The Spacetime Geodesy of Perfect Fluid Spheres
Abstract
1. Introduction
1.1. Cosmography Versus Cosmology
1.2. Synge’s G-Method Versus Synge’s S-Method
1.3. Immediate Plan of Action
1.4. Long Term Goals
2. Spacetime Geodesy of Perfect Fluid Spheres: Framework
2.1. Generalized Eigenvalues
2.2. Physical Interpretation of the “Mixed-Index” and Components
2.3. Pragmatics
3. Spacetime Geodesy of Perfect Fluid Spheres: Examples
3.1. Example 1: Two Free Functions—Purely Integral Version
3.2. Example 2: Two Free Functions—Integro-Differential Version
3.3. Example 3: One Free Function—Area Coordinates
3.4. Example 4: One Free Function—Redshift Coordinates
3.5. Example 5: One Free Function—Exponential Redshift Coordinates
3.6. Discussion of These Perfect Fluid Spheres
4. Weyl Tensor and Weyl Scalar in Spherical Symmetry
4.1. Generalities
4.2. Weyl Tensor for Static Perfect Fluid Spheres
4.3. PFDM—Not a Perfect Fluid
4.4. Complexity Factor
4.5. Discussion of the Weyl Tensor Analysis
5. Spacetime Geodesy of Anisotropic Fluid Spheres
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: Hoboken, NJ, USA, 1972; ISBN 978-0-471-92567-5. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Extended Gravity Cosmography. Int. J. Mod. Phys. D 2019, 28, 1930016. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Farajollahi, H.; Ravanpak, A. Cosmography in f (T) gravity. Phys. Rev. D 2011, 84, 043527. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Salzano, V. Cosmography of f (R) gravity. Phys. Rev. D 2008, 78, 063504. [Google Scholar] [CrossRef]
- Mandal, S.; Wang, D.; Sahoo, P.K. Cosmography in f (Q) gravity. Phys. Rev. D 2020, 102, 124029. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. High-redshift cosmography: Auxiliary variables versus Padé polynomials. Mon. Not. Roy. Astron. Soc. 2020, 494, 2576–2590. [Google Scholar] [CrossRef]
- Visser, M. Cosmography: Cosmology without the Einstein equations. Gen. Rel. Grav. 2005, 37, 1541–1548. [Google Scholar] [CrossRef]
- Shafieloo, A.; Kim, A.G.; Linder, E.V. Gaussian Process Cosmography. Phys. Rev. D 2012, 85, 123530. [Google Scholar] [CrossRef]
- Sathyaprakash, B.S.; Schutz, B.F.; Van Den Broeck, C. Cosmography with the Einstein Telescope. Class. Quant. Grav. 2010, 27, 215006. [Google Scholar] [CrossRef]
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 2012, 86, 123516. [Google Scholar] [CrossRef]
- Lavaux, G.; Wandelt, B.D. Precision cosmography with stacked voids. Astrophys. J. 2012, 754, 109. [Google Scholar] [CrossRef]
- Dunsby, P.K.S.; Luongo, O. On the theory and applications of modern cosmography. Int. J. Geom. Meth. Mod. Phys. 2016, 13, 1630002. [Google Scholar] [CrossRef]
- Courtois, H.M.; Pomarede, D.; Tully, R.B.; Courtois, D. Cosmography of the Local Universe. Astron. J. 2013, 146, 69. [Google Scholar] [CrossRef]
- Cattöen, C.; Visser, M. Cosmographic Hubble fits to the supernova data. Phys. Rev. D 2008, 78, 063501. [Google Scholar] [CrossRef]
- Capozziello, S.; Izzo, L. Cosmography by GRBs. Astron. Astrophys. 2008, 490, 31. [Google Scholar] [CrossRef]
- Vitagliano, V.; Xia, J.Q.; Liberati, S.; Viel, M. High-Redshift Cosmography. J. Cosmol. Astropart. Phys. 2010, 2010, 005. [Google Scholar] [CrossRef]
- Cattöen, C.; Visser, M. Cosmography: Extracting the Hubble series from the supernova data. arXiv 2007, arXiv:gr-qc/0703122. [Google Scholar] [CrossRef]
- Xia, J.Q.; Vitagliano, V.; Liberati, S.; Viel, M. Cosmography beyond standard candles and rulers. Phys. Rev. D 2012, 85, 043520. [Google Scholar] [CrossRef]
- Aviles, A.; Bravetti, A.; Capozziello, S.; Luongo, O. Updated constraints on f (R) gravity from cosmography. Phys. Rev. D 2013, 87, 044012. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R.; Luongo, O. Rational approximations of f (R) cosmography through Padé polynomials. J. Cosmol. Astropart. Phys. 2018, 2018, 008. [Google Scholar] [CrossRef]
- Luongo, O. Cosmography with the Hubble parameter. Mod. Phys. Lett. A 2011, 26, 1459–1466. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Mimoso, J.P.; Visser, M. Cosmographic analysis of redshift drift. J. Cosmol. Astropart. Phys. 2020, 2020, 043. [Google Scholar] [CrossRef]
- Visser, M.; Cattöen, C. Cosmographic analysis of dark energy. arXiv 2009, arXiv:0906.5407. [Google Scholar] [CrossRef]
- Heinesen, A. Redshift drift cosmography for model-independent cosmological inference. Phys. Rev. D 2021, 104, 123527. [Google Scholar] [CrossRef]
- Apostolopoulos, P.S. Spatially inhomogeneous and irrotational geometries admitting Intrinsic Conformal Symmetries. Phys. Rev. D 2016, 94, 124052. [Google Scholar] [CrossRef]
- Apostolopoulos, P.S.; Naidoo, N. Inhomogeneous brane models. Gen. Rel. Grav. 2025, 57, 1. [Google Scholar] [CrossRef]
- Blandford, R.D.; Amin, M.A.; Baltz, E.A.; Mandel, K.; Marshall, P.J. Cosmokinetics. ASP Conf. Ser. 2005, 339, 27. [Google Scholar]
- Nair, R.; Jhingan, S.; Jain, D. Cosmokinetics: A joint analysis of Standard Candles, Rulers and Cosmic Clocks. J. Cosmol. Astropart. Phys. 2012, 2012, 018. [Google Scholar] [CrossRef]
- Shapiro, C.; Turner, M.S. What do we really know about cosmic acceleration? Astrophys. J. 2006, 649, 563–569. [Google Scholar] [CrossRef]
- Linder, E.V. Mapping the Cosmological Expansion. Rept. Prog. Phys. 2008, 71, 056901. [Google Scholar] [CrossRef]
- Cattöen, C.; Visser, M. Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds. Class. Quant. Grav. 2008, 25, 165013. [Google Scholar] [CrossRef]
- Visser, M. Jerk and the cosmological equation of state. Class. Quant. Grav. 2004, 21, 2603–2616. [Google Scholar] [CrossRef]
- Synge, J.L. Relativity: The General Theory; North-Holland: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Ellis, G.F.R.; Garfinkle, D. The Synge G-Method: Cosmology, wormholes, firewalls, geometry. Class. Quant. Grav. 2024, 41, 077002. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182–3184. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 1989, 328, 203–212. [Google Scholar] [CrossRef]
- Hochberg, D. Lorentzian wormholes in higher order gravity theories. Phys. Lett. B 1990, 251, 349–354. [Google Scholar] [CrossRef]
- Frolov, V.P.; Novikov, I.D. Physical Effects in Wormholes and Time Machine. Phys. Rev. D 1990, 42, 1057–1065. [Google Scholar] [CrossRef]
- Roman, T.A. Inflating Lorentzian wormholes. Phys. Rev. D 1993, 47, 1370–1379. [Google Scholar] [CrossRef]
- Hochberg, D.; Kephart, T.W. Wormhole cosmology and the horizon problem. Phys. Rev. Lett. 1993, 70, 2665–2668. [Google Scholar] [CrossRef]
- Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Natural wormholes as gravitational lenses. Phys. Rev. D 1995, 51, 3117–3120. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Press: New York, NY, USA; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Poisson, E.; Visser, M. Thin shell wormholes: Linearization stability. Phys. Rev. D 1995, 52, 7318–7321. [Google Scholar] [CrossRef]
- Kar, S. Evolving wormholes and the weak energy condition. Phys. Rev. D 1994, 49, 862–865. [Google Scholar] [CrossRef]
- Kar, S.; Sahdev, D. Evolving Lorentzian wormholes. Phys. Rev. D 1996, 53, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, D. Quantum mechanical Lorentzian wormholes in cosmological backgrounds. Phys. Rev. D 1995, 52, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, D.; Visser, M. Geometric structure of the generic static traversable wormhole throat. Phys. Rev. D 1997, 56, 4745–4755. [Google Scholar] [CrossRef]
- Visser, M.; Hochberg, D. Generic wormhole throats. Ann. Isr. Phys. Soc. 1997, 13, 249. [Google Scholar]
- Hochberg, D.; Visser, M. General dynamic wormholes and violation of the null energy condition. arXiv 1999, arXiv:gr-qc/9901020. [Google Scholar] [CrossRef]
- Krasnikov, S. A Traversable wormhole. Phys. Rev. D 2000, 62, 084028. [Google Scholar] [CrossRef]
- Armendariz-Picon, C. On a class of stable, traversable Lorentzian wormholes in classical general relativity. Phys. Rev. D 2002, 65, 104010. [Google Scholar] [CrossRef]
- Lemos, J.P.S.; Lobo, F.S.N.; Quinet de Oliveira, S. Morris–Thorne wormholes with a cosmological constant. Phys. Rev. D 2003, 68, 064004. [Google Scholar] [CrossRef]
- Visser, M.; Kar, S.; Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859–864. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D 2005, 71, 084011. [Google Scholar] [CrossRef]
- Sushkov, S.V. Wormholes supported by a phantom energy. Phys. Rev. D 2005, 71, 043520. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Mak, M.K.; Sushkov, S.V. Modified-gravity wormholes without exotic matter. Phys. Rev. D 2013, 87, 067504. [Google Scholar] [CrossRef]
- Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D 2007, 76, 024016. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Exotic solutions in General Relativity: Traversable wormholes and ‘warp drive’ spacetimes. arXiv 2007, arXiv:0710.4474. [Google Scholar] [CrossRef]
- Martin Moruno, P.; Gonzalez-Diaz, P.F. Lorentzian Wormholes: Evaporating a Time Machine! Proceedings of the 12th Marcel Grossmann Meeting on General Relativity, Paris, France, 12–18 July 2009; World Scientific Publishing Co., Pte, Ltd.: Singapore, 2012; Volume 1–3, pp. 1157–1159. [Google Scholar] [CrossRef]
- Konoplya, R.A.; Zhidenko, A. Passage of radiation through wormholes of arbitrary shape. Phys. Rev. D 2010, 81, 124036. [Google Scholar] [CrossRef]
- Nakajima, K.; Asada, H. Deflection angle of light in an Ellis wormhole geometry. Phys. Rev. D 2012, 85, 107501. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Wormholes, Warp Drives and Energy Conditions. In Fundamental Theories of Physics; Springer: Cham, Switzerland, 2017; Volume 189, 279p, ISBN 978-3-319-55181-4/978-3-319-85588-2/978-3-319-55182-1. [Google Scholar] [CrossRef]
- Roman, T.A. Some thoughts on energy conditions and wormholes. arXiv 2004, arXiv:gr-qc/0409090. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 084048. [Google Scholar] [CrossRef]
- Dutta Roy, P.; Aneesh, S.; Kar, S. Revisiting a family of wormholes: Geometry, matter, scalar quasinormal modes and echoes. Eur. Phys. J. C 2020, 80, 850. [Google Scholar] [CrossRef]
- Kar, S.; Bose, S.; Aneesh, S. Towards Constraining Realistic Lorentzian Wormholes Through Observations; World Scientific Publishing Co., Pte, Ltd.: Singapore, 2022. [Google Scholar] [CrossRef]
- Alcubierre, M. The Warp drive: Hyperfast travel within general relativity. Class. Quant. Grav. 1994, 11, L73–L77. [Google Scholar] [CrossRef]
- Ford, L.H.; Roman, T.A. Negative energy, wormholes and warp drive. Sci. Am. 2000, 282N1, 30–37. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Visser, M. Fundamental limitations on ‘warp drive’ spacetimes. Class. Quant. Grav. 2004, 21, 5871–5892. [Google Scholar] [CrossRef]
- Everett, A.E. Warp drive and causality. Phys. Rev. D 1996, 53, 7365–7368. [Google Scholar] [CrossRef]
- Everett, A.E.; Roman, T.A. A Superluminal subway: The Krasnikov tube. Phys. Rev. D 1997, 56, 2100–2108. [Google Scholar] [CrossRef]
- Pfenning, M.J.; Ford, L.H. The Unphysical nature of ‘warp drive’. Class. Quant. Grav. 1997, 14, 1743–1751. [Google Scholar] [CrossRef]
- Clark, C.; Hiscock, W.A.; Larson, S.L. Null geodesics in the Alcubierre warp drive space-time: The View from the bridge. Class. Quant. Grav. 1999, 16, 3965–3972. [Google Scholar] [CrossRef]
- Natário, J. Warp drive with zero expansion. Class. Quant. Grav. 2002, 19, 1157–1166. [Google Scholar] [CrossRef]
- Lobo, F.; Crawford, P. Weak energy condition violation and superluminal travel. Lect. Notes Phys. 2003, 617, 277–291. [Google Scholar] [CrossRef]
- Hiscock, W.A. Quantum effects in the Alcubierre warp drive space-time. Class. Quant. Grav. 1997, 14, L183–L188. [Google Scholar] [CrossRef]
- Finazzi, S.; Liberati, S.; Barceló, C. Semiclassical instability of dynamical warp drives. Phys. Rev. D 2009, 79, 124017. [Google Scholar] [CrossRef]
- Barceló, C.; Finazzi, S.; Liberati, S. Semiclassical instability of warp drives. J. Phys. Conf. Ser. 2010, 229, 012018. [Google Scholar] [CrossRef]
- Santiago, J.; Schuster, S.; Visser, M. Generic warp drives violate the null energy condition. Phys. Rev. D 2022, 105, 064038. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Visser, M. Linearized warp drive and the energy conditions. arXiv 2004, arXiv:gr-qc/0412065. [Google Scholar] [CrossRef]
- Coutant, A.; Finazzi, S.; Liberati, S.; Parentani, R. Impossibility of superluminal travel in Lorentz violating theories. Phys. Rev. D 2012, 85, 064020. [Google Scholar] [CrossRef]
- Shoshany, B. Lectures on Faster-than-Light Travel and Time Travel. SciPost Phys. Lect. Notes 2019, 10, 1. [Google Scholar] [CrossRef]
- Shoshany, B.; Snodgrass, B. Warp drives and closed timelike curves. Class. Quant. Grav. 2024, 41, 205005. [Google Scholar] [CrossRef]
- Alcubierre, M.; Lobo, F.S.N. Warp Drive Basics. Fundam. Theor. Phys. 2017, 189, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Barceló, C.; Sánchez, J.E.; García-Moreno, G.; Jannes, G. Chronology protection implementation in analogue gravity. Eur. Phys. J. C 2022, 82, 299. [Google Scholar] [CrossRef]
- Schuster, S.; Santiago, J.; Visser, M. ADM mass in warp drive spacetimes. Gen. Rel. Grav. 2023, 55, 14. [Google Scholar] [CrossRef]
- Liberati, S. Do not mess with time: Probing faster than light travel and chronology protection with superluminal warp drives. arXiv 2016, arXiv:1601.00785. [Google Scholar] [CrossRef]
- Barceló, C.; Boyanov, V.; Garay, L.J.; Martín-Martínez, E.; Velázquez, J.M.S. Warp drive aerodynamics. J. High Energy Phys. 2022, 2022, 288. [Google Scholar] [CrossRef]
- Barceló, C.; Finazzi, S.; Liberati, S. On the Impossibility of Superluminal Travel: The Warp Drive Lesson. arXiv 2010, arXiv:1001.4960. [Google Scholar] [CrossRef]
- Finazzi, S.; Liberati, S.; Barceló, C. Superluminal warp drives are semiclassically unstable. J. Phys. Conf. Ser. 2010, 222, 012046. [Google Scholar] [CrossRef]
- Schuster, S. Frenemies with Physicality: Manufacturing Manifold Metrics. arXiv 2023, arXiv:2305.08725. [Google Scholar] [CrossRef]
- Clough, K.; Dietrich, T.; Khan, S. What no one has seen before: Gravitational waveforms from warp drive collapse. Open J. Astrophys. 2014, 7. [Google Scholar] [CrossRef]
- Santiago, J.; Schuster, S.; Visser, M. Tractor Beams, Pressor Beams and Stressor Beams in General Relativity. Universe 2021, 7, 271. [Google Scholar] [CrossRef]
- Visser, M.; Santiago, J.; Schuster, S. Tractor beams, pressor beams, and stressor beams within the context of general relativity. arXiv 2021, arXiv:2110.14926. [Google Scholar] [CrossRef]
- Tippett, B.K.; Tsang, D. The Blue Box White Paper. arXiv 2013, arXiv:1310.7983. [Google Scholar] [CrossRef]
- Hiscock, W.A. From wormholes to the warp drive: Using theoretical physics to place ultimate bounds on technology. arXiv 2002, arXiv:physics/0211114. [Google Scholar] [CrossRef]
- Obousy, R.K.; Cleaver, G. Putting the ‘Warp’ into Warp Drive. arXiv 2008, arXiv:0807.1957. [Google Scholar] [CrossRef]
- Schwarzschild, K. Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie [On the gravitational field of a ball of incompressible fluid following Einstein’s theory]. Sitzungsberichte K. Akad. Wiss. 2016, 7, 424–434. [Google Scholar]
- Schwarzschild, K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. [On the gravitational field of a point mass following Einstein’s theory]. Sitzungsberichte K. Preuss. Akad. Wiss. 1916, 7, 189–196. [Google Scholar]
- Droste, J. The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Proc. R. Neth. Acad. Arts Sci. 1917, 19, 197–215. [Google Scholar] [CrossRef]
- Droste, J. Golden Oldie: The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Gen. Relativ. Gravit. 2002, 34, 1545–1563. [Google Scholar] [CrossRef]
- Droste, J. Editor’s note: The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Gen. Relativ. Gravit. 2002, 34, 1541–1543. [Google Scholar] [CrossRef]
- Hilbert, D. Die Grundlagen der Physik. [The foundations of Physics]. Nachrichten Ges. Wiss. Gött. Math.-Phys. Kl. 1917, 1917, 53–76. [Google Scholar]
- Oppenheimer, J.R.; Volkov, G.B. On massive neutron cores. Phys. Rev. 1939, 55, 374–381. [Google Scholar] [CrossRef]
- Delgaty, M.S.R.; Lake, K. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun. 1998, 115, 395–415. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0-521-46702-5/978-0-511-05917-9. [Google Scholar] [CrossRef]
- MacCallum, M.A.H. Finding and using exact solutions of the Einstein equations. AIP Conf. Proc. 2006, 841, 129–143. [Google Scholar] [CrossRef]
- Griffiths, J.B.; Podolsky, J. Exact Space-Times in Einstein’s General Relativity; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-1-139-48116-8. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-25316-1/978-1-009-25315-4/978-0-521-20016-5/978-0-521-09906-6/978-0-511-82630-6/978-0-521-09906-6. [Google Scholar] [CrossRef]
- Finch, M.R.; Skea, J.E.F. A review of the relativistic static fluid sphere. 1998; unpublished. [Google Scholar]
- Tolman, R.C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 1939, 55, 364–373. [Google Scholar] [CrossRef]
- Barraco, D.; Hamity, V.H. Maximum mass of a spherically symmetric isotropic star. Phys. Rev. D 2002, 65, 124028. [Google Scholar] [CrossRef]
- Mak, M.K.; Harko, T. Isotropic stars in general relativity. Eur. Phys. J. C 2013, 73, 2585. [Google Scholar] [CrossRef]
- Lake, K. Transforming the Einstein static Universe into physically acceptable static fluid spheres. Phys. Rev. D 2008, 77, 127502. [Google Scholar] [CrossRef]
- Rahman, S.; Visser, M. Space-time geometry of static fluid spheres. Class. Quant. Grav. 2002, 19, 935–952. [Google Scholar] [CrossRef]
- Martin, D.; Visser, M. Bounds on the interior geometry and pressure profile of static fluid spheres. Class. Quant. Grav. 2003, 20, 3699–3716. [Google Scholar] [CrossRef]
- Boonserm, P.; Visser, M.; Weinfurtner, S. Generating perfect fluid spheres in general relativity. Phys. Rev. D 2005, 71, 124037. [Google Scholar] [CrossRef]
- Boonserm, P.; Visser, M.; Weinfurtner, S. Solution generating theorems for the TOV equation. Phys. Rev. D 2007, 76, 044024. [Google Scholar] [CrossRef]
- Boonserm, P. Some Exact Solutions in General Relativity. Master’s Thesis, Victoria University of Wellington, Wellington, New Zealand, 2006. [Google Scholar]
- Boonserm, P.; Visser, M. Buchdahl-like transformations for perfect fluid spheres. Int. J. Mod. Phys. D 2008, 17, 135–163. [Google Scholar] [CrossRef]
- Boonserm, P.; Visser, M. Buchdahl-Like Transformations in General Relativity. Thai J. Math. 2007, 5, 209–223. [Google Scholar]
- Kinreewong, A.; Boonserm, P.; Ngampitipan, T. Solution Generating Theorems and Tolman-Oppenheimer-Volkov Equation for Perfect Fluid Spheres in Isotropic Coordinates. In Proceedings of the 2016 International Conference on Applied Mathematics, Simulation and Modelling, Beijing, China, 28–29 May 2016. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Boonsiri, S. Solving for Schwarzschild solution using variation of parameters and Frobenius method. AIP Conf. Proc. 2019, 2184, 060019. [Google Scholar] [CrossRef]
- Boonserm, P.; Sansook, K.; Ngampitipan, T. Quasinormal modes of perfect fluid spheres. AIP Conf. Proc. 2021, 2423, 020007. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.G. Tolman-Oppenheimer-Volkoff equation and static spheres in conformal Killing gravity. Phys. Rev. D 2025, 111, 064085. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Generalized Rainich conditions, generalized stress-energy conditions, and the Hawking-Ellis classification. Class. Quant. Grav. 2017, 34, 225014. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Essential core of the Hawking–Ellis types. Class. Quant. Grav. 2018, 35, 125003. [Google Scholar] [CrossRef]
- Curiel, E. A Primer on Energy Conditions. Einstein Stud. 2017, 13, 43–104. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Classical and semi-classical energy conditions. Fundam. Theor. Phys. 2017, 189, 193–213. [Google Scholar] [CrossRef]
- Barceló, C.; Visser, M. Twilight for the energy conditions? Int. J. Mod. Phys. D 2002, 11, 1553–1560. [Google Scholar] [CrossRef]
- Borissova, J.; Liberati, S.; Visser, M. Violations of the null convergence condition in kinematical transitions between singular and regular black holes, horizonless compact objects, and bounces. Phys. Rev. D 2025, 111, 104054. [Google Scholar] [CrossRef]
- Borissova, J.; Liberati, S.; Visser, M. Timelike convergence condition in regular black-hole spacetimes with (anti-)de Sitter core. Phys. Rev. D 2025, in press.
- Baines, J.; Gaur, R.; Visser, M. Defect Wormholes Are Defective. Universe 2023, 9, 452. [Google Scholar] [CrossRef]
- Feng, J.C. Smooth metrics can hide thin shells. Class. Quant. Grav. 2023, 40, 197002. [Google Scholar] [CrossRef]
- Simmonds, C.; Visser, M. Traversable Kaluza-Klein wormholes? Universe 2025, 11, 347. [Google Scholar] [CrossRef]
- Visser, M. The Kiselev black hole is neither perfect fluid, nor is it quintessence. Class. Quant. Grav. 2020, 37, 045001. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Decomposition of the total stress energy for the generalized Kiselev black hole. Phys. Rev. D 2020, 101, 024022. [Google Scholar] [CrossRef]
- Kiselev, V.V. Quintessence and black holes. Class. Quant. Grav. 2003, 20, 1187–1198. [Google Scholar] [CrossRef]
- Herrera, L. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self-gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Complexity factors for axially symmetric static sources. Phys. Rev. D 2019, 99, 044049. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Carot, J. Complexity of the Bondi metric. Phys. Rev. D 2019, 99, 124028. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Quasi-homologous evolution of self-gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 631. [Google Scholar] [CrossRef]
- Herrera, L. Complexity and Simplicity of Self–Gravitating Fluids. arXiv 2023, arXiv:2304.05870. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A. Cracking and complexity of self-gravitating dissipative compact objects. Phys. Rev. D 2024, 109, 064071. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Complexity hierarchies in Euclidean stars. Symmetry 2025, 17, 1517. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Non-Static Fluid Spheres Admitting a Conformal Killing Vector: Exact Solutions. Universe 2022, 8, 296. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. The Post-Quasi-Static Approximation: An Analytical Approach to Gravitational Collapse. Symmetry 2024, 16, 341. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Evolution of Self-Gravitating Fluid Spheres Involving Ghost Stars. Symmetry 2024, 16, 1422. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. The Birth of a Ghost Star. Entropy 2025, 27, 412. [Google Scholar] [CrossRef] [PubMed]
- Casadio, R.; Contreras, E.; Ovalle, J.; Sotomayor, A.; Stuchlick, Z. Isotropization and change of complexity by gravitational decoupling. Eur. Phys. J. C 2019, 79, 826. [Google Scholar] [CrossRef]
- Sharif, M.; Butt, I.I. Complexity Factor for Charged Spherical System. Eur. Phys. J. C 2018, 78, 688. [Google Scholar] [CrossRef]
- Yousaf, Z.; Khlopov, M.Y.; Bhatti, M.Z.; Naseer, T. Influence of Modification of Gravity on the Complexity Factor of Static Spherical Structures. Mon. Not. Roy. Astron. Soc. 2020, 495, 4334–4346. [Google Scholar] [CrossRef]
- Yousaf, Z. Definition of complexity factor for self-gravitating systems in Palatini f(R) gravity. Phys. Scr. 2020, 95, 075307. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Naseer, T. Measure of complexity for dynamical self-gravitating structures. Int. J. Mod. Phys. D 2020, 29, 2050061. [Google Scholar] [CrossRef]
- Contreras, E.; Fuenmayor, E. Gravitational cracking and complexity in the framework of gravitational decoupling. Phys. Rev. D 2021, 103, 124065. [Google Scholar] [CrossRef]
- Carrasco-Hidalgo, M.; Contreras, E. Ultracompact stars with polynomial complexity by gravitational decoupling. Eur. Phys. J. C 2021, 81, 757. [Google Scholar] [CrossRef]
- Maurya, S.K.; Errehymy, A.; Nag, R.; Daoud, M. Role of Complexity on Self-gravitating Compact Star by Gravitational Decoupling. Fortsch. Phys. 2022, 70, 2200041. [Google Scholar] [CrossRef]
- Maurya, S.K.; Govender, M.; Kaur, S.; Nag, R. Isotropization of embedding Class I spacetime and anisotropic system generated by complexity factor in the framework of gravitational decoupling. Eur. Phys. J. C 2022, 82, 100. [Google Scholar] [CrossRef]
- Arias, C.; Contreras, E.; Fuenmayor, E.; Ramos, A. Anisotropic star models in the context of vanishing complexity. Ann. Phys. 2022, 436, 168671. [Google Scholar] [CrossRef]
- Naseer, T.; Sharif, M. Charged anisotropic Starobinsky models admitting vanishing complexity. Phys. Dark Univ. 2024, 46, 101595. [Google Scholar] [CrossRef]
- Sharif, M.; Naseer, T. Charged anisotropic models with complexity-free condition. Ann. Phys. 2023, 453, 169311. [Google Scholar] [CrossRef]
- Nazar, H.; Alkhaldi, A.H.; Abbas, G.; Shahzad, M.R. Complexity factor for anisotropic self-gravitating sphere in Rastall gravity. Int. J. Mod. Phys. A 2021, 36, 2150233. [Google Scholar] [CrossRef]
- Kaur, S.; Maurya, S.K.; Shukla, S. Anisotropic fluid solution in f(Q) gravity satisfying vanishing complexity factor. Phys. Scr. 2023, 98, 105304. [Google Scholar] [CrossRef]
- Naseer, T.; Sharif, M. Role of decoupling and Rastall parameters on Krori–Barua and Tolman IV models generated by isotropization and complexity factor. Class. Quant. Grav. 2024, 41, 245006. [Google Scholar] [CrossRef]
- Naseer, T.; Sharif, M. Extending Finch-Skea isotropic model to anisotropic domain in modified f(R, T) gravity. Phys. Scr. 2024, 99, 075012. [Google Scholar] [CrossRef]
- Khan, S.; Yousaf, Z. Complexity-free charged anisotropic Finch-Skea model satisfying Karmarkar condition. Phys. Scr. 2024, 99, 055303. [Google Scholar] [CrossRef]
- Naseer, T.; Sharif, M.; Faiza, M.; Nisar, K.S.; Mahmoud, M. Insights of traversable wormhole geometries under complexity factor and different equations of state in modified gravity. Ann. Phys. 2025, 479, 170076. [Google Scholar] [CrossRef]
- Naseer, T.; Sharif, M.; Faiza, M.; Afandi, F.; Eid, M.R.; Abdel-Aty, A.H. Exploring traversable wormholes in modified theory: Complexity and VIQ perspective under solitonic quantum wave dark matter halo. Phys. Dark Univ. 2025, 50, 102112. [Google Scholar] [CrossRef]
- Harko, T.; Mak, M.K. Anisotropic relativistic stellar models. Ann. Phys. 2002, 11, 3–13. [Google Scholar] [CrossRef]
- Tello-Ortiz, F.; Malaver, M.; Rincón, Á.; Gomez-Leyton, Y. Relativistic anisotropic fluid spheres satisfying a non-linear equation of state. Eur. Phys. J. C 2020, 80, 371. [Google Scholar] [CrossRef]
- Singh, K.N.; Bhar, P.; Pant, N. A new solution of embedding class I representing anisotropic fluid sphere in general relativity. Int. J. Mod. Phys. D 2016, 25, 1650099. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Visser, M. Mimicking static anisotropic fluid spheres in general relativity. Int. J. Mod. Phys. D 2015, 25, 1650019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simmonds, C.; Visser, M. The Spacetime Geodesy of Perfect Fluid Spheres. Symmetry 2025, 17, 2043. https://doi.org/10.3390/sym17122043
Simmonds C, Visser M. The Spacetime Geodesy of Perfect Fluid Spheres. Symmetry. 2025; 17(12):2043. https://doi.org/10.3390/sym17122043
Chicago/Turabian StyleSimmonds, Christopher, and Matt Visser. 2025. "The Spacetime Geodesy of Perfect Fluid Spheres" Symmetry 17, no. 12: 2043. https://doi.org/10.3390/sym17122043
APA StyleSimmonds, C., & Visser, M. (2025). The Spacetime Geodesy of Perfect Fluid Spheres. Symmetry, 17(12), 2043. https://doi.org/10.3390/sym17122043

