A Tripartite Analytical Framework for Nonlinear (1+1)-Dimensional Field Equations: Painlevé Analysis, Classical Symmetry Reduction, and Exact Soliton Solutions
Abstract
1. Introduction
2. Painlevé Analysis (PA) of Equation (1)
3. Lie Symmetry Analysis (LSA) and Infinitesimal Generators of Equation (1)
4. The Similarity Reduction for Equation (1)
5. The New Generalized Exponential Differential Rational Function Method (NGEDRFM)
5.1. Application of Novel Methodology
Family of Solutions
6. Graphical Interpretation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akram, S.; Ahmad, J.; Rehman, S.; Ali, A. New family of solitary wave solutions to new generalized Bogoyavlensky–Konopelchenko equation in fluid mechanics. Int. J. Appl. Comput. Math. 2023, 9, 63. [Google Scholar] [CrossRef]
- Rabie, W.B.; Khalil, T.A.; Badra, N.; Ahmed, H.M.; Mirzazadeh, M.; Hashemi, M.S. Soliton solutions and other solutions to the (4+1)-Dimensional Davey–Stewartson–Kadomtsev–Petviashvili equation using modified extended mapping method. Qual. Theory Dyn. Syst. 2024, 23, 87. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, B.; Jia, M.; Wang, Z.; Wang, G. Fractional consistent riccati expansion method and Soliton-Cnoidal solutions for the Time-Fractional extended shallow water wave equation in (2+1)-Dimension. Fractal Fract. 2024, 8, 599. [Google Scholar] [CrossRef]
- Tariq, K.U.; Inc, M.; Hashemi, M.S. On the soliton structures to the space-time fractional generalized reaction Duffing model and its applications. Opt. Quantum Electron. 2024, 56, 708. [Google Scholar] [CrossRef]
- Inc, M.; Iqbal, M.S.; Baber, M.Z.; Qasim, M.; Iqbal, Z.; Tarar, M.A.; Ali, A.H. Exploring the solitary wave solutions of Einstein’s vacuum field equation in the context of ambitious experiments and space missions. Alex. Eng. J. 2023, 82, 186–194. [Google Scholar] [CrossRef]
- Gaillard, P. The mKdV equation and multi-parameters rational solutions. Wave Motion 2021, 100, 102667. [Google Scholar] [CrossRef]
- Ozisik, M. Novel (2+1) and (3+1) forms of the Biswas–Milovic equation and optical soliton solutions via two efficient techniques. Optik 2022, 269, 169798. [Google Scholar] [CrossRef]
- Duran, S. Breaking theory of solitary waves for the Riemann wave equation in fluid dynamics. Int. J. Mod. Phys. B 2021, 35, 2150130. [Google Scholar] [CrossRef]
- Mahmood, I.; Hussain, E.; Mahmood, A.; Anjum, A.; Shah, S.A.A. Optical soliton propagation in the Benjamin–Bona–Mahoney–Peregrine equation using two analytical schemes. Optik 2023, 287, 171099. [Google Scholar] [CrossRef]
- Kumar, S.; Rani, S.; Mann, N. Analytical soliton solutions to a (2+1)-dimensional variable coefficients graphene sheets equation using the application of Lie symmetry approach: Bifurcation theory, sensitivity analysis and chaotic behavior. Qual. Theory Dyn. Syst. 2025, 24, 80. [Google Scholar] [CrossRef]
- Hosseini, K.; Mirzazadeh, M.; Gómez-Aguilar, J.F. Soliton solutions of the Sasa–Satsuma equation in the monomode optical fibers including the beta-derivatives. Optik 2020, 224, 165425. [Google Scholar] [CrossRef]
- Xiao, Y.; Barak, S.; Hleili, M.; Shah, K. Exploring the dynamical behaviour of optical solitons in integrable kairat-II and kairat-X equations. Phys. Scr. 2024, 99, 095261. [Google Scholar] [CrossRef]
- Chakravarty, S.; Kodama, Y. Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math. 2009, 123, 83–151. [Google Scholar] [CrossRef]
- Hussain, E.; Malik, S.; Yadav, A.; Shah, S.A.A.; Iqbal, M.A.B.; Ragab, A.E.; Mahmoud, H.M.A. Qualitative analysis and soliton solutions of nonlinear extended quantum Zakharov-Kuznetsov equation. Nonlinear Dyn. 2024, 112, 19295–19310. [Google Scholar] [CrossRef]
- Akinyemi, L.; Rezazadeh, H.; Yao, S.W.; Akbar, M.A.; Khater, M.M.A.; Jhangeer, A.; Inc, M.; Ahmad, H. Nonlinear dispersion in parabolic law medium and its optical solitons. Results Phys. 2021, 26, 104411. [Google Scholar] [CrossRef]
- Ren, B.; Ma, W.X.; Yu, J. Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation. Nonlinear Dyn. 2019, 96, 717–727. [Google Scholar] [CrossRef]
- Younas, U.; Bilal, M.; Sulaiman, T.A.; Ren, J.; Yusuf, A. On the exact soliton solutions and different wave structures to the double dispersive equation. Opt. Quantum Electron. 2022, 54, 1–22. [Google Scholar] [CrossRef]
- Farooq, K.; Hussain, E.; Younas, U.; Mukalazi, H.; Khalaf, T.M.; Mutlib, A.; Shah, S.A.A. Exploring the Wave’s Structures to the Nonlinear Coupled System Arising in Surface Geometry. Sci. Rep. 2025, 15, 11624. [Google Scholar] [CrossRef]
- Nadeem, M.; Arqub, O.A.; Hazaimeh, H.M.; Ibrahim, A.A. Bifurcation, chaos, and time series analysis of the Manakov model utilizing the unified Riccati equation expansion technique. Mod. Phys. Lett. A 2025, 40, 2550074. [Google Scholar] [CrossRef]
- Cinar, M.; Secer, A.; Ozisik, M.; Bayram, M. Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Opt. Quantum Electron. 2022, 54, 402. [Google Scholar] [CrossRef]
- Hyder, A.; Barakat, M.A. General improved Kudryashov method for exact solutions of nonlinear evolution equations in mathematical physics. Phys. Scr. 2020, 95, 045212. [Google Scholar] [CrossRef]
- Murad, M.A.S. Optical solutions for perturbed conformable Fokas–Lenells equation via Kudryashov auxiliary equation method. Mod. Phys. Lett. B 2025, 39, 2450418. [Google Scholar] [CrossRef]
- Aydın, Z.; Taşcan, F. Application of new Kudryashov method to Sawada-Kotera and Kaup-Kupershmidt equations. Comput. Methods Differ. Equ. 2025, 13, 608–617. [Google Scholar]
- Li, Z.; Lyu, J.; Hussain, E. Bifurcation, chaotic behaviors and solitary wave solutions for the fractional Twin-Core couplers with Kerr law non-linearity. Sci. Rep. 2024, 14, 22616. [Google Scholar] [CrossRef]
- Hosseini, K.; Hincal, E.; Salahshour, S.; Mirzazadeh, M.; Dehingia, K.; Nath, B.J. On the dynamics of soliton waves in a generalized nonlinear Schrödinger equation. Optik 2023, 272, 170215. [Google Scholar] [CrossRef]
- Faridi, W.A.; Iqbal, M.; Mahmoud, H.A. An Invariant Optical Soliton Wave Study on Integrable Model: A Riccati-Bernoulli Sub-Optimal Differential Equation Approach. Int. J. Theor. Phys. 2025, 64, 1–23. [Google Scholar] [CrossRef]
- Elboree, M.K. Soliton solutions for some nonlinear partial differential equations in mathematical physics using He’s variational method. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 147–158. [Google Scholar] [CrossRef]
- Bilal, M.; Khan, A.; Ullah, I.; Khan, H.; Alzabut, J.; Alkhawar, H.M. Application of modified extended direct algebraic method to nonlinear fractional diffusion reaction equation with cubic nonlinearity. Bound. Value Probl. 2025, 2025, 16. [Google Scholar] [CrossRef]
- Kumar, S.; Mohan, B. A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painlevé analysis and Hirota Bilinear technique. Phys. Scr. 2022, 97, 125214. [Google Scholar] [CrossRef]
- Muhammad, J.; Rehman, S.U.; Nasreen, N.; Bilal, M.; Younas, U. Exploring the fractional effect to the optical wave propagation for the extended Kairat-II equation. Nonlinear Dyn. 2025, 113, 1501–1512. [Google Scholar] [CrossRef]
- Raza, N.; Salman, F.; Butt, A.R.; Gandarias, M.L. Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106824. [Google Scholar] [CrossRef]
- Ma, W.X. N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math. Comput. Simul. 2021, 190, 270–279. [Google Scholar] [CrossRef]
- Murad, M.A.S.; Tedjani, A.H.; Li, Z.; Hussain, E. Optical solutions to time-fractional improved (2+1)-dimensional nonlinear Schrödinger equation in optical fibers. Sci. Rep. 2025, 15, 29208. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Arafat, Y.; Malik, S.; Alshammari, F.S. The (2+1)-Dimensional Chiral Nonlinear Schrödinger Equation: Extraction of Soliton Solutions and Sensitivity Analysis. Axioms 2025, 14, 422. [Google Scholar] [CrossRef]
- Roshid, M.M.; Rahman, M.; Sheikh, M.A.N.; Uddin, M.; Khatun, M.S.; Roshid, H. Dynamical analysis of multi-soliton and interaction of solitons solutions of nonlinear model arise in energy particles of physics. Indian J. Phys. 2025, 99, 3409–3421. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Kumar, S. Numerical computation of Klein–Gordon equations arising in quantum field theory by using homotopy analysis transform method. Alex. Eng. J. 2014, 53, 469–474. [Google Scholar] [CrossRef]
- Dehghan, M.; Ghesmati, A. Application of the dual reciprocity boundary integral equation technique to solve the nonlinear Klein–Gordon equation. Comput. Phys. Commun. 2010, 181, 1410–1418. [Google Scholar] [CrossRef]
- Inc, M.; Yusuf, A.; Aliyu, A.I.; Baleanu, D. Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Phys. A Stat. Mech. Its Appl. 2018, 493, 94–106. [Google Scholar] [CrossRef]
- Sassaman, R.; Biswas, A. Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3239–3249. [Google Scholar] [CrossRef]
- Biswas, A.; Zony, C.; Zerrad, E. Soliton perturbation theory for the quadratic nonlinear Klein–Gordon equation. Appl. Math. Comput. 2008, 203, 153–156. [Google Scholar] [CrossRef]
- Biswas, A.; Song, M.; Zerrad, E. Bifurcation analysis and implicit solution of Klein-Gordon equation with dual-power law nonlinearity in relativistic quantum mechanics. Int. J. Nonlinear Sci. Numer. Simul. 2013, 14, 317–322. [Google Scholar] [CrossRef]
- Shahen, N.H.M.; Ali, M.S.; Rahman, M.M. Interaction among lump, periodic, and kink solutions with dynamical analysis to the conformable time-fractional Phi-four equation. Partial Differ. Equ. Appl. Math. 2021, 4, 100038. [Google Scholar] [CrossRef]
- Hafez, M.G.; Alam, M.N.; Akbar, M.A. Exact traveling wave solutions to the Klein–Gordon equation using the novel (G′/G)-expansion method. Results Phys. 2014, 4, 177–184. [Google Scholar] [CrossRef]
- Islam, M.S.; Akbar, M.A.; Khan, K. Analytical solutions of nonlinear Klein–Gordon equation using the improved F-expansion method. Opt. Quantum Electron. 2018, 50, 224. [Google Scholar] [CrossRef]
- Akram, G.; Arshed, S.; Sadaf, M.; Sameen, F. The generalized projective Riccati equations method for solving quadratic-cubic conformable time-fractional Klien-Fock-Gordon equation. Ain Shams Eng. J. 2022, 13, 101658. [Google Scholar] [CrossRef]
- Alam, M.d.N.; Bonyah, E.; Fayz-Al-Asad, M.d.; Osman, M.S.; Abualnaja, K.M. Stable and functional solutions of the Klein-Fock-Gordon equation with nonlinear physical phenomena. Phys. Scr. 2021, 96, 055207. [Google Scholar] [CrossRef]
- Rehman, H.U.; Iqbal, I.; Subhi, A.S.; Mlaiki, N.; Saleem, M.S. Soliton solutions of Klein–Fock–Gordon equation using Sardar subequation method. Mathematics 2022, 10, 3377. [Google Scholar] [CrossRef]
- Iqbal, M.; Lu, D.; Seadawy, A.R.; Mustafa, G.; Zhang, Z.; Ashraf, M.; Ghaffar, A. Dynamical analysis of soliton structures for the nonlinear third-order Klein–Fock–Gordon equation under explicit approach. Opt. Quantum Electron. 2024, 56, 651. [Google Scholar] [CrossRef]
- Tariq, M.M.; Riaz, M.B.; ur Rehman, M.A.; Dilawaiz. Unraveling the complexity of solitary waves in the Klein-Fock-Gordon equation: Dynamical insights into bifurcation and Chaos analysis. Model. Earth Syst. Environ. 2025, 11, 51. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Ali, A.; Zahed, H.; Baleanu, D. The Klein–Fock–Gordon and Tzitzeica dynamical equations with advanced analytical wave solutions. Results Phys. 2020, 19, 103565. [Google Scholar] [CrossRef]
- Sadiya, U.; Inc, M.; Arefin, M.A.; Uddin, M.H. Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine-Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 2022, 16, 594–607. [Google Scholar] [CrossRef]
- Madani, Y.A.; Mohamed, K.S.; Yasin, S.; Ramzan, S.; Aldwoah, K.; Hassan, M. Exploring novel solitary wave phenomena in Klein–Gordon equation using ϕ 6 model expansion method. Sci. Rep. 2025, 15, 1834. [Google Scholar] [CrossRef]
- Weiss, J.; Tabor, M.; Carnevale, G. The Painlevé property for partial differential equations. J. Math. Phys. 1983, 24, 522–526. [Google Scholar] [CrossRef]
- Ablowitz, M.; Ramani, A.; Segur, H. Nonlinear evolution equations and ordinary differential equations of Painleve’type. Lett. Nuovo Cim. 1978, 23, 333–338. [Google Scholar] [CrossRef]
- Baldwin, D.; Hereman, W. Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations. J. Nonlinear Math. Phys. 2006, 13, 90–110. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Lie symmetry analysis and exact solutions of (3+1) dimensional Yu–Toda–Sasa–Fukuyama equation in mathematical physics. Comput. Math. Appl. 2017, 73, 253–260. [Google Scholar] [CrossRef]
- Dhiman, S.K.; Kumar, S. Analyzing specific waves and various dynamics of multi-peakons in (3+1)-dimensional p-type equation using a newly created methodology. Nonlinear Dyn. 2024, 112, 10277–10290. [Google Scholar] [CrossRef]








| Figure | Solution | Parameter Values |
|---|---|---|
| Figure 1 | , . | |
| Figure 2 | . | |
| Figure 3 | , . | |
| Figure 4 | . | |
| Figure 5 | . | |
| Figure 6 | . | |
| Figure 7 | . | |
| Figure 8 | . |
| Our Solutions | Known Solution from Literature | Advantages of Our Solution |
|---|---|---|
| Equation (39) | or By F-Expansion [44], Sardar sub-equation [47] | Our solution combines trigonometric and secant functions into a single, more complex structure not previously reported. |
| Equation (47) | By Generalized Kudryashov [46] | We can recover known periodic solutions from Equation (47) as a special case (), but our case offers a wider spectrum of solutions with the new arbitrary constants. |
| Equation (55) | bright soliton By Kudryashov [46], Auxiliary Equation [48] | Represents a novel combination of a bright soliton and a kink-type profile, enabling new wave interaction models. |
| Equation (63) | Not found as per the best of our knowledge | This specific multi-peakon and lump-soliton profile might not have been documented for the KFG equation in prior studies, as per the best of our knowledge. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzair, M.; Abdullah, A.R.; Mahmood, I. A Tripartite Analytical Framework for Nonlinear (1+1)-Dimensional Field Equations: Painlevé Analysis, Classical Symmetry Reduction, and Exact Soliton Solutions. Symmetry 2025, 17, 2049. https://doi.org/10.3390/sym17122049
Uzair M, Abdullah AR, Mahmood I. A Tripartite Analytical Framework for Nonlinear (1+1)-Dimensional Field Equations: Painlevé Analysis, Classical Symmetry Reduction, and Exact Soliton Solutions. Symmetry. 2025; 17(12):2049. https://doi.org/10.3390/sym17122049
Chicago/Turabian StyleUzair, Muhammad, Aljethi Reem Abdullah, and Irfan Mahmood. 2025. "A Tripartite Analytical Framework for Nonlinear (1+1)-Dimensional Field Equations: Painlevé Analysis, Classical Symmetry Reduction, and Exact Soliton Solutions" Symmetry 17, no. 12: 2049. https://doi.org/10.3390/sym17122049
APA StyleUzair, M., Abdullah, A. R., & Mahmood, I. (2025). A Tripartite Analytical Framework for Nonlinear (1+1)-Dimensional Field Equations: Painlevé Analysis, Classical Symmetry Reduction, and Exact Soliton Solutions. Symmetry, 17(12), 2049. https://doi.org/10.3390/sym17122049
