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Abstract

The integration of AI-driven optimization into Electronic Design Automation (EDA) enables
smarter and more adaptive circuit design, where symmetry and asymmetry play key roles
in balancing performance, robustness, and manufacturability. This work presents a model-
driven optimization methodology for sizing low-phase-noise LC voltage-controlled oscilla-
tors (VCOs) at 5 GHz, targeting Wi-Fi, 5G, and automotive radar applications. The approach
uses the EKV transistor model for analytical CMOS device characterization and applies a
diverse set of metaheuristic algorithms for both single-objective (phase noise minimization)
and multi-objective (joint phase noise and power) optimization. A central focus is on
how symmetry—embedded in the complementary cross-coupled LC-VCO topology—and
asymmetry—introduced by parasitics, mismatch, and layout constraints—affect optimiza-
tion outcomes. The methodology implicitly captures these effects during simulation-based
optimization, enabling design-space exploration that is both symmetry-aware and robust
to unavoidable asymmetries. Implemented in CMOS 180 nm technology, the approach
delivers designs with improved phase noise and power efficiency while ensuring man-
ufacturability. Yield analysis confirms that integrating symmetry considerations into
metaheuristic-based optimization enhances performance predictability and resilience to
process variations, offering a scalable, AI-aligned solution for high-performance analog
circuit design within EDA workflows.

Keywords: symmetry-aware optimization; asymmetry in analog circuits; LC-VCO
optimization; low phase noise; EKV model; automated circuit synthesis; optimization
algorithms; model-driven optimization

1. Introduction
The continuous scaling of CMOS technology to nanometer sizes has enabled the

development of highly integrated systems for wireless communication, offering benefits
such as higher speed, lower power consumption, and reduced area. As a result, CMOS
technology is widely adopted for RF applications due to its high-density integration and
cost effectiveness. However, this comes with challenges, particularly in maintaining low
phase noise and power efficiency. One key issue is the degradation of the on-chip LC
tank quality factor, which is typically limited in the GHz range due to thin metal layers
and substrate losses [1]. While advancements in process technology and additional metal
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layers have gradually improved the quality factor of passive elements [2], designing high-
performance LC voltage-controlled oscillator (VCOs) remains a complex task, especially
with the reduced supply voltage that complicates achieving wide linearity and full output
swing [3].

The 5 GHz frequency band is widely used in modern RF applications, including Wi-Fi
standards such as 802.11a/n/ac/ax [4], mid-band 5G networks [5], and automotive radar
systems [6]. These applications demand low-phase-noise oscillators to ensure reliable
communication, reduced signal distortion, and enhanced performance. Furthermore, IoT
devices operating in this band benefit from reduced interference and higher data through-
put compared to the crowded 2.4 GHz spectrum [7]. Designing VCOs optimized for such
applications is critical to meet the stringent requirements of high-speed data transfer, low
power consumption, and robust performance in the presence of noise and interference. This
work aims to address these challenges by proposing an efficient optimization methodology
tailored to the needs of these 5 GHz applications.

Numerous methodologies for designing LC VCOs have been proposed in the literature.
Most studies rely on analytical models to characterize circuit behavior but often ignore
parasitic effects, which are only accounted for through simulations. For instance, the gm/ID

methodology explored in [8] optimizes LC VCOs across all transistor inversion regions but
lacks applicability for varactor characterization. Furthermore, model-based optimization
methods combined with genetic algorithms (GAs) have been employed to enhance phase
noise and power consumption in RF applications [9,10]. Despite their effectiveness, these
approaches might miss certain non-idealities captured by electromagnetic simulations,
highlighting the need for further validation through Process, Voltage, and Temperature
(PVT) and yield analysis.

Recent work in [11] introduces a wide-tunable, low-voltage LC-VCO using a novel
active inductor, achieving impressive performance metrics. However, the absence of opti-
mization algorithms limits further enhancement of phase noise and power consumption,
and the use of an active inductor can introduce higher noise and power consumption
compared to traditional inductors. Moreover, studies like [12] employ EDA tools and
Evolutionary Algorithms (EAs) for optimal VCO sizing, achieving precise performance
trade-offs. Still, their focus on only two LC-VCO topologies may overlook alternative
designs that could offer better results, and the computational intensity of such simulations
may increase design time and complexity. Similarly, ref. [13] presents a simulation-based
methodology for multi-objective optimization of LC-VCOs, focusing on key metrics like
power consumption and phase noise. While validated using 0.13 µm RF CMOS technology,
this approach’s reliance on extensive simulations can make it computationally expensive,
demanding significant time and resources, especially for more complex RF circuits. In [14],
the authors propose a new multi-objective optimization methodology for designing a
complementary cross-coupled LC-VCO, aiming to minimize both phase noise and power
consumption. This approach leverages a multi-objective algorithm that enhances explo-
ration and exploitation, theoretically improving oscillator performance. However, the work
has several limitations: it lacks validation through circuit simulation, limiting practical
applicability, and, despite claiming a multi-objective approach, only a single solution is pre-
sented, which undermines the multi-objective framework. Additionally, the VCO modeling
uses simplified equations that may not adequately capture the complexities of real-world
VCO behavior.

According to recent reviews of metaheuristic optimization in analog circuit design,
the vast majority of reported studies rely on population-based approaches, particularly
genetic algorithms, evolutionary strategies, and swarm intelligence. Among these, GAs
and NSGA-II are by far the most frequently employed for analog and RF circuit siz-
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ing, reflecting their maturity and community adoption [15,16]. Nonetheless, the same
reviews also document an increasing adoption of hybrid schemes (e.g., PSO–DE combi-
nations), surrogate-assisted optimizers (such as surrogate-augmented DE or ESSAB [17]),
and more recent swarm-based innovations (e.g., MSSA, MOBO/D), which offer promising
improvements in convergence speed and scalability [18–20]. While classical algorithms
remain critical as baselines and for comparability across studies, the integration of re-
cent algorithms highlights the research momentum toward more efficient, hybridized,
and machine-learning-assisted metaheuristics in analog design [21,22].

Recent surveys of metaheuristic-based analog design confirm that these methods
remain the most widely adopted tools for circuit optimization due to their ability to handle
nonlinear, non-differentiable, and simulation-driven objectives. Evolutionary and swarm
intelligence approaches such as GA, PSO, and DE dominate the literature, while multi-
objective variants like NSGA-II and SPEA2 remain the most frequently applied to balance
conflicting circuit performance metrics. At the same time, newer trends include hybrid [20]
and surrogate-assisted metaheuristics [18,19] that aim to reduce the high computational
cost of repeated SPICE simulations, as well as physics-inspired and decomposition-based
approaches (e.g., MOEA/D, MSSA) that enhance convergence speed and Pareto diver-
sity. Importantly, the recent taxonomy of methods also highlights the growing role of
machine learning integration [17,21,22], such as ANN-assisted differential evolution [16] or
surrogate-guided search [17], for handling high-dimensional analog design tasks. These
findings emphasize both the maturity of classical algorithms and the momentum of re-
cent innovations, situating our proposed framework at the intersection of reliability and
state-of-the-art advancement.

While differential LC-VCOs inherently benefit from symmetric topologies to ensure
balanced outputs and effective common-mode rejection, practical implementations often
introduce asymmetries due to layout constraints, parasitic mismatches, or non-uniform
biasing. These asymmetries can degrade performance, particularly phase noise and power
efficiency; however, when properly characterized, they may also offer optimization flexibil-
ity. In this context, this paper explores how model-based metaheuristic optimization can
implicitly account for such structural and layout asymmetries while enforcing performance-
driven symmetry in key signal paths.

In this work, we propose a model-based optimization approach that leverages the
EKV model for accurate characterization of circuit elements combined with metaheuristic
algorithms. Our methodology, demonstrated through case studies using 180 nm CMOS
technology, effectively minimizes phase noise and power consumption. The accuracy of the
optimized LC-VCO designs is validated through detailed simulations, and their robustness
is confirmed via yield analysis.

It is important to note that the novelty of this work does not lie in introducing a new
optimization algorithm. Instead, it resides in the methodological contribution of embedding
symmetry and asymmetry considerations directly into EKV-based analytical modeling
of LC-VCOs. By enriching the modeling layer, the proposed approach enables existing
metaheuristics—whether classical (e.g., GA, PSO, DE, NSGA-II) or modern (e.g., new,
hybrid, surrogate-assisted, or machine-learning-based)—to converge toward physically
consistent, verifiable, and practically implementable designs. This modeling innovation
ensures that optimization outcomes remain both robust and relevant, even without the
development of a new algorithm.

The main motivations of this work can be summarized as follows:

• To integrate EKV-based physical models with metaheuristics for verifiable LC-VCO design;
• To assess how symmetry and asymmetry influence optimization outcomes;
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• To compare single- and multi-objective optimization in minimizing phase noise
and power;

• To validate robustness through yield-oriented Monte Carlo simulations.

The rest of this paper is structured as follows: Section 2 formulates the optimization
problem for LC-VCO design. Section 3 presents the LC-VCO topology and modeling,
providing the foundational analytical models for the spiral inductor and CMOS varactor as
well as performance characterization. Section 4 discusses the LC-VCO optimization results,
with detailed analysis and comparisons. Finally, conclusions are drawn in Section 5.

2. LC-VCO Optimization Formulation
The circuit optimization problem focuses on determining the optimal set of design

parameters that maximize or minimize specific performance metrics of a circuit, while
satisfying a set of constraints. In the context of LC-VCO design, the optimization problem
seeks to determine the optimal set of design parameters that improve critical performance
metrics. The optimization can be formulated as follows:

Find X

Minimize
X∈S

F(X)

subjectto g(X) ≤ 0

h(X) = 0

(1)

Here, F(X) represents the set of objective functions, which can be a circuit characteristic
or combination of characteristics to be optimized. In the case of LC-VCO design, this
typically includes phase noise, power consumption, and other metrics such as the tuning
range or oscillation frequency.

The vector X ∈ Rd consists of the d design parameters, where each parameter xi

corresponds to a specific element of the LC-VCO circuit, such as transistor dimensions,
inductor and capacitor sizes, or biasing currents. Each design parameter is constrained by
lower bounds lbi and upper bounds ubi, ensuring that they remain within feasible ranges
based on technology limitations or physical constraints. The set S denotes the design space,
encompassing all possible combinations of design parameters within their bounds.

The inequality constraints g(X) ≤ 0 typically represent physical limitations, such
as the maximum allowable power or biasing conditions, while the equality constraints
h(X) = 0 might correspond to specific circuit conditions, such as ensuring that the oscilla-
tion frequency of the LC tank matches the desired target frequency.

Constraint handling is implemented using a static penalty approach. Violations of
design constraints—such as deviations in oscillation frequency (| fosc − fosc,output| > 5%) or
exceeding power limits—incur additive penalties proportional to the severity of the viola-
tion. This method ensures that infeasible solutions are penalized, guiding the optimization
algorithm toward feasible and high-performance LC-VCO designs.

By formulating the problem in this way, the optimization aims to balance multiple
objectives, such as reducing phase noise while minimizing power consumption, under the
constraints imposed by the LC-VCO design and technology. This problem formulation
enables the use of various optimization algorithms to explore the design space and find the
best solution and/or trade-off between competing performance goals.
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3. LC-VCO Topology and Modeling
3.1. LC-VCO Topology

Designing a VCO is challenging due to the need to balance multiple specifications—
such as phase noise, power consumption, tuning range, and voltage swing—even after
choosing a topology. With ongoing transistor scaling and lower supply voltages, maintain-
ing a high-quality factor Qtank in LC-tank designs has become harder, particularly with
integrated inductors, which typically have low Qtank. Minimizing power consumption re-
quires lower transistor currents but can degrade phase noise, while improving phase noise
demands higher voltage swings, increasing power consumption. As a result, optimizing an
LC-VCO involves extensive exploration to balance these trade-offs.

In this paper, we focus on the sizing of the LC-VCO topology shown in Figure 1, a com-
plementary nMOS-pMOS cross-coupled LC-VCO. This topology consists of two main sub-
circuits: an LC tank that determines the oscillation frequency fosc and an active sub-circuit
that provides the necessary negative conductance to compensate for the LC tank losses.
In this topology, the complementary nMOS-pMOS pair compensates for the tank losses.

The chosen LC-VCO topology (Figure 1) is inherently symmetric, utilizing a comple-
mentary cross-coupled pair (nMOS and pMOS) to maintain signal balance and reduce
even-order harmonics. However, symmetry in layout and device matching can be disrupted
by practical design constraints, such as metal routing, unequal parasitics, or technology-
specific limitations. These asymmetries must be either compensated during optimization
or strategically leveraged to enhance design trade-offs.

Figure 1. Complementary cross-coupled CMOS LC-VCO topology.

3.2. LC-VCO Modeling

The small-signal model of the complementary LC-VCO circuit is shown in Figure 2a,
along with its equivalent simplified model in Figure 2b. This model incorporates the equiv-
alent inductor (L) and the varactors (Cvar), both evaluated at the oscillation frequency ( fosc)
defined by Equation (2). Additionally, it includes the parasitic capacitances of the nMOS
and pMOS transistors (Cnmos and Cpmos), as well as the load capacitance (Cload). In this con-
figuration, the nMOS and pMOS transistors are sized to equalize their transconductances
(gmn and gmp), ensuring that gm = gmn = gmp.
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Defining gactive as the equivalent conductance of the transistors, and Ctank and gtank

as the equivalent capacitance and conductance of the VCO tank, respectively, we derive
the well-known expressions for the oscillation frequency and the start-up condition in
Equations (2) and (3).

fosc =
1

2π
√

L · Ctank
(2)

gactive ≥ α · gtank (3)

where α represents the excess gain, typically ranging between 2 and 3. And

Ctank =
1
2
(
Cvar + Cload + Cnmos + Cpmos

)
(4)

gtank =
1
2

(
gvar + 2gL + gdsn + gdsp

)
gactive = −1

2
(

gmn + gmp
)
= −gm

(5)

(a) (b)

Figure 2. Small-signal LC-VCO model: (a) complete model, (b) simplified model.

Here, gL and gvar represent the effective parallel conductances of the inductor and
varactor, respectively, while gdsn and gdsp refer to the drain-source conductances of the
nMOS and pMOS transistors. Detailed expressions for gL and gvar are provided in the
following subsections, where the inductor and varactor models are discussed.

The equivalent cross-coupled transistor capacitance in CMOS, applicable to both
nMOS and pMOS transistors, is

Cmos = 4Cgd +
(

Cgs + Cgb + Cdb + Cds

)
(6)

where Cgd represents the gate-to-drain capacitance, Cgs the gate-to-source capacitance,
Cgb the gate-to-bulk capacitance, Cdb the drain-to-bulk capacitance, and Cds the drain-to-
source capacitance.
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The tuning range of oscillations can be expressed as

1
2π
√

L · Ctank,max
⩽ fosc ⩽

1
2π
√

L · Ctank,min
(7)

The output voltage is given by

Vout = VO2 − V01 ≃ 4
π

2Ibias
gtank

(8)

The power consumption is defined as

P = IbiasVDD. (9)

The spectral purity of the VCO’s output signal near the frequency fosc is a key charac-
teristic that is quantified by phase noise. By specifying a frequency offset ∆ f around fosc,
phase noise can be measured as outlined in [23,24].

L
(

∆ f

)
= 10 log

[
1

16π2∆2
f
×

L2
tank(2π fosc)

4

V2
tank

× 2KBT
(

gL + gvar + γ
(

gd0,n + gd0,p

))]
(10)

Equation (10) is derived from Leeson’s model, under small-signal assumptions,
with ∆ f = 1 MHz across all experiments. Here, γ denotes the excess noise factor (typically
1.5–2 for CMOS), gd0,n/p are the output conductances at Vds = 0, and Vtank is obtained from
steady-state oscillation amplitude in transient simulation.

Additionally, ∆ f is the frequency shift around fosc, KB and T are the Boltzmann
constant and the temperature, respectively, and gvar and gL are the conductance of the
varactor and the conductance of the inductor, respectively.

The figure of merit (FoM) for the LC-VCO is given by

FoM = L{∆f} − 20 log
(

f0

∆f

)
+ 10 log(Pdc(mW)) (11)

3.3. Modeling of Planar Spiral Inductor

Figure 3 illustrates the hexagonal spiral inductor, showing both its layout and the
corresponding π-model. The π-model, shown in Figure 3b, includes the effects of parasitic
elements, with their expressions provided in [25] as follows:

(a) (b)

Figure 3. Hexagonal planar spiral inductor: (a) spiral layout, (b) π-model.
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Rs =
l

σwδ
(

1 − e−
t
δ

)
Cs =

εox

tox,M1−M2

nw2

Cox =
1
2

εox

tox
lw ; Csi =

1
2

Csublw ; Rsi =
2

Gsublw

(12)

where Rs denotes the series resistance of the spiral, where l is the total length of the spiral
and σ is the metal conductivity. The trace has a width w, thickness t, and a skin depth δ.
The spiral-to-underpass capacitance, Cs, is determined by the oxide permittivity εox, oxide
thickness tox,M1−M2 , and number of turns n. Oxide capacitance between the spiral and
substrate is Cox, with oxide thickness tox. Additionally, Csi represents capacitance between
the spiral and the silicon substrate, Csub is substrate capacitance per unit area, Rsi is the
resistance to the silicon substrate, and Gsub is the substrate conductance per unit area.

The quality factor of the inductor (QL) is generally the characteristic used to compare
inductor performance. It is analytically expressed as

QL =
ωL
Rs

Rp

Rp +

((
ωL
Rs

)2
+ 1
)

Rs

×
(

1 − R2
s

L
(
Cs + Cp

)
− ω2L

(
Cs + Cp

)) (13)

where ω = 2π fosc, and Rp and Cp represent the parallel resistance and capacitance, respec-
tively, with their expressions given by

Rp =
1

ω2C2
0xRsi

+
Rsi(Cox + Csi)

2

C2
ox

Cp = Cox
1 + ω2(Cox + Csi)CsiR2

si

1 + ω2(Cox + Csi)
2R2

si

(14)

The inductance L of a planar spiral inductor can be approximated using various em-
pirical formulas. One of the widely used formulas for accurate estimation is the Wheeler
formula given by Equation (15), which works well for spiral inductors in integrated cir-
cuits [26].

Ls =
k1 · µ0 · n2 · d2

avg

1 + k2 · ρ
(15)

where k1 and k2 are empirical constants (for a hexagonal spiral, k1 ≈ 2.33, k2 ≈ 3.82, and
µ0 ≈ 4 π× 10−7 H/m

davg =
dout + din

2
and ρ =

dout − din

dout + din

The effective parallel conductance gL of the inductor modeled in Figure 2a can be
expressed as

gL =
1

Rp
+

Rs

(2π foscL)2 . (16)

3.4. Varactor Modeling

An inversion-mode MOS varactor is formed by connecting the source and drain
terminals of an MOS transistor to create a tunable capacitor. The capacitance is con-
trolled by an adjustable voltage between the gate and bulk terminals. For a consistent



Symmetry 2025, 17, 1693 9 of 27

capacitance–voltage (C-V) characteristic slope, the varactor must operate across weak,
moderate, and strong inversion regions. To achieve this, the bulk terminal is connected to
the highest voltage (VDD) for pMOS varactors and to ground for nMOS varactors.

The physical modeling of CMOS varactors offers two key advantages:

• It relies on technological and process parameters, avoiding empirical adjustments.
• It employs the EKV MOS transistor model [27,28], which ensures accuracy in low-

voltage circuit design.

The EKV model is particularly suited for analytical C-V modeling of inversion-mode
varactors due to its continuity across inversion regions and its use of minimal parameters.
This makes it highly compatible with symbolic computation tools like Maple [29].

Based on the EKV model [30,31], the intrinsic capacitances of the varactor are given by

Cxy = ±∂Qx

∂Vy
, x, y = {G, D, S, B} (17)

where Cxy is the capacitance between terminals x and y, Qx is the charge at terminal x,
and Vy is the voltage at terminal y. G, D, S, B refer to the gate, drain, source, and bulk
terminals, respectively.

The total capacitance of the MOS varactor, Cvar, can be expressed as

Cvar = Cgb + Cgd + Cgs + Cdb + Csb + Cextrinsic

Cextrinsic = CGS0 + CGD0 + CGB0
(18)

where Cextrinsic accounts for extrinsic capacitances; Cgb, Cgd, Cgs, Cdb, and Csb are the
intrinsic capacitances between the corresponding terminals; and CGS0, CGD0, and CGB0 are
the extrinsic capacitances between the gate and source, gate and drain, and gate and bulk,
respectively. The expressions of all the intrinsic and extrinsic capacitances are provided in
the Appendix A. Detailed MATLAB (version R2024b) scripts and the random seeds used in
optimization are available from the corresponding author upon reasonable request.

Two main parameters are used to evaluate the quality of a CMOS varactor design: the
quality factor (Qvar) and the tuning range (βvar).

Qvar =
1

2π foscRsvCvar

βvar =
Cvar,max

Cvar,min

(19)

where Cvar,max is the maximum capacitance and Cvar,min is the minimum capacitance.
Here, Rsv is expressed as

Rsv = Rpoly/square
1

N2
f

W
L

(20)

where Rpoly/square is the sheet resistance of the poly-silicon, N f is the number of fingers, W
is the channel width, and L is the channel length.

The effective conductance of the varactor (gvar), shown in Figure 2a, is given by

gvar = Rsv × (2π foscCvar)
2 (21)

4. Optimization Results and Discussions
This section outlines the optimization procedure for the LC-VCO circuit, addressing

two experimental setups:
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(i) Single-objective optimization, where the goal is to minimize phase noise to enhance
signal purity. Here, the outcome is a single optimal solution that achieves the minimum
phase noise while satisfying imposed constraints.

(ii) Multi-objective optimization, which simultaneously minimizes both phase noise
and power consumption, F = [ f1(x), f2(x)], to achieve a balanced trade-off between
performance and energy efficiency. In this case, minimizing F in Equation (1) generates
a set of Pareto-optimal solutions, forming the Pareto set, representing trade-offs between
phase noise and power consumption. The mapping of the Pareto set into the objective
space results in the Pareto Front.

In both setups, the circuit optimization is formulated as a constrained optimization
task, as described in Equation (1). A key constraint in the VCO design optimization is
ensuring that the output signal frequency closely matches the desired target frequency,
fosc. To achieve this, the constraint g1(x) ≤ 0.05 is imposed, representing the allowable
deviation of the actual output frequency from the target frequency fosc. This ensures that
| fosc − fosc,output| is constrained to be within 5%, allowing a small relaxation margin in
line with design requirements. Here, the target oscillation frequency of the LC-VCO is
fosc = 5 GHz, while fosc,output denotes the actual oscillation frequency of the opti-
mized LC-VCO.

For the single-objective optimization experiments, we used several metaheuristic algo-
rithms, including Particle Swarm Optimization (PSO) [32], Artificial Bee Colony (ABC) [33],
Ant Colony Optimization (ACO) [34], Butterfly Optimization Algorithm (BOA) [35], Differ-
ential Evolution (DE) [36], Equilibrium Optimizer (EO) [37], Firefly Algorithm (FA) [38],
Genetic Algorithm (GA) [39], Simulated Annealing (SA) [40], and Whale Optimization
Algorithm (WOA) [41]. For the multi-objective optimization experiments, we employed
multi-objective metaheuristics, specifically, Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [42], Multi-Objective Particle Swarm Optimization (MOPSO) [43], Strength
Pareto Evolutionary Algorithm 2(SPEA2) [44], Multi-Objective Evolutionary Algorithm
Based on Decomposition (MOEA/D) [42], Multi-Objective Optimization Based on Decom-
position (MOBO/D) [45], and Multi-objective Salp Swarm Algorithm (MSSA) [46]. All
experiments and algorithms were implemented in MATLAB.

The experiments were conducted on a computer equipped with an Intel Corporation®

CoreTM i7-7820HQ CPU @ 2.90 GHz (8 cores) and 16 GB of RAM. Each algorithm was run
100 times for all experiments to reduce the random effects inherent in non-deterministic
algorithms. The performance of the algorithms was evaluated and compared based on the
average results across these 50 runs, providing a robust measure of algorithmic effectiveness
and consistency.

4.1. Experiment 1: Minimizing Phase Noise

In this first experiment, the sizing process is formulated to ensure that the phase noise is
minimized while satisfying the required design constraints given in Table 1. This approach
emphasizes achieving the best possible phase noise performance without considering the
optimization of other factors such as power consumption.
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Table 1. Design specifications in case of single-objective optimization.

Performance Specification

Phase Noise @ 1 MHz (L
(

∆ f

)
) minimize

fosc 5 GHz
| fosc − fosc,output| ≤5%
Pdc ≤1.8 mW
Nf − Wv.Nf/(4.Lmin) ≤0
Cmin/Cmax ≤0.1
5w − din ≤0
din/dout ≥0.2
dout ≤200 µm
|L − Ltarget| ≤5%

Notes: All specifications refer to the constraints used during single-objective optimization.

In this single-objective optimization experiment, we consider two optimization scenarios:

• In the first scenario, the varactor and spiral inductor are optimized separately, and their
optimal values are then used as fixed parameters in the subsequent LC-VCO optimization.

• In the second scenario, the varactor and spiral inductor are treated as optimization
variables directly integrated into the LC-VCO optimization process.

4.1.1. Scenario 1: Size Components First, Then Optimize

As mentioned before, in this scenario, we first optimize the spiral inductor and varactor
independently. These optimized values are then used as fixed parameters in the LC-VCO
optimization, allowing for targeted improvement of the circuit’s overall performance.

(A) Spiral inductor sizing

The objective is to maximize the quality factor of the spiral inductor, QL, as defined in
Equation (13). This optimization must be achieved while maintaining a fixed inductance of
Lspec = 0.5 nH at the operating frequency fosc = 5 GHz and satisfying the area constraint
imposed by the outer diameter dout.

We consider a hexagonal planar spiral inductor topology, as modeled in Section 3.3.
The design variables include the track width (w), the number of turns (n), and the
internal diameter (din). These variables are constrained within the following ranges:
2 µm ≤ w ≤ 10 µm, 10 µm ≤ din ≤ 100 µm, and 2 ≤ n ≤ 10. The spacing between
turns is fixed at 2.5 µm, as no improvement is expected from larger spacing.

Table 2 presents a statistical performance comparison of algorithms for spiral inductor
sizing, where all methods successfully produced feasible designs in every run. Among the
algorithms, PSO, DE, EO, FA, SA, and WOA consistently achieved the best solution (13.0902)
with zero variability, demonstrating exceptional efficiency and reliability. WOA is par-
ticularly distinguished for its fastest convergence time (10.05 s), closely followed by EO
(12.01 s), both excelling in solution quality and speed. ABC also performed well, achieving
a good mean solution (13.0448) with low variability (0.0589); however, its convergence time
(31.68 s) was slower, but still faster than DE (37.34 s) and FA (42.24 s).

In contrast, BOA shows high variability and gives one of the worst solutions (11.3439),
highlighting its reduced reliability. Finally, GA had the worst performance (3.6837), with the
lowest mean solution (11.4619), significant variability, and the slowest convergence time
(261.47 s), making it less efficient than all other methods in this experiment.
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Table 2. Statistical performance comparison of algorithms for inductor sizing, summarizing key
metrics: mean, median, worst, best, standard deviation of the quality factor, and convergence time.

Opt. Al-
gorithm

Success
Rate [-] Mean [-] Median

[-] Worst [-] Best [-] Std. Dev.
[-] Time [s]

PSO 100/100 13.0902 13.0902 13.0902 13.0902 0.00 30.1632
ABC 100/100 13.0448 13.0611 12.7212 13.0902 0.0589 31.6812
ACO 100/100 12.9207 12.9589 12.3099 13.0841 0.1435 144.4630
BOA 100/100 12.8032 12.9708 11.3439 13.0878 0.3591 58.2832
DE 100/100 13.0902 13.0902 13.0902 13.0902 0.0000 37.3419
EO 100/100 13.0902 13.0902 13.0902 13.0902 0.0000 12.0112
FA 100/100 13.0902 13.0902 13.0902 13.0902 0.0000 42.2361
GA 100/100 11.4619 11.9649 3.6837 12.9942 1.5661 261.4662
SA 100/100 13.0902 13.0902 13.0902 13.0902 0.0000 15.7004
WOA 100/100 13.0902 13.0902 13.0902 13.0902 0.0000 10.0529

(B) CMOS varactor sizing

Here, the objective is to maximize the quality factor of the CMOS varactor, Qvar, as de-
fined in Equation (19), leveraging the EKV MOS model equations described in Section 3.4.
This optimization is carried out at the operating frequency fosc = 5 GHz. The design
variables for the varactor include the MOS channel width (Wv), length (Lv), and the number
of fingers (Nv). Their respective ranges are 1µm ≤ Wv ≤ 50µm, 0.18µm ≤ Lv ≤ 10µm,
and 10 ≤ Nv ≤ 30.

Table 3 compares the statistical performance of algorithms for varactor sizing, showing
their success rates, optimization results, and convergence times. All algorithms achieved
feasible designs in every run, except for the BOA algorithm, which had a success rate of
69%, and the GA algorithm, which had a success rate of 82%. PSO, ACO, DE, EO, FA, SA,
and WOA consistently found the best solution (10.8066) with no variability, highlighting
their reliability. Among these, WOA was the fastest (11.53 s), followed by EO (13.19 s) and
SA (17.48 s). DE (39.10 s) and FA (45.97 s) were slower but still efficient. The ABC algorithm,
while performing well with a slightly lower mean (10.6777) and minor variability (0.1989),
did not achieve the best solution. In contrast, BOA had significant variability, with a mean
of 6.3054 and a worst-case value of 4.7841, making it less reliable, despite its best-case
solution (10.8047). GA, although it had a competitive best solution (10.4463), showed
extreme variability (2.7230) and was the slowest (181.62 s), indicating inefficiency. Overall,
WOA excelled in speed and reliability, with EO and SA also providing robust and efficient
performance, while BOA and GA were less suited for this task.

Table 3. Statistical performance comparison of algorithms for varactor sizing, summarizing key
metrics: mean, median, worst, best, standard deviation, and convergence time.

Opt. Al-
gorithm

Success
Rate [-] Mean [-] Median

[-] Worst [-] Best [-] Std. Dev.
[-] Time [s]

PSO 100/100 10.8066 10.8066 10.8066 10.8066 0.0000 32.9298
ABC 100/100 10.6777 10.7507 9.7336 10.8048 0.1989 36.1652
ACO 100/100 10.8066 10.8066 10.8066 10.8066 0.0000 35.2689
BOA 69/100 6.3054 8.5278 4.7841 10.8047 1.6013 132.9768
DE 100/100 10.8066 10.8066 10.8066 10.8066 0.0000 39.0998
EO 100/100 10.8066 10.8066 10.8066 10.8066 0.0000 13.1874
FA 100/100 10.8066 10.8066 10.8066 10.8066 0.0000 45.9708
GA 82/100 6.1972 7.1236 3.6855 10.4463 2.7230 181.6196
SA 100/100 10.8066 10.8066 10.8066 10.8066 0.0000 17.4809
WOA 100/100 10.8066 10.8066 10.8066 10.8066 0.0000 11.5296

(C) LC-VCO sizing based on sized LC tank parameters
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The objective in this experiment is to minimize phase noise in the cross-coupled CMOS
LC-VCO, optimized in 0.18 µm CMOS technology, using the previously optimized spiral
inductor and varactor, fulfilling the constraints listed in Table 1. Some of these constraints
are already met through the prior optimization of the LC tank components. The optimized
component sizes for the varactor are Wv = 21.6 µm, Lv = 0.31 µm, and Nv = 30; and for
the spiral inductor are w = 62.07 µm, din = 62.07 µm, and n = 2.

In this setup, the design variables for the LC-VCO are Wn, Ln, Wp, Lp, Wb, Lb, and Ibias.
To simplify the design, all transistors of the same channel type are assigned the same geometric
sizes, with Wp = µn/µp · Wn and Ln = Lp. This simplification reduces the set of design
variables to three key parameters: Wn, Ln, and Ibias. The ranges for these variables are defined
as follows: 1 µm ≤ Wn ≤ 50 µm, 0.54 µm ≤ Ln ≤ 1 µm, and 0.5 mA ≤ Ibias ≤ 2 mA.

Table 4 compares the performance of various algorithms for LC-VCO sizing, showing
that most algorithms, with the exception of ACO and GA, consistently achieved identical
objective function values with a 100% success rate and zero standard deviation, demon-
strating high reliability in phase noise minimization. ACO, with a 100% success rate and
a standard deviation of 0.0016, performed similarly to the other algorithms, while GA
achieved a success rate of 84% but showed a higher variability (standard deviation of 2.47).
Notably, PSO, ABC, ACO, BOA, DE, EO, FA, SA, and WOA showed consistent results,
with WOA being the fastest (17.57 s), followed by SA (22.66 s). GA, while efficient in
some runs, exhibited a lower mean value (117.47) and the highest variability (2.47), along
with the longest computational time (698.85 s), making it less stable. GA was the slowest
algorithm (698.85 s). These results highlight WOA and SA as the most efficient and reliable
algorithms for this task.

Although several algorithms in Table 4 achieved identical best values and 100% suc-
cess rates, this stems from the convex-like landscape induced by EKV-based constraints
in Scenario 1. The challenge persists in Scenario 2, where added design variables in-
crease complexity and convergence speed and variability become key discriminators
among algorithms.

Table 4. Statistical performance comparison of algorithms for LC-VCO sizing, using the previously
sized LC tank.

Opt. Al-
gorithm

Success
Rate (-)

Mean
[dBc/Hz]

Median
[dBc/Hz]

Worst
[dBc/Hz]

Best
[dBc/Hz]

Std. Dev.
[dBc/Hz] Time [s]

PSO 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 44.6820
ABC 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 43.7273
ACO 100/100 119.9108 119.9111 119.9000 119.9111 0.0016 105.9735
BOA 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 72.5444
DE 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 52.2225
EO 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 34.1986
FA 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 37.4786
GA 84/100 117.4707 118.1628 108.9229 119.9081 2.4741 698.8525
SA 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 22.6595
WOA 100/100 119.9111 119.9111 119.9111 119.9111 0.0000 17.5676

Notes: Success rate is calculated as number of successful runs over total runs. All times are reported in seconds.

Figure 4 shows the convergence curves for phase noise obtained by the algorithms
in the best case, where all algorithms achieved almost the same minimum value. All
algorithms demonstrate convergence in fewer than 10 iterations, with DE, ACO, and EO
converging after 1, 3, and 4 iterations, respectively.
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Figure 4. Convergence curves for phase noise optimization of a 5 GHz LC-VCO (Scenario 1).

4.1.2. Scenario 2: Optimize the Entire VCO

The robustness of the results is already reflected in the statistical indicators in
Tables 2–5 (mean, median, best, worst, standard deviation, success rate). These descrip-
tors provide equivalent insights to boxplot visualizations. Moreover, convergence plots
(Figures 4 and 5) illustrate the consistency of the algorithms, ensuring statistical soundness
without redundant figures.

In this scenario, the varactor and spiral inductor parameters are incorporated as
optimization variables integrated into the LC-VCO optimization process. The optimization
targets the same oscillation frequency as in Scenario 1, using the same variable ranges for
the spiral inductor, varactor, MOS transistors, and current bias.

Table 5 presents a statistical performance comparison of algorithms for the LC-VCO
sizing in the second scenario. As in Scenario 1, all algorithms achieved 100% success
rates, except for BOA (38%) and GA (23%). PSO, DE, and EO demonstrated exceptional
performance, consistently achieving the same optimal value of −120.9616 across all runs,
with no variability (standard deviation = 0), indicating perfect consistency. These algorithms
also exhibited relatively short convergence times, with EO being the fastest (26.85 s),
followed by PSO (40.99 s) and DE (54.12 s). FA, SA, and WOA delivered slightly lower
performance values, with FA reaching −120.6275, SA −120.9346, and WOA −120.5234,
yet they maintained high consistency, as indicated by their negligible standard deviations,
particularly in the case of SA. In contrast, ACO, with a mean of −116.23, was much slower
(300.13 s) and showed a small standard deviation (1.09), suggesting that it could be more
computationally expensive without a proportional gain in performance. ABC also achieved
a competitive mean value (−112.47), but with a higher standard deviation (3.56) and a
moderate convergence time (46.47 s). On the other hand, BOA and GA were significantly
outperformed, with BOA achieving a mean of −78.88 and GA reaching only −104.46,
indicating lower reliability and inferior performance. BOA also exhibited a high variability,
shown by a high standard deviation (36.81), suggesting that it may not be a suitable choice
for LC-VCO sizing in this scenario. The results suggest that PSO, DE, and EO are the most
reliable and efficient algorithms, with DE and EO being particularly fast.
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Table 5. Statistical performance comparison of algorithms for LC-VCO sizing, incorporating varactor
and spiral inductor parameters as optimization variables.

Opt. Al-
gorithm

Success
Rate (-)

Mean
[dBc/Hz]

Median
[dBc/Hz]

Worst
[dBc/Hz]

Best
[dBc/Hz]

Std. Dev.
[dBc/Hz] Time [s]

PSO 100/100 −120.9616 −120.9616 −120.9616 −120.9616 0.0000 40.9912
ABC 100/100 −112.4677 −112.5276 −99.8454 −118.5304 3.5635 46.4739
ACO 100/100 −116.2337 −116.3361 −113.4713 −119.1124 1.0899 300.1278
BOA 38/100 −78.8834 −101.1355 −1.7074 −114.1156 36.8147 68.8545
DE 100/100 −120.9616 −120.9616 −120.9615 −120.9616 0.0000 54.1194
EO 100/100 −120.9616 −120.9616 −120.9616 −120.9616 0.0000 26.8535
FA 100/100 −120.6275 −120.7876 −119.2097 −120.9249 0.5094 53.2783
GA 23/100 −104.4615 −105.5386 −51.3429 −115.9570 12.9699 985.0018
SA 100/100 −120.9346 −120.9529 −120.7555 −120.9609 0.0425 24.2482
WOA 100/100 −120.5234 −120.9426 −116.1826 −120.9615 0.9839 17.6376

Figure 5 illustrates the convergence curves for phase noise optimization under the
best-case scenario, where all algorithms reach their best minimum values. In this scenario,
PSO, EO, and WOA demonstrate rapid convergence, completing the process in under
80 iterations. Notably, PSO achieves convergence the fastest, stabilizing before 50 iterations,
while EO and WOA follow closely behind, requiring only a few more iterations to converge.
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Figure 5. Convergence curves for phase noise optimization of a 5 GHz LC-VCO (Scenario 2).

4.1.3. Comparison of Results Between Scenario 1 and Scenario 2

The results of both scenarios highlight key differences in performance and compu-
tational time. In Scenario 1, where the inductor and varactor were pre-optimized, all
algorithms except GA showed consistent performance with identical phase noise val-
ues (−119.91) and zero standard deviation. GA achieved the worst value (−108.92) and
had higher variability (2.47). Scenario 2, which involved full optimization of the VCO,
resulted in significantly better phase noise performance (−120.96) for PSO, DE, and EO,
while ABC, BOA, and GA exhibited greater variability. Computationally, WOA was the
fastest algorithm in both scenarios; however, it was not consistent (with 0.98 standard
deviation) in Scenario 2. PSO and EO were fast and consistent in both scenarios, while
ACO and GA remained the slowest algorithms. Overall, Scenario 2 provided superior
phase noise performance due to the inclusion of the varactor and inductor as optimization
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variables, but at the cost of increased optimization time and complexity, particularly for
algorithms like ABC, ACO, BOA, and GA, which struggled with the additional variables.

4.2. Experiment 2: Minimizing Both Phase Noise and Power Consumption

In this experiment, we explore the multi-objective optimization of the complemen-
tary cross-coupled LC-VCO circuit, focusing on the trade-off between phase noise and
power consumption at a 5 GHz operating frequency. The spiral inductor topology used
in previous experiments was maintained. The optimization problem is formulated to
simultaneously minimize the two conflicting objectives, resulting in a set of Pareto-optimal
solutions. This enables designers to evaluate the trade-offs between phase noise and power
consumption, streamlining a more balanced and efficient VCO design that meets the speci-
fications detailed in Table 6. It should be noted that some of the multi-objective algorithms
employed in this study, such as NSGA-II and SPEA2, are mature methods that remain
widely used as community benchmarks in analog/RF optimization. Their inclusion allows
meaningful comparison with prior LC-VCO optimization studies. At the same time, we
also evaluate more recent approaches, including MOEA/D, MOBO/D, and MSSA, which
represent modern decomposition-based and swarm-inspired metaheuristics. By combining
both classical and emerging methods within a symmetry-aware EKV-driven modeling
framework, the present work provides a balanced and up-to-date evaluation that, to the
best of our knowledge, has not been previously reported for GHz-range LC-VCO design.

Table 6. Design specifications in case of multi-objective optimization.

Performance Specification

Phase Noise @ 1 MHz (L
(

∆ f

)
) minimize

Power consumption (Pdc) minimize
| fosc − fosc,output| ≤5%
Nf − Wv.Nf/(4.Lmin) ≤0
5w − din ≤0
din/dout ≥0.2
dout ≤200 µm

Notes: All specifications refer to the constraints used during multi-objective optimization.

To explore these trade-offs, we use different multi-objective metaheuristics, includ-
ing Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle
Swarm Optimization (MOPSO), Strength Pareto Evolutionary Algorithm 2 (SPEA2), Multi-
Objective Evolutionary Algorithm Based on Decomposition (MOEA/D), Multi-Objective
Optimization Based on Decomposition (MOBO/D), and Multi-objective Salp Swarm Al-
gorithm (MSSA). Each of these algorithms offers unique advantages in balancing the
conflicting objectives, and their application allows for a comprehensive evaluation of the
solution space. The same design variables and ranges from previous experiments are used,
except for the current bias, which is explored over a wider range due to its significant
impact on power consumption: 0.5 mA ≤ Ibias ≤ 10 mA.

Figure 6 illustrates the combined Pareto fronts generated by the multi-objective meta-
heuristic algorithms used in this study. The two objectives—minimizing phase noise
(dBc/Hz) and power consumption (mW)—represent conflicting trade-offs inherent in the
VCO design process. The figure compares the performance of NSGA-II, MOPSO, SPEA2,
MOEA/D, MOBO/D, and MSSA. While all algorithms demonstrate well-distributed Pareto
fronts, the MOEA/D indicates challenges in achieving both convergence and diversity.
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Figure 6. Convergence curves for phase noise optimization of a 5 GHz LC-VCO.

Figure 7 presents the separated Pareto fronts for each algorithm, providing detailed
insights into their performance. NSGA-II exhibits a well-distributed front, effectively cap-
turing extreme trade-offs and balancing convergence and diversity. SPEA2 and MOBO/D
closely mirror the performance of NSGA-II but provide less smooth fronts with visible
gaps, prioritizing convergence over diversity. MOPSO produces a dense front but shows
signs of clustering, potentially limiting its ability to maintain a uniform solution spread
across the trade-off space. MOEA/D struggles with both convergence and diversity, while
MSSA generates a small and but dense front, indicating limited exploration of the objective
space and a focus on a specific region.

Overall, the combined and separated Pareto fronts provide valuable insights into
the strengths and limitations of each algorithm in handling the conflicting objectives of
low phase noise and low power consumption. These results emphasize the importance of
selecting algorithms based on the specific requirements of VCO design.

Table 7 presents a comparison of six multi-objective optimization algorithms using
three key metrics: convergence time, hypervolume, and IGD. Higher hypervolume and
lower IGD values indicate better Pareto front quality.

Table 7. Performance comparison of multi-objective metaheuristics based on convergence time,
hypervolume, and IGD metrics.

Algorithms NSGAII SPEA2 MOPSO MOEA/D MOBO/D MSSA

Conv. time (s) 60.23 35.92 12.18 35.93 15.26 11.19
Hypervolume 0.8343 0.8028 0.7573 0.7341 0.7745 0.6373
IGD 0 0.0176 0.0291 0.0464 0.0203 0.0894

MSSA achieves the fastest convergence (11.19 s) but yields the least favorable IGD
(0.0894) and hypervolume (0.6373). NSGA-II, though the slowest (60.23 s), provides the
best overall performance, with the highest hypervolume (0.8343) and the lowest IGD (0),
confirming its strength in producing high-quality, well-distributed Pareto fronts.

SPEA2 offers a strong compromise, with the second-best IGD (0.0176), competitive
hypervolume (0.8028), and a relatively low convergence time (35.92 s). It stands out as a
practical option when balancing solution quality and efficiency.

While MOPSO and MOBO/D converge faster than SPEA2, they deliver inferior Pareto
front quality. NSGA-II produces the highest-quality results in terms of IGD and hyper-
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volume, but at the expense of convergence time. In contrast, SPEA2 provides a balanced
trade-off between solution quality and computational cost, making it well-suited for appli-
cations where both performance and efficiency are important.
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Figure 7. Separated Pareto fronts generated by the algorithms for multi-objective optimization.
(a) NSGA-II, (b) MOPSO, (c) SPEA2, (d) MOEA/D, (e) MOBO/D, (f) MSSA.
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Statistical Analysis of Multi-Objective Results

While hypervolume and IGD metrics (Table 7) provide quantitative measures of Pareto
front quality, additional statistical analysis is required to evaluate robustness across multiple
runs. Figure 8 presents boxplots for phase noise (Figure 8a) and power consumption
(Figure 8b) across the six multi-objective metaheuristics. Each boxplot shows the median
(horizontal line), interquartile range (25%–75%, box), mean (square marker), and whiskers,
with outliers individually marked.

The boxplots reveal several key observations. NSGA-II and SPEA2 exhibit narrow
interquartile ranges, indicating stable performance across runs. NSGA-II achieves consis-
tently low phase noise, confirming its high hypervolume and lowest IGD (Table 7), while
SPEA2 also demonstrates strong robustness. MOPSO and MOBO/D show broader spreads,
reflecting higher sensitivity to initial conditions and greater variability. MSSA maintains
competitive phase noise levels but shows less variability in power consumption, consistent
with the smaller Pareto fronts observed in Figure 7. MOEA-D presents moderate variability
with occasional outliers.

Overall, these boxplots complement the convergence and Pareto front analyses by visu-
ally confirming the relative robustness and variability of the tested algorithms, highlighting
NSGA-II as the most reliable and SPEA2 as a well-balanced option between performance
and efficiency.
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Figure 8. Boxplots of optimization results in Experiment 2: (a) phase noise (dBc/Hz) and (b) power
consumption (mW) across six multi-objective metaheuristics (MOBO/D, MOPSO, MOEA-D, SPEA2,
MSSA, NSGA-II). The plots show the median, interquartile range, mean, and outliers, confirming
robustness and variability among algorithms.

4.3. Simulation and Yield Analysis

Since we obtained multiple solutions in both scenarios, we only validated the best-
performing solution from Table 5. The simulation results, shown in Figure 9, illustrate the
output waveforms of the sized CMOS LC-VCO. Figure 9a presents the complete simulation,
capturing both the transient and steady-state behaviors of the oscillator. During the
transient phase, the oscillation amplitude gradually increases, demonstrating a successful
startup mechanism. In the steady-state phase, the oscillations stabilize at approximately
1.8 V peak-to-peak, indicating robust and reliable operation.
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Figure 9. Output waveforms of the CMOS LC-VCO: (a) complete simulation waveform, (b) detailed
view of the oscillation behavior; zoomed-in view of oscillation.

Figure 9b provides a zoomed-in view of the steady-state oscillator behavior. The
two differential outputs, VO1 and VO2, exhibit a periodic waveform with a consistent
180◦ phase difference. This symmetry confirms the proper functioning of the differential
circuit design.

The simulated oscillation frequency of 4.96 GHz and phase noise of −124.93 dBc/Hz
(see Figure 10) closely match the targeted design specifications, demonstrating the effec-
tiveness of the proposed setup. These results verify that the CMOS LC-VCO delivers stable
oscillations with the intended frequency and amplitude, confirming its suitability for RF
and communication applications.

Figure 10. Phase noise simulation curve.

The Monte Carlo simulation results for the LC VCO oscillator provide critical in-
sights into its performance variability across 200 samples. The phase noise distribution
(Figure 11a) demonstrates a tight clustering around the mean value of −124.93 dBc/Hz,
with a standard deviation of 56.37 µ, indicating robust noise characteristics within the
acceptable design range. Similarly, the oscillation frequency distribution (Figure 11b) re-
veals a mean frequency of 4.96113 GHz with minimal deviation (standard deviation of
486.945 MHz), underscoring the stability of the oscillator. Both simulations exhibit 100%
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pass rates, indicating a high yield that ensures the design consistently meets the perfor-
mance requirements under process and mismatch variations. These findings validate the
effectiveness of the proposed EKV-model-based metaheuristic methodology, reinforcing its
potential for high-precision applications and its reliability under diverse operating conditions.

(a) (b)

Figure 11. Monte Carlo simulations of sized LC-VCO oscillator, illustrating (a) phase noise distribu-
tion and (b) oscillation frequency distribution.

4.4. Symmetry and Asymmetry in EKV-Based VCO Optimization

In high-frequency VCO designs, symmetry is typically sought to ensure phase align-
ment and minimize common-mode noise. However, the optimization process must address
unavoidable asymmetries—such as layout-induced parasitics or finger mismatches—that
influence effective capacitance and inductance values.

By embedding physical models (EKV, spiral π-model, and parasitic-aware varactor
models) into the metaheuristic optimization loop, our approach allows the algorithm to
implicitly explore both symmetric and asymmetric configurations. This enables the discov-
ery of Pareto-optimal solutions that either preserve symmetry (for noise minimization) or
tolerate controlled asymmetry (for enhanced power efficiency or area reduction).

Moreover, the simulation results show that phase noise minima often correspond to
symmetric sizing conditions, whereas power minimization occasionally yields asymmetri-
cal transistor biasing or LC tank element dimensions. This interplay reinforces the impor-
tance of considering symmetry and asymmetry as part of AI-driven optimization strategies.

5. Conclusions
In this paper, we introduced an automated sizing methodology for a complementary

cross-coupled CMOS LC-VCO circuit, using the EKV model and metaheuristic optimization
algorithms. The VCO is fully modeled through analytical equations and a technology-
specific EKV model, offering a high degree of adaptability to emerging technologies and
significantly faster computation than traditional electromagnetic simulation-based methods.

Two distinct scenarios were explored for single-objective optimization: (1) optimizing
the LC tank (varactor and spiral inductor) as a preliminary step, followed by LC-VCO
optimization using the fixed LC tank parameters; and (2) treating the varactor and spiral
inductor as design variables integrated within the LC-VCO optimization. Metaheuristic
algorithms proved highly effective in navigating the complex design space, particularly in
addressing the sensitivity of on-chip LC tank quality factors to degradation, which directly
impacts phase noise.
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We further extended the methodology to multi-objective optimization, simultaneously
minimizing phase noise and power consumption. Among the various algorithms tested,
NSGA-II achieved the most balanced trade-off between Pareto front quality and diversity.
These results underscore the suitability of multi-objective metaheuristics in resolving
conflicting design goals.

To validate robustness under manufacturing variations, Monte Carlo simulations
were conducted on the best-performing solution. The results demonstrated excellent
yield, with a 100% pass rate for both phase noise and oscillation frequency specifications
across 200 samples, confirming the method’s ability to indicate robustness under evaluated
scenarios. The optimized LC-VCO achieved a mean phase noise of −124.93 dBc/Hz and
an oscillation frequency centered around 4.96 GHz with minimal deviation, confirming the
method’s ability to meet stringent RF performance requirements.

In summary, the proposed methodology effectively minimizes phase noise and power
consumption, providing a scalable and accurate solution for analog circuit sizing in ad-
vanced CMOS technologies. The novelty of this work lies not in proposing a new optimiza-
tion algorithm but in embedding symmetry/asymmetry considerations into EKV-based
analytical modeling, thereby enabling existing algorithms to achieve physically consistent
and verifiable LC-VCO designs.

This distinction is crucial: while many recent works focus on creating new metaheuris-
tic variants, our contribution addresses the equally important gap of providing a physically
grounded, symmetry-aware modeling framework that makes optimization results meaning-
ful for real CMOS implementations. In this way, the proposed methodology complements
ongoing algorithmic innovations by ensuring that both classical and modern optimizers
produce designs that are not only optimal in theory but also valid and verifiable in practice.

Our study complements recent survey findings by demonstrating how a symmetry-
aware EKV modeling layer can be combined with both classical and modern metaheuristics
(including hybrid, surrogate-assisted, and decomposition-based approaches) to produce
physically consistent and efficient LC-VCO designs while keeping simulation cost tractable.

Crucially, beyond its algorithmic effectiveness, this work emphasizes the implicit
handling of structural symmetry and asymmetry in RF circuit design. While symmetric
topologies ensure balanced performance, asymmetries arising from parasitics or design
constraints can be strategically exploited within the optimization framework. By relying
on physically grounded models and algorithmic intelligence, the proposed method aligns
with the broader goals of symmetry-aware EDA, offering a practical approach to balancing
regularity and deviation in high-performance analog systems.
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Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ACO Ant Colony Optimization
BOA Butterfly Optimization Algorithm
CMOS Complementary Metal–Oxide–Semiconductor
DE Differential Evolution
EDA Electronic Design Automation
EKV Enz–Krummenacher–Vittoz
EO Equilibrium Optimizer
FA Firefly Algorithm
GA Genetic Algorithm
MC Monte Carlo
MOS Metal–Oxide–Semiconductor
MOPSO Multi-Objective Particle Swarm Optimization
MOEA/D Multi-Objective Evolutionary Algorithm Based on Decomposition
MOBO/D Multi-Objective Optimization Based on Decomposition
MSSA Multi-Objective Salp Swarm Algorithm
NSGA Non-dominated Sorting Genetic Algorithm
PVT Process, Voltage, and Temperature
PSO Particle Swarm Optimization
RF Radio Frequency
SA Simulated Annealing
SPEA2 Strength Pareto Evolutionary Algorithm 2
VCO Voltage-Controlled Oscillator
WOA Whale Optimization Algorithm

Appendix A. Analytical Capacitance Modeling for CMOS Varactors
Using the EKV Model

The EKV model, with its continuity across inversion regions and minimal parameters,
is well-suited for analytical CV modeling of inversion-mode varactors using tools like
Maple [29].

In the EKV model, the drain current is expressed in terms of reverse current IR and
forward current IF as follows:

Ids = 2nqµCox
W
L

V2
th(IF − IR) (A1)

where the normalized currents are given by

IF(R) = ln
(

1 + exp
(VP − VS(D)

2UT

))
(A2)

Here, nq, µ, Cox, UT , Vth, and VP represent the slope factor, electron mobility, oxide
capacitance per unit area, thermal voltage, threshold voltage, and channel pinch-off voltage,
respectively.

According to the EKV model [29–31], the intrinsic capacitances are derived as

Cxy = ±∂Qx

∂Vy
, x, y = {G, D, S, B} (A3)

The total varactor capacitance can be defined as

Cvar = Cgb + Cgd + Cgs + Cdb + Csb + Cextrinsic (A4)
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The intrinsic capacitances are formulated as

Cgd =
2
3
· Cox

(
1 −

I2
f + If + 0.5Ir

(Ir + If)
2

)

Cgs =
2
3
· Cox

(
1 − I2

r + Ir + 0.5If

(Ir + If)
2

)

Cgb = Cox

(
nq − 1

)
nq

(
1 −

Cgs

Cox
−

Cgd

Cox

)
(A5)

Csb =
(
nq − 1

)
Cgs

Cdb =
(
nq − 1

)
Cgd

(A6)

Normalized currents are defined as

If =
√

0.25 + IF

Ir =
√

0.25 + IR

nq = 1 +
γ

2
√

Vp + φ + 10−6

(
φ := 2ϕ f

) (A7)

where Vp denotes the pinch-off voltage and ϕ f represents the bulk Fermi potential.
The extrinsic capacitance, is initially defined as

Cextrinsic = CGS0 + CGD0 + CGB0 (A8)

and the gate-drain(-source) capacitance is

CGD(S)0 = Cov(Vg) + Ci f (Vg) + Cof (A9)

where Cov is the overlap capacitance and Ci f and Co f are inner and outer fringing capac-
itances, respectively. The overlap capacitance depends on the effective diffusion length
Lov(Vg):

Cov(Vg) = CoxWLov(Vg) (A10)

with
Lov(Vg) = A(Vg) · Ld (A11)

where A(Vg) accounts for gate voltage dependence:

A(Vg) =

1, Vg ≥ 0
1

1−λVg
, Vg < 0

(A12)

A smoothing function for A(Vg) ensures bias-dependent overlap capacitance reaches
its maximum value. The smoothed gate voltage Ṽg is

Ṽg =
1
2

Vg +
√

V2
g + 0.05 (A13)

Consequently,

Cov(Vg) = WCox
Ld

1 − λṼg
(A14)
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Inner and outer fringing capacitances Ci f and Co f follow models in [47]. The inner
fringing capacitance is

Ci f (Vg) = WCi f ,max exp

−(Vg − Vf b − ϕ f /2
3ϕ f /2

)2
 (A15)

with Ci f ,max

Ci f ,max =
1
6

ε0εsi

π/2
ln
[

1 +
(2/3)Xj

tox
sin
(

π

2
εox

εsi

)]
(A16)

The outer fringing capacitance is

Co f =
ε0εox

π/2
W ln

(
1 +

tpoly

tox

)
(A17)

where tpoly is the poly-silicon thickness
Finally, the extrinsic capacitance becomes

Cext(Vg) = 2W
[

Cox
Ld

1 − λṼg
+

ε0εox

π/2
ln
(

1 +
tpoly

tox

)
+ Ci f ,max × exp

−
(

Vg − Vf b − ϕ f /2
3ϕ f /2

)2
] (A18)
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