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Abstract

This paper investigates the estimation of the stress–strength reliability parameter
ρ = P(X ≤ Y), where stress (X) and strength (Y) are independently modeled by geo-
metric distributions. Objective Bayesian approaches are employed by developing Jef-
freys, reference, and probability-matching priors for ρ, and their effects on the resulting
Bayes estimates are examined. Posterior inference is carried out using the random-walk
Metropolis–Hastings algorithm. The performance of the proposed Bayesian estimators
is assessed through extensive Monte Carlo simulations based on average estimates, root
mean squared errors, and frequentist coverage probabilities of the highest posterior density
credible intervals. Furthermore, the applicability of the methodology is demonstrated using
two real data sets.

Keywords: Jeffreys prior; reference prior; probability matching prior; symmetric proposal;
stress–strength reliability

1. Introduction
The estimation of stress–strength models has long been recognized as a fundamental

topic in reliability theory. These models play an important role in various applied fields,
particularly in engineering, quality assurance, and medical sciences. A significant por-
tion of the statistical literature has focused on the estimation of the reliability parameter
ρ = P(X < Y), where X denotes the stress applied to a system, Y represents its strength,
and ρ quantifies the probability that the system can withstand the applied stress. It is worth
emphasizing that numerous authors have investigated the estimation of the stress–strength
reliability parameter ρ using both frequentist and subjective Bayesian approaches across
a range of continuous distributions and under various sampling schemes, and this topic
continues to attract considerable attention in the statistical literature. For instance, Ref. [1]
addressed this problem for the generalized exponential distribution; Ref. [2] studied it for
the inverse Pareto distribution under progressively censored data; and Ref. [3] explored it
for the exponential distribution based on generalized order statistics. In addition, Ref. [4]
examined the Bayesian estimation of ρ for the Lomax distribution under type-II hybrid
censoring using an asymmetric loss function. On the other hand, several authors have
employed objective Bayesian methods, for instance, Ref. [5] for the Weibull distribution,
Ref. [6] for the generalized exponential stress–strength model, and Ref. [7] for the Fréchet
stress–strength model. Related investigations based on discrete probability distributions
include the works of [8] for Poisson data and [9] for the Poisson-geometric distribution. The
geometric distribution has also been studied by [10–12] for complete data and for lower
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record data by [13]. However, in these latter studies, the Bayesian methods applied were
subjective and limited in scope.

In this paper, we address the problem of estimating the stress–strength reliability pa-
rameter ρ when both the stress X and the strength Y are modeled as independent geometric
random variables with parameters θ1 and θ2, respectively. Accordingly, the reliability of
the stress–strength system is given by

ρ = Pr(X ≤ Y) =
∞

∑
k=1

∞

∑
j=k

θ1θ2(1 − θ1)
k−1(1 − θ2)

j−1 =
θ1

1 − (1 − θ1)(1 − θ2)
. (1)

The importance of studying stress–strength reliability under geometric distributions lies
in its wide range of real-world applications, where reliable estimates with meaningful
interpretation are required. For instance, in manufacturing quality control, let X denote
the number of shocks a component tolerates before breaking and Y the number a stronger
reference part withstands. The stress–strength reliability ρ = Pr(X ≤ Y) then quantifies
the probability that the component fails first. Since such failures typically occur after
repeated shocks with a constant chance of breaking, the geometric distribution provides
a natural model. A similar scenario arises in digital communication systems, where X
represents the number of packet retransmissions until failure for a weaker channel and Y
for a stronger channel. In this case, ρ gives the probability that the weaker channel fails
before the stronger one. Because packet transmissions follow repeated Bernoulli trials,
the geometric distribution again offers a suitable framework. Finally, and more importantly,
two additional real data examples highlighting the relevance of the stress–strength model
are presented in the applications section.

Methods for estimating ρ from discrete distributions have primarily relied on classical
approaches, with the most common being the maximum likelihood (ML) estimator and
subjective Bayesian methods, as clearly demonstrated in the works of [10–12]. While ML
estimators have desirable properties, such as invariance and asymptotic efficiency, they are
well known to exhibit bias, particularly with small sample sizes. Similar limitations arise
when using subjective Bayesian methods, as these often involve multiple hyperparameters
that must be elicited. However, the authors in the aforementioned papers employed
the subjective Bayesian approach with hyperparameters that were subjectively chosen,
rather than explicitly elicited, which can lead to potentially biased results. Specifically,
the authors applied independent Beta priors to the parameters of the geometric distribution,
i.e., θ1 ∼ Beta(a1, b1) and θ2 ∼ Beta(a2, b2), and arbitrarily selected the hyperparameters.
One might ask why the subjective Bayesian approach did not involve a more rigorous
elicitation of these parameters? The answer to this question lies in the criteria used for
elicitation. For this case, four parameters need to be elicited, and there are numerous ways
to do so, without a clear indication of which method will yield the most robust and reliable
results. For example, one might set the mean and variance of the prior distributions, i.e., the
considered beta distributions equal to the mean and variance of the geometric distribution.
However, this approach can lead to infeasible solutions, such as negative values. Even if an
alternative criterion is chosen and produces reasonable values, it still does not guarantee
that the method will be applicable in all cases or lead to reliable results. Certainly, the most
appealing approach would be to leverage prior information (past knowledge) about the
parameters θ1 and θ2. Unfortunately, such prior information is often unavailable in many
situations. Furthermore, the authors did not train their methods on real data, which limits
the generalizability and robustness of their results.

Alternatively, we adopt a Bayesian approach for estimating ρ using non-informative
priors. Our motivation for using such priors, in addition to the importance of studying ρ

under geometric distributions, lies in its wide range of real-world applications. The reasons
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for choosing this approach are as follows: (i) this is the first study to consider objective
Bayesian inference for ρ; (ii) the priors considered in this study are informative yet contain
minimal information; (iii) the priors eliminate the need for hyperparameter elicitation;
(iv) the priors are obtained using formal rules; and (v) the priors possess the flavor of
invariance, or certain modifications that offer improved performance, particularly in high-
dimensional parameter settings, or alternative priors capable of producing credible intervals
with coverage properties comparable to those of frequentist confidence intervals.

Before proceeding, we would like to point out that ρ is a function of the model param-
eters. In such cases, constructing non-informative priors requires particular care, except for
Jeffreys’ prior, which is invariant by design. Other types of priors, such as matching and ref-
erence priors, are generally not invariant under reparameterization. For instance, suppose
matching priors are developed under the assumption that θ1 is the parameter of interest and
θ2 is a nuisance parameter, or vice versa. If a one-to-one transformation is then applied to
express the model in terms of ρ, the resulting prior is not guaranteed to be a matching prior
for ρ. This is because the inverse transformation yields reference or matching priors that
are valid for θ1 and θ2, depending on which parameter was treated as influential, but not
necessarily for a derived parameter like ρ. A similar issue arises with reference priors.
While it might be argued, as shown by [14], that reference and matching priors are invariant,
this invariance only holds when such priors are developed directly for ρ as a function of
θ1 and θ2, followed by an appropriate transformation. In that case, the resulting priors
retain their desired properties with respect to ρ. A comparable situation is discussed in [15],
who provided Bayesian inference for the entropy of the Lomax distribution, a quantity that
also depends on the model parameters, and demonstrated that the reference and matching
priors for this entropy cannot be derived from those of the model parameters. For further
developments and illustrative examples, the reader is referred to [14], who specifically
constructed matching priors for functions of model parameters.

The rest of the paper is organized as follows. Likelihood-based inference for ρ is pre-
sented in Section 2. In Section 3, we derive non-informative priors for ρ, including Jeffreys,
reference, and probability-matching priors. Section 4 reports a simulation study conducted
via MCMC to assess the performance of the Bayes estimators of ρ under various objective
priors. In this section, we also provide the average estimates, standard errors, and coverage
probabilities of the 95% credible intervals. The compatibility of the proposed priors is
further examined in Section 5 using the posterior predictive distribution. In Section 6,
the practical utility of the stress–strength reliability measure for the geometric distribution
is demonstrated through two real data applications. Finally, concluding remarks are given
in Section 7.

2. Likelihood-Based Inference for ρ

Let X = (X1, . . . , Xn)t and Y = (Y1, . . . , Ym)t be independent random samples
from GE(θ1) and GE(θ2), respectively, where GE(.) denotes the geometric distribution.
Then, the likelihood function of (θ1, θ2) based on the realizations x = (x1, . . . , xn)t and
y = (y1, . . . , ym)t, is

L(θ1, θ2|x, y) =
n

∏
i=1

{
θ1(1 − θ1)

xi−1
} m

∏
j=1

{
θ2(1 − θ2)

yj−1
}

, (2)

= θn
1 θm

2 (1 − θ1)
T1−n(1 − θ2)

T2−m, (n, m) ∈ N×N,

where T1 = ∑n
i=1 Xi and T2 = ∑m

j=1 Yj. The ML estimates of (θ1, θ2) can be obtained by
maximizing the log-likelihood function with a mathematical form given by
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ℓ(θ1, θ2) = n ln(θ1) + m ln(θ2) + (T1 − n) ln(1 − θ1) + (T2 − m) ln(1 − θ1).

The partial derivatives of ℓ(θ1, θ2) with θ1 and θ2 are given below:

∂ℓ(θ1, θ2)

∂θ1
=

n
θ1

− T1 − n
1 − θ1

and
∂ℓ(θ1, θ2)

∂θ2
=

m
θ2

− T2 − m
1 − θ2

.

On solving the above equations, the ML estimates of (θ1, θ2) are given by θ̂1 = n
T1

and

θ̂2 = m
T2

. Since E(X) = 1
θ1

and E(Y) = 1
θ2

, the elements of the Fisher information matrix are
computed via

−E
(

∂2ℓ(θ1, θ2)

∂θ2
1

)
=

(
n
θ2

1
+

E(T1 − n)
(1 − θ1)2 =

n
θ2

1(1 − θ1)

)
,

E
(

∂2ℓ(θ1, θ2)

∂θ1∂θ1

)
= E

(
∂2ℓ(θ1, θ2)

∂θ2∂θ1

)
= 0,

and

−E
(

∂2ℓ(θ1, θ2)

∂θ2
2

)
=

m
θ2

2 +
E(T2 − m)

(1 − θ2)2 =
m

θ2
2(1 − θ2)

.

Therefore, we have that

F(θ1, θ2) =

 −E( ∂2ℓ(θ1,θ2)

∂θ2
1

−E
(

∂2ℓ(θ1,θ2)
∂θ1∂θ1

)
−E
(

∂2ℓ(θ1,θ2)
∂θ2∂θ1

)
−E
(

∂2ℓ(θ1,θ2)

∂θ2
2

)
 =

 n
θ2

1(1−θ1)
0

0 m
θ2

2(1−θ2)

, (3)

The following results are required to establish the asymptotic normality of the ML estimate
of ρ.

Lemma 1. The ML estimates θ̂1 = n
T1

and θ̂2 = m
T2

are consistent estimators of θ1 and θ2,
respectively.

Proof. We provide only the proof of the consistency of θ̂1 = n
T1

for θ1, and the proof for

the other estimator can be handled similarly. Since Wn := T1
n = ∑n

i=1 Xi
n , it follows from

the strong law of large numbers that T1
n converges in probability to E(X1) = 1

θ1
. Now,

since g(x) = 1
x for x > 0 is a continuous function, it follows that g(Wn) =

n
T1

converges to
g(E(X1)) = θ1.

The following theorem establishes that the ML estimates of θ1 and θ2 are asymptotically
bivariate normal. The conditions required for this are as follows: The likelihood function
must be identifiable and differentiable, and the true parameter value must lie in the
interior of the parameter space. The partial derivatives of the log-likelihood function
must be continuous and have a unique solution at the true parameter. Additionally,
the observed Fisher information must converge to its expected value as the sample size
increases, and the Fisher information matrix must be finite and positive definite. Finally,
the log-likelihood function should satisfy smoothness conditions. For more information on
these regularity conditions and the establishment of the asymptotic normality of the MLE,
see [16] (1993, p. 132).
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Theorem 1. We have that, as n → ∞, m → ∞, and n
m → p,

(√
n(θ̂1 − θ1),

√
m(θ̂2 − θ2)

)t
⇒

N2(0, H−1(θ1, θ2)), where ⇒ stand for convergence in distribution, and N2(., .) stand for bivariate
normal distribution, and

H(θ1, θ2)) =

 1
θ2

1(1−θ1)
0

0 p
θ2

2(1−θ2)

, (4)

Proof. Thanks to the exponential family of distributions, which satisfies all the mentioned
regularity conditions, asymptotic normality follows. Since the geometric distribution
belongs to the exponential family, the asymptotic normality of its MLEs is guaranteed.
The above matrix is obtained by virtue of the regularity condition given in the preceding
paragraph, which states that the average observed Fisher information must converge to
its expected value as the sample size increases. To see this, the average observed Fisher
information matrix, after simple rearrangement, is

1
n

J(θ1, θ2) =

 1
θ2

1
+ X−1

(1−θ1)2 0

0 m
n

(
1
θ2

2
+ Y−1

(1−θ2)2

) ,

Since X and Y converges in probability to 1/θ1 and 1/θ2 in probability as n, m → ∞
respectively and by mean of the assumption that m/n → p ∈ (0, 1], it follows that 1

n J(θ1, θ2)

converges in probability to H(θ1, θ2)). Noticed that when p = 1 implies m = n and hence
H(θ1, θ2) is the Fisher information matrix of independent geometric distributions per unit
of observation, and this completes the proof.

Theorem 2 ([16] (1993, p. 132)). Suppose that
√

n(Wn − θ) ⇒ Nk(0, Σ), were Wn is k-
dimensional random vectors, θ = (θ1, . . . , θk)

t, and Σ is the variance-covariance matrix. Let
g : Rk → R be a real-valued function with ∇ := (∂g(θ)/∂θ1, . . . , ∂g(θ)/∂θk) ̸= 0 and continu-
ous in a neighborhood of θ. Then,

√
n(g(Wn)− g(θ)) ⇒ Nk(0,∇tΣ∇).

The above theorem is usually referred to as the Delta method. Here, we establish the
first results relating to the estimate of ρ.

Theorem 3. As n → ∞, m → ∞, and n
m → p, we have

√
n(ρ̂ − ρ) ⇒ N(0, σ2

ρ ), where

σ2
ρ =

θ2
1θ2

2(1 − θ1)

δ2 {1 + p(1 − θ1)(1 − θ2)},

and δ = {1 − (1 − θ1)(1 − θ2)}2.

Proof. We have from, Theorem 1 that as n → ∞, m → ∞,
(√

n(θ̂1 − θ1),
√

m(θ̂2 − θ2)
)t

⇒
N2(0, H−1(θ1, θ2)), where H(θ1, θ2) is given in (4). Clearly, ρ : (0, 1)× (0, 1) → (0, 1), where

ρ =: ρ(θ1, θ2) =
θ1

1 − (1 − θ1)(1 − θ2)
.

Notice that the ρ plays the role as the g(.) function in Theorem 2, and hence we have that
as n → ∞, m → ∞, and n

m → p,
√

n(ρ̂ − ρ) ⇒ N(0, σ2
ρ ), where

σ2
ρ = ∇tH−1(θ1, θ2)∇, (5)
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and

∇ =

(
∂ρ

∂θ1
,

∂ρ

∂θ2

)t
=

(
θ2

{1 − (1 − θ1)(1 − θ2)}2 , − θ1(1 − θ1)

{1 − (1 − θ1)(1 − θ2)}2

)t

.

In view of (5), we have that

σ2
ρ =

θ2
1 θ2

2(1 − θ1)

δ2 {1 + p(1 − θ1)(1 − θ2)},

as desired.

Since θ̂1 and θ̂2 are consistence estimators by the mean of Lemma 1 an approximate
(1 − α)100% confidence interval of ρ is

ρ̂ ± z α
2
σ̂ρ, where σ̂2

ρ =
θ̂2

1 θ̂2
2(1 − θ̂1)

δ̂2

{
1 + p(1 − θ̂1)(1 − θ̂2)

}
.

3. Bayes Inferences: Objective Priors
In this section, we construct several important objective (non-informative) priors for the

parameter ρ, including the Jeffreys prior, reference priors, and probability matching priors.
These priors are developed to ensure minimal informativeness while retaining desirable
inferential properties. Following the construction of each prior, we examine the propriety
and finiteness of the resulting posterior distributions. We then proceed to derive the Bayes
estimates of ρ under the squared error loss (SEL). To facilitate the construction of certain priors,
particularly the reference and matching priors, we reparameterize the original model in terms
of the parameter ρ. While the Jeffreys prior is invariant under one-to-one transformations and
thus can be obtained directly without reparameterization, such transformations are crucial
for deriving the reference and matching priors, as they depend explicitly on the parameter of
interest. Therefore, we consider a one-to-one transformation from

Ω(θ1,θ2)
= {(θ1, θ2) : 0 < θ1 < 1, 0 < θ2 < 1} onto Ω(ρ,ω) = {(ρ, ω) : 0 < ρ < 1, 0 < ω < 1},

where

ρ =
θ1

1 − (1 − θ1)(1 − θ2)
and ω = θ2, (6)

along with the inverse of the transformation,

θ1 =
ρω

1 − (1 − ω)ρ
and θ2 = ω.

Therefore, the likelihood function of (ρ, ω) based on (x, y)t is

L(ρ, ω|x, y) ∝ ρnωn+m(1 − ρ)T1−n(1 − ω)T2−m(1 − ρ(1 − ω))−T1 . (7)

We now aim to obtain the Fisher information matrix corresponding to the parameters ρ

and ω. To this end, we first evaluate the Jacobian matrix of the transformation M = ∂(θ1,θ2)
∂(ρ,ω)

which is given by

M =


ω

(1−(1−ω)ρ)2
ρ(1−ρ)

(1−(1−ω)ρ)2

0 1

. (8)
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Using Equations (3) and (8), the Fisher information matrix for the parameters ρ and ω,
denoted by Σ(ρ, ω), is obtained through the relation Σ(ρ, ω) = MTFM. This result is
summarized in the following lemma.

Theorem 4. The Fisher information matrix of (ρ, ω) has the following form

Σ(ρ, ω) =

 σρρ σρω

σωρ σωω

 =


n

ρ2(1−ρ)(1−(1−ω)ρ)
n

ρω(1−(1−ω)ρ)

n
ρω(1−(1−ω)ρ)

mω+(n+m)(1−ω)(1−ρ)
ω2(1−ω)(1−(1−ω)ρ)

. (9)

3.1. Jeffreys Prior

The first non-informative prior we consider is the Jeffreys prior, which is commonly
used in Bayesian inference due to its simple derivation from the Fisher information matrix
and its invariance property. In general, this type of prior is improper, as are many other
non-informative priors. Additionally, it may be inappropriate when the dimensionality of
the model increases. Therefore, from Equation (9), the Jeffreys prior of (ρ, ω) is

πJ(ρ, ω) ∝
1

ρω{(1 − ρ)(1 − ω)(1 − (1 − ω)ρ)}1/2 , 0 < ρ < 1, 0 < ω < 1. (10)

The joint posterior of (ρ, ω) under πJ(ρ, ω) in (10) is

πJ(ρ, ω|x, y) ∝ ρn−1ωn+m−1(1 − ρ)T1−n−1/2(1 − ω)T2−m−1/2(1 − ρ(1 − ω))−T1−1/2. (11)

Theorem 5. The posterior πJ(ρ, ω|x, y) is proper if and only if m > 2, T1 > n − 1/2 and
T2 > m − 1/2.

Proof. We have that for sufficiently small values (ρ, ω) → (0, 0), we have that πJ(ρ, ω|x, y) ∼
ρn−1ωn+m−1, and hence

∫ 1
0

∫ 1
0 πJ(ρ, ω|x, y)dωdρ = 1/(n (n + m)) < +∞. Similarly, for the

values (ρ, ω) → (1, 1), we have that πJ(ρ, ω|x, y) ∼ (1 − ρ)T1−n−1/2(1 − ω)T2−m−1/2. So,
we have that∫ 1

0

∫ 1

0
πJ(ρ, ω|x, y)dωdρ =

∫ 1

0

∫ 1

0
(1 − ρ)T1−n−1/2(1 − ω)T2−m−1/2dωdρ

=
1

(T1 − n + 1/2)(T2 − m + 1/2)
.

Thus, the expression is finite and positive if and only if T1 > n−1/2 and T2 > m−1/2.
Next, when the values of (ρ, ω) are close to the singularity, i.e., (ρ, ω) → (1, 0), we consider
the first-order Taylor expansion of g(ρ, ω) := 1 − ρ(1 − ω) around (1, 0). We then obtain
1 − ρ(1 − ω) ≈ 1 − ρ + ω, and it follows that

∫ 1

0

∫ 1

0
πJ(ρ, ω | x, y) dω dρ ∝

∫ 1

0

∫ 1

0
ω n+m−1 (1 − ρ) T1−n− 1

2 (1 − ρ + ω)−T1−
1
2 dω dρ (12)

=
∫ 1

0

∫ 1

0
u n+m−1 v T1−n− 1

2 (v + u)−T1−
1
2 du dv,

where in the last equation we used the transformation u = ω and v = 1 − ρ. Now, to
check the finitess of the above double integral, we consider the transformation u = ts and
v = t(1 − s) with Jacobian of transformation |J| = t−1,
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∫ 1

0

∫ 1

0

un+m−1vT1−n−1/2

(v + u)T1+1/2 dudv =
∫ 1

0

∫ 1

0
tm−3sn+m−1(1 − s)T1−n−1/2dsdt,

=
Γ(n + m)Γ(T1 − n + 1/2)
(m − 2)Γ(T1 + m + 1/2)

.

Hence, the right-hand side of the above equation is finite and positive, provided that
m > 2.

3.2. Approximate Reference Priors

The reference prior, originally introduced by [17] and further refined in the same work,
serves as an enhancement of Jeffreys’ prior, particularly in multi-parameter settings where
Jeffreys’ prior may not perform well; see [18]. A key feature of this approach is the parti-
tioning of model parameters into groups based on their inferential priority. The derivation
of the reference prior follows a general algorithm outlined in [17]. Notably, one significant
result arising from this algorithm, which proves useful in various applications, is that
it avoids the need for nested compact subsets in the nuisance parameter space. This is
formally presented in the following proposition.

Proposition 1 ([19] (2000, p. 328)). Let ψ be the parameter of interest and suppose that λ is the
nuisance parameter. Let

Dψ(ψ, λ) :=
det(I(ψ, λ))

Iλλ(ψ, λ)
,

where I(ψ, λ) is the Fisher information matrix and Iλλ(ψ, λ) is the bottom-right element of I(ψ, λ).
If the parameter of interest ψ is independent of the nuisance parameter space Λ(ψ), and if

D
1
2
ψ (ψ, λ) = h1(ψ)g1(λ) and I

1
2
λλ(ψ, λ) = h2(ψ)g2(λ),

then the reference prior with respect to the ordered group (ψ, λ) is

π(ψ, λ) = h1(ψ)g2(λ).

It is worth emphasizing that neither the procedure outlined in [17] nor the result in
Proposition 1 yields an explicit form of the reference prior for ρ. As an alternative, we
construct an approximate reference prior by leveraging the result in Proposition 1.

Proposition 2. The approximate reference prior for the ordered group parameters (ρ, ω) is
(i) for sufficiently small ρ,

πR1(ρ, ω) ∝

√
mω + (n + m)(1 − ω)

ρ ω (1 − ω)1/2 , 0 < ρ < 1, 0 < ω < 1. (13)

(ii) for ρ → 1, we have that

πR2(ρ, ω) ∝
1√

ω (1 − ρ) (1 − ω)
, 0 < ρ < 1, 0 < ω < 1. (14)
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Proof. We provide the proof only for part (i). We have that

D
1
2
ρ (ρ, ω) =

1

ρ(1 − ρ)1/2{mω + (n + m)(1 − ω)(1 − ρ)}1/2 ,

∼ 1

ρ{mω + (n + m)(1 − ω)}1/2 , as ρ → 0

:= h1(ρ)g1(ω)

where h1(ρ) = ρ−1 and g1(ω) = [mω + (n + m)(1 − ω)}]−1/2. Now

σ
1
2

ωω(ρ, ω) ∼ mω + (n + m)(1 − ω)

ω2(1 − ω)
, as ρ → 0

:= h2(ρ)g2(ω),

where h2(ρ) = 1 and g2(ω) = σ
1
2

ωω(ρ, ω). In view of Proposition 1, it follows that the
approximate reference prior for the ordered group (ρ, ω) is the one given in (13)

Theorem 6. Under the assumption of Theorem 5, the posterior distributions under πR1(ρ, ω|x, y)
and πR2(ρ, ω|x, y) are proper distributions.

Proof. We provide the proof for πR1(ρ, ω|x, y). The proof of πR2(ρ, ω|x, y) is quite similar
to the proof in Theorem. Since (mω + (n + m)(1 − ω))1/2 is a decreasing function in ω,
we have

πR1(ρ, ω) ≤
√

n + m
ρω(1 − ω)1/2 .

Therefore, we have that

πR1(ρ, ω|x, y) ≤ Kρn−1ωn+m−1(1 − ρ)T1−n(1 − ω)T2−m−1/2(1 − ρ(1 − ω))−T1 ,

where K =
√

n + m. Similar to the proof in Theorem 5, we have for sufficiently small values
of ρ and ω that πR1(ρ, ω|x, y) ≤ Kρn−1ωn+m−1 it then follows that the posterior distribution
is finite, i.e.,

∫ 1
0

∫ 1
0 πR1(ρ, ω|x, y)dωdρ ≤ K

∫ 1
0

∫ 1
0 πR1 ρn−1ωn+m−1 ≤ dωdρ ≤ K/(n(n +

m) < +∞. When ρ and ω are close to 1, it then follows for T1 > n − 1 and T2 > m − 1/2
that

∫ 1
0

∫ 1
0 πR1(ρ, ω|x, y)dωdρ ≤ K

∫ 1
0

∫ 1
0 (1 − ρ)T1−n(1 − ω)T2−m−1/2dωdρ < +∞. Finally,

when the values of (ρ, ω) close to (ρ, ω) → (1, 0), the first-order Taylor expansion for
g(ρ, ω) := (1 − ρ(1 − ω)) around (1, 0), implies that 1 − ρ(1 − ω) ≈ 1 − ρ + ω, it then
follows that

πR1(ρ, ω|x, y) ≤ K ωn+m−1(1 − ρ)T1−n−1/2(1 − ρ + ω)−T1−1/2.

Therefore, we have that∫ 1

0

∫ 1

0
πR1(ρ, ω|x, y)dωdρ ≤ K

∫ 1

0

∫ 1

0
ωn+m−1(1 − ρ)T1−n−1/2(1 − ρ + ω)−T1 dωdρ.

Similarly to the analysis of (12), the above integral is finite.

3.3. Probability Matching Prior

Probability matching priors for the parameter of interest were introduced by [20] to
ensure that the posterior probabilities of specified intervals exactly or approximately match
their corresponding frequentist coverage probabilities. Mathematically speaking, let be
π(ρ, ω) be a given prior of (ρ, ω) with parameter of interest ρ and ω is the nuisance param-
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eter and ρ(1−α)(π, X, Y) is the (1 − α)th percentile of the marginal posterior distribution of
ρ, where X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Ym) are the sample data. Then, π(·) is
called a second-order probability matching prior if

Pr
(

ρ ≤ ρ(1−α)(π, X, Y)
)
= 1 − α + o

(
n−1

)
,

holds for all α ∈ (0, 1). It is worth emphasizing that Jeffreys prior achieves probability
matching with an asymptotic error of order n−1 when there is only a single parameter,
as shown in [20]. However, this desirable property does not necessarily extend to models
involving multiple parameters, which are common in many statistical applications. Accord-
ing to the results in [20], a prior π is a matching prior if and only if it satisfies the following
partial differential equation

∂

∂ρ

{
σρρ π(ρ, ω)√

σρρ

}
+

∂

∂ω

{
γρω π(ρ, ω)√

σρρ

}
= 0, (15)

where σij is the (i, j)th-element of the inverse of Fisher information matrix in (9) and
i, j ∈ {ρ, ω}. Clearly, this approach can be used to derive a matching prior for ρ using the
Fisher information matrix Σ(ρ, ω) given in (9). However, when the parameter of interest
is a function of the model parameters (as in our case, where ρ is such a function), it is
first necessary to obtain the transformed Fisher information in terms of ρ. This is then
followed by solving a partial differential equation, as shown in (15). A natural question
arises: can a similar representation to (15) be developed using the Fisher information
matrix of the original model parameters to obtain a matching prior? Interestingly, [21]
successfully demonstrates that matching priors can be constructed not only for individual
parameters but also for functions of these parameters. Specifically, let ψ = ψ(θ1, θ2)

be a real-valued function of (θ1, θ2). Then, the gradient of ψ is given as ∇ψ(θ1, θ2) :=
{(∂/∂θ1)ψ(θ1, θ2), (∂/∂θ2)ψ(θ1, θ2)}T and defined as

ζψ(θ1, θ2) =
I−1(θ1, θ2)∇ψ(θ1, θ2)√

{∇T
ψ(θ1, θ2)I−1(θ1, θ2)∇ψ(θ1, θ2)}

= (ζ1(θ1, θ2) , ζ2(θ1, θ2))
T .

Then, πψ(θ1, θ2) is a matching prior for ψ(θ1, θ2) if and only if it satisfies the partial differ-
ential equation

∂

∂θ1
{ζ1(θ1, θ2)π(θ1, θ2)}+

∂

∂θ2
{ζ2(θ1, θ2)π(θ1, θ2)} = 0. (16)

Since ρ is a function of θ1 and θ2 the matching prior for ρ can thus be derived directly with-
out requiring an explicit one-to-one transformation into the (ρ, ω) space, using the Fisher
information matrix in terms of the original parameters as given in (3).

Theorem 7. The matching prior for ρ given in (1) is

πρ(θ1, θ2) =

√
m + n(1 − θ1)(1 − θ2)

θ1θ2 (1 − θ1)1/2 (1 − θ2)
. (17)

Proof. Put ψ = ρ, it then follows that

∇ρ(θ1, θ2) =

(
θ2

δ
,
−θ1(1 − θ1)

δ

)
,

where δ is defined in Theorem 3. Next, let c = m/n
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ζ(θ1, θ2) =

(
c1/2 θ1 (1 − θ1)

1/2√
m + n(1 − θ1)(1 − θ2)

,
c−1/2 θ2 (1 − θ1)

1/2 (1 − θ2)√
m + n(1 − θ1)(1 − θ2)

)
.

Therefore, πρ(θ1, θ2) is a matching prior for ρ if and only if

∂

∂θ1

{
c1/2 θ1 (1 − θ1)

1/2πρ(θ1, θ2)√
m + n(1 − θ1)(1 − θ2)

}
+

∂

∂θ2

{
c−1/2 θ2 (1 − θ1)

1/2 (1 − θ2)πρ(θ1, θ2)√
m + n(1 − θ1)(1 − θ2)

}
= 0. (18)

A solution of the above partial differential equation is given in (17).

Remark 1. The reference prior for irrespective of which the parameter of interest θ1 or θ2 is

πRM(θ1, θ2) =
1

θ1θ2
√
(1 − θ1)(1 − θ2)

. (19)

The reference prior in (19) is straightforward to derive since the Fisher information matrix is
diagonal. Interestingly, the corresponding prior is also a matching prior. However, the prior in (19)
is not equal to the prior in (17), which implies that the prior in (19) cannot serve as a matching prior
for ρ. Specifically, if a one-to-one transformation is performed to express the parameters in terms of
ρ and ω = θ2 using the prior in (19), the resulting prior, though now a function of ρ and ω = θ2,
cannot be regarded as a matching prior for ρ. In contrast, applying the same transformation to the
prior in (17) does yield a valid matching prior for ρ, as also confirmed by the invariance results
of [14].

Now the default matching prior for ρ is given in (17). Since any 1-1 transformation
preserves the matching prior propriety, we use the transformation (6) and consequently the
matching prior is then given by

πM(ρ, ω) ∝

√
mω + (n + m)(1 − ρ)(1 − ω)

ρω(1 − ρ)1/2(1 − ω)(1 − ρ(1 − ω))
. (20)

Theorem 8. Under the assumption of Theorem 5, the posterior πM(ρ, ω|x, y) is proper.

Proof. We have that∫ 1

0

∫ 1

0
πM(ρ, ω | x, y) dρ dω =

∫ 1

0

∫ 1

0
ρn ω n+m (1 − ρ) T1−n (1 − ω) T2−m (1 − ρ(1 − ω))−T1

×
√

mω + (n + m)(1 − ρ)(1 − ω)

ρ ω (1 − ρ)1/2 (1 − ω) (1 − ρ(1 − ω))
dρ dω

≤ C
∫ 1

0

∫ 1

0
ρ n−1 ω n+m−1 (1 − ρ) T1−n− 1

2 (1 − ω) T2−m−1

× (1 − ρ(1 − ω))−T1−1 dρ dω,

where C =
√

2m + n. It can be verified, in conjunction with the analysis of (12), that the
above integral is finite.

4. Numerical Computations
In this section, we investigate the performance of Bayes estimators for ρ under the

squared error loss function (SELF) using Jeffreys, reference, and matching priors, and also
consider the maximum likelihood estimate. The comparison is based on bias and root mean
squared error, along with the frequentist coverage probabilities of the highest posterior
density (HPD) credible intervals derived from these priors.
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4.1. Random Walk Metropolis–Hastings Algorithm

The Bayes estimates of ρ under the various non-informative priors examined in this
study do not admit closed-form solutions. Likewise, the marginal posterior distribu-
tion of ρ cannot be expressed analytically. To handle this, we apply the random walk
Metropolis–Hastings (MH) algorithm to generate Markov Chain Monte Carlo (MCMC)
samples, denoted by ρi. This approach is selected for its versatility in producing samples
from a wide variety of proposal distributions, particularly when the conditional posterior
distributions of the parameters are not available in explicit form. In our implementation, we
adopt a symmetric random-walk MH algorithm with a bivariate normal proposal to draw
samples from the joint posterior distribution of (ρ, ω). These samples of ρ are subsequently
used to construct HPD credible intervals for the reliability parameter ρ. The procedure
for generating samples from the joint posterior distribution via the random walk MH
algorithm is outlined in Algorithm 1.

Algorithm 1 Metropolis–Hastings Algorithm for Estimating ρ and ω

1: Initialize: Choose initial values ρ0 and ω0.
2: for ℓ = 1 to N do
3: Given the current state (v(ℓ), w(ℓ)), where v(ℓ) = log(ρ(ℓ)/1 − ρ(ℓ)) and w(ℓ) = log(ω(ℓ)/1 −

ω(ℓ)), propose a new state

(v(ℓ+1), w(ℓ+1)) ∼ N2

(
(v(ℓ), w(ℓ)), cΣ

)
,

Here, Σ denotes the variance-covariance matrix, and c is a scaling factor used to adjust the
acceptance rate, which is typically maintained between 20% and 40%, as suggested by Neal
and Roberts [22].

4: Compute the acceptance probability

γ = min

{
1,

πv,w(v(ℓ+1), w(ℓ+1)|x, y)
πv,w(v(ℓ), w(ℓ)|x, y)

}
,

where πv,w(v, w|x, y) = πρ,ω(h1(v), g1(w)|x, y)h1(v)g1(w)(1 + exp(v))−1(1 + exp(v))−1,
h1(v) := exp(v)/(1 + exp(v)), and g1(w) := exp(w)/(1 + exp(w))

5: Draw U ∼ Uniform[0, 1].
6: if U ≤ γ then
7: Accept the proposed values: (v(ℓ+1), w(ℓ+1)).
8: else
9: Reject and set (v(ℓ+1), w(ℓ+1)) = (v(ℓ), w(ℓ)).

10: end if
11: end for
12: Discard the first B samples as burn-in, and retain (v(B+1), w(B+1)), . . . , (v(N), w(N))
13: Compute the Bayes estimate of ρ under SELF using the relation ρ = exp(v)/(1 + exp(v))

ρ̂ =
1

N − B

N

∑
ℓ=B+1

ρℓ.

14: Compute the (1 − α)% HPD credible interval for ρ:

• Sort ρ1, . . . , ρM as ρ(1) < ρ(2) < · · · < ρ(M).
• For ℓ = B, B + 1, . . . , (N − B)− ⌊(N − B)(1 − α)⌋, define

Iℓ =
[
ρ(ℓ), ρ(ℓ+⌊(N−B)(1−α)⌋)

]
.

• Select the interval Iℓ with the smallest width as the HPD credible interval.
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4.2. Simulation Experiment

We perform a simulation Study to evaluate the performance of Bayes estimators of
ρ under the non-informative priors considered in this paper. The investigation empha-
sizes small sample sizes and different parameter configurations. Specifically, we examine
sample size combinations (n, m) = (5, 5), . . . , (20, 20) together with parameter pairs (θ1, θ2)

provided in Table 1. For each scenario, independent samples X and Y are generated from
geometric distributions with parameters θ1 and θ2, respectively. Bayes estimates are com-
puted under the squared error loss function (SELF). For a given sample, the algorithm
described in Algorithm 1 is applied to produce 5500 MCMC draws, discarding the first 500
as burn-in. The remaining samples are then used to obtain Bayes estimates and construct
credible intervals. The estimators are assessed over 1000 replications of size (n, m) in terms
of average estimate (ES), standard errors (SD), frequentist coverage probability (CP) of
the 95% HPD credible intervals. A detailed summary of the results is presented in Table 1.
From these tables, several finding can be concluded:

• While the sample sizes considered in this article are relatively small, it is observed that
the performance of all estimators of ρ improves as the sample size increases, with the
average estimates approaching the true values and the standard deviations decreasing.
The reduction in standard deviations demonstrates the consistency of these estimators.

• It is interesting to note that the Bayes estimator ρ̂ based on πM outperforms the other
estimators, as its 95% HPD credible intervals achieve frequentist coverage probabilities
that remain close to 0.95 across all considered scenarios.

• For 0.1493 ≤ ρ ≤ 0.1818, the Bayes estimator ρ̂ based on πM and the ML estimator
outperform the other estimators by exhibiting smaller standard deviations across all
considered scenarios. Moreover, both estimators provide good frequentist coverage
probabilities that approach 0.95, with the Bayes estimator based on πM showing better
convergence than the ML estimator.

• For 0.6667 ≤ ρ ≤ 0.9091, the Bayes estimators using πR1 , πR2 , and πJ perform much
better than the other two estimators in terms of exhibiting smaller standard deviations.
However, the Bayes estimator under πM is superior in terms of frequentist coverage
probabilities, which remain close to 0.95, followed closely by the ML estimator.

• For ρ = 0.989, the Bayes estimator based on πM performs significantly better than
the others in terms of exhibiting smaller standard deviations, followed closely by the
Bayes estimator under πJ . Moreover, the Bayes estimator based on πM outperforms
the one using πJ in terms of achieving frequentist coverage probabilities that remain
close to 0.95.
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Table 1. Simulation results showing estimates (Est), standard errors (SE), and coverage probabilities (CP) for different methods under various parameter settings.

Scenario 1: θ1 = 0.05, θ2 = 0.3, ρ = 0.1493

(n,m)
ML πJ πR1 πR2 πM

ES SD PC ES SD PC ES SD PC ES SD PC ES SD PC

(5,5) 0.1851 0.0867 0.919 0.1881 0.0870 0.920 0.1970 0.0849 0.923 0.2245 0.0916 0.864 0.1738 0.0862 0.945
(10,5) 0.1733 0.0707 0.914 0.1754 0.0702 0.924 0.1861 0.0682 0.930 0.2016 0.0744 0.880 0.1580 0.0602 0.942
(5,10) 0.1761 0.0804 0.912 0.1779 0.0811 0.911 0.1812 0.0800 0.915 0.2057 0.0854 0.868 0.1732 0.0803 0.940
(10,10) 0.1667 0.0594 0.917 0.1683 0.0595 0.915 0.1732 0.0590 0.926 0.1862 0.0619 0.893 0.1607 0.0588 0.947
(15,10) 0.1639 0.0532 0.907 0.1652 0.0530 0.903 0.1706 0.0526 0.916 0.1799 0.0551 0.878 0.1569 0.0517 0.925
(10,15) 0.1652 0.0574 0.912 0.1661 0.0574 0.917 0.1688 0.0566 0.914 0.1813 0.0594 0.883 0.1617 0.0573 0.948
(15,15) 0.1600 0.0466 0.920 0.1609 0.0463 0.921 0.1642 0.0463 0.922 0.1730 0.0483 0.897 0.1559 0.0459 0.946
(20,15) 0.1578 0.0426 0.904 0.1587 0.0427 0.913 0.1621 0.0423 0.912 0.1687 0.0440 0.890 0.1531 0.0418 0.945
(15,20) 0.1601 0.0441 0.928 0.1607 0.0441 0.921 0.1630 0.0439 0.924 0.1713 0.0457 0.902 0.1573 0.0438 0.953
(20,20) 0.1574 0.0411 0.907 0.1582 0.0412 0.917 0.1606 0.0410 0.912 0.1671 0.0425 0.892 0.1543 0.0408 0.942

Scenario 2: θ1 = 1, θ2 = 0.5, ρ = 0.1818

(5,5) 0.2099 0.0922 0.9180 0.2173 0.0936 0.9310 0.2374 0.0920 0.9230 0.2513 0.0959 0.8850 0.2033 0.0920 0.9180
(10,5) 0.2039 0.0756 0.8950 0.2090 0.0758 0.9080 0.2322 0.0746 0.9000 0.2334 0.0784 0.8780 0.1919 0.0732 0.9250
(5,10) 0.2112 0.0923 0.9190 0.2147 0.0925 0.9210 0.2235 0.0927 0.9240 0.2445 0.0959 0.8770 0.2114 0.0924 0.9350
(10,10) 0.1949 0.0637 0.9190 0.1982 0.0641 0.9250 0.2090 0.0645 0.9280 0.2161 0.0666 0.8950 0.1910 0.0636 0.9390
(15,10) 0.1952 0.0548 0.9230 0.1980 0.0552 0.9240 0.2091 0.0549 0.9200 0.2121 0.0568 0.8940 0.1896 0.0540 0.9080
(10,15) 0.1965 0.0623 0.9120 0.1989 0.0629 0.9120 0.2056 0.0632 0.9190 0.2150 0.0649 0.8900 0.1949 0.0633 0.9390
(15,15) 0.1960 0.0556 0.9230 0.1987 0.0554 0.9240 0.2103 0.0561 0.9180 0.2129 0.0576 0.9010 0.1905 0.0547 0.9150
(20,15) 0.1913 0.0474 0.9090 0.1932 0.0477 0.9080 0.2009 0.0477 0.9050 0.2031 0.0489 0.8970 0.1878 0.0471 0.9140
(15,20) 0.1922 0.0484 0.9140 0.1939 0.0487 0.9160 0.1993 0.0487 0.9180 0.2052 0.0499 0.8950 0.1906 0.0484 0.9560
(20,20) 0.1914 0.0420 0.9290 0.1928 0.0421 0.9300 0.1982 0.0422 0.9290 0.2020 0.0430 0.9100 0.1891 0.0419 0.9520

Scenario 3: θ1 = 0.5, θ2 = 0.5, ρ = 0.6667

(5,5) 0.6488 0.1403 0.915 0.6614 0.1380 0.9120 0.6773 0.1276 0.9290 0.6820 0.1272 0.9110 0.6794 0.1523 0.946
(10,5) 0.6498 0.1096 0.9250 0.6622 0.1071 0.9410 0.6847 0.0967 0.9390 0.6722 0.1005 0.9390 0.6613 0.1150 0.9300
(5,10) 0.6537 0.1353 0.928 0.6604 0.1334 0.9230 0.6654 0.1303 0.9330 0.6823 0.1255 0.9200 0.6873 0.1457 0.997
(10,10) 0.6612 0.1027 0.9330 0.6670 0.1027 0.9240 0.6769 0.0983 0.9290 0.6782 0.0976 0.9270 0.6765 0.1077 0.9580
(15,10) 0.6594 0.0891 0.9280 0.6649 0.0888 0.9280 0.6770 0.0840 0.9300 0.6721 0.0852 0.9250 0.6682 0.0921 0.9450
(10,15) 0.6595 0.1005 0.9250 0.6641 0.0999 0.9260 0.6687 0.0973 0.9310 0.6748 0.0956 0.9230 0.6763 0.1044 0.9720
(15,15) 0.6637 0.0884 0.9200 0.6677 0.0879 0.9150 0.6741 0.0851 0.9130 0.6747 0.0847 0.9100 0.6738 0.0908 0.9570
(20,15) 0.6641 0.0750 0.9370 0.6680 0.0750 0.9190 0.6762 0.0724 0.9220 0.6740 0.0725 0.9200 0.6714 0.0770 0.9530
(15,20) 0.6631 0.0841 0.9310 0.6665 0.0838 0.9250 0.6708 0.0825 0.9260 0.6737 0.0816 0.9190 0.6742 0.0866 0.9700
(20,20) 0.6620 0.0772 0.9150 0.6654 0.0768 0.9210 0.6706 0.0750 0.9190 0.6712 0.0747 0.9180 0.6700 0.0786 0.9540
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Table 1. Cont.

Scenario 4: θ1 = 0.6, θ2 = 0.2, ρ = 0.8824

(5,5) 0.8736 0.0912 0.925 0.8491 0.0902 0.913 0.8434 0.0873 0.920 0.8487 0.0841 0.921 0.8668 0.0920 0.946
(10,5) 0.8554 0.0761 0.915 0.8598 0.0743 0.903 0.8588 0.0707 0.911 0.8576 0.0716 0.906 0.8697 0.0771 0.955
(5,10) 0.8844 0.0796 0.936 0.8565 0.0813 0.911 0.8493 0.0824 0.915 0.8573 0.0767 0.911 0.8776 0.0821 0.953
(10,10) 0.8786 0.0620 0.940 0.8659 0.0620 0.924 0.8627 0.0623 0.921 0.8643 0.0609 0.920 0.8830 0.0635 0.948
(15,10) 0.8654 0.0534 0.935 0.8679 0.0528 0.929 0.8661 0.0521 0.936 0.8659 0.0518 0.936 0.8756 0.0558 0.949
(10,15) 0.8646 0.0585 0.949 0.8661 0.0592 0.913 0.8631 0.0592 0.916 0.8653 0.0576 0.920 0.8800 0.0591 0.954
(15,15) 0.8696 0.0493 0.950 0.8714 0.0491 0.923 0.8690 0.0488 0.924 0.8701 0.0482 0.925 0.8799 0.0486 0.948
(20,15) 0.8703 0.0450 0.938 0.8722 0.0446 0.930 0.8704 0.0445 0.932 0.8704 0.0441 0.931 0.8780 0.0455 0.950
(15,20) 0.8706 0.0482 0.943 0.8720 0.0481 0.915 0.8696 0.0484 0.928 0.8711 0.0473 0.920 0.8810 0.0485 0.955
(20,20) 0.8735 0.0432 0.945 0.8747 0.0430 0.920 0.8730 0.0432 0.916 0.8734 0.0429 0.920 0.8841 0.0438 0.951

Scenario 5: θ1 = θ2 = 0.9, ρ = 0.9091

(5,5) 0.8798 0.0780 0.943 0.8864 0.0739 0.967 0.8953 0.0670 0.981 0.8952 0.0668 0.973 0.9383 0.0829 0.953
(10,5) 0.9076 0.0617 0.955 0.9142 0.0568 0.974 0.9233 0.0500 0.983 0.9164 0.0543 0.985 0.9381 0.0621 0.951
(5,10) 0.8890 0.0722 0.943 0.8923 0.0705 0.979 0.8958 0.0672 0.982 0.9012 0.0643 0.983 0.9274 0.0771 0.955
(10,10) 0.9087 0.0563 0.956 0.9116 0.0548 0.981 0.9161 0.0518 0.983 0.9151 0.0524 0.984 0.9183 0.0573 0.953
(15,10) 0.9157 0.0520 0.949 0.9185 0.0506 0.934 0.9230 0.0477 0.930 0.9200 0.0494 0.920 0.9054 0.0528 0.950
(10,15) 0.9097 0.0568 0.954 0.9118 0.0556 0.980 0.9140 0.0540 0.983 0.9150 0.0532 0.985 0.8988 0.0580 0.965
(15,15) 0.9169 0.0502 0.950 0.9187 0.0493 0.942 0.9216 0.0473 0.927 0.9210 0.0476 0.932 0.9164 0.0507 0.949
(20,15) 0.9234 0.0406 0.951 0.9254 0.0397 0.898 0.9281 0.0382 0.893 0.9265 0.0389 0.898 0.9182 0.0408 0.954
(15,20) 0.9198 0.0470 0.952 0.9213 0.0462 0.944 0.9234 0.0448 0.944 0.9233 0.0449 0.944 0.9395 0.0474 0.951
(20,20) 0.9253 0.0408 0.948 0.9267 0.0398 0.894 0.9286 0.0390 0.886 0.9279 0.0391 0.891 0.9100 0.0407 0.950

Scenario 6: θ1 = 0.9, θ2 = 0.1, ρ = 0.989

(5,5) 0.9710 0.0249 0.970 0.9727 0.0237 0.976 0.9694 0.0249 0.970 0.9702 0.0242 0.968 0.9879 0.0197 0.955
(10,5) 0.9782 0.0184 0.962 0.9795 0.0178 0.969 0.9780 0.0182 0.958 0.9777 0.0186 0.963 0.9865 0.0157 0.952
(5,10) 0.9742 0.0202 0.953 0.9750 0.0197 0.971 0.9719 0.0217 0.966 0.9728 0.0208 0.967 0.9893 0.0166 0.954
(10,10) 0.9806 0.0147 0.964 0.9812 0.0143 0.969 0.9799 0.0152 0.962 0.9800 0.0151 0.969 0.9878 0.0130 0.954
(15,10) 0.9830 0.0123 0.944 0.9836 0.0121 0.920 0.9828 0.0124 0.925 0.9826 0.0125 0.929 0.9878 0.0111 0.949
(10,15) 0.9811 0.0138 0.952 0.9815 0.0135 0.968 0.9804 0.0143 0.956 0.9806 0.0140 0.957 0.9882 0.0122 0.951
(15,15) 0.9840 0.0105 0.956 0.9844 0.0103 0.953 0.9836 0.0106 0.956 0.9837 0.0106 0.944 0.9886 0.0095 0.951
(20,15) 0.9854 0.0090 0.953 0.9858 0.0088 0.899 0.9852 0.0091 0.910 0.9851 0.0091 0.906 0.9888 0.0084 0.953
(15,20) 0.9840 0.0106 0.946 0.9843 0.0104 0.940 0.9837 0.0108 0.948 0.9837 0.0108 0.942 0.9885 0.0098 0.951
(20,20) 0.9853 0.0092 0.945 0.9856 0.0091 0.894 0.9850 0.0094 0.907 0.9850 0.0094 0.900 0.9887 0.0086 0.950
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5. Posterior Predictive Assessment of the Model
Once posterior propriety has been established under the proposed priors, the subse-

quent task is to assess how well the model represents the observed data. A widely used
strategy in Bayesian analysis is to perform posterior predictive checks, which consist of
drawing predictive samples from the model by conditioning on the posterior distribution
of the parameters and then comparing these replications with the actual data through
graphical diagnostics. To complement the visual assessment, we also consider the posterior
predictive p-value, originally suggested by [23] and later formalized by [24], as a quantita-
tive measure of fit. This method requires the specification of a discrepancy statistic, ideally
one that does not involve unknown parameters. In this study, we use the discrepancy
statistic, T(x, y) = min

(
median(x), median(y)

)
. Naturally, other discrepancy measures

may also be considered, such as T(x, y) = max
(
x, y
)

or T(x, y) = sx + sy, where sx and sy

denote the sample variances. An algorithm for computing the posterior predictive p-value
is provided below.

The posterior predictive p-value is then approximated by

p-value =
#
{

T(xrep, yrep) >= T(x, y)
}

N
.

6. Real Data Analysis
In this section, we consider two real data sets to illustrate the proposed methodology.

The first data set relates to post-weld treatment methods designed to improve the fatigue
life of welded joints, while the second consists of recorded lifetimes of steel specimens
tested under varying stress levels. Both data sets are analyzed using the estimation methods
developed in this article.

6.1. Data I

The first data set concerns post-weld treatment methods aimed at enhancing the fa-
tigue life of welded joints. It was initially investigated by [25] and later revisited in [26].
The primary goal of these studies was to identify effective treatment techniques that
could be applied in large-scale production of crane components. Two post-weld treat-
ments are considered: burr grinding (BG) and TIG dressing, with their performance
compared against the untreated, as-welded (AW) condition. The data set provides an
opportunity to assess whether BG and TIG dressing improve fatigue strength relative
to AW. In our analysis, since we are interested in a stress–strength setup, we treat
the number of cycles to failure of specimens under BG, denoted by X, as the stress
variable, while the cycles to failure under TIG, denoted by Y, represent the strength
variable. The observed values are X = 25, 25, 39, 44, 100, 72, 102, 74, 76, 144, 172 and
Y = 84, 93, 156, 352, 666, 91, 112, 179, 136, 36, 94, 48, 44. It is worth noting that this data set
was also reported in [26], where the authors further established that the data follow geo-
metric distributions.

We employ Algorithm 1 to generate samples from the posterior distribution based on
the specified prior assumptions and the observed data. The posterior variance-covariance
matrix is approximated using the Laplace method, and with a chosen scale parameter
of c = 1.5, the resulting acceptance rate is approximately 41%, which falls within the
recommended range of 10–40% reported by [22]. For initialization of the random walk
Metropolis–Hastings algorithm, we use the maximum likelihood estimates of ρ and ω.
The Markov chain is executed for 5500 iterations, discarding the first 500 as burn-in, with the
remaining draws utilized to compute Bayes estimates under squared error loss (SELF)
for the priors introduced in this work. As shown in Figure 1, the conditional posterior



Symmetry 2025, 17, 1723 17 of 24

distribution of ρ is well approximated by a Gaussian distribution. Furthermore, graphical
diagnostics, including trace plots and auto-correlation function (ACF) plots of ρ under the
different prior settings, indicate good mixing: the trace plots exhibit random fluctuation
around the mean values (denoted by solid red line), while the ACFs decay reasonably
toward zero, suggesting minimal auto-correlation. To further check the convergence of the
MCMC, we run three chains and compute the Gelman–Rubin statistics (R̂); a value close
to 1 or below 1.05 indicates convergence [27]. We found that R̂ is 1.0003 for πJ , 1.0012 for
πR1 , 1.0007 for πR2 , and 1.0008 for πM. Clearly, the Gelman–Rubin statistics under the four
priors are well below the threshold of 1.05, confirming convergence. To further examine
the suitability of the prior choices, we implement Algorithm 2, presenting histograms and
kernel density estimates of the discrepancy statistics in Figure 2. The results demonstrate
that replications from the Bayesian predictive density closely align with the observed data.
In addition, the posterior predictive p-values, 0.27 for πJ , 0.28 for πR1 , 0.30 for πR2 , and 0.34
for πM, confirm the compatibility of the proposed priors.

Algorithm 2 Posterior Predictive Assessment

1: Input observed data x = (x1, . . . , xn) and y = (y1, . . . , ym).
2: Compute the discrepancy measure

T(x, y) = min
(
median(x), median(y)

)
.

3: for ℓ = 1, . . . , N do
4: Sample θℓ = (θ1ℓ , θ2ℓ) from the posterior distribution (given prior assumptions and

observed data x, y).
5: Generate replicated samples of the same size as the observed data:

xrep ∼ Geo(θ1ℓ), yrep ∼ Geo(θ2ℓ).

6: Compute the replicated discrepancy measure

T(xrep, yrep).

7: end for
8: Repeat Steps 3–6 for a sufficiently large number N of posterior samples.

Before presenting the Bayes estimates of ρ obtained under different priors, we first
provide the empirical estimate, defined as

ρ̂ =
1

nm

n

∑
i=1

m

∑
j=1

1I(Xi ≤ Yj).

Table 2 reports all estimates of ρ together with their standard deviations (SDs) and 95% HPD
credible intervals. Among them, the Bayes estimate based on πR2 outperforms the others
by achieving the smallest SD, the narrowest 95% credible interval, and remaining closest to
the empirical estimate. The Bayes estimate under πM ranks second in terms of proximity
to the empirical estimate. Furthermore, the Bayes estimate using πR1 demonstrates better
performance than both the Bayes estimate under πJ and the ML estimate, as it yields a
smaller SD and a shorter 95% credible interval.
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Figure 1. Diagnostic plots of the random walk MH algorithm for ρ under πJ , πR1 , πR2 , and πM for
the first data set.
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Figure 2. Histogram and kernel density of T(x, y) along with its mean (red line) using πJ , πR1 , πR2 ,
and πM (clockwise from the top left) for the first data set.

Table 2. The summary of Bayesian estimates of ρ for the first data.

Priors Estimator SD 95% CI

Empirical 0.6923 0.1120 (0.4726, 0.9120)
ML 0.6724 0.0916 (0.4929, 0.8519)
πJ 0.6672 0.0954 (0.4543, 0.8345)

πR1 0.6661 0.0914 (0.4721, 0.8280)
πR2 0.6912 0.0878 (0.4966, 0.8333)
πM 0.6718 0.0906 (0.4705 0.8297)
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6.2. Data-II

The second data set comprises the recorded lifetimes of steel specimens tested under
14 different stress levels. These data were originally reported by [28] and subsequently
analyzed in greater detail by [26,29]. To illustrate our theoretical results, we focus on the
lifetimes corresponding to a stress level of 32, which we denote by the stress variable X,
with the following observed values: 1144, 231, 523, 474, 4510, 3107, 815, 6297, 1580, 605,
1786, 206, 1943, 935, 283, 1336, 727, 370, 1056, 413, 619, 2214, 1826, and 597. Similarly,
the lifetimes measured at a stress level of 32.5 are treated as the strength variable Y, given
by the following values: 4257, 879, 799, 1388, 271, 308, 2073, 227, 347, 669, 1154, 393, 250,
196, 548, 475, 1705, 2211, 975, and 2925. It is worth noting that the data set can be reasonably
modeled using the geometric distribution, as confirmed by [26].

In a similar manner, Algorithms 1 and 2 are employed to draw posterior samples
under the assumed priors and observed data, and to evaluate the adequacy of these priors,
respectively. As illustrated in Figure 3, the posterior distribution of ρ is well captured
by a symmetric Gaussian proposal. Diagnostic plots further support this conclusion: the
trace plots display stable fluctuations around the posterior means (marked by solid lines),
and the corresponding autocorrelation functions (ACFs) decrease toward zero, indicating
efficient mixing and low serial dependence. To assess prior suitability more thoroughly,
Algorithm 2 is applied, with histograms and kernel density estimates of the discrepancy
statistics shown in Figure 4. These results reveal that replicated samples from the Bayesian
predictive distribution align closely with the observed data. Similarly, we run three MCMC
chains and compute the Gelman–Rubin statistics. We found that R̂ is 1.0016 for πJ , 1.0003
for πR1 , 1.0013 for πR2 , and 1.00041 for πM. Since all values of the statistic are well below the
threshold of 1.05, the convergence of the MCMC is confirmed. Additionally, the posterior
predictive p-values, 0.42 for πJ , 0.406 for πR1 , 0.444 for πR2 , and 0.412 for πM,provide
further evidence in favor of the compatibility of the proposed priors.

Similarly, Table 3 presents the estimates of ρ along with their standard deviations (SDs)
and 95% HPD credible intervals. The ML and the Bayes estimates are relatively close to
empirical estimate. On the other hand, the Bayes estimates obtained under πJ and πM

perform best, yielding the smallest SDs, the narrowest credible intervals, and the closest
agreement with the empirical estimate. Furthermore, the Bayes estimates based on πR1

and πR2 also outperform the ML estimate, as they are associated with smaller SDs and
shorter intervals.

Table 3. The summary of Bayesian estimates of ρ for the second data.

Priors Estimator SD 95% CI

Empirical 0.5350 0.0935 (0.3518, 0.7182)
ML 0.5484 0.0891 (0.3739, 0.7228)
πJ 0.5428 0.0766 (0.3898, 0.6880)

πR1 0.5432 0.0805 (0.3819, 0.6887)
πR2 0.5552 0.0888 (0.4079, 0.7103)
πM 0.5429 0.0798 (0.3824, 0.6954)
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Figure 3. Diagnostic plots of the random walk MH algorithm for ρ under πJ , πR1 , πR2 , and πM for
the second data set.
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Figure 4. Histogram and kernel density of T(x, y) along with its mean (red line) using πJ , πR1 , πR2 ,
and πM (clockwise from the top left) for the second data set.

7. Conclusions
In this paper, we investigated maximum likelihood (ML) and Bayesian estimation

procedures for the stress–strength parameter of the geometric distribution. We derived the
ML estimator of ρ and established its asymptotic distribution. For the Bayesian approach,
we developed objective priors for ρ, namely Jeffreys, approximate reference, and matching
priors. A key advantage of the Jeffreys prior is its invariance: the Bayes estimator of ρ

remains the same whether it is obtained directly in terms of ρ or via a one-to-one transfor-
mation of the original model parameters. By contrast, reference and matching priors cannot
in general be derived from those of the original parameters, since ρ is a function of θ1 and
θ2. This underscores the importance of constructing these priors directly in terms of ρ,
ensuring that invariance is preserved upon transformation back to the original parameters.

We also examined the posterior distribution under these priors, noting that they are
improper but lead to valid posteriors. Since closed-form Bayes estimates under the squared
error loss function (SELF) are not available, we employed MCMC methods to compute
them. Simulation studies demonstrated that the proposed Bayes estimators perform very
well, with the matching prior generally outperforming both the other Bayesian approaches
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and the ML estimator, making it particularly suitable for practical use. Finally, two real data
applications confirmed these findings: Bayesian estimates consistently outperformed ML
estimates, with the matching prior yielding the best results overall, although the reference
prior ρR2 provided competitive performance in the first data set.

As in any study, a limitation of this work is that the proposed noninformative priors,
including Jeffreys, reference, and matching priors, for the geometric stress–strength relia-
bility may suffer from stability issues when the parameters lie close to the boundaries of
the parameter space. This motivates us to further investigate such cases in future research.
In addition, the methodology developed in this paper can be extended to other settings,
such as record values or type-II censored data, which are frequently encountered in real
applications, particularly in hydrology and lifetime studies. Under these two schemes,
the likelihood remains tractable, making the use of the developed priors feasible.
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