, respectively. We measured the glossiness values of all anodized specimens and
classified them into five grades (ranging from A to E) according to the ranked glossiness
values, as presented in Table 2. Grade A signifies the optimum anodization quality. Grade
B denotes the anodization quality that is acceptable to customers. Grade C represents
the anodization quality for which customers need to grant a waiver for acceptance, and
those below this grade are deemed non-conforming products. Representative samples from
each grade were selected for metallographic preparation, forming a dataset to support
subsequent supervised machine-learning tasks.

Metallographic samples were cut from the same position on each sample and ground
successively with 320 and 1200 mesh silicon carbide sandpaper. The samples were then
polished using a 1 µm polishing disc and silica polishing liquid on an automatic polishing
machine under controlled parameters (300 ± 5 rpm, 60 ± 2 N pressure). After cleaning, they
were etched with Keller’s reagent (HF:HCL:HNO3:H2O = 2:3:5:190 by volume, prepared
from analytical-grade solutions with densities 1.15 g/mL, 1.19 g/mL, 1.40 g/mL, and deion-
ized water, respectively) at 26–30 ◦C for 75–80 s. To ensure the stability of metallographic
image quality, all preparation steps were conducted in an ambient temperature-controlled
environment (26 ± 1 ◦C), with critical parameters verified before each experiment. The sam-
ple was re-cleaned, wiped with alcohol, and mounted on a Leica DMI8A metallographic
microscope. Select the appropriate field of view and adjust the light intensity to 70% of the
maximum output intensity to capture the d-e image in Figure 1. A one-to-one mapping
between anodic “mirror” effects and corresponding metallographic images was established
to construct the dataset.
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Figure 1. Different “mirror” anode effect samples and corresponding metallography: (a) Opti-
mal “mirror” effect; (b) Qualified “mirror” effect; (c) Failed “mirror” effect; (d) Optimum sample
metallography; (e) Qualified sample metallography; (f) Failed sample metallography.

Table 1. Standard chemical composition of alloy EN AW-6013, mass%.

Si Mg Fe Cu Mn Cr Zn Ti Al

0.50~0.70 0.80~1.20 <0.50 0.50~0.70 <0.80 <0.005 <0.10 <0.25 Bal.
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Table 2. Anodized Specimen Evaluation.

y-Gloss Value (GU) Sample Grade

y ≥ 530 A
500 < y ≤ 530 B
470 < y ≤ 500 C
440 < y ≤ 470 D

y ≤ 440 E
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As shown in Figure 1, the metallographic photos of samples with different anode
effects are obviously different. In the metallography of qualified samples, there are many
grains with high brightness (corrosion-resistant) and low second-phase content. We define
these as “high-quality grains”, while the metallography of unqualified samples shows
the opposite. Therefore, it is a reasonable assumption that the higher the proportion of
high-quality grains, the better the anodizing effect of the sample. Hence, the study takes a
single grain as the basic unit to identify high-quality grains and calculate the proportion of
high-quality grains.

2.2. Picture Processing

Python 3.8.8 is used to read the grayscale image, as shown in Figure 3a. To eliminate the
influence of uneven illumination during the camera’s capture of the metallographic images,
the grayscale image is processed using contrast-limited adaptive histogram equalization
(CLAHE) [16], as shown in Figure 3b. In order to remove image noise and effectively retain
clarity and detail of grain boundaries, median filtering (Figure 3c) and bilateral filtering
(Figure 3d) are used to process images [17].
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(d) bilateral filtering.

The preprocessed image is binarized using the adaptive thresholding method, with
two different parameters set to obtain two types of second-phase distributions. The first
type represents the impurity distribution, as shown in Figure 4a, while the background im-
age is obtained by subtracting the impurity distribution from the original image, as shown
in Figure 4b. After performing a series of morphological operations and connected domain
analysis on the second type of second-phase distribution image, the grain boundaries are
extracted, as shown in Figure 4c, and the grains are calibrated, as shown in Figure 4d. In
Figure 4d, different colors represent different grains.
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2.3. Feature Extraction

Due to the difference in the materials studied, the morphology of the secondary phase
and size are not taken as the main research objects. Instead, we are more inclined to take
a series of statistical values related to the grain and gray value as the representative by
evaluating the advantages and disadvantages of the local area and then calculating the
proportion, the overall metallographic evaluation. In order to better distinguish the good
and bad grains, several features are selected to offset the subjective influence brought by
naked-eye observation. Combined with material science knowledge and computer vision
knowledge, 17 features of grain, as shown in Table 3, are listed, and the features are selected.

Table 3. Feature extraction.

Image Feature Meaning

original

Brightness Average grain gray value
Brightness_Dev Gray value difference

Entropy_Original The richness of grain gray value
Maximum Maximum gray value
Minimum Minimum gray value

Median The median of the gray value
Mode The most gray values in the grain

Mode_proportion The proportion of the Mode in the grain
Over_180_rate The proportion of gray value greater than 180 in the grain

Kurtosis The sharpness of the gray value distribution
Skewness The pattern of gray value distribution

area The sum of intra-grain pixels
perimeter The sum of grain boundary pixels

Impurity Impurities_Percentage The amount of impurities in the grain
Entropy_ Impurity The richness of grain gray value in impurity image

Background Grayscale_Ave_Back Average grain gray value in background image
Grayscale_Dev_Back Gray value difference in background image

2.3.1. Feature Calculation

For the original image, 13 features are extracted. Brightness is the average gray value
of the image, and Brightness_Dev can measure the difference in the degree of the gray level
of the image. Brightness and Brightness_Dev are calculated as follows:

Brightness =
∑ N

i=1xi

N
(1)

Brightness_Dev =

√
∑ N

i=1(xi − x)2

N
(2)

where N represents the number of grayscale values in the grain, and xi is the i-th
grayscale value.

The Maximum is the largest grayscale value in the grain, and the Minimum is the
same. The grayscale value of the grain in sequence in the middle is the Median. Mode,
Mode_proportion, and Over_180_rate have a certain effect on the overall brightness of the
image. The formula for calculating Mode_proportion and Over_180_rate is as follows:

Mode_proportion =
Xmode

N
(3)

Over_180_rate =
X180

N
(4)
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where, Xmode represents the number of modes, X180 represents the number of grayscale
values greater than 180, and N represents the number of grayscale values in the grain.

The Kurtosis of grayscale histogram can evaluate the concentration of grayscale inside
the grain, and the skewness can reflect the asymmetry of grayscale distribution. Skewness
and Kurtosis are calculated as follows:

Skewness =
1
n

255

∑
i=0

[(
Xi − µ

σ

)3
]

(5)

Kurtosis =
1
n

255

∑
i=0

[(
Xi − µ

σ

)4
]
− 3 (6)

where n is 256, representing the number of different grayscale values; Xi is the frequency
of occurrence of the i-th grayscale value in the [0, 255] gray range; µ is the mean value of
frequency, and σ is the standard deviation of frequency.

The greater the entropy of grain grayscale, the more complex the grain structure or
the more small changes. Entropy is calculated by the following formula:

Entropy_Original = −
255

∑
i=0

p(xi)log p(xi) (7)

where, xi is the i-th grayscale value, p(xi) is the frequency of occurrence of the i-th
grayscale value.

For the impurity image, the Impurities_Percentage and the Entropy_Impurity are
calculated. The Impurities_Percentage directly reflects the impurity content of the grain,
and the lower Impurities_Percentage means that the grain is purer. Impurities_Percentage
and Entropy_Impuritie are calculated as follows:

Impurities_Percentage =
X0

N
(8)

Entropy_Impurities = −p(x0)log p(x0)− p(x255)log p(x255) (9)

where N represents the number of grayscale values in the grain, and x0 represents the
number of grayscale values 0 in the grain. Different from Entropy_Original, the En-
tropy_Impurities calculates only 0 and 255.

For the background image, the Grayscale_Ave_Back and Grayscale_Dev_Back are
calculated to analyze the grain background color.

Through the above steps, a grain dataset containing 17 features is obtained. Experts
empirically defined grains with higher brightness and fewer second-phase particles as
“good” grains, labeled as 1 (as shown by the red arrows in Figure 5), while regions with
darker brightness and more second-phase particles were defined as "bad" grains, labeled
as 0 (as shown by the black arrows in Figure 5). This process resulted in a dataset with
classification labels.
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2.3.2. Feature Selection

Area and perimeter do not need to participate in grain classification. The dataset con-
tains 15 features in addition to the area and perimeter. It is foreseeable that not all features
contribute to grain classification, and some redundant features may even hinder model
performance. In order to reduce model complexity and improve model generalization
ability, feature selection is needed.

The main methods of feature selection include embedding, filtering, and packag-
ing [18]. The embedding is carried out simultaneously in model construction and feature
selection. By fitting some tree models (DT, GBDT, XGBoost, RF), the embedding method is
used to select features, use the model to rank the importance of features, and the features
with high contribution to the model are selected and compared comprehensively, as shown
in Table 4. The Entropy_Impurities, Brightness_Dev, Skewness, and Impurities_Percentage
are considered to be more important in most models. At the same time, it can also be
clearly seen that the three models—RF, GBDT, and DT— think that the contribution of
Impurities_Percentage is the largest. Only XGBoost thinks that the contribution of Im-
purities_Percentage is the smallest and that the Entropy_Impurities contribution is the
largest. This may be because the Entropy_Impurities has a large linear correlation with the
Impurities_Percentage; hence, other methods are needed to select features. We rank the
contribution of the features to the four models and remove the features with small contri-
butions, such as the Median, Mode, and Brightness, which may inhibit the performance of
the model.

Secondly, the variance method can be used to filter the remaining features. In order to
unify the dimensions, all features are normalized, and then the variance of each feature
is calculated. The results are shown in Table 5. Features with small variances, such as
Grayscale_Ave_Back, can be eliminated because of their small fluctuations, and the effect
of good and bad grain differentiation is not obvious.

Finally, a correlation analysis was conducted on each feature, and the heatmap of
correlation coefficients is shown in Figure 6. The correlation between the features selected
by the embedding method and the variance method was analyzed. In the heatmap, the
darker or lighter the color, the stronger the negative or positive correlation between the



Symmetry 2025, 17, 482 9 of 26

features. As shown in Figure 6, for example, the correlation between the entropy of the
binary image and the proportion of impurities reaches 0.98, indicating a strong positive
correlation. Features with high correlation describe different aspects of the same thing.
To reduce model complexity and eliminate redundant features, one of the two highly
correlated features is removed.

Table 4. Feature Importance Ranking.

Feature RF XGBoost GBDT DT Average Sorting

Entropy_Impurities 2 1 2 4 2.25
Brightness_Dev 5 3 3 2 3.25

Skewness 3 2 4 5 3.5
Impurities_Percentage 1 15 1 1 4.5

Mode_proportion 6 4 6 3 4.75
Grayscale_Dev_Back 8 5 5 6 6

Kurtosis 4 7 7 7 6.25
Entropy_Original 7 10 8 15 10

Maximum 10 9 11 11 10.25
Over_180_rate 9 14 10 8 10.25

Minimum 11 13 9 10 10.75
Grayscale_Ave_Back 13 11 12 9 11.25

Brightness 12 6 14 13 11.25
Mode 15 8 15 12 12.5

Median 14 12 13 14 13.25

Table 5. Features and Variance.

Features Variance

Brightness 0.0699
Median 0.0832

Grayscale_Ave_Back 0.0909
Mode 0.1050

Grayscale_Dev_Back 0.1258
Minimum 0.1261

Brightness_Dev 0.1579
Maximum 0.1700
Skewness 0.1852
Kurtosis 0.1863

Impurities_Percentage 0.1882
Entropy_Impurities 0.1929
Mode_proportion 0.1931
Entropy_Original 0.1937

Over_180_rate 0.2935

The 15 features were selected by embedding method, variance method, and correlation
coefficient method, and the final features were Impurities_Percentage, Brightness_Dev,
Mode, Kurtosis, and Over_180_rate.
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2.4. Model Building

Grain classification is needed, and grain datasets and machine-learning classification
algorithms can achieve this purpose. For a long time, machine-learning classification
algorithms have developed rapidly in various fields. Çetin Necati et al. used four machine-
learning classification algorithms (RF, SVM, NB, and MLP) to classify soybean varieties
based on the shape, size, and quality attributes of soybean seeds [19]. By integrating
multiple machine-learning classification models, Mahajan M et al. achieved remarkable
results in ECG signal classification [20].

The grain dataset is split into a training set and a test set in an 80:20 ratio. The
machine-learning classification model is trained on the training set, and its performance
is evaluated on the test set. To improve the model, defects in the dataset are addressed,
several classification models are fitted, and appropriate evaluation metrics are selected to
assess the models’ performance.

2.4.1. Algorithm Description
Decision Tree

The Decision Tree (DT) is composed of a root node, several internal nodes, and leaf
nodes, which correspond to the grain features calculated previously. The root node and
internal nodes are divided by impurity measures, such as entropy and the Gini index. Every
time the tree grows, nodes are divided in the direction of minimum impurity [21]. We
selected the Gini index as the impurity measure, imposed no restrictions on the maximum
tree depth, set no limits on the maximum number of leaf nodes, and assigned equal weights
to all classes.
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Ensemble Learning

(1) Random Forest (RF): The Random Forest consists of Decision Trees, and its ran-
domness is reflected in each Decision Tree built. The samples used by these Decision
Trees are randomly selected from the grain training set, and the final prediction results are
determined by the Decision Trees through voting [22]. To facilitate comparison, we trained
Random Forest models with 50, 100, and 500 trees, uniformly selecting the Gini index as
the impurity measure.

(2) Gradient Boosting Decision Tree (GBDT): Unlike the Bagging approach used in
Random Forests (RF), each iteration of Boosting increases the weights of misclassified grain
samples based on the results from the previous iteration. Each new model built by the
GBDT algorithm attempts to correct the errors of the previous model [23]. The loss function
employs log_loss (logarithmic loss) for probabilistic classification, with a learning rate of
0.1, 100 trees, a maximum depth of 3 for individual trees, and early stopping disabled.

(3) eXtreme Gradient Boosting (XGBoost): XGBoost, as an enhanced version of the
GBDT (Gradient Boosting Decision Tree) algorithm, is designed to prevent model overfit-
ting through the application of loss functions and regularization. The logistic loss function
is selected as the model’s loss criterion, which not only calculates the base loss but also
effectively mitigates overfitting through the integration of first-order and second-order
derivatives [24]. Logistic regression regularization is implemented to control model com-
plexity further. Specifically, L1 regularization is characterized by penalties proportional
to the absolute values of model weights, which is commonly employed to precisely zero
out partial weights for feature selection, while L2 regularization is defined by penalties
proportional to the square of model weights, enabling all features to be preserved. Since
feature screening has already been conducted, preference is given to the L2 regularization
approach. In the regularization framework, larger weights are penalized more severely.
To avoid excessive model complexity, the weight coefficient for the L2 regularization term
is set to 1, ensuring smaller weights are maintained. A learning rate of 0.3 is configured,
where the adjustment magnitude during model weight updates is controlled through
smaller iterative steps, enabling slower and more stable convergence to reduce overfitting
risks. A total of 100 decision trees are utilized, and uniform sample weights are assigned to
each class.

(4) Stacking: Different from the ensemble of tree models, Stacking can integrate
different kinds of models. By integrating predictions from multiple models for grain
prediction, a logistic regression model is then constructed as a meta-model using these
predictions. The output of the meta-model serves as the final prediction result for grains [25].
We employed two stacked ensembles:

1⃝ A three-model ensemble comprising RF (n_estimators = 50), XGBoost, and LR (L2
regularization, solver = ‘lbfgs’).

2⃝ A five-model ensemble including RF (n_estimators = 50), XGBoost, LR (L2 regular-
ization, solver = ‘lbfgs’), Multilayer Perceptron (MLP), and SVC (kernel = ’linear’).

For both ensembles, the predictions from the base models were used to train a meta-
model (logistic regression). The entire process was validated through 5-fold stratified
cross-validation.

(5) Voting: Voting is an ensemble learning method that integrates diverse types of
models. The final grain prediction is determined by a majority vote of the predictions from
these models. We implemented soft voting with two distinct ensembles:

1⃝ A three-model ensemble using RF (n_estimators = 50), XGBoost, and LR (L2 regu-
larization, solver = ‘lbfgs’).

2⃝ A five-model ensemble incorporating RF (n_estimators = 50), XGBoost, LR (L2
regularization, solver = ‘lbfgs’), Multilayer Perceptron (MLP), and SVC (kernel = ‘linear’).
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By averaging the predicted probabilities from these models, the final grain prediction
becomes more robust and probability-driven.

Logistic Regression

Logistic Regression (LR) uses the sigmoid function to map the output of linear regres-
sion between 0 and 1, essentially predicting the probability of the class [26]. We employed
logistic regression to predict the probability of grain classes, where a grain is assigned to the
class with the highest predicted probability. To improve classification performance, we ex-
plored different regularization methods, including L1 (Lasso) and L2 (Ridge) regularization.
The following loss function is formulated:

L = E(ω) + λ||ω||q (10)

The original linear loss function is defined as E(ω), where ω denotes the weights
obtained through training. The regularization term is represented by λ||ω||q, with λ

being the regularization coefficient and q being the model’s order. When q is set to 1,
first-order regularization is implemented, and when q is set to 2, second-order regular-
ization is established. The difference between L1 and L2 is mainly in the penalty term.
L2 imposes a square-level penalty on features, which can retain all features, while L1 can
reduce the weight of some features to 0, which can realize feature selection. When the
regularization coefficient λ is set to a larger value, the constraints imposed on the parame-
ters are strengthened. During the training process, excessively large parameter values are
automatically suppressed by the regularization term, thereby reducing overfitting. The
optimizer selected by LR(L1) is saga, and the optimizer selected by LR(L2) is lbfgs, with
the same category weight.

Naive Bayes

Naive Bayes (NB) uses feature probabilities to predict classification. For an unclassified
grain sample, the probabilities of it belonging to each class are computed under the given
conditions. The grain is then assigned to the class with the highest predicted probability [27].
Without specifying the prior probability of the class, the prior probability is automatically
calculated based on the class distribution in the training data.

Support Vector Machine

Support Vector Machines (SVM) separate two classes of grain samples by constructing
an optimal hyperplane that maximizes the margin (distance) between the two classes in the
feature space [28], where the following constraints must be satisfied.

min (C +
1
2

n

∑
i=1

θ2
j ) (11)

In this context, C is referred to as the regularization parameter, while 1
2 ∑ n

i=1θ2
j is

defined as the regularization term, where θ represents the model parameters. When C is
assigned a larger value, the training error is reduced; however, overfitting may be induced.
Conversely, when C is assigned a smaller value, the regularization term’s role is enhanced,
thereby improving the model’s generalization capability. The regularization parameter C
is set to 1, the Gaussian (rbf) kernel is selected for non-linearly separable data, the linear
kernel is used for linearly separable cases, and equal class weights are applied across
all categories.
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K-Nearest Neighbor

The K-Nearest Neighbors (KNN) algorithm measures the proximity between grain
samples using Euclidean distance. It selects the K closest grain samples to the unclassified
grain and predicts its class through majority voting [29]. Five and seven sample points
were selected, respectively, to compare the predicted results. All neighbor samples have
the same voting weight.

Artificial Neural Network

An Artificial Neural Network (ANN) consists of an input layer, one or more hidden
layers, and an output layer. Each hidden layer is composed of fully connected nodes. Grain
feature information is propagated from the input layer through the hidden layers to the
output layer, with activation functions applied at each layer. Finally, the output layer uses
a sigmoid activation function to generate probabilities for grain classification [30]. The
neural network architecture uses a single hidden layer with 100 neurons, ReLU activation
for the hidden layer, and the Adam optimizer. The Adam optimizer is configured with
exponential decay rates of 0.9 (first moment) and 0.999 (second moment), L2 regularization
(alpha = 0.0001), a fixed learning rate of 0.001, and early stopping is disabled.

2.4.2. Model Evaluation Metrics

The number of grain samples of the dataset labeled by experts and the divided training
set and test set are shown in Figure 7.
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It is evident that the two sample types are not in a 1:1 ratio. Specifically, the ratio of
good grains to poor grains is approximately 1:5.2, resulting in a class-imbalanced dataset.
This imbalance renders methods relying solely on ‘accuracy’ as an evaluation metric
ineffective [31,32]. When the ratio of Category 0 to Category 1 samples is 9:1, even if the
model predicts all samples as Class 0 samples, the accuracy can reach 90%. However, the
model does not have any recognition ability for Class 1 samples. Therefore, the accuracy
cannot be used only as the evaluation metric of the model.

For imbalanced datasets, in addition to the commonly used accuracy metrics, recall
is also used as the evaluation metric of the model [33]. When more good grain samples
were correctly predicted, the good grain recall was higher. Our rating method is based
on the area of good grains, which requires prioritizing the identification of good grains.
Simultaneously, we aim to maximize the correct classification of poor grains as poor.
Therefore, we calculate the recall rate for poor grains—the higher the recall, the poorer
grains are accurately predicted. In order to further judge the prediction ability of the model
under non-equilibrium conditions, the AUC (Area Under the ROC Curve) evaluation
metrics were also used. AUC can simultaneously test the classification ability of the
classifier for both bad-grain and good-grain samples. While good grains are judged as
good grains, it can also test whether the model misjudges bad grains as good grains less.
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The calculation methods of accuracy, recall (good grain recall rate is recall1, bad grain
recall rate is recall0), and AUC are described in Table 6.

Table 6. Confusion matrix to calculate the evaluation metrics of the model.

Predicted Value

True value Positive Negative
Positive TP (11) FN (10)

Negative FP (01) TN (00)
TP (True Positive): The number of grains predicted by the model to be good grains that are actually good grains.
It is represented by 11. FN (False Negative): The number of grains predicted by the model to be bad grains that
are actually good grains. It is represented by 10. FP (False Positive): The number of grains predicted by the model
to be good grains that are actually bad grains. It is represented by 01. TN (True Negative): The number of grains
predicted by the model to be bad grains that are actually bad grains. It is represented by 00.

ccuracy =
TP + TN

TP + TN + FP + FN
(12)

recall1 =
TP

TP + FN
(13)

recall0 =
TN

FP + TN
(14)

TPR =
TP

TP + FN
(15)

FPR = 1 − TN
FP + TN

=
FP

FP + TN
(16)

The vertical coordinate of the ROC curve is the True Positive Rate (TPR), and the
horizontal coordinate is the False Positive Rate (FPR). The curve takes values of different
classification thresholds successively to obtain multiple groups of TPR and FPR, which are
drawn successively in the image, that is, the ROC curve. The closer the ROC curve is to the
top left corner (0,1), the better the model performs. By calculating the area under the ROC
curve (AUC), the performance of the model ROC curve is measured in a more comparable
numerical way.

2.4.3. Dataset’s Problems and Processing Methods

The quality of the dataset is directly related to the quality of the established model.
When the dataset is small, models struggle to learn generalizable patterns from the data,
leading to suboptimal performance on new data and weaker generalization. Models trained
on imbalanced datasets may exhibit bias toward the majority class, performing better on the
majority class while failing to learn sufficient features from the minority class samples. This
results in poor generalization capability for the minority class. Additionally, commonly
used evaluation metrics like accuracy may produce misleading results. If the proportion
difference between the two types of samples in the grain dataset is too large and the number
of samples is too small, the following methods are used.

SMOTE

Currently, there is a significant imbalance in the quantity of the two types of samples
in the dataset. Due to the insufficient sample size, we should not balance the dataset by
undersampling the majority class. Instead, we should use oversampling the minority class
to increase the number of training samples. If the expert were to re-label the grain samples,
it would require considerably more time. In order to optimize the model and reduce
the influence of an imbalanced dataset, the Synthetic Minority Oversampling Technique
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(SMOTE) was used to increase the number of good grains [34]. SMOTE’s idea is to have a
line between a minority class sample and its K neighbor samples and, between the lines,
create a new sample of the same class as the sample in which the line was placed [35]. The
specific process is the following:

1. For each Class 1 sample A, calculate the Euclidean distance from A to all other
Class 1 samples (neighbors) (Figure 8a).
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2. According to the imbalanced proportion of samples, the sampling rate is set.
For each Class 1 sample A, neighboring Class 1 sample B is randomly selected from its
neighbors (Figure 8b).

3. For each neighbor B, according to Formula (17) and the original minority class
sample, build a new Class 1 sample C (Figure 8c).

C = A + rand(0, 1)× dAB (17)

where dAB is the Euclidean distance between Class 1 samples A and B, and rand (0, 1)
indicates that the value is randomly taken between 0 and 1.

Use the Python 3.8.8 third-party library SMOTE to sample the training set, and do not
process the test set. The sample number of good and bad grains in the training set after
SMOTE sampling is shown in Table 7.

Table 7. Sample status after and before SMOTE sampling.

Number of Class 0
Samples (PCS)

Number of Class 1
Samples (PCS)

Original training set 778 151
SMOTE 778 778

10-Fold Cross-Validation

In addition, it is easy to find that the sample size of the dataset is relatively small, and
the trained model may not fully learn the features of the dataset. Therefore, the 10-fold
cross-validation method is adopted. This method can make full use of the existing dataset
and divide the training set into ten parts on average. Each time the model is fitted, nine
parts of the data are used, and the remaining part is used for model verification to fully train
the model, improve the generalization ability of the model, and reduce the contingency [36].

For the Random Forest model RF (n = 50) with 50 trees, we first use subsets 1–9 as
the training set and subset 10 as the validation set to train and evaluate the model. Next,
subsets 1–8 and 10 are used for training, with subset 9 as the validation set. This process
is repeated until every subset has once served as the validation set. Finally, we compute
the model’s average performance metrics (e.g., accuracy, recall). The same cross-validation
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method is applied to other models to calculate their average metrics. By comparing these
averaged metrics across models, the optimal model is selected.

The model’s performance is ensured through 10-fold cross-validation, which involves
multiple rounds of training and validation on different subsets of the training data. This
methodology enables a more comprehensive and robust evaluation of model performance
by minimizing dependency on specific data partitions. Stability is quantified using the stan-
dard deviation, where a smaller deviation indicates that consistent predictive performance
is maintained across diverse data subsets with reduced sensitivity to data fluctuations.
Consequently, enhanced generalization capability and improved robustness are achieved,
as the model is guided to learn universal patterns within the data rather than overfitting to
idiosyncratic noise.

3. Results
After the above aluminum alloy metallographic image processing is used to divide the

grain, modeling is used to judge the good and bad grain and can calculate the proportion of
good grain area. The following are some experimental results that are shown and explained.

3.1. Grain Classification Result
3.1.1. Raw Dataset

As shown in Table 8, several classification models were fitted to classify grains. Accu-
racy, recall, AUC, and ROC curves were used to judge the performance of the model on
the test set. From the perspective of accuracy and recall, most classifiers can achieve an
accuracy of 90%, while the recall of most classifiers is about 80%. From the perspective of
the ROC curve and AUC, some classifiers have a weak ability to identify good grains.

Table 8. Performance of different models.

Classifier Accuracy Good Grain Recall Bad Grain Recall AUC

RF1 (n = 50) 0.9442 0.8919 0.9541 0.9854
RF2 (n = 100) 0.9356 0.8649 0.9490 0.9868
RF3 (n = 500) 0.9313 0.8378 0.9490 0.9864

XGBoost (n = 100) 0.9356 0.8378 0.9541 0.9814
LR1 (kernel = L2) 0.9528 0.8649 0.9694 0.9891
LR2 (kernel = L1) 0.9399 0.6757 0.9898 0.9690

NB 0.7296 0.9459 0.6888 0.9210
DT 0.9185 0.7297 0.9541 0.8419

SVC1 (kernel = linear) 0.9485 0.8378 0.9694 0.9885
SVC2 (kernel = rbf) 0.8412 0.0000 1.0000 0.9459

GBDT 0.9399 0.8378 0.9592 0.9819
ANN (MLP) 0.9056 1.0000 0.8876 0.9891

KNN1 (K = 5) 0.8927 0.6216 0.9439 0.9002
KNN2 (K = 7) 0.8884 0.5405 0.9541 0.9013

Stacking (RF1, XGB, LR1) 0.9485 0.8108 0.9745 0.9866
Voting (RF1, XGB, LR1) 0.9442 0.8378 0.9643 0.9857

Stacking (RF1, XGB, LR1, MLP, SVC1) 0.9442 0.8108 0.9694 0.9872
Voting (RF1, XGB, LR1, MLP, SVC1) 0.9442 0.8378 0.9643 0.9869

The recognition effect of the model fitted with an imbalanced dataset on good grains
can be reflected by the recall, which refers to the ratio of the number of samples correctly
predicted as good grains to the actual number of good grains. The higher the recall rate for
good grains, the more good grains are correctly predicted.

ROC curves of different models are shown in Figure 9.
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Figure 9. ROC curves of different models.

In Table 8, a specific subset of the data reveals an unusual pattern: the SVC(rbf) model
achieves an accuracy of 84.12%, but its recall rate for good and bad grains is 0 and 1,
respectively. This indicates that the model predicts all samples in the test set as poor grains,
demonstrating zero ability to identify good grains. In this case, however, its accuracy is still
as high as 84.12%. Therefore, in the imbalanced dataset, accuracy cannot be used as the only
model evaluation metric, and recall and AUC should also be considered. Notably, the SVC
model with a linear kernel achieves a recall rate of 0.8378 for good grains and 0.9694 for
poor grains, demonstrating significantly better performance compared to the SVC (rbf)
model. The Gaussian (rbf) kernel is designed for non-linearly separable data, while the
linear kernel is suited for linearly separable data. This divergence in their performance on
the same dataset suggests that the underlying data patterns may align more closely with
linear separability.

As outlined in Section 2.4.1, we configured all class weights to be equal for the Decision
Tree (DT) and Logistic Regression (LR) models and assigned uniform voting weights to
neighboring samples in K-Nearest Neighbors (KNN). However, this uniform weighting
approach may negatively impact performance on imbalanced datasets. Table 8 shows
that the recall rates for good grains are suboptimal across these models: 0.7297 (DT),
0.5405 (KNN with K = 7), 0.6216 (KNN with K = 5), and 0.6757 (LR with L1 regularization).
In contrast, the LR model with L2 regularization achieves a significantly higher recall rate
of 0.8649 for good grains. We hypothesize that this discrepancy stems from differences
in optimizers: the L1-regularized LR uses the saga optimizer, which is designed for large
datasets, whereas the L2-regularized LR employs the lbfgs optimizer, optimized for small-
to-medium datasets. Since our dataset falls into the latter category, lbfgs may be more
appropriate. Notably diverging from other models, the Naive Bayes (NB) classifier attains
a recall rate of 0.9459 for good grains and 0.6888 for poor grains. This superior performance
likely arises because NB calculates prior probabilities directly from the class distribution in
the training data, thereby enhancing its ability to identify good grains.

The remaining models generally achieve accuracies above 0.9, with recall rates for
good grains exceeding 0.8, recall rates for poor grains surpassing 0.85, and AUC scores
above 0.9. The Random Forest (RF) model delivers the best performance when the number
of trees is set to 50, achieving an accuracy of 0.9442, a recall rate of 0.8919 for good grains,
0.9541 for poor grains, and an AUC of 0.9854.
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3.1.2. SMOTE-Sampled Dataset

Compared with before and after SMOTE sampling, it can be seen that the recall has
significantly increased, and the model after SMOTE has a stronger ability to identify good
grain. Although most models fitted after SMOTE exhibit slightly reduced accuracy, the
recall rates for good grains and AUC are significantly improved. This demonstrates that
model performance after SMOTE sampling is superior to pre-sampling performance. It can
also be seen from the ROC curves of Figures 9 and 10 that the ROC curve of the model after
SMOTE sampling was closer to the upper left corner, and the recognition ability of good
grain was significantly improved.
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As shown in Table 9, without altering hyperparameters and solely applying SMOTE
to balance the dataset, we observed notable improvements in recall rates for good grains
compared to the non-sampled case across DT, KNN, LR (L1), and SVC (rbf), with values
largely exceeding 0.8. In contrast, the Naive Bayes (NB) model exhibited a reduced recall
rate for poor grains post-SMOTE. This degradation likely stems from NB’s inherent as-
sumption of feature independence, which makes it highly sensitive to data distribution.
SMOTE sampling may disrupt the original distribution, violating this assumption and thus
impairing performance. The Artificial Neural Network (ANN) achieved a recall rate of
0.8929 for poor grains after SMOTE, outperforming the non-sampled scenario. Notably,
its recall rate for good grains remained at 1.0 under both sampling conditions, indicating
robust capture of Class 1 features. However, this perfection may signal overfitting. The
increased sample diversity introduced by SMOTE likely enhanced ANN’s generalization
capability, thereby improving its recall for poor grains.

Voting (RF1, XGB, LR1, MLP, SVC1) is a model obtained by voting on the prediction
results of five different types of models. It holistically evaluates predictions across multiple
models and emerges as the top performer among the benchmarked approaches, achieving
the highest accuracy, AUC, and an elevated recall rate for good grains. The Voting ensemble
(RF1, XGB, LR1, MLP, SVC1) achieved an accuracy of 0.9313, a recall rate for good grains of
0.9459, a recall rate for poor grains of 0.9286, and an AUC of 0.9870.

After SMOTE sampling, the ROC curves for different models are as shown in Figure 10.
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Table 9. Performance of different models after SMOTE sampling.

Classifier Accuracy Good Grain Recall Bad Grain Recall AUC

RF1 (n = 50) 0.9270 0.9459 0.9235 0.9837
RF2 (n = 100) 0.9270 0.9459 0.9235 0.9833
RF3 (n = 500) 0.9313 0.9459 0.9286 0.9828

XGBoost (n = 100) 0.9227 0.8378 0.9388 0.9800
LR1 (kernel = L2) 0.9270 0.9730 0.9184 0.9868
LR2 (kernel = L1) 0.8798 1.0000 0.8571 0.9850

NB 0.7082 0.9459 0.6633 0.9160
DT 0.9099 0.8649 0.9184 0.8916

SVC1 (kernel = linear) 0.9142 0.9730 0.9031 0.9868
SVC2 (kernel = rbf) 0.8112 0.9189 0.7908 0.9458

GBDT 0.9142 0.9189 0.9133 0.9786
ANN (MLP) 0.9099 1.0000 0.8929 0.9903

KNN1 (K = 5) 0.8584 0.8108 0.8673 0.8955
KNN2 (K = 7) 0.8369 0.8378 0.8367 0.8949

Stacking (RF1, XGB, LR1) 0.9270 0.8919 0.9337 0.9852
Voting (RF1, XGB, LR1) 0.9270 0.8919 0.9337 0.9851

Stacking (RF1, XGB, LR1, MLP, SVC1) 0.9270 0.8919 0.9337 0.9861
Voting (RF1, XGB, LR1, MLP, SVC1) 0.9313 0.9459 0.9286 0.9870

3.1.3. Ten-Fold Cross-Validation

10-fold cross-validation was conducted on the SMOTE data. The average accuracy
and average recall of the model after ten fits and their respective standard deviations are
shown in Table 10. The bold part is the model with the highest average accuracy, average
recall, lower standard deviation of accuracy, and standard deviation of recall.

Table 10. Ten-fold cross-validation results.

Classifier Average
Accuracy

Accuracy
Standard Deviation

Average
1 Class Recall

Recall
Standard Deviation

RF1 (n = 50) 0.9550 0.0155 0.9794 0.0193
RF2 (n = 100) 0.9544 0.0136 0.9794 0.0175
RF3 (n = 500) 0.9550 0.0129 0.9794 0.0175

XGBoost (n = 100) 0.9621 0.0139 0.9807 0.0155
LR1 (kernel = L2) 0.9293 0.0198 0.9499 0.0285
LR2 (kernel = L1) 0.9068 0.0183 0.9434 0.0361

NB 0.8239 0.0306 0.9910 0.0115
DT 0.9357 0.0210 0.9459 0.0357

SVC1 (kernel = linear) 0.9313 0.0206 0.9563 0.0252
SVC2 (kernel = rbf) 0.8053 0.0209 0.8419 0.0402

GBDT 0.9473 0.0166 0.9717 0.0206
ANN (MLP) 0.8977 0.0457 0.9152 0.1108

KNN1 (K = 5) 0.9222 0.0135 0.9858 0.0203
KNN2 (K = 7) 0.9171 0.0123 0.9781 0.0224

Stacking (RF1, XGB, LR1) 0.9576 0.0180 0.9755 0.0168
Voting (RF1, XGB, LR1) 0.9537 0.0154 0.9794 0.0166

Stacking (RF1, XGB, LR1, MLP, SVC1) 0.9569 0.0168 0.9730 0.0147
Voting (RF1, XGB, LR1, MLP, SVC1) 0.9435 0.0169 0.9666 0.0252

As demonstrated in Table 10, XGBoost delivers optimal performance on the test
set, achieving the highest accuracy, recall rate for good grains, and the lowest standard
deviation. XGBoost achieved an accuracy of 0.9621 and a recall rate for good grains of
0.9807, with standard deviations of 0.0139 and 0.0155 for accuracy and good grain recall
rate, respectively, demonstrating greater robustness and lower overfitting risk compared to
other models.
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Simultaneously, the Stacking ensemble (RF1, XGB, LR1, MLP, SVC1) demonstrates
competitive recall performance, achieving an accuracy of 0.9569 and a recall rate for good
grains of 0.9730, with standard deviations of 0.0168 and 0.0147 for accuracy and good grain
recall rate, respectively. The Stacking ensemble (RF1, XGB, LR1, MLP, SVC1) demonstrates
strong robustness with no evident signs of overfitting observed. However, its final recall
performance falls short of XGBoost’s, likely due to suboptimal recall contributions from
the integrated LR1 model (kernel = L2). The Naive Bayes (NB) model achieves a recall rate
for good grains of 0.9910 (standard deviation: 0.0115) and an accuracy of 0.8239 (standard
deviation: 0.0306). However, the accuracy and recall rate metrics suggest that the model
tends to overpredict grains as good, exhibiting suboptimal performance in identifying
bad grains. The KNN (K = 5) and KNN (K = 7) models exhibit relatively small standard
deviations for accuracy (0.0135 and 0.0123, respectively) but achieve lower accuracy scores
of 0.9222 and 0.9171. Their standard deviations for good grain recall rates are comparatively
larger at 0.0203 and 0.0224. In contrast, the ANN model shows higher standard deviations
for both accuracy (0.0457) and good grain recall rate (0.1108), along with lower performance
metrics (accuracy: 0.8977; good grain recall: 0.9152). The RF models demonstrate strong
performance, with accuracy consistently exceeding 0.95 and a good grain recall rate of
0.9794 across all configurations. As the number of trees increases, the standard deviations
for both accuracy and good grain recall decrease. For example, RF3 (n = 500) achieves
standard deviations of 0.0129 (accuracy) and 0.0175 (good grain recall). Nevertheless, even
the best RF model still underperforms compared to XGBoost.

3.2. Metallographic Rating

The metallographic image was segmented into grains through a series of operations,
including grayscale conversion, denoising, binarization, and morphological operations,
such as opening and closing, followed by connected domain analysis. To classify the
grains, 15 features were extracted, and the grains were labeled as good or bad to create the
grain dataset. Three feature selection methods were applied, and 18 categorical models
were fitted. To enhance the model’s generalization and robustness, SMOTE sampling and
10-fold cross-validation were performed. Finally, the proportion of the good grain area
was calculated.

By observing many metallographic images and the proportion of good grain area, it
is found that the higher the grade of metallographic, the higher the proportion of good
grain area. By measuring the gloss values of anodized products using a gloss meter and
comparing these measurements with the calculated percentage of good grain area from
metallographic analysis, we identified a distinct one-to-one correspondence between gloss
values and the proportion of good grains. By setting thresholds of different good grain area
proportions, better rating results can be obtained, as shown in Table 11.

Table 11. Metallurgical image threshold rating.

Y-Gloss Value(GU) X-Proportion of Good Grain Area Metallographic Rating

y ≥ 530 x ≥ 70 A
500 < y ≤ 530 55 ≤ x < 70 B
470 < y ≤ 500 35 ≤ x < 55 C
440 < y ≤ 470 20 ≤ x < 35 D

y ≤ 440 x < 20 E

3.3. Metallographic Rating System

By dividing the threshold of good grain area proportion to determine the aluminum
alloy metallographic image grade, the above image processing to divide the grain, establish
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grain classification models, calculate the good grain area proportion, and then grade the
metallographic image, this series of steps by using the Python 3.8.8 third-party library
“pyinstalle” packaged into a .exe executable program, that is, the metallographic rating
system, which is used for the actual metallographic rating. The metallographic grading
system achieved a processing time of only 8.79 s per image when evaluating test metallo-
graphic samples. The system rating results are shown in Figure 11. In Figure 11, different
colors represent different grains.
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4. Discussion
4.1. Image Processing Results Are Discussed

In the image processing process, from the initial image preprocessing to the final grain
boundary extraction and grain division, every step is carefully designed and repeatedly
verified. CLAHE processing, median filtering, and bilateral filtering used in image pre-
processing are aimed at effectively removing noise and enhancing image contrast and
sharpness, which lays a good foundation for subsequent analysis. In practice, by compar-
ing the images before and after processing, it is found that CLAHE processing makes the
grayscale distribution of the images more uniform, and the grain region, which was blurred
by uneven illumination, becomes clearly distinguishable. The median filter performs an
excellent job of removing salt and pepper noise, while the bilateral filter further smooths
the image while maintaining grain boundary detail.

In the process of grain boundary extraction and grain segmentation, connected do-
main analysis, as well as opening and closing operations of morphological processes, are
applied repeatedly. The thresholds for these operations are optimized through extensive
experimentation. Taking a typical set of metallographic images as an example, in the initial
attempt, due to improper threshold setting, the grains appear over-segmented or merged.
After many tests and adjustments of different metallographic samples, the final threshold
can accurately identify the grain boundaries and completely divide the grains, ensuring
the accuracy of grain feature extraction.
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4.2. The Results of Grain Classification Are Discussed

In the task of grain classification, most of the classifiers have shown some effectiveness
on the original dataset, but the problem of the number of good grain samples in the dataset
being too small cannot be ignored. The use of the SMOTE oversampling method has
significantly improved the ability of most classifiers to identify good grain. Taking the tree
classifiers as examples, the recall of good grains is about 80% before oversampling. After
SMOTE oversampling, the recall increased to about 90%. However, there is blindness in
the SMOTE method. From the perspective of data distribution, synthesized new samples
may change the distribution characteristics of the original data, resulting in bias in the
learning process of the model. For example, in some cases, the synthesized sample may be
concentrated in a local region of the original data, making the model less able to generalize
data to other regions.

After a series of processing, the XGBoost classifier performs well. Through the verifica-
tion of different batches of test sets, the accuracy is always stable at more than 96%, the recall
is about 98%, and the standard deviation is less than 0.02, which indicates that the model
has a high degree of reliability and stability. Compared with other models, such as SVC
(rbf), the recall is 0 when the data imbalance problem is not addressed, and accuracy is high
but lacks practical significance. After the same processing steps, XGBoost is far superior to
other models in terms of comprehensive performance and can accurately classify grains,
meeting the strict requirements for grain classification in actual metallographic rating.

Since equal class weights were assigned to multiple model parameters—a suboptimal
approach for imbalanced datasets—weaker identification of good grains was exhibited
by models trained without sampling. However, after balancing the dataset via SMOTE
sampling, most models showed significant improvement in recognizing good grains. No-
tably, the Naive Bayes (NB) model trained on the SMOTE-balanced dataset displayed
no enhancement in good grain identification; instead, its performance in detecting poor
grains degraded. This is likely due to SMOTE altering the original data distribution, which
conflicts with the NB model’s sensitivity to distributional assumptions, thereby violating
its theoretical prerequisites and reducing model efficacy.

XGBoost demonstrated superior performance, likely due to its ability to enhance
overall prediction accuracy by combining multiple weak learners and incorporating regu-
larization terms that control model complexity. However, as a black-box model, it exhibits
limited interpretability of predictions. In practical scenarios, model performance may
further be influenced by data noise, feature selection, and parameter tuning.

4.3. Metallographic Rating Results Discussed

In the process of exploring metallographic rating methods, the deep learning network
model cannot reach the ideal accuracy due to the limitation of the small amount of data,
even if the data enhancement technology is adopted. For example, when using a certain
deep learning architecture, after data enhancement of the training set, the accuracy of the
model on the verification set is only about 70%, and the prediction results on the actual test
images are significantly different from the expert annotations.

After adopting the rating method based on grain classification and area proportion, it
was found that there is an obvious correlation between different grades of metallographic
images and the proportion of good grain area through the experimental analysis of a
large number of metallographic images. After statistical analysis of 200 different grades of
metallographic images, it is found that the average proportion of good grain area of grade
A metallographic images is more than 70%, grade B is between 55 and 70%, grade C is
between 35 and 55%, grade D is between 20 and 35%, and grade E is less than 20%. Based on
this, the metallographic rating system has excellent performance in practical applications,
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with an average time of less than 9 s. Compared with traditional manual rating, the
efficiency is greatly improved, and the accuracy is effectively guaranteed, providing an
efficient and reliable solution for metallographic analysis and quality control of 3C profiles.

5. Conclusions
1. This study correlated microstructural characteristics with anodizing effects in

high-brightness aluminum extrusion profiles for mobile phones via experimental and
metallographic analysis. A rating system using high-quality grain proportion as a key
indicator classified anodizing performance into five grades (A–E). Results indicated that
glossiness ≥ 500 GU (qualified) was achieved when the high-quality grain (grains with
high brightness and low second-phase content) area exceeded 55%.

2. In the feature extraction stage, multiple feature values were calculated for the origi-
nal image, impurity image, and background image. Feature screening was performed using
the embedding method, variance method, and correlation coefficient method. Finally, key
features—Impurities_Percentage (percentage of impurities), Brightness_Dev (brightness
deviation), Mode (mode), Kurtosis, and Over_180_rate (rate of gray value greater than
180 in the grain)—were identified and used for subsequent analysis.

3. In model construction, the SMOTE oversampling technique was applied to balance
the dataset to address data imbalance and 10-fold cross-validation was used to optimize
the model’s generalization ability. With accuracy, recall, and AUC as evaluation metrics,
18 classification models were compared and tested. Experimental verification showed
that the XGBoost model performed best. On the test set, it achieved a grain classification
accuracy of 96.21%, a recall rate of good grains of 98.07%, a single-image rating time of less
than 9 s, and standard deviations of both accuracy and recall less than 0.02, demonstrating
high precision and strong robustness.

4. This study successfully developed a metallographic rating system for ultra-bright
aluminum profiles for mobile phones by constructing a dataset and integrating computer
vision with machine-learning methods. The system automatically determines the metal-
lographic grade based on the proportion of high-quality grain areas, effectively reducing
evaluation costs for metallographic analysis. It lays a solid foundation for efficient and large-
scale metallographic analysis and quality control, contributing to improved production
quality and control levels of aluminum profiles for mobile phones.

5. Limitations and Future Research Directions:
(a) During model fitting, some models lacked fine-tuning of parameters, potentially

limiting their full predictive potential. Future work will conduct in-depth parameter opti-
mization for each model to leverage their strengths and enhance system prediction accuracy.

(b) The metallographic grading system investigated in this paper was developed using
training data from EN AW-6013 aluminum alloy, with its applicability to other alloys re-
maining unvalidated. Notably, high-gloss anodized surfaces are primarily applied to alloys
such as EN AW-6063 (EN 573-3:2019+A2:2023),EN AW-6061 (EN 573-3: 2019+A2:2023), and
EN AW-7003 (EN 573-3: 2019+A2:2023), which exhibit significant compositional variations
in their primary alloying elements. Additionally, given the influence of recrystallization-
inhibiting elements like Mn, Cr, and Zr on microstructural evolution, future research
expansions may require designing alloy-specific metallographic preparation protocols and
establishing corresponding datasets to systematically evaluate correlations between alloy
compositions and anodization performance.

Research on 6061 (EN 573-3) aluminum alloy has been initiated. Samples with varying
gloss values have been collected, and metallographic inspection along with image process-
ing is currently underway, with selected results shown in Figures 12 and 13. Subsequent
studies will involve feature extraction, dataset construction, and model training. Looking
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ahead, this metallographic grading system will undergo continuous improvement based
on the findings of this paper to achieve automated metallographic grading capabilities
across diverse alloy types.
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Figure 12. 6061 (EN 573-3) with 451GU gloss value. (a) Original image; (b) Grain boundary extraction;
(c) Distribution of the second phase.
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