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Abstract

An important goal in cardiology and other fields is to identify and control dynamic spiral
wave patterns in reaction–diffusion partial differential equations. This research focuses
on the Barkley model. The spiral wave motion is controlled and suppressed within the
Euclidean group rather than through Euclidean symmetry by applying a controller equation.
The eigenfunctions associated with the left eigenspace of the adjoint linear equation can
be used to characterize the drift or movement of the spiral wave tip trajectory when the
system is perturbed. These eigenfunctions provide details regarding how the spiral wave
reacts to disruptions. Perturbations to the Barkley system are examined by applying control
functions and calculating the principle eigenvalue numerically. The left eigenfunctions of
the Barkley equation are determined by solving the left problem associated with the 2D
Barkley equation and a 1D dynamical controller. In addition, the control function can be
used to suppress the periodic and meandering regimes of the system. In this work, the
focus is on the periodic regime.

Keywords: reaction-diffusion system; Barkley model; spiral wave suppression; proportional
feedback control; the left eigenfunctions; the spiral wave tip trajectory; the principle
eigenvalue

MSC: 35B32; 93B52; 47A45; 37B65; 47A75

1. Introduction
In recent decades, the controlling spiral wave tip has been examined by Schlesner et al.

in the context of the FitzHugh–Nagumo model, utilizing proportional feedback control [1].
Homogeneous perturbations were specifically applied to this model, concentrating on the
position of the spiral wave tip to effectively stabilize its motion around a specified point
within the domain. An explicit scheme was employed for the numerical methodology. In
a related study, the stabilization of the spiral wave tip’s path in the FitzHugh–Nagumo
model was explored by [2], who implemented a fixed-localized control action. The control
of the spiral wave solution was analyzed for both successful and unsuccessful outcomes by
varying different parameters of the system. Moreover, adjoint eigenfunctions associated
with dynamical spiral waves were utilized in this research, as they provide valuable insights
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into the local response near the trajectory of the spiral wave tip [3]. A semi-implicit scheme
was used for the numerical solution of this system.

This paper focuses the Barkley model which is a reaction–diffusion system. Such
systems have both a reaction term, which governs the local dynamics, and a diffusion
term, which accounts for propagation. This work examines the role of the diffusion term
in producing spiral wave solutions. Spiral wave patterns are frequently seen in excitable
media systems when the local dynamics interact with diffusive transport [4,5].

In the natural world, spiral waves are often observed in cardiac tissue, particularly
when the heart experiences beating irregularities. By investigating the dynamics of these
spiral wave patterns, we can deepen our understanding of the heart’s functioning and
potentially develop new methods to treat cardiac disorders [6,7]. The erratic motion of
spiral waves within cardiac tissue corresponds to irregular contractions of the heart muscle.
This leads to a diminished effectiveness of the heart’s pumping action. Consequently, the
presence of spiral waves in cardiac tissue can play a crucial role in mortality rates [8–10].
Suppressing or controlling the propagation of spiral waves is a critical consideration in the
treatment of heart conditions. This objective can be pursued by introducing a perturbation
function into the system.

Spiral wave phenomena have also been observed in simulations of the Barkley
model [11]. The modified Barkley equation is frequently used as a general model for
representing excitable systems. Since cardiac cells exhibit properties analogous to nerve
cells [12–14], the Barkley model can be leveraged to study the propagation of electrical
activity in excitable cellular systems. By selecting appropriate constant parameters within
a suitable domain, diverse types of spiral wave patterns can be obtained in the Barkley sys-
tem. The observed spiral wave patterns encompass cases of rigid rotation and meandering,
as detailed in [6]. The dynamics of spiral wave solutions have been studied extensively
across various fields, including biology, physics, and chemistry [15,16].

Our research specifically investigates the management of the spiral wave tip path in
the Barkley model, especially for case in which the spiral wave behavior displays periodic
pattern using proportional feedback control. Additionally, since we examine perturbations
in the Barkley system, we analyze the sensitivity of the spiral wave tip to these perturbations
using adjoint eigenfunctions. Finally, we demonstrate numerically that the spiral wave
tip can be stabilized and that it satisfies the stability condition of the eigenvalue. The
spiral wave motion can be suppressed by applying a proportional feedback control, which
is not affected by changes in the spatial coordinates x and y. In this work, a method is
presented for stabilizing the Barkley system’s spiral wave solution using a proportional
feedback control function. A numerical method leveraging the principle eigenvalue is
used to confirm this approach. The left eigenfunction, which is the solution of the adjoint
linear system, is observed to be localized near the tip of the spiral wave. This positioning
implies that placing the control function near the tip of the spiral wave will optimize
control sensitivity.

The structure of the rest of this paper is as follows. In Section 2, the previous studies
were explained in the control of the spiral wave solutions using strategies of the propor-
tional feedback control compared with our current research, especially in the Barkley
system. In Section 3.1, the general formula of the Barkley system is discussed, and a nu-
merical solution obtained using an explicit method is presented. Furthermore, the stability
condition of the numerical spiral wave solutions is deduced theoretically. In Section 3.1,
theoretically and numerically, the successful control of solutions involving spiral waves
in the nonlinear Barkley equation is analyzed in two instances: successful local control
and successful global control using the proportional feedback control. In Section 3.2, the
linearization of the nonlinear Barkley system with a homogeneous perturbation component
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is discussed theoretically and numerically, including a perturbation term, the adjoint linear
system of the Barkley model is derived. In Section 3.3, the study focuses on examining
how the perturbations affect the response of the controlling spiral wave tip through the
analysis of the simulation of the linearization of the adjoint system. In Section 4, the best-
approximated principal eigenvalue that meets the stability condition for successful control
of the spiral wave is presented.

2. Research Methodology
A notable challenge lies in controlling the dynamic tip of the spiral wave for the

reaction–diffusion equation. A proposed method to manage the behavior of the numerical
spiral wave solution involves using a homogeneous function known as proportional
feedback control. This control technique can be applied to the reaction–diffusion equation
to suppress the tip trajectory of the spiral wave solution. For instance, Schlesner et al.
successfully applied this method to manage the numerical solution of the spiral wave
using the FitzHugh–Nagumo equation [1]. This method has proven efficient in regulating
the spiral wave tip. In 2019, proportional feedback control was also studied using the
response function for the FitzHugh–Nagumo system numerically [2]. Furthermore, in 2023,
Yuan et al. investigated the management of the dynamic spiral wave solution within the
FitzHugh–Nagumo model [17].

This study centers on investigating the management of the spiral wave tip trajectory
using proportional feedback control within the Barkley model. The reason for the transition
from the FitzHugh–Nagumo system to the Barkley system is that there has not been a study
in the literature that focuses on the control of the numerical spiral wave solution for the
Barkley system. Therefore, it is useful to study the control strategies of the numerical spiral
wave solutions in the Barkley system. By looking at papers [1,2], the proportional feedback
control scheme can successfully control the spiral wave solutions of the FitzHugh–Nagumo
equation. By employing this method, we can effectively manage the spiral wave solution
of the Barkley model and demonstrate numerically that the principle eigenvalue meets
the stability condition. Additionally, we study the responsiveness of the controlled spiral
wave solution in the Barkley system by employing the response function. Finally, we
convert the Barkley system into a comoving frame of the reference with a wave speed of
the spiral wave simulation to numerically examine the eigenvalue, enabling us to calculate
the constant angular velocity. To date, there has been no comprehensive coverage of all
these investigations for the Barkley system.

3. The Model
In this section, we are interested in examining three distinct cases of the Barkley model:

nonlinear system, linear system, and adjoint linear system. Each case will be described both
theoretically and numerically. Additionally, our objective is to theoretically and numerically
control the spiral wave solution. Furthermore, explicit methods will be employed to solve
all cases.

3.1. Nonlinear System for the Barkley Model

In general, a reaction–diffusion system on a finite area is formed [6] as follows:

ut = f(u) + D∇2u + ϵh. (1)

Here, u is a vector-valued function that maps the spatial and temporal coordinates to Rℓ.
Specifically, u is a function of the spatial variables x ∈ Rd⋆ and the temporal variable t ∈ R.
The terms ut and ∇2u represent the time derivative and the diffusion operator, respectively.
The diffusion operator ∇2u is the sum of the second partial derivatives of u with respect to
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each of the d⋆ spatial variables xk⋆ such that k⋆ ∈ N. The function f represents the reaction
kinetics in the system. This function, which exhibits nonlinear behavior, maps from Rℓ to
Rℓ, and its properties contribute to the overall smoothness of the reaction–diffusion system.
The scalar matrix D, which is an element of Rℓ×ℓ, characterizes the diffusion properties of
the system. The perturbation component ϵh can also be expressed as ϵh(u, x̃, t) [18,19]. In
this work, the diffusivity D is considered to be a homogeneous constant, which manifests
as a diagonal scalar matrix with positive elements [20]. The vector x is constrained to 2D
Euclidean space, and the study focuses on solutions involving spiral wave patterns.

The Barkley model is used here as the mathematical representation of the reaction–
diffusion Equation (1), and it is solved numerically. The Barkley model, as described in [21],
is the partial differential Equation (1) expressed in the following manner on x − y plane :

ut = g⋆(u, v) +∇2u, (2a)

vt = h⋆(u, v) + δ∇2v, (2b)

where

g⋆(u, v) =
1
ϵ

u
(
1 − u

)(
u − v + b⋆

a⋆

)
, (3a)

h⋆(u, v) = kϵ (u − v), a⋆, b⋆ > 0, ϵ ≪ 1, (3b)

and

u = u(x, y, t), v = v(x, y, t), 0 < x < L1 , 0 < y < L1 . (4)

Additionally, the parameter δ is set to either 0 or 1, while the parameter kϵ is fixed at 1.
According to Barkley’s method [22], the parameter ϵ is set to either 0.02 or 0.01. These
Equations (2) and (4) are considered, specified within a region:

(x, y) ∈ [0, L1 ]
2, L1 ∈ R+, (5)

with suitable boundary and initial conditions. The Neumann boundary condition is applied
for the numerical spiral wave solutions, that is,

∂ E(0, y, t)
∂ x

= 0,
∂ E(L1 , y, t)

∂ x
= 0, (6a)

∂ E(x, 0, t)
∂ y

= 0,
∂ E(x, L1 , t)

∂ y
= 0; E = u, v. (6b)

For this analysis, we assume δ = 0 and ϵ = 0.02.
This section first provides a concise overview of spiral waves, as well as an explanation

of how to generate spiral wave solutions for the Barkley system in 2D space. Although
no analytical spiral wave solutions have been found for the Barkley system, approximate
spiral wave solutions can be obtained through numerical simulation using the method
outlined by Barkley [23] to introduce initial conditions that give rise to spiral waves. In
other words, the initial conditions u(x, y, 0) and v(x, y, 0) of the numerical spiral wave
solution for the Barkley system (2) can be demonstrated as follows:

u(x, y, 0) =

u•, y ≥ L
2

−u•, y < L
2

, v(x, y, 0) =

v•, x ≥ L
2

−v•, x < L
2

, (7)

where u• and v• are a steady state for the system (2). Depending on the values of the
parameters a⋆ and b⋆, two types of spiral wave motion have been discussed in [5]. The
behavior of the spiral wave in the Barkley system can be understood as a propagating
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excitation wave in the x–y plane by following the trajectory of the spiral wave tip. Since the
Barkley system cannot be solved analytically for spiral wave solutions, an initial condition
related to the variables u and v pertaining to the homogeneous equation in two dimensions
will be generated using Barkley’s approach.

The approximate solutions of the Barkley system (2) are found using an explicit scheme.
Numerical solutions for spiral waves can also be obtained using implicit methods; however,
this research focuses on explicit methods [24,25]. Specifically, the numerical solutions of
the Barkley system described by Equation (2) are obtained using the forward Euler and
central finite difference methods [26], with

um
j,k = u(xj, yk, tm), (8a)

vm
j,k = v(xj, yk, tm). (8b)

The solutions are obtained for spatial and temporal intervals ∆x, ∆y, and ∆t along the x, y,
and t axes, respectively, with indices j, k = 0, 1, . . . , n and m = 0, 1, . . . , n1, where n and n1

are natural numbers. Numerically, the spatial increment along the x-axis is represented by
∆x, and the spatial increment along the y-axis is represented by ∆y, as follows:

xj = j∆x, yk = k∆y, tm = m ∆t, (9)

where

∆x =
L1

n
, ∆y =

L1

n
, ∆t =

τ

n1
, t ∈ [0, τ], τ ∈ R+. (10)

Therefore, it is found that

∂E(xj, yk, tm)

∂t
=

Em+1
j,k − Em

j,k

∆t
+O(∆t), (11a)

∂2E(xj, yk, tm)

∂x2 =
Em

j+1,k − 2Em
j,k + Em

j−1,k

(∆x)2 +O
(
(∆x)2

)
, (11b)

∂2E(xj, yk, tm)

∂y2 =
Em

j,k+1 − 2Em
j,k + Em

j,k−1

(∆y)2 +O
(
(∆y)2

)
, (11c)

where O(∆t), O
(
(∆x)2), and O

(
(∆y)2) are truncation errors. The numerical solutions

corresponding to the u and v components need to be computed at each grid point (j, k).
Concerning the x-direction, this implies that it is now necessary to determine the

conditions that guarantee that the approximate solutions um
j,k and vm

j,k are close to the exact
solutions of the system (2). To obtain good approximate solutions, ∆t and ∆x must be
small. Consequently, a stability condition for the numerical method for the Barkley system
in two-dimensional space must be deduced using von Neumann stability analysis [27].
The Von Neumann stability analysis is a mathematical method used to derive the stability
condition of numerical schemes, particularly when solving partial differential equations
through discretization methods like finite difference method [28,29]. When the Barkley
system (2) in 2D is linearized around the equilibrium point (u⋆, v⋆), the following equations
can be used:

um
j,k = β3(m) µj ξk, (12a)

vm
j,k = β4(m) µj ξk, (12b)
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where

β3(m) = θ3 σm, (13a)

β4(m) = θ4 σm, θ3, θ4, σ ∈ R, (13b)

and

µ = µg1 = e
2πg1

n i, (14a)

ξ = µg2 = e
2πg2

n i, g1, g2 ∈ {0, . . . , n − 1}, i =
√
−1. (14b)

Equations (13a) and (13b) are convergent if they satisfy

|σ| ≤ 1 (15)

and divergent if they satisfy

|σ| > 1. (16)

As a result, it has been shown that a necessary stability condition of the Barkley system (2)
in 2D for the space step ∆x and the time step ∆t is as follows:

∆t ≤ (∆x)2

4
+O

(
(∆x)4

)
. (17)

Under this condition, the numerical solutions of the system (2) are stable; otherwise, they
are unstable.

The investigation of dynamic spiral wave phenomena has important applications,
especially in medicine and the sciences. In the former, rotating spiral wave patterns have
been observed in muscle tissues of the heart, such as in cases of atrial fibrillation [30,31].
The tip trajectory within the spiral wave simulation is manipulable with the proportional
feedback method [32]. The proposed technique has been demonstrated to effectively
control the spiral wave around a fixed equilibrium point within a constrained domain by
monitoring the trajectory of the simulated spiral wave [33]. Therefore, this method can
be applied to a different system, namely, the Barkley system, to successfully suppress the
spiral wave simulations. This approach involves a homogeneous control action, defined
over the entire spatial domain, that is applied to the Barkley reaction–diffusion system. The
focus of this research is on the evolving path of the trajectory in the spiral wave simulation
in nonlinear reaction–diffusion equations, with a specific focus on the Barkley system.

As found in the research discussed above, the Barkley system, expressed by For-
mula (2), is described in media with excitable properties by

ut =
1
ϵ

u
(
1 − u

)(
u − v + b⋆

a⋆

)
− f̃ (t) φ⋆ (x, y) +∇2u, (18a)

vt = u − v. (18b)

Here, a proportional feedback control function f̃ (t) is formulated as follows [32–34]:

f̃ (t) = a1

(
r0(t)− r(t)

)
, a1 ≪ 1, (19)

where the function φ⋆(x, y) represents the management action. The constant a1 is re-
ferred to as the feedback strength, and r is the span of the spiral wave tip’s trajectory
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(
xtip(t ), ytip(t)

)
from the desired central point (xc , yc) in Cartesian coordinates, which is

calculated as follows:

r(t) =
∥∥∥ (xc , yc)−

(
xtip(t), ytip(t)

) ∥∥∥
2
. (20)

The variable r0 represents the radius of the desired circular orbit. The central point (xc , yc)

can be positioned at any location within the bounded spatial domain. The tip of the spiral
wave, denoted as (xtip(t), ytip(t)), is crucial for gaining insight into the characteristics of
spiral wave motion in the Barkley model. In the Barkley system, the spiral wave consists of
a leading wave face and a trailing back wave that face at the tip trajectory of the spiral wave
simulation. Consequently, the isoclines of the solutions corresponding to spiral waves for
the two numerical solutions u and v are significant, as they allow us to characterize the
spiral wave tip (xtip(t), ytip(t)) through the intersection of the two isoclines.

In this work, the focus is solely on the scenario involving a homogeneous control
action function, which can be expressed as follows:

φ⋆(x, y) = 1, ∀ x, y. (21)

The focus of this work is on the case in which the control action function φ⋆ is situated
close to the intended focal point of the spiral wave. The numerical determination of the
sought-after radius r0 by solving the following ordinary differential equation, as in [32]:

d r0(t )
dt

=
1
a2

(
r(t)− r0(t )

)
, a2 ≫ τ, (22)

where the arbitrary variable τ denotes the time period of the fixed rotating of the tip
of the spiral wave simulation. Concerning the dynamics of the controller described by
Equation (22), the core radius r0 can be approximated efficiently using the forward Euler
method. When the shift in the dynamics of the spiral wave is constrained and the wave is
maneuvered around the intended center of rotation in a steady manner, the function r(t)
approaches the spiral core’s radius r0 [13,32]. That is, the following limit holds:

lim
t→∞

r(t) = r0 . (23)

In simpler terms, the value of function r
(
t
)

following the motion of the spiral wave’s tip is
attracted towards the core’s radius r0 . The tip trajectory of the spiral wave simulation is
effectively anchored nearly the fixed point of the periodic system. The central point of the
spiral core can be determined numerically using the following formula:

xc =

max
0≤t≤t1

(
xtip

(
t
))

+ min
0≤t≤t1

(
xtip

(
t
))

2
, (24a)

yc =

max
0≤t≤t1

(
ytip

(
t
))

+ min
0≤t≤t1

(
ytip

(
t
))

2
, t1 ∈ R+. (24b)

Furthermore, the desired radius r0 of the circular orbit can be determined numerically
through the 1D controller dynamics with a given initial condition, using the follow-
ing equation:

r0 =

√(
xtip − xc

)2
+

(
ytip − yc

)2
. (25)

In this study, the center (xc , yc) of the circle is investigated for achieving effective
management over the spiral wave’s location at the center of the bounded domain or close
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to the bounded domain. Additionally, the desired radius r0 is assumed as an initial guess
for system (22). Using one of the most commonly employed techniques, the movement of
the spiral wave tip rotates about a fixed central point, as illustrated in Figure 1.

(a) (b)

Figure 1. (a) Successful control of a spiral wave. (b) Characteristics of the spiral wave when the
function f̃ (t) is not applied, using the same values for the model parameters.

For a specific set of model parameters, ϵ = 0.02, a⋆ = 0.5, kϵ = 1, and b⋆ = 0.05,
it can be seen that the path of the spiral tip can be dominated using a particular control
method that uses the functions φ⋆(x, y) and f̃ (t). Regarding to model parameters a⋆ and
b⋆, there is the boundary domain of the model parameters for the Barkley system, for the
behavior of the spiral wave to be understood [35]. The control parameters a1 and a2 are
set to 0.01 and 1000, respectively. The initial approximation for the value of r0 is 5, while
the desired central position of the rotating spiral wave is at (xc , yc) = (30, 30). The isolines
corresponding to the variables u and v are established at 0.15. The image of the spiral wave
tip is captured at time 2500, with a step size of ∆t = 0.1 and spatial steps of 0.33 in both
the x-and y-directions. Panels (a) and (b) show the numerical solution along with the tip
trajectory (xtip , ytip) of the Barkley system’s spiral wave, obtained using Matlab. The results
indicate that the propagation of the spiral wave in the Barkley system can be effectively
controlled, showcasing successful control over the movement of the wave tip within the
Euclidean group, which refers to a finite plane. If the numerical solutions for the spiral
wave represent equilibria, then translating, rotating, or reflecting these solutions will yield
new equilibria as well. This is due to the application of Euclidean symmetry [36]. It is
observed that if the desired central point (xc⋆

, yc⋆
), where xc⋆

, yc⋆
∈ R+, is sufficiently

close to the path of the spiral wave solution’s tip, as illustrated by the filled red stationary
point in Figure 1, then the movement of the spiral tip can be easily drawn toward a spiral
core radii r0 centered at the point (30, 30). This suggests that the proportional feedback
control function f̃ (t) is capable of steadying the trajectory traced by the spiral wave’s tip,
guiding it toward the fixed central point and enabling stable rotation within the coordinate
grid points. This scenario is referred to as local control.

As shown in Figure 1, the path traced by the spiral wave’s tip does not exhibit unsteady
rotation. The motion of the path of the spiral wave tip is consistently regulated, resulting in
the fixed rotation of its trajectory. Therefore, the function f̃ (t) approaches zero when the
functions r0(t) and r(t) coincide, as depicted in Figure 2.

For the parameters ϵ = 0.02, a⋆ = 0.5, kϵ = 1, and b⋆ = 0.05, Figure 2a shows that
the control force function f̃ (t) approaches zero. The initial value of r0 is estimated to be 5,
using the parameters a1 = 0.01 and a2 = 1000 and a central point of (xc , yc) = (30, 30). Ad-
ditionally, the forward Euler method is used to numerically solve the ordinary differential
Equation (22), with a time step of ∆t = 0.1. Since the function r(t) matches the desired core
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radius r0 , as can be seen by comparing Figure 2a,b, this fulfills Formula (23). As shown in
Figure 1a, the initial transient of the spiral wave tip trajectory is not eliminated. This causes
the tip to move toward the left side of the y-direction since the center circle’s Cartesian
coordinates are (30, 30). Significantly, if the spiral wave’s tip is effectively suppressed and
directed toward the desired central point, the central point (xc , yc) will approach the target
location (xc⋆

, yc⋆
). If the path traced by the end of the spiral wave does not rotate near the

central core area (xc , yc) in a circular pattern, then the central point and the target point
may be entirely distinct. Assume that the central point (xc , yc) is (45, 45). In that scenario,
the motion of the spiral wave’s tip will converge to the fixed central point in the periodic
regime, as depicted in Figure 3.

For fixed model parameters ϵ = 0.02, a⋆ = 0.5, kϵ = 1, and b⋆ = 0.05, Figure 3
illustrates the successful control of the spiral wave as it revolves around the central core
located at (xc , yc) = (45, 45), which is denoted by the red point. The final snapshot
demonstrates a stable rotation of the spiral wave tip at time 2500. Initially, the variable r0 is
estimated to be 5, with control parameters a1 = 0.01 and a2 = 1000. A time step ∆t = 0.1
is used for the simulation, covering the time interval [0, 2500], whereas the step sizes ∆x
and ∆y are both set at 0.33. The initial transient of the leading edge of the spiral wave
in Figure 1 is smaller than in the spiral wave tip trajectory in Figure 3. This difference in
the initial transients is because the central point (xc⋆

, yc⋆
) is situated far from the solution

representing a spiral wave. Since the spiral wave movement is regulated as rigid rotation,
this can be classified as a globally successful control scheme. Conversely, if the desired
central point is located closer to the spiral wave behavior, which can be suppressed in the
periodic regime, then this approach can be considered a locally successful control.

The function f̃ (t) does not consistently aid in effectively stabilizing the spiral wave tip
in the periodic or meandering regimes. As a result, there are three types of unsuccessful
stabilizations of the spiral tip. The first scenario occurs when the spiral wave tip trajectory
occasionally moves toward the central point but is unable to rotate stably around it as
shown in Figure 4a.

This behavior can be suppressed, but only weakly. The second type of scenario occurs
when the spiral wave tip fails to rotate around the central point at certain times as shown
in snapshot Figure 4b. The third type arises when the path followed by the spiral wave tip
rotates in close proximity to the boundary region as shown in of Figure 4c, which may lead
to a boundary crash, the worst-case scenario. These cases occur because multiple factors
have a significant influence on the management of the trajectory of the spiral tip, including
the choice of values for the parameters a⋆, ϵ, and b⋆ in the Barkley system, the initial state
of the system, the choice of values for the control parameters a1 and a2 in the function
f̃ estimated at time t, and the positioning of the central core of the terminal point of the
spiral wave. In particular, if the target point is near the initial spiral wave simulation, then
controlling the movement of the spiral wave becomes more manageable. On the other hand,
if the fixed target point is at a significant distance from the initial spiral wave, maintaining
stable control of the spiral tip becomes difficult.

The difficulty in controlling the spiral wave is also affected by the size of the bounded
area, which can impact effectively control the apex of the spiral wave. According to [37],
the motion of the solution representing a spiral wave is influenced by the size of the
boundaries enclosing it. As a result, the left eigenfunction of the corresponding adjoint
linear system is a valuable tool for studying perturbations around the boundary area or the
trajectory of the spiral tip. This is because the left eigenfunction is not greatly affected by
the proximity to the boundary or the spiral wave tip. The final factors influencing control
over the spiral wave’s motion are the selection of the numerical method and the size of the
spatial step, which can impact the transformation of the meandering or hypermeandering
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spiral wave into periodic rotation. However, even with these factors considered, it remains
challenging to stabilize the periodic motion of the spiral tip using the proportional feedback
control function.

(a) (b)
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Figure 2. The functions r0 (t ), r(t) and f̃ (t) are assigned numerical values. The panel (a) shows
values of the radius of the core, while the panel (b) demonstrates the distance of the tip trajectory
of the spiral wave from the centre core. The panel (c) shows the value of the proportional feedback
control which approaches zero, while the panel (d) explians explains difference values between r0

and r which go to zero.
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Figure 3. Controlled numerical spiral wave solution of the Barkley equation.
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Figure 4. Unsuccessful control of the numerical spiral wave solution of the Barkley system for
the component u. The panel (a) shows unable rotating around centre point, while the panel (b)
demonstrates that tip trajectory of the spiral wave does not move around the centre core. The final
panel (c) shows the movement of the spiral wave does not go to centre core and rotates around
boundary region.

3.2. Linear System for Nonlinear Barkley Model

To explore the properties of the Barkley reaction–diffusion equation, the linear and
adjoint linear systems need to be found. The purpose of this analysis is to determine how
the Barkley system’s behavior is impacted if a small perturbation is introduced. Specifically,
this perturbation will affect the spatial location of the rotation core of the spiral wave,
as well as its frequency (drift), dependent on the parameters a⋆ and b⋆. As a result, the
eigenfunctions of the associated adjoint linear system provide an effective method of
describing the sensitivity of the spiral waves to small perturbations. It should be noted that
if the response functions (RFs) converge to zero, the spiral wave solution will be insensitive
to perturbations, as reported in [38]. Therefore, in this section, the linear problem and the
adjoint linear equation will be discussed, focusing on how they can be numerically solved
in a Cartesian coordinate system, with white noise as the initial condition. Furthermore,
formulation of the Barkley model in the comoving frame of reference will be analyzed.

The goal of linearizing the nonlinear system described by (18) is to investigate the
stability of the numerical solution for the spiral wave in the nonlinear system (18). This is
achieved by finding the eigenvalues of the linear system, as discussed in [19,39,40]. The
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following linear system is derived from the nonlinear system (18) with an independent
time variable:

ct =

(
2
ϵ

u − 3
ϵ

u2 − 1
a⋆ ϵ

v +
2

a⋆ ϵ
u v − b⋆

a⋆ ϵ

+
2 b⋆

a⋆ ϵ
u
)

c +
(
− 1

a⋆ ϵ
u +

1
a⋆ ϵ

u2
)

d + cxx + cyy, (26a)

dt = c − d, (26b)

where

c = c(x, y, t), d = d(x, y, t), 0 < x < L1 , 0 < y < L1 . (27)

The system (26) is also referred to as the right eigenfunction of the linear model. This
system has a Neumann boundary condition, while the initial condition is given by white
noises. Applying the central difference and forward Euler numerical methods allows a
numerical simulation of the linearized system (26) to be acquired, as depicted in Figure 5,
which illustrates the effective control of the numerical spiral wave using the following
parameter values: ϵ = 0.02, a⋆ = 0.5, kϵ = 1, and b⋆ = 0.05. The spiral wave is successfully
controlled as it revolves around the central core located at (xc , yc) = (30, 30), which is
indicated by the red point. The initial condition is set to white noises, the step size ∆t is
0.01, and ∆x and ∆y are both 0.33. The initial value of the variable r0 is estimated to be 5,
with control parameters a1 = 0.01 and a2 = 1000. By tracking the trajectory of the spiral tip,
as depicted in Figure 5, it can be observed that the spiral wave effectively revolves around
the center core. However, the adjoint linear system needs to be found.
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Figure 5. Approximate solution of the linear Equation (26) for the Barkley system.

3.3. Adjoint Linear System for the Barkley Model

According to the results from Biktashev’s study [26,41] and based on the linearized
system (26) of the nonlinear model (18), employing the concept of the adjoint linear operator,
the (left) adjoint linear system of (26) in two dimensions can be formulated as follows:

kt =

(
2
ϵ

ũ1 −
3
ϵ

ũ2
1
− 1

a⋆ ϵ
ṽ1 +

2
a⋆ ϵ

ũ1 ṽ1 −
b⋆

a⋆ ϵ
+

2 b⋆

a⋆ ϵ
ũ1

)
k

+ s + kxx + kyy, (28a)

st =

(
− 1

a⋆ ϵ
ũ1 +

1
a⋆ ϵ

ũ2
1

)
k − s, (28b)

such that

k = k(x, y, t), s = s(x, y, t), 0 < x < L1 , 0 < y < L1 , (29)
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and

ũ1 = u(x, y, τ − t), ṽ1 = v(x, y, τ − t), t ∈ [0, τ]. (30)

By examining Formula (30), it can be seen that the time components u and v in
Equation (28) need to shift backward; otherwise, the dynamic numerical solutions for
spiral waves will become unstable. The system’s boundary condition, formulated by
Equation (28), is likewise Neumann, while the initial state consists of white noises. The
central difference and forward Euler methods are used as the numerical methods. Conse-
quently, the numerical simulation for the adjoint linearized Equation (28), associated with
the parameters ϵ, a⋆, kϵ , and b⋆, is derived and presented in Figure 6.
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Figure 6. Adjoint linear numerical simulation of the Barkley model, which incorporates the controller
equation. The panel (a) shows the numerical solution of the adjoint linear system from beginning,
while the panel (b) demonstrates the numerical solution of the adjoint linear system from end.

Figure 6 displays the spiral wave of the adjoint linear system, computed using an
explicit method. The initial condition is set to white noise, and the model parameters are
ϵ = 0.02, a⋆ = 0.5, kϵ = 1, and b⋆ = 0.05. The tip trajectory of the white linear solution
commences at the initiation of the black path of the spiral tip. Conversely, the dynamical
spiral wave for the nonlinear and linear Barkley systems originates from the beginning
of the trajectory of the white tip in the simulation of the spiral wave. Furthermore, the
movement of the simulation of the spiral wave in both the nonlinear and linear systems is
counterclockwise, whereas the spiral wave in the adjoint linear system moves in a clockwise
direction. The central position (xc , yc) of the rotating spiral wave is located at (30, 30). The
time increment chosen is ∆t = 0.1, whereas the spatial increments in both the x- and
y-directions are 0.33. In Figure 6, it can be observed that the resulting left eigenfunction is
nearly zero, except in the area around the spiral tip. Therefore, it can be understood how
large the perturbation is around the spiral tip.
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Overall, we have effectively controlled the solution of the spiral wave in the Barkley
system with a perturbation component by employing proportional feedback control, which
is a homogeneous function both numerically and theoretically. In this study, we analyze
the sensitivity of the spiral wave’s tip trajectory to perturbations by utilizing the left
eigenfunction from the linearization of the adjoint linear model of the Barkley equation.

4. The Stability of Spiral Wave and Numerical Results
In this part, we consider to study the stability of spiral wave patterns under propor-

tional feedback control. Furthermore, we are providing numerical examples to confirm
our results. Controlling the dynamics of spiral waves is crucial to understanding excitable
media systems. Although proportional feedback control can be used to regulate the spiral
wave tip trajectory, it may not always effectively control the spiral wave motion. To gain
deeper insight into the movement patterns of the spiral wave tip, it is necessary to combine
the perturbed Barkley system with the controller dynamics. This involves studying the
eigenvalues of the perturbed system with the controller. If the eigenvalues satisfy the
stability condition, it is possible to successfully control the spiral wave tip. The perturbed
Barkley model (18) was previously only considered for a fixed function φ⋆(x, y) = 1. The
combination of the Barkley model (18) with the 1D controller system given by (22) can
be investigated to understand the regulation of spiral wave tip displacement. Comput-
ing the adjoint eigenfunction for the left linear system can also provide valuable insights
into the perturbations around the spiral wave tip. The eigenvalues can yield information
about the effectiveness of controlling the spiral wave tip based on specific model and
control parameters.

Therefore, it is necessary to linearize the Barkley model with the controller equation
and solve the resulting linear system numerically. This allows for the investigation of the
Barkley model combined with a 1D controller equation, which can be formulated as follows:

∂ u1

∂ t
= f1(u1) + D1 ∇

2u1 + h⋆(t), (31)

where

u1 ≡ u1(x, y, t) =

u(x, y, t)
v(x, y, t)

r0(t)

, D1 =

1 0 0
0 0 0
0 0 0

, (32)

and

f1(u1) =

g1(u1)

h1(u1)

f1(u1)



=


1
ϵ u2 − 1

ϵ u3 − 1
a⋆ ϵ u v + 1

a⋆ ϵ u2 v − b⋆
a⋆ ϵ u + b⋆

a⋆ ϵ u2 − a1 r0

u − v
− 1

a2
r0

, (33a)

h⋆(t) =

g⋆(t)
h⋆(t)
f⋆(t)

 =

 a1 r
0

1
a2

r

. (33b)

The system (31) is now transformed to a rotating reference frame with an angular velocity
c1 , allowing the spiral wave solution to traverse the path of the spiral tip. The advantage
of this approach is that the general equations of motion for the spiral wave tip trajectory
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can be transformed from the original reference frame to a comoving frame. As a result, the
rigidly rotating spiral wave solution of the system (31) evolves into a stationary solution in
the new reference frame. The difficulty in this method is that the speed c1 of the simulation
of the spiral wave must be numerically calculated.

To address this, the reaction–diffusion system with perturbation term (31) is rewritten
in an unbounded plane using polar coordinates (R , θ) instead of Cartesian coordinates
(x , y). This transformation is made with equation [3]

u1(x, y, t) = ŭ(R, θ, t) =

ŭ(R, θ, t)
v̆(R, θ, t)

r̆0(t)

, (34)

such that

x(R, θ) = R cos(θ), y(R, θ) = R sin(θ). (35)

The angle of rotation for the spiral wave is represented by θ. Furthermore, the quantity
ŭ(R, θ, t) is realized within the frame of reference. The chain rule is then applied to (34)
and the system (31) is transformed into polar coordinates, resulting in the form

∂ ŭ
∂ t

= f1(ŭ) + D1 ∇
2ŭ + h⋆(t), (36)

where

∇2 =
∂2

∂R2 +
1

R2
∂2

∂θ2 +
1
R

∂

∂ R
. (37)

The system (36) can now be more easily reformulated in a corotating reference frame with
angular velocity c1 . To this end, it is assumed that

ŭ(R, θ, t) = z̆(R, Θ) =

χ̆(R, Θ)

ζ̆(R, Θ)

r̆0(t)

, (38)

such that

Θ = θ − c1 t ⇐⇒ Θ(θ, t) = θ − c1 t (39)

and Θ is the polar angle in a rigidly rotating reference frame characterized by a spiral wave
angular velocity of c1 . In this procedure, it is assumed that the spiral wave undergoes
rotation around the origin. The arbitrary quantities R and Θ represent the polar coordinate
system in the original comoving frame of the reference, which does not rotate. By applying
the chain rule, the system (36) can be expressed in the following manner:

∂ û
∂ t

= D1∇
2 û + f1(û) + c1

∂ û
∂ Θ

, (40)

where

∇2 û =
∂2 û
∂ R2 +

1
R2

∂2 û
∂ Θ2 +

1
R

∂ û
∂ R

(41)

and

û(R, Θ, t) = ŭ(R, θ, t). (42)
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One can observe that the numerical simulation of the system (40) is nonstationary in
order that the time t is not fixed. It would therefore be useful to seek a stationary simulation
of the system (40), in which the time t is an invariant, as this would allow the determination
of the rotational speed c1 of the spiral wave. This, in turn, would imply that the dynamical
system can be investigated by numerically estimating the eigenvalue. A definition of
Formula (38) can be provided for the variable ŭ. The implication is that the system (40)
undergoes the following transformation:

F(z̆) = f1(z̆) + D1

(
z̆RR +

1
R2 z̆ΘΘ +

1
R

z̆R

)
+ c z̆

θ
. (43)

This is used to transform the simulation of a rotating spiral wave, which is described
by the fundamental Equation (31), into an equilibrium state. Linearizing the reaction–
diffusion system (36) in the vicinity of the stationary solution z̆(R, Θ) with respect to the
component z̆ is proven to be beneficial. This linearization process is carried out while
keeping the independent time t fixed in the comoving frame of reference, as specified by
the following equation:

ŭ(R, Θ, t) = z̆(R, Θ) + v̆(R, Θ, t), (44)

such that

v̆(R, Θ, t) =

 ă(R, Θ, t)
b̆(R, Θ, t)

r̆1(t)

. (45)

The result is that v̆ is the perturbed linear solution. By using a Taylor expansion with
respect to the function f1 in (36), it can be shown that

f1(z̆ + v̆) = f1(z̆) + F1(z̆) v̆ +O
(
|v̆|2

)
, (46)

where

F1(z̆) =
∂f1(ŭ)

∂ŭ

∣∣∣∣
ŭ=z̆

. (47)

is the Jacobian matrix of the reaction function f1 . In correspondence with (44), by applying
the chain rule, Equation (36) can be rewritten as follows:

G(z̆) = D1

(
∂2 z̆
∂ Θ2 +

1
R2

∂2 z̆
∂ Θ2 +

1
R

∂ z̆
∂ Θ

)
+ c1

∂ z̆
∂ Θ

+ f1(z̆) = 0, (48a)

∂ v̆
∂ t

= L̆ v̆. (48b)

Consequently, the time-independent linear operator can be formulated as

L̆ : = D1

∂2

∂ R2 + D1

1
R2

∂2

∂Θ2 + D1

1
R

∂

∂R
+ c1

∂

∂ Θ
+ F1(z̆). (49)

It can be observed that the system (48b) is a linear nonhomogeneous equation. Using
the stable spiral wave solutions illustrated in Figure 1a, it will be numerically demonstrated
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that the principle eigenvalue is on the unit circle through the use of the power iteration
method [42], employing the linear system (48b). The power iteration method estimates the
closest principal eigenvalue for a given diagonalizable matrix A ∈ Cn×n

, where n ∈ N. It
can be implemented more easily than other techniques, like the Arnoldi iteration method.
Consequently, it is necessary to determine the rotational velocity of the spiral wave solution
through numerical methods. The angular velocity c1 is associated with the dynamics of the
Barkley system and the 1D controller. As stated previously, it is advantageous to examine
the dynamical stability of the controlling spiral wave solutions by numerically calculating
their eigenvalues. The angular velocity c1 is related to the system defined in Equation (40).
The angular velocity can be numerically calculated by applying Newton’s iteration method
and using a stationary rotating spiral wave solution of Equation (48a), that is,

xm+1 = xm −
(
G′(xm)

)−1 G(xm). (50)

The discretization is performed on a regular grid in which the radial coordinate R ranges
from 0 to 30 and the angular coordinate Θ from 0 to 2π, using fixed spatial steps ∆R
and ∆Θ.

Table 1 demonstrates how the pinning condition from [43] and Newton’s scheme can
be used to estimate the approximate angular velocity c1 for each iteration m.

Table 1. Values of the estimated angular velocity cm
1

for the Barkley system.

Iteration Number m Angular Velocity Estimate cm
1

1 c1
1
= 0.0110

2 c2
1
= 1.1627

3 c3
1
= 1.1635

4 c4
1
= 1.1644

5 c5
1
= 1.1655

6 c6
1
= 1.1666

7 c7
1
= 1.1680

8 c8
1
= 1.1696

9 c9
1
= 1.1717

10 c10
1

= 1.1746

11 c11
1

= 1.1826

12 c12
1

= 1.1812

13 c13
1

= 1.1794

14 c14
1

= 1.1770

15 c15
1

= 1.1653

16 c16
1

= 1.1653

It presents the numerical values of the rotational speed c1 in the spiral wave simulation
derived using Newton’s scheme. The parameters for the Barkley system are set as follows:
ϵ = 0.02, a⋆ = 0.5, kϵ = 1, and b⋆ = 0.05, while the control parameters are set to a1 = 0.01
and a2 = 1000. The initial estimation for the angular velocity c1 is 0.0110, and the initial
guess for r0 is 5, with the center of the rotating spiral wave located at (xc , yc) = (30, 30).
Additionally, the spiral wave simulations for the components χ̆ and ζ̆ in the stational
rotational spiral wave of Equation (48a) is performed using a bilinear interpolation function.
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The radial step size ∆R is 0.1769, with NR = 170 grid points, and the angular step size ∆Θ is
0.0576, with NΘ = 110 grid points, covering the full circle up to 2π. The step size ∆t is 0.01,
the spatial step ∆x is 0.33, and the spatial scale is 60, with the final simulation time being 50.
The motivation for using this method is that a certain number of iterations are needed to
derive an estimate for c1 . It is known that this estimation serves as a reliable approximate
value if the estimate c1 is iterated [44], so the angular velocity c1 of the spiral wave is equal
to 1.1653. The wavelength of the spiral wave can be determined by utilizing the numerical
angular velocity in conjunction with the periodic rotation of the spiral wave [45].

One can use numerical methods to calculate the eigenvalues and eigenvectors of the
linear system associated with the Barkley system incorporating controller dynamics. The
power iteration method, also known as the von Mises iteration, is a common numerical
scheme used by researchers to estimate eigenvalues [46,47]. The explanations provided by
Formula (48b) can be used to express the linear stability of the spiral wave solutions in the
following manner:

L̆ v̂ = γ̂ v̂; v̂ = v̂(R, Θ ), (51)

where the variable L̆ of the linear operator does not vary with the time variable t. Addi-
tionally, an examination of Equation (51) reveals that the component v̂ is stationary. This
leads to the following equation:

L̆ v̂ = 0 =⇒ γ̂ v̂ = 0. (52)

Thus, γ̂ = 0. If the eigenvalues of Equation (51) satisfy the condition Re(γ̂) < 0, then the
solution of (48b) is stable. Conversely, when the eigenvalues satisfy Re(γ̂) > 0, the linear
system (48b) is unstable. Analyzing the stability of the spiral wave solutions of the Barkley
system with controller dynamics requires the numerical calculation of the eigenvalues
through the linear system (48b). It can be demonstrated that the linear system described by
Equation (52) always has a zero eigenvalue. For the controlling spiral wave solution of the
Barkley system, as shown in Figure 1, stable eigenvalues are observed. Consequently, it is
advantageous to employ the power iteration method for our computation.

Since the Barkley system with the controller equation is linearized around the equi-
librium solution z̆ in the corotating polar coordinate system, the linear Equation (48b) is
used to numerically estimate the eigenvalue γ̂. The numerical solver that determines the
principle eigenvector for the linear system described by Equation (48b) can be implemented
using the power iteration method, as follows:

vm+1
⋆ = A⋆ vm

⋆ = Am+1
⋆ v0

⋆, m ∈ N. (53)

In this formulation, the variable vm+1
⋆ represents the principle eigenvector, and A⋆ is an

n × n matrix, where n is a positive integer [48,49]. The principle right eigenvector vm+1
⋆ is

said to be approached if the principle eigenvalue satisfies the following formula:∣∣∣∣∣ γ
i

γ
1

∣∣∣∣∣ < 1, i ∈ N. (54)

The principle eigenvalue γm+1 can be determined using the Rayleigh quotient iteration, as
described by the following Equation (55) [44] :

γm+1 =
⟨A⋆ vm+1

⋆
| vm+1

⋆
⟩

⟨ vm+1
⋆

| vm+1
⋆

⟩ . (55)
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The power iteration scheme has the property that the stability of the spiral wave solutions
can be determined by investigating the principle eigenvalue γm+1. Furthermore, a key
advantage of this method is its capacity for rapid computations. The largest eigenvalue
γm+1 can be estimated using software such as Matlab (R2024b) and the power iteration
method, as follows:

γm+1 = 0.999963267996578. (56)

For the principle eigenvector vm+1
⋆ to converge according to the power iteration scheme,

the eigenvalue γm+1 and the linear system (48b) must satisfy the following condition:∣∣∣γm+1
∣∣∣ < 1. (57)

Therefore, the dynamical simulation of Equation (36) is steady. The error e between the
Barkley model with the controller system (31) and the Barkley model (18) calculated using
the two-norm is shown in Figure 7.
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Figure 7. The red dashed line represents the approximation error e using the two-norm. The blue
dash-dotted line represents the function f (t) = q1 et λ over the time period [0, 300]. The value of λ is
determined using λ = ln |γ

∆t
|/∆t = −0.0037.

The blue curve is observed to be parallel to the red line such that γ
∆t

is described
as a parameter associated with the time step ∆t. The value of the parameter q1 is 0.0121.
The space step ∆x is assigned a value of 0.1. Additionally, the time step ∆t is set to 0.01.
However, it is indicated that the dynamic solution of system (36) is stable. As a consequence,
it can be observed that the function f (t) tends toward zero as t increases. This behavior is
demonstrated in the successful controlling spiral tip example shown in Figure 2c.

5. Conclusions
This paper explores various facets of spiral wave dynamics through an explicit method.

Numerical simulations of the Barkley system are performed in Matlab, both with and
without a 1D controller equation, to study spiral waves. The spiral wave tip is located
numerically, allowing its behavior to be understood. The nondecaying numerical simu-
lations of the linear model are obtained. From this linear system, the linearization of the
adjoint problem for the Barkley model with the one-dimensional controller dynamicsis is
established, enabling the adjoint eigenfunctions to be calculated numerically. The numeri-
cal speed c1 of the simulation of the spiral wave in the comoving frame of the reference
with the tip trajectory for the Barkley model, without incorporating the one-dimensional
controller dynamicsis, is determined, leading to the numerical computation of the principle
eigenvalue and verification that the spiral wave simulations appear to be asymptotically
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steady. Using the Barkley model and a proportional feedback control function, it is pos-
sible to maintain the steady rotation of the spiral wave. Furthermore, by employing the
adjoint eigenfunctions from the linearization of the adjoint system to the Barkley equa-
tion, along with the one-dimensional controller dynamicsis, it is possible to investigate
how sensitive the simulation of the spiral tip is to perturbations of the Barkley system, as
shown in Figure 6. It would be compelling to examine a more authentic, physics-driven
system like the Hodgkin–Huxley equations [50]. The impetus for exploring this complex
system is that it can provide insights that are more pertinent particularly to comprehending
heart arrhythmias.
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20. Yiğit, O. Novel Spiral Antenna for GNSS Applications. Microw. Opt. Technol. Lett. 2025, 67, e70192.
21. Wang, H.; Chen, H.; Sun, K.; Zhu, W.; Yao, Z. Spatiotemporal dynamics and synchronization in a memristive Chialvo neural

network. Nonlinear Dyn. 2025, 113, 10365–10377. [CrossRef]
22. Xu, H.; Wu, W.; Pan, D. Localized transient conduction block to suppress and eliminate spiral wave doppler instability: A

numerical simulation study. Chaos Solitons Fractals 2025, 193, 116140.
23. Xu, Y.; McInnes, A.; Kao, C.H.; D’Rozario, A.; Feng, J.; Gong, P. Spatiotemporal dynamics of sleep spindles form spiral waves that

predict overnight memory consolidation and age-related memory decline. Commun. Biol. 2025, 8, 1014. [CrossRef]
24. Dipa, G.; Tanisha, C.; Sarthok, S. IMPLICIT–EXPLICIT TIME INTEGRATION METHOD FOR FRACTIONAL ADVECTION–

DIFFUSION-REACTION EQUATIONS. Anziam J. 2025, 67, e2.
25. Alfifi, H.Y.; Almuaddi, S.M. Stability Analysis and Hopf Bifurcation for the Brusselator Reaction–Diffusion System with Gene

Expression Time Delay. Mathematics 2024, 12, 1170. [CrossRef]
26. Shi, S.; Xu, H.; Ma, L.; Kang, K.; Pang, Y.; Wang, Z.; Hu, J. A high sensitivity and wide frequency band vector hydrophone using

PZT-based four spiral beam structure. Measurement 2025, 242, 115840.
27. Mulimani, M.K.; Echeverria-Alar, S.; Reiss, M.; Rappel, W.J. Prediction of excitable wave dynamics using machine learning. Chaos

Solitons Fractals 2025, 192, 115990.
28. Simon, S.; Ceyhun, Ö.; Heiko, G.; Karsten, U.; Bernd, G. Stability and Instability of Time-Domain Boundary Element Methods for

the Acoustic Neumann Problem. Proc. Appl. Math. Mech. 2025.
29. He, L.; Yang, Y.; Wei, Y. Mechanism of the zigzag and spiral bubble ascension: The alternating steering and continuous chase

effects of the side reflux on the bottom surface. Int. J. Heat Fluid Flow 2025, 116, 109980. [CrossRef]
30. Zhuang, L.; Wang, Z.; Jiang, H.; Shi, X.; Xu, W.; Huang, J. The dynamics of a memristive neuron model and the elimination of

spiral waves in neural networks composed of such models. Eur. Phys. J. Spec. Top. 2025, 1–19. [CrossRef]
31. Kumar, M.M.; Rappel, W.-J. Spiral defect chaos with intermittency increases mean termination time. Phys. Rev. E 2025, 112, 034203.

[CrossRef]
32. Russo, A.M.; Desai, M.Y.; Do, M.M.; Butler, J.; Chung, M.K.; Epstein, A.E.; Guglin, M.E.; Levy, W.C.; Piccini, J.P.; Bhave, N.M.; et al.

ACC/AHA/ASE/HFSA/HRS/SCAI/SCCT/SCMR 2025 Appropriate Use Criteria for Implantable Cardioverter-Defibrillators,
Cardiac Resynchronization Therapy, and Pacing. J. Am. Coll. Cardiol. 2025, 85, 1213–1285.

33. Stefano, M. Precision cardiac electrophysiology: Toward digital twins and beyond. J. Precis. Med. Health Dis. 2025, 2, 100009.
34. Pravdin, S.F.; Alexander, V.P. Role of myocardial ischemia components in overdrive pacing of spiral waves. Chaos Solitons Fractals

2025, 196, 116332.
35. Christian, K.; Pascal, S. Stability of N-front and N-back solutions in the Barkley model. GAMM-Mitteilungen 2025, 48, e70001.
36. Gao, J.; Xu, B.; Shen, C. Period-doubled spiral waves without line defects in oscillatory systems. Phys. Rev. E 2025, 112, 014203.
37. Xue, Y.; Yuan, G.; Guo, F.; Shen, W. Dynamics of spiral wave chimeras subjected to a local feedback control. Commun. Nonlinear Sci.

Numer. Simul. 2025, 148, 108859. [CrossRef]
38. Khaothong, K.; Chanchang, V.; Osaklung, J.; Sutthiopad, M.; Kijamnajsuk, P.; Luengviriya, J.; Luengviriya, C. Effect of Electric

Field on Partially Pinned Scroll Waves in Excitable Chemical Media. ACS Omega 2025, 10, 35293–35300. [CrossRef] [PubMed]
39. Benedetti, L.; Fan, R.; Weigel, A.V.; Moore, A.S.; Houlihan, P.R.; Kittisopikul, M.; Park, G.; Petruncio, A.; Hubbard, P.M.; Pang, S.;

et al. Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites. Cell 2025, 188, 484–500.
40. Chen, D.; Wang, F.; Liu, Y.; Lyu, W.; Zhao, X.; Fang, R.; Chen, L.; Li, Y. Selective Electroreduction of CO2 to CO over Ultrawide

Potential Window via Implanting Active Site with Long-Range P Regulation on Periodic Pores. Angew. Chem. 2025, 137, e202421149.
[CrossRef]

41. Alfifi, H.Y. Effects of Diffusion and Delays on the Dynamic Behavior of a Competition and Cooperation Model. Mathematics 2025,
13, 1026. [CrossRef]

http://dx.doi.org/10.1016/j.celrep.2025.116040
http://dx.doi.org/10.1111/exsy.70060
http://dx.doi.org/10.1103/physrevfluids.10.024801
http://dx.doi.org/10.1007/s11071-024-10599-7
http://dx.doi.org/10.1038/s42003-025-08447-4
http://dx.doi.org/10.3390/math12081170
http://dx.doi.org/10.1016/j.ijheatfluidflow.2025.109980
http://dx.doi.org/10.1140/epjs/s11734-025-01638-4
http://dx.doi.org/10.1103/bwpl-qqyl
http://dx.doi.org/10.1016/j.cnsns.2025.108859
http://dx.doi.org/10.1021/acsomega.5c05946
http://www.ncbi.nlm.nih.gov/pubmed/40821573
http://dx.doi.org/10.1002/ange.202421149
http://dx.doi.org/10.3390/math13071026


Symmetry 2025, 17, 1721 22 of 22

42. Kai, G. Emergence and regulation of spiral waves in a neuronal network with adaptive synaptic current. Eur. Phys. J. Spec. Top.
2025, 234, 1051–1061.

43. Speights, J.C.; Aust, V.; Lu, Q. Spiral Density Waves in the Multiple-armed Galaxy NGC 628. Astrophys. J. 2025, 981, 115. [CrossRef]
44. Eriksson, L.E.J.; Yang, C.-C.; Armitage, P.J. Particle fragmentation inside planet-induced spiral waves. Mon. Not. R. Astron. Soc.

Lett. 2025, 537, L26–L32. [CrossRef]
45. Kolesnikov, I.D.; Bukh, A.V.; Muni, S.S.; Ram, J.S. Impact of Lévy noise on spiral waves in a lattice of Chialvo neuron map. Chaos

Solitons Fractals 2025, 190, 115759. [CrossRef]
46. Garcia-Azpeitia, C.; Ghanem, Z.; Krawcewicz, W. Global Bifurcation of Spiral Wave Solutions to the Complex Ginzburg-Landau

Equation. arXiv 2025, arXiv:2507.15098. [CrossRef]
47. Wang, J.; Chang, Z.; Liu, T.; Chen, L. A review of linear and nonlinear vibration analysis of composite laminated structures by

computational approaches: 2015–2024. Nonlinear Dyn. 2025, 113, 10839–10859. [CrossRef]
48. Du, K.; Fan, J.-J. GP-CMRH: An inner product free iterative method for block two-by-two nonsymmetric linear systems. arXiv

2025, arXiv:2509.11272.
49. Qiao, W.; Liu, Y.; Jiao, J.; Chen, X.; Zhang, H. Spatiotemporal Analysis and Characterization of Multilayer Buried Cracks in Rails

Using Swept-Frequency Eddy-Current-Pulsed Thermal Tomography. Appl. Sci. 2025, 15, 9069. [CrossRef]
50. Eisenberg, R.S. Current Flow in Nerves and Mitochondria: An Electro-Osmotic Approach. Biomolecules 2025, 15, 1063. [CrossRef]

[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3847/1538-4357/adb1b3
http://dx.doi.org/10.1093/mnrasl/slae110
http://dx.doi.org/10.1016/j.chaos.2024.115759
http://dx.doi.org/10.48550/arXiv.2507.15098
http://dx.doi.org/10.1007/s11071-024-10837-y
http://dx.doi.org/10.3390/app15169069
http://dx.doi.org/10.3390/biom15081063
http://www.ncbi.nlm.nih.gov/pubmed/40867508

	Introduction
	Research Methodology
	The Model
	Nonlinear System for the Barkley Model 
	Linear System for Nonlinear Barkley Model 
	Adjoint Linear System for the Barkley Model

	The Stability of Spiral Wave and Numerical Results
	Conclusions
	References

