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Abstract: The minimalist approach in the study of perturbations in fluid dynamics and
magnetohydrodynamics involves describing their evolution in the linear regime using a sin-
gle first-order ordinary differential equation, dubbed the principal equation.The dispersion
relation is determined by requiring that the solution of the principal equation be continuous
and satisfy specific boundary conditions for each problem. The formalism is presented
for flows in Cartesian geometry and applied to classical cases such as the magnetosonic
and gravity waves, the Rayleigh–Taylor instability, and the Kelvin–Helmholtz instability.
For the latter, we discuss the influence of compressibility and the magnetic field, and also
derive analytical expressions for the growth rates and the range of instability in the case of
two fluids with the same characteristics.

Keywords: instabilities; fluid dynamics; hydrodynamics; magnetohydrodynamics; analytical
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1. Introduction
The study of perturbations in any physical system sheds light on the mechanisms

responsible for maintaining equilibrium and offers a way to predict temporal behavior
in response to variations. Although this task is generally difficult, simplifying each case
and focusing on the most critical ingredients determining its evolution is essential. Clas-
sical waves and instabilities represent such simplified structures. For example, acoustic
compressible perturbations, attributed to sound or magnetosonic waves, can be identified
even in systems with complex dynamics. Alfvén waves play a significant role in mag-
netized plasmas. When gravity or buoyancy forces are important, differences in density
drive gravity waves. By “gravity” we may also refer to fictitious forces in non-inertial
frames, such as the effective gravity in a decelerating system or centrifugal forces. In cases
of heavy-over-light fluid stratifications, the Rayleigh–Taylor instability comes to mind.
Similarly, a relative velocity between two fluids triggers the Kelvin–Helmholtz instability.
These are only a few examples of simplified structures that are crucial for understanding
more complicated and realistic settings. They are often connected to temporal behaviors in
laboratory experiments or specific features observed in astrophysical systems.

The full study of perturbation evolution in most cases can only be achieved through
numerical simulations. Linearizing the system of equations is a simpler way to understand
the conditions under which the system is unstable, although it does not cover nonlinear
evolution. Normal mode analysis is a further simplification, allowed only in symmetric
unperturbed states, and can be used to find wave frequencies or instability growth rates.
This approach allows for simpler parametric studies or even the derivation of analytic
expressions that directly reveal the physics of the mechanisms involved.

Since we are discussing classical problems, there are many books, e.g., [1–5], that
provide the most basic information. There have also been a plethora of related works in
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the literature over the years, e.g., [6–11], to name but a few. Nevertheless, these problems
continue to be an active area of research, e.g., [12–14], and there is always room—and
need—to improve our understanding.

The goal of this paper is to present the methodology to determine the dispersion
relation in each case, following the minimalist approach introduced in Ref. [15]. This
novel approach simplifies the procedure as much as possible by using a single first-order
ordinary differential equation, dubbed the principal equation. Firstly, we derive this
equation through linearization and discuss the necessary boundary conditions (Section 2).
Next, we apply the method to determine the dispersion relation for magnetohydrodynamic
(MHD) waves (Section 3), gravity waves and the Rayleigh–Taylor instability (Section 4),
gravito-acoustic waves (Section 5), and the Kelvin–Helmholtz instability (Section 6). We
provide a more extensive analysis of the Kelvin–Helmholtz instability, deriving analytical
expressions for the growth rate in the magnetized case and discussing the factors that most
significantly affect the results.

2. Linear Analysis, the Principal Equation, and Boundary Conditions
Fluid dynamics is governed by the conservation laws of mass, momentum, and energy.

To include cases of a conducting magnetized fluid (plasma), we combine these laws with
Maxwell’s equations to obtain the system of magnetohydrodynamic equations. In the
non-relativistic limit, and neglecting non-ideal effects such as viscosity, resistivity, and
surface tension while using Lorentz–Heaviside units, these equations are as follows:

∂ρ

∂t
+∇ · (ρV) = 0 , (1)(

∂

∂t
+ V · ∇

)
P = c2

s

(
∂

∂t
+ V · ∇

)
ρ , (2)

ρ

(
∂

∂t
+ V · ∇

)
V = −∇P + (∇× B)× B + ρg , (3)

∂B
∂t

= ∇× (V × B) , (4)

∇ · B = 0 . (5)

We are interested in exploring the perturbations of a steady state that depends only
on one spatial Cartesian coordinate. In particular, we assume that the unperturbed state
has density ρ0(x), pressure P(x), bulk velocity V0 = V0z(x)ẑ + V0y(x)ŷ, magnetic field
B0 = B0z(x)ẑ + B0y(x)ŷ, and the acceleration of gravity is g = −g(x)x̂. Introducing the
total pressure

Π = P +
B2

2
, (6)

the zeroth-order equations are satisfied provided that

Π′
0 = −ρ0g . (7)

Adding perturbations of the form

V = V0 +
[
V1z(x)ẑ + V1x(x)x̂ + V1y(x)ŷ

]
ei(kyy+kzz−ωt) , (8)

B = B0 +
[
B1z(x)ẑ + B1x(x)x̂ + B1y(x)ŷ

]
ei(kyy+kzz−ωt) , (9)

ρ = ρ0(x) + ρ1(x)ei(kyy+kzz−ωt) , (10)

Π = Π0(x) + Π1(x)ei(kyy+kzz−ωt) , (11)
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defining the wavevector in the yz plane

k0 = kyŷ + kz ẑ , (12)

and the Doppler-shifted frequency

ω0 = ω − k0 · V0 , (13)

we linearize the equations as shown in Appendix A; the main steps and related com-
ments follow.

The linearized system reduces to two differential equations for the perturbations of
the velocity in the x̂ direction and the total pressure (there are algebraic relations for all the
other perturbations, connecting them to V1x, Π1, and their derivatives). Instead of V1x and
Π1, it is more convenient to use two other quantities.

The first, replacing V1x, is the Lagrangian displacement in the x̂ direction. The relation
between the Lagrangian displacement ξ and the velocity perturbation results from the
expression of the velocity in the perturbed location of each fluid element V + (ξ · ∇)V ≈

V0 + δV + (ξ · ∇)V0, which equals V0 +
dξ

dt
≈ V0 +

∂ξ

∂t
+ (V0 · ∇)ξ, yielding δV =

∂ξ

∂t
+

(V0 · ∇)ξ − (ξ · ∇)V0 = −iω0ξ − ξx
dV0

dx
. The x̂ component gives ξx = y1(x)ei(kyy+kzz−ωt),

with V1x = −iω0y1.
The second quantity, replacing Π1, is the perturbation of the total pressure in the

perturbed location of each fluid element y2 = Π1 + y1Π′
0 = Π1 − ρ0gy1.

The advantage of these replacements is that the new functions y1 and y2 are every-
where continuous, even at locations where the unperturbed state has contact discontinuities.

2.1. The System for y1, y2

The resulting 2 × 2 system is

d
dx

(
y1

y2

)
+

(
f11 f12

f21 − f11

)(
y1

y2

)
= 0 , (14)

f11 =
ρ0g
A

(
ρ0ω2

0 F2

S
− k2

0

)
, f12 =

κ̃2

A
, f21 = −A −

ρ2
0g2

A

(
F4

S
− k2

0

)
+ ρ0g′ , (15)

F = k0 · B0 , A = ρ0ω2
0 − F2 , S = ρ0(Ac2

s + ω2
0B2

0) , κ̃2 =
ρ2

0ω4
0

S
− k2

0 . (16)

To simplify the expressions we define the following quantities that have important
physical meanings and effects in the resulting dispersion relations through their appearance
in the array elements fij.

The F = k0 · B0 is connected to the angle between the wavevector and the unperturbed
magnetic field. Its presence in a dispersion relation represents the influence of the magnetic

tension, which acts like a spring with restoring force per mass − F2

ρ0
y1. This is evident in

the pure Alfvén waves (in a static homogeneous plasma without gravity), for which the

displacement satisfies ÿ1 = −ω2y1, with ω =
k0 · B0√

ρ0
=

F
√

ρ0
.

The A = ρ0

(
ω2

0 −
F2

ρ0

)
appears in the denominator of the resulting system of differ-

ential equations, and its zeros correspond to the Alfvén waves.
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The S = ρ2
0

[(
B2

0
ρ0

+ c2
s

)
ω2

0 −
F2

ρ0
c2

s

]
is related to the density perturbation in the per-

turbed location of each fluid element ρ1 + y1ρ′0 = ρ2
0

ω2
0y2 + gF2y1

S
. It is interesting to note

that the incompressible limit corresponds to S → ∞.

The κ̃ defined through κ̃2 =
ρ2

0ω4
0

S
− k2

0 represents the local wavenumber in the x̂
direction. Indeed, the latter equation is equivalent to the dispersion relation of the slow/fast

magnetosonic waves

(
ω2

0
k2

t

)2

−
(

ω2
0

k2
t

)(
B2

0
ρ0

+ c2
s

)
+

B2
0

ρ0
c2

s cos2 θ0 = 0 if we define the total

wavevector kt = k0 + κ̃x̂ and the angle θ0 between kt and B0 through cos θ0 =
F

|kt|B0
.

Another way to see the connection between κ̃ and the wavenumber in the x̂ direction
is to consider the homogeneous fluid case without gravity. In this scenario, system (14) with

constant coefficients has solutions
y′1
y1

=
y′2
y2

= iκ̃. The equation κ̃2 =
ρ2

0ω4
0

S
− k2

0 gives two

opposite solutions for κ̃, corresponding to oppositely moving waves in the ±x̂ direction.
Note that, in general, κ̃ is complex, and its imaginary part corresponds to exponential
variation of the eigenfunctions, since eiκ̃x = e−ℑκ̃xeiℜκ̃x. In the incompressible limit, where
S → ∞ and κ̃2 → −k2

0, it simplifies to purely exponential dependence e−|k0x|, without
sinusoidal dependence on x. More details on these waves will be discussed later; they offer
a way to understand the physics of the solutions even in non-homogeneous fluids and are
directly related to the boundary conditions when the fluid extends up to large distances
x → +∞ or −∞.

The cases A = 0, S = 0, and ω0 = 0 need to be studied separately, something that can
be easily achieved since they lead to simplified equations. These cases correspond to waves
and are not necessary for instability studies in which k0 is real and ω complex.

2.2. The Principal Equation

Since the system (14) is linear, only the ratio Y =
y1

y2
is uniquely defined. Using the

equations of the system we directly find that Y satisfies the principal equation

Y′ = f21Y2 − 2 f11Y − f12 . (17)

Following the minimalist approach [15], it is sufficient to work with the ratio Y and
solve the principal equation in order to find the dispersion relation of the wave or instability.
We just need to integrate this single, first-order differential equation, requiring Y to be
everywhere continuous and satisfying the correct boundary conditions at the extreme
values of x.

Knowing Y, we can find all the other perturbations from

y′2
y2

= − f21Y + f11 , y1 = Yy2 (18)

and the relations (A20)–(A27) given in Appendix A. We emphasize though that these are
not needed to find the dispersion relation.

2.3. Boundary Conditions

The linearization was based on the functions y1 and y2, which are everywhere con-
tinuous. The same holds for their ratio. Therefore, in the case of discontinuities in the
unperturbed state, we simply continue the integration of the principal equation when
passing from one medium to another, keeping Y continuous.
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In cases where the fluid ends at some extreme value of x, we always know the value of
Y at that boundary and use it as a boundary condition. One example is the case of a solid
wall at the boundary; here, Y vanishes on the wall since the Lagrangian displacement y1

vanishes. Another example is when a medium with constant total pressure exists outside
the fluid, such as a hydrodynamic atmosphere with negligible density. In this case, 1/Y
vanishes at the interface since the perturbation of the total pressure y2 vanishes. (We arrive
at the same result if we consider a nonzero perturbation in the atmosphere, solve the
problem on both sides while requiring the continuity of Y, and ultimately take the limit of
zero density outside.)

The nontrivial boundary conditions that need closer examination correspond to cases
where the fluid extends to theoretically infinite distances x → +∞ or x → −∞. At these
distances the unperturbed fluid is homogeneous, and the solutions of the principal equation
are given in Appendix B. These solutions correspond to two waves moving oppositely in
the x̂ direction, with one wave’s amplitude increasing exponentially with x and the other’s
decreasing. To avoid the wave with the diverging amplitude (there is a way to automatically
find the non-diverging solution following the Schwarzian approach of Ref. [16]; to obtain
analytical expressions though, as we attempt here, we can directly find the asymptotic
solutions), the solution of the principal equation should approach one of the constant

values Y± =
f11 ±

√
f 2
11 + f12 f21

f21
=

f12

− f11 ±
√

f 2
11 + f12 f21

that correspond to complex

wavenumbers ±K = ±i
√

f 2
11 + f12 f21, respectively. Assuming that

√
f 2
11 + f12 f21 is the

principal value of the root (with positive real part), we choose the upper sign at x → +∞
and the lower sign at x → −∞.

In the case that ℑK = 0 (i.e., f 2
11 + f12 f21 is a negative real number), the wave’s

amplitude remains constant at infinity, and we can choose the solution whose sign of ±ℜK
corresponds to the desired propagation.

Note that
√

f 2
11 + f12 f21 =

√
−κ̃2 +

ρ0g′

A
κ̃2 +

ρ2
0g2k2

0
S

. In the presence of gravity, this

is not constant since the unperturbed total pressure is variable, with its gradient balancing
gravity. However, in cases where the fluid extends to theoretically infinite distances (in
which S → ∞ since the total pressure also reaches theoretically infinite values), and

uniform gravity, it approaches a constant
√

f 2
11 + f12 f21 → |k0| corresponding to the

incompressible limit.

In the absence of gravity,
√

f 2
11 + f12 f21 =

√
−κ̃2 and without loss of generality we

can choose the sign such that κ̃ = ±K = ±i
√
−κ̃2 (taking the principal value of the root

and the upper/lower sign at x → ±∞, respectively).

Summary of Equations and Boundary Conditions

The equations needed to apply the minimalist approach are summarized in Table 1.
In addition, the following forms of the principal equation may be useful, especially if

one looks for analytical solutions:

dY
dx

= f21

(
Y − f11

f21

)2
−

f 2
11 + f12 f21

f21
⇔ d

dx

(
1
Y

)
= f12

(
1
Y
+

f11

f12

)2
−

f 2
11 + f12 f21

f12
, (19)

with

f 2
11 + f12 f21 = −κ̃2 +

κ̃2

A
ρ0g′ +

ρ2
0g2k2

0
S

. (20)
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Note that in cases with real oscillating eigenfunctions the Y is real and becomes infinite
at some points; this problem can be easily handled numerically by working with an angular

variable arctan Y instead of Y (or more generally with arctan
Y −Y2

Y1
, where Y1,2 are given

functions of our choice), as described in Section 2 of Ref. [16].

Table 1. Minimalist approach equations and boundary conditions.

Principal
equation:

Y′ = f21Y2 − 2 f11Y − f12

with f11 =
ρ0g
A

(
ρ0ω2

0 F2

S
− k2

0

)
, f12 =

κ̃2

A
,

f21 = −A −
ρ2

0g2

A

(
F4

S
− k2

0

)
+ ρ0g′,

ω0 = ω − k0 · V0, F = k0 · B0, A = ρ0
(
ω2

0 − F2/ρ0
)
,

S/ρ2
0 =

(
c2

s + B2
0/ρ0

)
ω2

0 − c2
s F2/ρ0, κ̃2 =

ω4
0

S/ρ2
0
− k2

0, Π′
0 = −ρ0g, Π0 =

ρ0c2
s

Γ
+

B2
0

2
.

Boundary
conditions: Y continuous everywhere, asymptotically Y|x=±∞ =

f11 ±
√

f 2
11 + f12 f21

f21
.

3. MHD Waves
A simple case of disturbances inside a homogeneous magnetized plasma involves

magnetohydrodynamic waves, which are analyzed in most plasma textbooks, e.g., Ref. [2].

3.1. Slow/Fast Magnetosonic Waves

For a homogeneous unperturbed state and zero gravity f11 = 0, f12 =
κ̃2

A
, f21 = −A,

the principal equation becomes Y′ = −AY2 − κ̃2

A
.

Its constant solutions are Y = i
κ̃

A
(both signs are allowed). According to Equation (18)

y′2
y2

= iκ̃, i.e., κ̃ is the x̂ wavenumber. The solutions correspond to the continuous spectrum

of the slow/fast magnetosonic waves and, as already stated, the equation κ̃2 =
ρ2

0ω4
0

S
− k2

0

is equivalent to the dispersion relation of these waves
ω4

0
k2

0 + κ̃2
− ω2

0

(
B2

0
ρ0

+ c2
s

)
+ c2

s
F2

ρ0
= 0.

The variable solution of the principal equation Y =
κ̃

A
cot(κ̃x + ϕ0) corresponds to a

superposition of waves, as discussed in Appendix B.

3.2. Alfvén Waves

The continuous spectrum of Alfvén waves ω2
0 = F2/ρ0 corresponds to the singular

case of the principal equation A = 0. In that case, y1 could be any function of x, y2 = 0 (and

Y → ∞), with finite
y2

A
= −

y′1
κ̃2 and

1
AY

= −
y′1

κ̃2y1
. (Note that for Alfvén waves κ̃ is given

by κ̃2 = (k0 · B0/B0)
2 − k2

0 = −(k0 × B0/B0)
2, and does not represent a wavenumber.)

3.3. Two Semi-Infinite Incompressible Plasmas

As another example on how to use the minimalist approach, let us consider two
semi-infinite incompressible, homogeneous, static, magnetized plasmas in the regimes
x > 0 (subscript “1”) and x < 0 (subscript “2”), and zero gravity.
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With S → ∞ in both regimes, we have f11 = 0, f12 = −
k2

0
A

, f21 = −A. The principal

equation is Y′ =
k2

0
A

− AY2 and has constant solutions Y =
f11 ±

√
f 2
11 + f12 f21

f21
= ∓ k0

A
.

According to the boundary conditions given in Table 1 (or directly checking the sign of
y′2
y2

= − f21Y + f11 = ∓k0) the upper sign should be used for x > 0 and the lower for x < 0.

Thus, Y = − k0

ρ1ω2 − F2
1

for x > 0 and Y = +
k0

ρ2ω2 − F2
2

for x < 0.

The continuity of Y gives the dispersion relation ω2 =
F2

1 + F2
2

ρ1 + ρ2
, representing a stable

Alfvén wave whose amplitude drops exponentially as we move away from the contact
discontinuity at x = 0. (We recall that F1 = k0 · B01, F2 = k0 · B02, and that all the
unperturbed states considered in the paper have the form described in Section 2.)

3.4. Effect of Finite Depth

Following the previous example, suppose now that the bottom plasma has finite
depth H (there is a solid wall at x = −H). Then, in the bottom part the solution of the

principal equation Y′ =
k2

0
A2

− A2Y2 that vanishes at x = −H is Y =
k0

A2
tanh[k0(x + H)].

(In the upper part, the accepted solution corresponding to vanishing amplitude at x → +∞

continues to be Y = − k0

A1
as before.)

The continuity of Y at x = 0 gives the dispersion relation ω2 =
F2

1 + F2
2 coth(k0H)

ρ1 + ρ2 coth(k0H)
.

Evidently the relation describes a stable Alfvén wave, modified by the presence of the wall
at x = −H and the reflections from that wall.

4. Gravity Waves and Rayleigh–Taylor Instability
Density discontinuities in fluids within a gravitational field can drive gravity waves.

These include disturbances at the interface between two fluids, such as between the at-
mosphere and the ocean. When a heavier fluid lies above a lighter fluid, the perturbation
becomes unstable, leading to what is known as the Rayleigh–Taylor instability. This
phenomenon was first described in the pioneering research papers by Rayleigh [17] and
Taylor [18].

Consider two semi-infinite incompressible, static, magnetized plasmas, the first (sub-
script “1”) in the region x > 0 and the second (subscript “2”) in the region x < 0, inside
uniform gravity −gx̂, as in the left panel of Figure 1.

x

z

g1
ρ

ρ
2

x

z

g1
ρ

ρ
2

0

−H

Figure 1. The unperturbed state of two fluids in contact at x = 0. Left panel: semi-infinite fluids.
Right panel: the bottom part has finite depth H.

With S → ∞ in both regimes, we have f11 = −gρ0
k2

0
A

, f12 = −
k2

0
A

, f21 = −A +

g2ρ2
0

k2
0

A
. The principal equation is Y′ =

k2
0(1 + gρ0Y)2

A
− AY2 and has constant solu-
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tions Y =
f12

− f11 ±
√

f 2
11 + f12 f21

=
−k0

ρ0gk0 ± A
. (Although these parts are not homogeneous,

since there must be a gradient of the total pressure balancing gravity, the incompressibility
assumption allows them to have constant solutions, provided that ρ0 and A are constant in
both parts.)

Choosing the correct sign in each part following Table 1 (or directly using
y′2
y2

= − f21Y + f11 = ∓k0), we conclude that Y =
−k0

ρ1ω2 − F2
1 + ρ1gk0

for x > 0 and

Y =
−k0

−ρ2ω2 + F2
2 + ρ2gk0

for x < 0.

The continuity of Y gives the dispersion relation ω2 = −ρ1 − ρ2

ρ1 + ρ2
gk0 +

F2
1 + F2

2
ρ1 + ρ2

, a

result derived in Ref. [1].
This relation includes as subcases the surface gravity waves corresponding to zero

magnetic fields and ρ1 ≪ ρ2, for which ω2 = gk0, and the classical Rayleigh–Taylor
instability corresponding to zero magnetic fields and heavier fluid on top of lighter, for

which the growth rate is ω = i
√

ρ1 − ρ2

ρ1 + ρ2
gk0. It also shows the stabilizing effect of the

magnetic field through its magnetic tension manifest in the dispersion relation in the
presence of F2

1 and F2
2 . It always reduces the growth rate, and if it is sufficiently strong it

makes ω2 positive, converting the disturbance from an instability to an Alfvén wave.

Effect of Finite Depth

If the bottom plasma has finite depth H (there is a solid wall at x = −H; see the
right panel of Figure 1), we need to consider the variable solution of the principal equa-

tion Y =
f12

− f11 − K cot(Kx + ϕ0)
with K = i

√
f 2
11 + f12 f21 = ik0 (given in Appendix B).

Requiring Y to vanish at x = −H, we find Y =
−k0

ρ2gk0 − A2 coth(k0x + k0H)
for x < 0.

As a specific example, suppose the upper part is a hydrodynamic medium with neg-
ligible density. In that case Y = ∞ for x > 0 and the continuity of Y gives the dispersion

relation for gravity waves ω2 = gk0 tanh(k0H) +
F2

2
ρ2

, modified by the presence of the mag-

netic field. (The same can be found considering the constant solution Y =
−k0

ρ1ω2 + ρ1gk0
in

the upper part, requiring the continuity of Y at x = 0, and then taking the limit ρ1/ρ2 → 0.)

In the shallow water approximation k0H ≪ 1, we obtain ω2 = gHk2
0 +

F2

ρ2
.

5. Gravito-Acoustic Waves
In the examples presented up to now, the fluids were homogeneous, at least partially,

allowing us to easily solve the principal equation. In inhomogeneous cases, we rely on the
numerical integration of the principal equation. An exception to that, where it is possible
to analytically solve the differential equation although the fluid is not homogeneous, is the
case of gravito-acoustic waves, analyzed, e.g., in Ref. [5]. In addition, this case serves as a
nice example showing the interplay between acoustic and gravity waves.

For a hydrodynamic fluid between two solid walls at x = 0 and x = H, inside

homogeneous gravity g = −gx̂, with unperturbed density ρ0 = ρ00e−αx, pressure P0 =
ρ0g
α

satisfying the hydrostatic equilibrium condition P′
0 = −ρ0g, and

1
α
=

c2
s

γg
the constant scale
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height, we obtain f11 = −
gk2

0
ω2 , f12 =

1/c2
s − k2

0/ω2

ρ00
eαx, f21 = ρ00(g2k2

0/ω2 − ω2)e−αx, and

the principal equation can be written as

d(Yρ00ω2e−αx)

dx
=

(
g2k2

0
ω4 − 1

)
(Yρ00ω2e−αx)2 +

(
2

gk2
0

ω2 − α

)
(Yρ00ω2e−αx) + k2

0 −
ω2

c2
s

.

Its general solution is

(
g2k2

0
ω4 − 1

)
Yρ00ω2e−αx =

α

2
−

gk2
0

ω2 + q tan(qx + C) with

q =

√
−α2

4
+

ω2

c2
s
− k2

0 +
k2

0N2

ω2 , and N2 = g
(

1
γP

dP
dx

− 1
ρ

dρ

dx

)
= αg − g2

c2
s

=
γ − 1

γ
αg

the square of the Brunt–Väisälä (or buoyancy) frequency. The boundary condition

Y|x=0 = 0 specifies C and gives

(
g2k2

0
ω4 − 1

)
Yρ00ω2e−αx =

q2 +

(
α

2
−

gk2
0

ω2

)2

q cot(qx) +
α

2
−

gk2
0

ω2

=

(
g2k2

0
ω4 − 1

)(
k2

0 −
ω2

c2
s

)
q cot(qx) +

α

2
−

gk2
0

ω2

. The boundary condition Y|x=H = 0 requires qH = nπ,

n = ±1,±2, . . . and the dispersion relation is −α2

4
+

ω2

c2
s
− k2

0 +
k2

0N2

ω2 = q2 ⇔ ω4

c2
s
−(

k2
0 + q2 +

α2

4

)
ω2 + k2

0N2 = 0.

The equation for y1 is
y′1
y1

=
gk2

0
ω2 +

k2
0 − ω2/c2

s
Yρ00ω2e−αx =

α

2
+ q cot(qx), with solution y1 ∝

eαx/2 sin(qx). (The cases ω2 = k2
0c2

s and ω4 = k2
0g2 need to be examined separately. The

former gives q2 = −(α/2 − g/c2
s )

2 and the latter gives

(
2

gk2
0

ω2 − α

)
(Yρ00ω2e−αx) + k2

0 −

ω2/c2
s ∝ exp

[(
2

gk2
0

ω2 − α

)
x

]
. Neither can satisfy the boundary conditions, so they cannot

be accepted.)

6. Kelvin–Helmholtz Instability
Relative motion between two fluids induces an instability known as Kelvin–Helmholtz,

as first described in the seminal papers by Lord Kelvin [19] and Hermann von Helmholtz [20].

6.1. Incompressible Limit

For the incompressible case and two semi-infinite plasmas, similarly to the Rayleigh–

Taylor instability (Section 4) we find that Y =
−k0

ρ1gk0 + A1
for x > 0 and Y =

−k0

ρ2gk0 − A2
for x < 0. The only difference is that A1 = ρ1(ω − k0 · V01)

2 − F2
1 and A2 = ρ2(ω − k0 ·

V02)
2 − F2

2 now depend on the velocities.
The continuity of Y gives the dispersion relation ρ1(ω−k0 ·V01)

2 + ρ2(ω−k0 ·V02)
2 =

F2
1 + F2

2 − (ρ1 − ρ2)gk0 with solutions

ω =
ρ1V01 + ρ2V02

ρ1 + ρ2
· k0

±i

√
ρ1ρ2[(V01 − V02) · k0]

2

(ρ1 + ρ2)2 +
ρ1 − ρ2

ρ1 + ρ2
gk0 −

(k0 · B01)
2 + (k0 · B02)

2

ρ1 + ρ2
, (21)
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a result derived in Ref. [1]. The three terms within the square root have obvious physical
meaning. The first is due to relative velocity and always leads to instability. The second is
due to gravity and leads to stability/instability in the case of stable/unstable stratification
(lighter fluid above heavier or the opposite). The third term is due to the magnetic field
stress and is always stabilizing.

6.2. Compressible Kelvin–Helmholtz Instability

Taking into account compressibility and neglecting gravity, we have f11 = 0,

f12 =
κ̃2

A
, f21 = −A, and the constant solutions of the principal equation are Y =

f11 ±
√

f 2
11 + f12 f21

f21
= i

κ̃

A
with κ̃ = ±i

√
−κ̃2. According to Table 1 we need to choose the

upper sign for x > 0 and the lower for x < 0. Thus, κ̃1 = i
√
−κ̃2

1 and Y = i
κ̃1

A1
=

√
−κ̃2

1

−A1

for x > 0, κ̃2 = −i
√
−κ̃2

2 and Y = i
κ̃2

A2
=

√
−κ̃2

2

A2
for x < 0. The dispersion relation is

κ̃1

A1
=

κ̃2

A2
or

√
k2

0 −
ρ1(ω − k0 · V01)

4

(ρ1c2
s1 + B2

01)(ω − k0 · V01)2 − (k0 · B01)2c2
s1

−ρ1(ω − k0 · V01)2 + (k0 · B01)2 =√
k2

0 −
ρ2(ω − k0 · V02)

4

(ρ2c2
s2 + B2

02)(ω − k0 · V02)2 − (k0 · B02)2c2
s2

ρ2(ω − k0 · V02)2 − (k0 · B02)2 . (22)

We recall that we need to take the principal values of both square roots, i.e., the ones with
positive real parts.

6.3. On the Physics of the Kelvin–Helmholtz Instability

A relatively simple case for which we can find analytical results will help to under-
stand the physics of the instability. We consider two hydrodynamic fluids with the same
unperturbed characteristics (same density ρ0, same pressure P0 as required from the equi-
librium at the contact discontinuity, and same sound velocity cs) and work in the frame
where the two fluids move with opposite velocities ±V0ẑ (with positive V0 and the upper
sign corresponding to x > 0).

The dispersion relation becomes

√
1 − M2

(
ω

kzV0
− 1
)2

−
(

ω

kzV0
− 1
)2 =

√
1 − M2

(
ω

kzV0
+ 1
)2

(
ω

kzV0
+ 1
)2 ,

where M =
V0kz/k0

cs
. Unstable modes (with ℑω > 0) exist for M <

√
2, with purely

imaginary ω = ikzV0

√
2 − M2

1 + M2 +
√

1 + 4M2
. One way to find this result is to substitute

ω = ikzV0 tan
µ

2
when the dispersion relation reduces to cos2 µ+ cos µ = M2 with solutions

cos µ =

√
1 + 4M2 − 1

2
. Actually, the angle µ has an important meaning connected to the

argument of the resulting complex wavenumbers in the x̂ direction, which are κ̃1,2 =

−k0e∓iµ = −k0

√
1 + 4M2 − 1

2
± ik0

√√
1 + 4M2 + 1 − 2M2

2
.
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Although the results apply for any angle between k0 and V0, to simplify the expres-
sions, from now on we restrict ourselves to the case k0 ∥ V0, i.e., we consider a disturbance
with k0 = k0ẑ (with positive k0). The characteristics of the unstable mode, the Lagrangian
displacement, and the perturbations of the pressure, density, and velocity (written in a way
to show the phase difference between each quantity with y1) are

ω = ik0V0 tan
µ

2
, κ̃1,2 = −k0e∓iµ , µ = arccos

√
1 + 4M2 − 1

2
, M =

V0

cs
, (23)

y1ei(kzz−ωt) ∝ ek0V0t tan(µ/2)e±k0x sin µeik0(z−x cos µ) , (24)

P1 = y2 =
ρ0k0V2

0
cos2(µ/2)

eiπ/2y1 , ρ1 =
P1

c2
s

, (25)

V1x =
k0V0

cos(µ/2)
e±i(π/2−µ/2)y1 , V1z =

k0V0

cos(µ/2)
e∓i(π/2−µ/2)y1 . (26)

Suppose we initially disturb the interface between the two fluids by ∆x|x=0,t=0 =

Deik0z. The Lagrangian displacement along x̂ at any later time and for any other fluid
element has the form ξx = y1ei(k0z−ωt) = Dei(k0z+κ̃1,2x−ωt); the goal is to find ω and κ̃1,2.
Using the Lagrangian displacement ξ and the Lagrangian perturbations of the velocity,

pressure, density, which are ∆V = ξ̇, ∆P, and ∆ρ =
∆P
c2

s
, respectively, the equations that

lead to that goal are the momentum ρ0ξ̈ = −∇(∆P) and the continuity ∇ · ξ = −∆ρ

ρ0

(coming from ∇ · V = − ρ̇

ρ
). Since all perturbations are proportional to ei(k0z+κ̃x−ωt), a time

derivative has the meaning
∂

∂t
+ V0 · ∇ = −i(ω ∓ k0V0), and the divergence ∇ = ikt 1,2,

with kt 1,2 = κ̃1,2 x̂ + k0 the total wavenumber in the two fluids (their ẑ components are the
same, but the x̂ components differ).

The momentum equation along x̂ connects the displacement with the pressure per-

turbation ∆P =
ρ0(ω ∓ k0V0)

2

iκ̃1,2
y1. Requiring ∆P and y1 to be continuous at the interface

between the two fluids, we arrive at a first relation between the unknowns
κ̃1

A1
=

κ̃2

A2
.

The pressure gradient along the interface is connected to the corresponding Lagrangian

displacement ξz through the momentum equation along ẑ, which gives ξz =
k0

κ̃
y1. (The

latter means that ξ ∥ kt, a characteristic of longitudinal waves.)
The continuity also connects the two components of the displacement. It gives

k0ξz + κ̃y1 = i
∆P
ρ0c2

s
. Substituting ∆P =

ρ0(ω ∓ k0V0)
2

iκ̃1,2
y1 and ξz =

k0

κ̃
y1, we arrive at the

second relation between the unknowns (one for each fluid) κ̃2
1,2 =

(ω ∓ k0V0)
2

c2
s

− k2
0.

The perturbation essentially consists of two sound waves in the two fluids, with
wavenumbers kt 1,2 = κ̃1,2 x̂ + k0. In the fluid rest frames, the two waves move with dif-

ferent velocities, satisfying (ω − k0 · V0)
2 = c2

s κ̃2
1,2, a relation equivalent to κ̃2 =

ρ2
0ω4

0
S

− k2
0,

with S = ρ2
0c2

s ω2
0. The two waves meet at the contact discontinuity and as a consequence

they have the same k0 and ω such that their phases kt · (r − V0t) − (ω − k0 · V0)t =

kt · r − ωt are continuous at the interface. As already presented, for the case of fluids
with the same density, in a frame in which they move with opposite velocities ±V0ẑ, and

k0 = k0ẑ is parallel to the relative velocity, the resulting unstable mode has ω = ik0V0 tan
µ

2

and κ̃1,2 = −k0e∓iµ, with µ = arccos

√
1 + 4M2 − 1

2
, M =

V0

cs
.
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The value of the complex wavenumber κ̃ (in each part) is directly connected to com-
pressibility through S. In the incompressible limit S → ∞ it is purely imaginary, since
in that limit M = 0, µ = π/2, and κ̃ = ±ik0. (Note that in the incompressible limit the
continuity ∇ · ξ = 0 gives kt · ξ = 0. Since the two vectors are complex, this does not mean
kt⊥ξ. It rather means k2

t = 0, using kt ∥ ξ from the momentum equation. In addition,
the relation k2

t = 0 does not mean that the vector kt is zero.) If we consider cases with
decreasing S, i.e., decreasing cs keeping V0 the same, in which the compressibility becomes

more and more important, the first part of the expression of κ̃2 =
ρ2

0ω4
0

S
− k2

0 affects the
value of κ̃ in two ways. Firstly, the imaginary part decreases, meaning that the perturbation
survives at longer distances from the interface. Secondly, the ℜκ̃ increases, contributing
more to the phase of the perturbation, which is k0(z − x cos µ). Both effects are expressed
through the angle µ, which decreases with decreasing S (increasing M). The growth rate is
also connected to S through µ. It decreases as the result of compressibility, from k0V0 in
the limit S → ∞ to zero when M =

√
2, corresponding to the minimum S for which the

perturbation is unstable.
The vorticity is a key quantity in the Kelvin–Helmholtz instability. Its undisturbed

value ζ0 = −2V0δ(x)ŷ is the reason behind the development of the instability. Even with
the perturbation included it is nonzero only in the interface between the two fluids. Never-
theless, the motion of the fluids along the interface redistributes the vorticity compared to
the unperturbed state. The related velocity inside the upper/lower fluid, just above/below
the interface ξx|x=0 = y1|x=0ei(kzz−ωt), is V1z|x=0± = k0V0[tan(µ/2)∓ i]ξx|x=0. The mean
value k0V0 tan(µ/2)ξx|x=0 shows that fluid accumulates near the positions of lower pres-
sure, where the vorticity increases (in the −ŷ direction) by −ik0ξx|x=0ζ0. This accumulation
of vorticity further increases the displacement ξx|x=0, leading to instability. It becomes
stronger for larger µ, i.e., smaller M, since the mean value of V1z increases with µ.

Three example solutions are shown in Figure 2. The upper panel corresponds to an
incompressible case with M ≪ 1, for which ω ≈ i(1 − M2)k0V0 and κ̃1,2 ≈ (−M2 ± i)k0.

(For M ≪ 1 the approximate expression for µ is µ ≈ π

2
− M2.) The exponential decrease in

the perturbation as we move away from the interface is evident. The perturbed interface is
shown, along with the circulation around points of minimum pressure (the mean velocity
of the fluids on the interface points toward these minimum pressure points).

The two other panels correspond to cases in which compressibility is important. The
solution in the middle panel has M = 1, ω = i0.486k0V0, and κ̃1,2 = (−0.618 ± i0.786)k0,
and in the lower panel M = 1.4, ω = i0.082k0V0, and κ̃1,2 = (−0.987 ± i0.163)k0. The
ℜkt = ℜκ̃x̂ + k0ẑ now has a nonnegligible x̂ part and as a result the iso-phase planes are
z − x cos µ = constant, tilted as shown in the panels.

For cases approaching the maximum value of M for which the perturbation is unstable
(the M =

√
2), the values of µ, ω, and ℑκ̃ approach zero, and the perturbation practically

consists of two standing sound waves (one in each fluid) with real wavenumbers. (For

M2 − 2 → 0− the approximate expression for µ is µ ≈
√

4 − 2M2

3
.)

6.4. Influence of Magnetic Field

For simplicity we consider again two homogeneous fluids with the same unperturbed
characteristics, and work in the frame where the fluids move with opposite velocities ±V0ẑ.
Now, there is also a constant magnetic field B0 = B0yŷ + B0z ẑ in the unperturbed state, the
same in both fluids.

Inspecting the dispersion relation (22), we see that the magnetic field enters in
two ways. Firstly, through its pressure B2

0/2, or equivalently the square of the Alfvén veloc-
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ity vA =
B0√

ρ0
. Secondly, through its tension, manifest in the terms k0 · B0, i.e., its compo-

nent parallel to k0, or equivalently the component of the Alfvén velocity vA∥ =
B0 · k0/k0√

ρ0
.

-0.4 -0.2 0 0.2 0.4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.2 -0.1 0 0.1 0.2

Figure 2. The streamlines and the pressure perturbation for three cases: M = 0.1 (upper panel),
M = 1 (middle panel), and M = 1.4 (lower panel).

The magnetic pressure B2
0/2 enters in the expression of S and increases its value. Thus,

it moves the dynamics toward the incompressible limit and, according to the discussion

of the previous section, destabilizes (the second terms inside the square roots equal
ρ2

0ω4
0

k2
0S

,

so an increase in v2
A leads to the square roots being closer to unity). Actually, if we

include magnetic field normal to k0 only, the dispersion relation is exactly equivalent
to its hydrodynamic analogue, with the only difference that M now represents the fast

magnetosonic Mach number M =
V0kz/k0√

c2
s + v2

A

. Figure 3 shows the resulting growth rates.

Notably it includes as subcases the purely hydrodynamic case (vA = 0) considered in
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the previous section, and the cold case (cs = 0), with only the B0y component of the
magnetic field.

The magnetic tension enters in the dispersion relation through F = k0 · B0 (essentially
the component of the magnetic field along k0) in two places: inside A and S. It always has
a stabilizing effect since the tension is a restoring force; we have seen that in the previous
examples of Alfvén waves and the Rayleigh–Taylor instability, even in the incompressible
limit. It also affects incompressibility through its appearance inside S. Since it decreases
S, it moves the dynamics away from the incompressible limit, something that also, in
general, stabilizes.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

V0

cs
2 + vA

2

0.2

0.4

0.6

0.8

1.0

Imω

k0 V0

B0 z=0

Figure 3. The growth rate (normalized to k0V0) of the Kelvin–Helmholtz instability for two homoge-
neous fluids moving with ±V0 ẑ, with the same unperturbed density ρ0, sound velocity cs, magnetic
field B0y ŷ, and disturbance with k0 = k0 ẑ.

Another related connection is that the magnetic tension affects the perturbation of the
vorticity inside each fluid, which, using the expressions of the velocity perturbations given

in Appendix A, can be expressed as ∆ζ = −i
ω0Fkt × B0

ρ0 A
∆ρ.

In the following, we present the methodology to find numerical results.
The dispersion relation (22) in the case under consideration can be written as√√√√√√√√√1 −

V2
0 k2

z/k2
0

c2
s + v2

A

(
ω

kzV0
− 1
)4

(
ω

kzV0
− 1
)2

− c2
s

c2
s + v2

A

v2
A∥k2

0

V2
0 k2

z

−
(

ω

kzV0
− 1
)2

+
v2

A∥k2
0

V2
0 k2

z

=

√√√√√√√√√1 −

V2
0 k2

z/k2
0

c2
s + v2

A

(
ω

kzV0
+ 1
)4

(
ω

kzV0
+ 1
)2

− c2
s

c2
s + v2

A

v2
A∥k2

0

V2
0 k2

z(
ω

kzV0
+ 1
)2

−
v2

A∥k2
0

V2
0 k2

z

, (27)

and can be solved numerically. However, for the case of fluids with the same characteristics
considered here it is possible to proceed analytically. As shown in Appendix C, the
dispersion relation can be transformed to the following quartic polynomial equation for

the square of the growth rate,
(ℑω)2

k2
0(c

2
s + v2

A)
= M2 tan2 Λ

2

M8 tan8 Λ
2
+ 2(1 + 2M2)M6 tan6 Λ

2

+[2M2(1 + 3M2) + 2(2 cos2 H + 1) cos2 Θ − (2 cos2 H + 1) cos4 Θ]M4 tan4 Λ
2

+
{

2M4(2M2 − 1)− 4M2(2 cos2 H − 1) cos2 Θ

+2
[
cos4 H − 2(M2 − 1) cos2 H − M2

]
cos4 Θ − 2 cos2 H cos6 Θ

}
M2 tan2 Λ

2
+M6(M2 − 2) + 2M4(2 cos2 H + 1) cos2 Θ

−M2[2 cos4 H + 2(M2 + 2) cos2 H + M2] cos4 Θ + 2(M2 + cos2 H) cos2 H cos6 Θ = 0 , (28)



Symmetry 2025, 17, 150 15 of 21

using the parametrization

ω = ikzV0 tan
Λ
2

, M =
V0kz/k0√

c2
s + v2

A

,
vA

cs
= tan H ,

vA∥√
c2

s + v2
A

= cos Θ . (29)

Note that the angle Θ is connected to the angle between the magnetic field and the

wavenumber since cos Θ =
B0 · k0

B0k0
sin H.

The left panel of Figure 4 shows the growth rate for cases where the magnetic field
has only component along k0. In general, the field decreases the growth rate, and if it
is sufficiently strong it completely suppresses the instability. Similar behavior is shown
in the right panel of Figure 4 for the cold case. For all strengths of the magnetic field,
if its orientation is sufficiently close to the wavevector, the magnetic tension completely
suppresses the instability.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

V0

cs2+vA2

0.2

0.4

0.6

0.8

1.0

Imω

k0 V0

B0 y=0
vA

cs
=0

0.2

0.5

0.8

0.99

0.2 0.4 0.6 0.8 1.0 1.2 1.4

V0

vA

0.2

0.4

0.6

0.8

1.0

Imω

k0 V0

cs=0

B0 z

B0 y
=0

0.3

0.5

1

3

Figure 4. Same as Figure 3, but in the left panel for magnetic field B0 = B0z ẑ along k0 = k0 ẑ with
various strengths corresponding to the shown values of the ratio vA/cs, and in the right panel for
cold cases (cs = 0) and magnetic field with various strengths and orientations corresponding to the
shown values of the ratio B0z/B0y (in all cases k0 = k0 ẑ).

6.5. Range of Instability

It is interesting to explore the regions of M for which the Kelvin–Helmholtz instability
is present, as shown in Figure 4. The question is: Under what conditions does the dispersion
relation (27) have purely imaginary roots? For simplicity, we consider a disturbance with
k0 = k0ẑ parallel to the velocities. The results can be easily generalized.

One might naively think that the extreme values of these instability regions can be
found by setting ω = 0 in the dispersion relation (27) and requiring both numerators to
vanish (since the denominators are opposite real numbers). However, this implies k̃ = 0,
resulting in no x-dependence of the disturbance. This case corresponds to magnetosonic
waves in the frame of each fluid with total wavevectors kt = k0ẑ and ω0 = ∓k0V0, with
V4

0 − V2
0 (v

2
A + c2

s ) + c2
s v2

A∥ = 0 (see Section 3.1). The absence of x-dependence makes these
cases unrelated to the unstable modes.

However, there are two other possibilities. The vanishing of both denominators in the
dispersion relation (27) for ω = 0 needs to be considered as a possible limiting case. This
corresponds to Alfvén waves with ω0 = ∓k0V0, with V2

0 = v2
A∥ (see Section 3.2). Note that

κ̃ does not appear in the dispersion relation. Nevertheless, its value is nonzero, given by

κ̃2 = k2
0

(
1 −

v2
A∥

v2
A

)
. The x-dependence of the disturbance allows for a possible connection

with unstable modes.
A third possibility is that the limiting values may correspond to bifurcations of the dis-

persion relation. It is actually evident from inspecting Figure 3 that the slope
∂ω

∂M
becomes

infinity when ω = 0. In general, a dispersion relation depends on various parameters, and
the slope is defined as the derivative with respect to one of these parameters, while keeping
all others constant. For a dispersion relation of the form f (ω, p1, p2, . . . ) = constant, its
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differential
∂ f
∂ω

dω + ∑
n

∂ f
∂pn

dpn = 0 shows that bifurcation corresponds to
∂ f
∂ω

= 0. Thus,

extreme values of the instability regions may be connected to the condition
∂ f
∂ω

∣∣∣∣
ω=0

= 0.

In our case, there are three parameters, and we can choose p1 = M2 =
V2

0
c2

s + v2
A

,

p2 =
c2

s

c2
s + v2

A
, p3 =

v2
A∥

V2
0

. The algebra gives that
∂ f
∂ω

∣∣∣∣
ω=0

= 0 leads to p1 − 2 + p1 p3 −

2p1 p2 p2
3 − 2p2

2 p2
3 + 4p2 p3 = 0 or the following cubic for V2

0 :

V6
0 − (2c2

s + 2v2
A − v2

A∥)V
4
0 +

2c2
s v2

A∥
c2

s + v2
A
(2c2

s + 2v2
A − v2

A∥)V
2
0 −

2c4
s v4

A∥
c2

s + v2
A

= 0 , (30)

or M6 + (cos2 Θ − 2)(M4 − 2 cos2 H cos2 ΘM2) = 2 cos4 H cos4 Θ.
For the left panel of Figure 4 we have cos Θ = sin H,

vA

cs
= tan H, and the ex-

treme values of M are given by M6 − (2 − sin2 H)M4 + 2 cos2 H sin2 H(2 − sin2 H)M2 −
2 cos4 H sin4 H = 0. The roots of this cubic are M = sin H, M = cos H

√
1 −

√
cos(2H),

M = cos H
√

1 +
√

cos(2H), and the corresponding wavenumbers κ̃2 = 0, k2
0 cos(2H),

k2
0 cos(2H), respectively. Thus, the value M = sin H corresponds to a magnetosonic

wave without x-dependence (unrelated to instability), while the other two solutions

M = cos H
√

1 −
√

cos(2H), M = cos H
√

1 +
√

cos(2H) are the extreme values of M
related to the unstable modes.

The result is that for B0 ∥ k0 the Kelvin–Helmholtz instability occurs only if

vA < cs and for velocities in the interval cs

√√√√1 −
√

c2
s − v2

A
c2

s + v2
A

< V0 < cs

√√√√1 +

√
c2

s − v2
A

c2
s + v2

A
.

As we approach the limits, the wavenumbers κ̃ approach real values and the instabil-
ity is transformed to magnetosonic waves with constant amplitudes and wavenumbers

kt = k0ẑ ± k0

√
c2

s − v2
A

c2
s + v2

A
x̂.

For the right panel of Figure 4 we have H = π/2 and
B0z

B0y
= cot Θ and the maximum

value of M corresponds to bifurcation for which M6 − (1 + sin2 Θ)M4 = 0. The nontrivial

root is M =

√
2 −

B2
0z

B2
0

, and the corresponding wavenumbers κ̃2 = k2
0

(
1 −

B2
0z

B2
0

)
.

The lower limit of the instability region corresponds to Alfvén waves V2
0 = v2

A∥, so

M =
|B0z|

B0
.

The result is that for the cold case cs = 0 the Kelvin–Helmholtz instability occurs only

if
|B0z|√

ρ0
< V0 <

√
2B2

0 − B2
0z

ρ0
. As we approach the limits, the wavenumbers κ̃ approach

real values and the instability is transformed to waves (Alfvén waves in the lower limit
and magnetosonic in the upper) with constant amplitudes and wavenumbers kt = k0ẑ ±

k0

√
1 −

B2
0z

B2
0

x̂.

6.6. Bifurcations in the General Case

The dispersion relation in the general case is f =
A2κ̃1

A1κ̃2
= 1, and taking its logarithmic

derivative we conclude that bifurcations occur when
∂κ̃2

κ̃2∂ω
− 2

∂A
A∂ω

is continuous at
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the interface. Equivalently, since
κ̃

A
is also continuous,

∂κ̃2

A2∂ω
− 2κ̃2 ∂A

A3∂ω
is continuous.

Substituting S and A = ρ0ω2
0 − F2, this quantity equals

4ρ0ω0

A3 k2
0 −

4ρ0ω3
0 F2

A3(Ac2
s + ω2

0B2
0)

−
2ρ0ω5

0(ρ0c2
s + B2

0)

A2(Ac2
s + ω2

0B2
0)

2
.

In the hydrodynamic case, the latter simplifies to 2
2k2

0c2
s − ω2

0

ρ2
0c2

s ω5
0

, while in the cold case

to 2ω0
2k2

0v2
A − k2

0v2
A∥ − ω2

0

ρ2
0v2

A(ω
2
0 − k2

0v2
A∥)

3
.

7. Summary
The primary objective of this paper is to illustrate how the minimalist approach, as

introduced in Ref. [15], can be applied to stability problems in planar geometry using Cartesian
coordinates. This method highlights the approach’s efficacy in determining the dispersion
relation by integrating a single first-order differential equation, the principal equation.

Although the mathematical formalism is quite cumbersome, it can be simplified by
defining intermediate quantities with important physical meanings. For example, the
complex κ̃ has a direct connection to wave propagation and simultaneous amplitude
variation. The function S is related to compressibility, which depends on both thermal
and magnetic pressure, and shows how the wave propagation and the growth rate of
the instability depend on these factors. The function F signifies the stabilizing nature of
magnetic tension. All these aspects are discussed and reviewed when applying the method
to classical instabilities.

A more extensive analysis was conducted on the Kelvin–Helmholtz instability, result-
ing in new findings. Specifically, analytical solutions of the dispersion relation in certain
cases were derived, along with a study of bifurcations and their connection to the ranges of
instability. These tools facilitate parametric studies, which are far from being considered
complete even in classical instabilities.

Detailed studies of specific problems in hydrodynamics or magnetohydrodynamics
will benefit from the examples and formalism presented, as well as from the ideas on how
to explore the possible existence of analytical solutions and specify the range of instability.
Applications in other geometries and more general theoretical frameworks are also possible
and will be presented in future works.

Funding: This research received no external funding.

Data Availability Statement: This research is analytical; no new data were generated or analyzed. If
needed, more details on the study and the numerical results will be shared on reasonable request to
the author.
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Appendix A. Linearization
The linearized Equations (1)–(4) are (for ω0 ̸= 0) as follows:

ω0
∆ρ

ρ0
= −iV′

1x + kzV1z + kyV1y , (A1)

P1 − c2
s ∆ρ + i

V1x
ω0

P′
0 = 0 , (A2)

−iω0ρ0V1x = −Π′
1 + iFB1x − ρ1g (A3)
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−iω0ρ0V1y + ρ0V1xV′
0y = −ikyΠ1 + iFB1y + B1xB′

0y (A4)

−iω0ρ0V1z + ρ0V1xV′
0z = −ikzΠ1 + iFB1z + B1xB′

0z (A5)

ω0B1x = −FV1x , (A6)

ω0B1y = ω0B0y
∆ρ

ρ0
− FV1y − iV1xB′

0y + iB1xV′
0y , (A7)

ω0B1z = ω0B0z
∆ρ

ρ0
− FV1z − iV1xB′

0z + iB1xV′
0z , (A8)

with F = k0 · B0, cs the sound velocity (only the unperturbed is needed and is as-

sumed to be a known function of x), P0 = Π0 −
B2

0
2

, P1 = Π1 − B0yB1y − B0zB1z, and

∆ρ = ρ1 +
iV1x
ω0

ρ′0. In the above expressions, the relation ∇ · B = 0 was used. This can

be seen as a consequence of the induction Equation (4), but shows more directly that the
relation B′

1x + ikyB1y + ikzB1z = 0 holds.
We can use Equations (A4)–(A8) of the system, together with the definitions of

∆ρ = ρ1 +
iV1x
ω0

ρ′0 and y1 =
iV1x
ω0

, to express the perturbations of the density, velocity,

and the magnetic field as functions of ∆ρ, y1, and Π1:

ρ1 = −ρ′0y1 + ∆ρ , (A9)

V1x = −iω0y1 , (A10)

AV1y = −AV′
0yy1 + kyω0Π1 − Fω0B0y

∆ρ

ρ0
, (A11)

AV1z = −AV′
0zy1 + kzω0Π1 − Fω0B0z

∆ρ

ρ0
, (A12)

B1x = iFy1 , (A13)

AB1y = −AB′
0yy1 − FkyΠ1 + ω2

0B0y∆ρ , (A14)

AB1z = −AB′
0zy1 − FkzΠ1 + ω2

0B0z∆ρ , (A15)

where A = ρ0ω2
0 − F2.

The substitution of V1y, V1z in Equation (A1) gives

ω2
0∆ρ = −Ay′1 +

(
k2

y + k2
z

)
Π1 , (A16)

while the remaining Equations (A2) and (A3) are

Π1 − c2
s ∆ρ + y1P′

0 = B0yB1y + B0zB1z , (A17)

0 = −Π′
1 − ρ1g + Ay1 . (A18)

We introduce the perturbation of the total pressure in the perturbed position
y2 = Π1 + y1Π′

0 = Π1 − ρ0gy1, a quantity that is continuous everywhere (similarly
to y1).

The substitution of B1y, B1z in Equation (A17), also using the equilibrium of the
unperturbed state P′

0 + B0yB′
0y + B0zB′

0z = −ρ0g, gives

∆ρ = ρ2
0

ω2
0y2 + gF2y1

S
, (A19)

where S = ρ0(Ac2
s + ω2

0B2
0).

Substituting this ∆ρ and ρ1 = ∆ρ − y1ρ′0 into Equations (A16) and (A18), we arrive at
system (14).
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After solving this system and finding y1, y2 we return to the rest of the equations and
find all other perturbations. We summarize the expressions below (in which the left-hand
sides represent the Lagrangian perturbation of each quantity, i.e., the perturbation in the
perturbed position).

V1x = −iω0y1 , (A20)

V1y + V′
0yy1 = ω0ky

y2 + ρ0gy1

A
− ρ0ω0FB0y

ω2
0y2 + gF2y1

AS
, (A21)

V1z + V′
0zy1 = ω0kz

y2 + ρ0gy1

A
− ρ0ω0FB0z

ω2
0y2 + gF2y1

AS
, (A22)

B1x = iFy1 , (A23)

B1y + B′
0yy1 = −Fky

y2 + ρ0gy1

A
+ ρ2

0ω2
0B0y

ω2
0y2 + gF2y1

AS
, (A24)

B1z + B′
0zy1 = −Fkz

y2 + ρ0gy1

A
+ ρ2

0ω2
0B0z

ω2
0y2 + gF2y1

AS
, (A25)

ρ1 + ρ′0y1 = ρ2
0

ω2
0y2 + gF2y1

S
, (A26)

P1 + P′
0y1 = c2

s ρ2
0

ω2
0y2 + gF2y1

S
. (A27)

Appendix B. Solutions of the Principal Equation in the
Homogeneous Case

If the array elements fij are constants, the principal equation has two kinds of solu-

tions. Either constants Y±, satisfying 0 = f21Y2
± − 2 f11Y± − f12 ⇔ Y± =

f11 ∓ iK
f21

with

K = i
√

f 2
11 + f12 f21, or variable Y =

f11 − K cot(Kx + ϕ0)

f21
, with ϕ0 a constant of integration.

Each of the former corresponds to one-way wave propagation in the x̂ (or −x̂)-direction
and the latter to a superposition of these two waves. This becomes clear if we find y2 and
y1 using Equations (18). It is even simpler to look for solutions of the system (14), which
is linear with constant coefficients in this case and admits solutions of the form y1,2 ∝

e±iKx with
y1

y2
= Y±. The general solution is y2 = C+eiKx + C−e−iKx, y1 = C+Y+eiKx +

C−Y−e−iKx =
f11

f21
y2 − i

K
f21

C+eiKx + i
K
f21

C−e−iKx.

We can simplify the expressions of the eigenfunctions to y2 = 2iD sin(Kx + ϕ0), y1 =

2iD
f11 sin(Kx + ϕ0)− K cos(Kx + ϕ0)

f21
, substituting C± = ±De±iϕ0 , and their ratio agrees

with the solution of the principal equation given above Y =
y1

y2
=

f11 − K cot(Kx + ϕ0)

f21
.

Note that the last expression for Y can also be written as
1
Y

=
y2

y1
=

− f11 − K cot(Kx + ϕ′
0)

f12

with C±Y± = ±D′e±iϕ′
0 ⇔ Y+

Y−
= e2i(ϕ′

0−ϕ0), and we obtain the equivalent expressions of

the eigenfunctions y1 = 2iD′ sin(Kx + ϕ′
0), y2 = 2iD′− f11 sin(Kx + ϕ′

0)− K cos(Kx + ϕ′
0)

f12
.

The constant Y solutions correspond to C∓ = 0 ⇔ ϕ0 = ∓i∞, giving y2 ∝ e±iKx,

Y =
f11 ∓ iK

f21
=

− f12

f11 ± iK
.

The complex wavenumbers of the two waves are ±K = ±i
√

f 2
11 + f12 f21. Taking

the principal value of the square root (with positive real part), the upper/lower sign
corresponds to a wave whose amplitude decreases with increasing/decreasing x.
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Appendix C. Analytical Solutions of the Magnetized
Kelvin–Helmholtz Instability

With the parametrization ω = ikzV0 tan
Λ
2

,
V0kz/k0√

c2
s + v2

A

= M,
vA√

c2
s + v2

A

= sin H,

cs√
c2

s + v2
A

= cos H,
vA∥√

c2
s + v2

A

= cos Θ, the dispersion relation (27) becomes

i

√√√√√√1 −
M4e−2iΛ/ cos2 Λ

2

M2e−iΛ − cos2 Λ
2

cos2 H cos2 Θ

M2e−iΛ

cos2 Λ
2

− cos2 Θ
=

−i

√√√√√√1 −
M4e2iΛ/ cos2 Λ

2

M2eiΛ − cos2 Λ
2

cos2 H cos2 Θ

M2eiΛ

cos2 Λ
2

− cos2 Θ
.(A28)

We can analytically find purely imaginary solutions of that equation, which is the

continuity of the ratio
κ̃1

A1
=

κ̃2

A2
. First, we observe that if the fluid characteristics are

the same in the two parts and the velocities opposite, for purely imaginary ω, i.e., real
Λ ∈ (0, π), the relations κ̃2 = κ̃∗1 and A2 = A∗

1 hold. This means that the dispersion relation

is equivalent to the requirement that the ratio
κ̃1

A1
is real.

We can write the numerator as κ̃1 = −|κ̃|e−iµ, with 0 < µ < π such that the amplitude

vanishes at x → +∞. In order for the ratio
κ̃1

A1
to be real, A1eiµ should be real.

Substituting the expressions of κ̃ and A, the previous two relations mean that the imaginary

parts of

1 −
M4e−2iΛ/ cos2 Λ

2

M2e−iΛ − cos2 Λ
2

cos2 H cos2 Θ

e2iµ and

M2e−iΛ

cos2 Λ
2

− cos2 Θ

eiµ are zero.

Thus we arrive at the two relations that give Λ in parametric form, with parameter µ

tan(2µ) =
sin(2Λ) cos2 H cos2 Θ − 2M2 tan

Λ
2

1 − M2 cos Λ

cos2 Λ
2

+

[
cos(2Λ)− 1 + cos Λ

M2 cos Λ
]

cos2 H cos2 Θ + cos4 Λ
2

cos4 H cos4 Θ
M4

, (A29)

cot µ = cot Λ − cos2 Θ

2M2 tan
Λ
2

. (A30)

Eliminating µ, we find a single relation for the growth rate, the quartic polynomial
Equation (28).

Note that Equation (28) can also be derived by squaring Equation (A28), since the

substitution ω = ikzV0 tan
Λ
2

helps to exclude the trivial solutions of the resulting poly-
nomial. This proves that indeed the solution is purely imaginary and verifies the above
derivation, which has the advantage of connecting the solution with the correct sign of κ̃

and its argument µ.
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