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Abstract

This work introduces non-Hermitian position-dependent mass Hamiltonians character-
ized by complex ladder operators and real, equidistant spectra. By imposing the Heisen-
berg-Weyl algebraic structure as a constraint, we derive the corresponding potentials,
ladder operators, and eigenfunctions. The method provides a systematic procedure for con-
structing exactly solvable models for arbitrary mass profiles. Specific cases are illustrated
for quadratic, cosinusoidal, and exponential mass functions.

Keywords: position-dependent mass; complex potentials; ladder operators; real equidistant
spectra; Heisenberg—Weyl algebra; biorthogonality

1. Introduction

The study of position-dependent mass (PDM) systems has been extensive since 1966,
when BenDaniel-Duke (BDD), investigating charge carrier behavior in semiconductor
heterostructures, proposed a Hermitian Hamiltonian that incorporates the spatial variation
of the electron’s effective mass across material interfaces [1]. This variation is particularly
relevant in systems such as the compositionally graded alloy Al,Ga;_,As or in abrupt
heterojunctions like InAs/GaSb [2—4]. These PDM models find applicability in the design
of quantum dots, quantum wells, superlattices, and more general heterostructures [4-9].
In such systems, the effective mass profile m(x) often reflects the underlying material
composition and can, in principle, be engineered through epitaxial growth techniques
and related methods [10]. Interestingly, PDM systems also connect with the Liénard-II
class of nonlinear equations, some of which admit isochronous oscillations and equidistant
spectra [11], highlighting the possibility of engineering non-linear systems with predictable
energy spacings. Achieving arbitrary spatial profiles remains experimentally challenging.
This limitation motivates an alternative theoretical question: given a fixed mass profile,
regardless of its intricacy, what forms of the potential V(x) allow the system to exhibit
a desired energy spectrum? Addressing this inverse problem opens the door to spectral
engineering within constrained material platforms. Traditional approaches fix the mass and
potential profiles; for example, ref. [12] explores a particular exponential mass with three
different potentials. Other works use supersymmetric quantum mechanics to factorize
the Hamiltonian via intertwining operators and corresponding superpartners [13-17].
Alternative treatments rely on point canonical transformations that map the PDM to
a position-independent mass (PIM) Schrodinger equation; once in the regime of PIM,
standard exactly solvable techniques can be applied [18,19].

The determination of the spectral profile of PDM systems is a challenging problem in
its own right. To date, non-Hermitian, position-dependent, and exactly solvable systems
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remain largely unexplored, with notable exceptions such as Mostafazadeh, who introduced
n-pseudo-Hermiticity generators for such Hamiltonians [20-22].

While the present work focuses on constructing complex ladder operators compatible
with such configurations, future extensions could incorporate tools such as supersymmetric
quantum mechanics to systematically manipulate the spectrum.

This paper is organized as follows: Sections 2 and 3 provide a brief review of PDM
Hamiltonians and the Heisenberg—Weyl algebra, respectively. In Section 4, we construct
a complex first-order ladder operator and the associated non-Hermitian Hamiltonian,
present the factorization of H and H, describe their commutation relations, and analyze the
biorthogonality of the systems. Section 5 presents illustrative applications involving three
distinct mass profiles. In Section 6, we numerically evaluate the expectation values of £, p,
and T for the ground and first excited states, as well as the probability current of the ground
state. In Section 7, we contrast the PT-symmetric, pseudo-Hermitian, and anti-pseudo-
Hermitian cases with our construction. Finally, Section 8 offers concluding remarks.

2. Position-Dependent Mass Systems

One of the most general and Hermitian approaches to quantum PDM system:s is the
one proposed by von Ross in 1983 [1]:

Hyg = }L(m“ﬁmﬁﬁnﬂ + Y prPpm® ) +V, (1)

where the mass, m(x), varies with position. The parameters &, B, and v are real constants
that satisfy & + p 4+ v = —1. Hermiticity is maintained as long as V(x) is real.

BenDaniel-Duke Hamiltonians

It is possible to manipulate the expression in Equation (1) so that an effective potential
emerges. The resulting expression is as follows:

o4 Wal(x) d
Hyr = —Wﬁ + W7 + Vet (x), ()

where

(L+p)m" (x) _ [m'(x)]?
4m?(x) 2m3(x)

Vesr(x) = V(x)+h2< (a2+a,8+a+/3+1)>. 3)
Notice that Equation (2) is the one proposed by BenDaniel-Duke in 1966 [1].

Given the equivalence between the von Ross Hamiltonian and the BDD Hamiltonian,
from now on, this work will focus on the BDD Hamiltonian form, keeping in mind that the
connection between the BDD and von Ross Hamiltonians, as well as any other Hamiltonian
derived from it, is straightforward. Importantly, unlike other treatments that explicitly ad-
dress the operator ordering ambiguity (see, e.g., [23]), this work avoids the issue altogether
by employing an effective potential that already accounts for all ordering-related contribu-
tions. This allows us to proceed without fixing specific values of the ordering parameters,
maintaining flexibility in the mass profile without complicating the formulation.

3. The Heisenberg-Weyl Algebra

The harmonic oscillator satisfies the well-known Heisenberg-Weyl algebra, where a
Hamiltonian, H, and two ladder operators, at, satisfy the following algebraic relationships:

[H,a*] = +a*, [at,a7]=1. 4)
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V/(x) =

1
2m2(x)a(x)

When working with the prototypical example of the harmonic oscillator, this algebraic
relationship allows for the determination of the ground state, which is annihilated by a~
and satisfies

a”[p) = 0. ©)

Using the previously mentioned commutation relation, all excited states can be generated
through the iterative operation of a™.

4. Complex First-Order Ladder Operators on the BDD Hamiltonian

The search for a general PDM system, specifically a BDD Hamiltonian possessing first-
order ladder operators, was already initiated in [17]. However, that work was restricted to
Hermitian Hamiltonians and real ladder operators. In this paper, we aim to generalize this
study to include non-Hermitian Hamiltonians and complex ladder operators, satisfying a
Heisenberg—Weyl algebra. To this end, we begin with the aforementioned Hamiltonian:

o Km(x) d

H= 2m(x) dx? + 2m2(x) dx +V). ©)

Here, V(x) is allowed to be a complex potential. We also need to construct a first-order
differential operator,

A" = 2 () 4z + Brl) 1)) )

following the same idea presented in [17], but allowing for a complex B(x) function such
that B(x) = Br(x) +iB(x). This operator is meant to act as a complex ladder operator,
specifically an annihilator operator A~. For this to hold, a commutation relation, similar to
the one presented in Equation (4), must be satisfied:

[H A" ]=—AEA~, AECR. ®)

After imposing this commutativity condition, the following equations arise:

a (x) + gin;((i))oc(x) =0, )
/ 2 ’ / _ " "

Ble(x) = Dﬁ(le[gzx(;c)] o (x)a (z)m(g(x)m (x) AEm(h?;)“(x) o 2(9‘), (10)

Bi(x) =0, (11)

[28Em? (x) [Br (x) + iB1 (x)] + 12m' (x) [ (x) + B} (x)] + Wm(x) [~ Br(x) —iB7 (x)]].  (12)

We can solve Equation (9) to find a(x) as a function of the mass as follows:

a(x) = : (13)

From (11), it is concluded that f; = A, where A is an integration constant. Subsequently,
the substitution of «(x) as a function of m(x) leads to a general expression for fg(x) as a
function of the mass.

Br(x) = 2 (Im()]2) + ”s—fp(x), F(x) = [ yfm(xa (14)
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The previous equation greatly resembles the § function presented in [17] when the ladder
operator A~ was real.
Incorporating all of the above expressions, the potential is determined as

V(x) = VR(X) + iV[(X), (15)

where the real and imaginary parts are given by

Va(a) = ;(Ahrs)zpz(@ G (7[m’<x>]2 - m“(x)), 16

Vi(x) = %AF(x). (17)

It is worth noting that the presence of a complex component in the ladder operator, intro-
duced through a constant A, results in a nontrivial modification of the potential.

Looking for the ground state, at least a mathematical one, we should look for a function
that is annihilated by A~. Such an eigenfunction is given as follows:

o = colm(x)]V/* exp(—zAhb;FZ(x)> (cos(AF(x)) — isin(AF(x))). (18)

Let us remark that the current Hamiltonian H is not Hermitian; therefore, the operator
(A~ )1L acts as a creation operator for H*, but not, as desired, for H. Thus, we need to begin
the search for the corresponding creation operator.

We propose the existence of a creation operator A™ that is akin to the dagger of A~
but not exactly the same:

A" = (a1~ ')+ 7)), 1)

where y(x) = r(x) + iy;(x). With this proposition of A" and after the imposition of
the corresponding commutation relation [H, AT] = AEA™, we end up with the following
creation operator:

1
V2

It is worth noticing that the only difference with respect to the adjoint of A~ is a sign

At = <—tx(x);i—“/(x)+ﬁR(x)+iﬁl(x))- (20)

in the complex part.
Since the creation operator has been constructed, we are now prepared to build the
possible excited states by repeatedly applying A™ to the ground state; thus

Yn = cu(AT)"¢o. (21)

The eigenvalues associated with these states, and possibly the physical energies once
the boundary conditions are satisfied, are given as follows:

E, = (n + ;>AE+ %Azhz, n=0,1,2,... (22)

Finally, the commutator between the two ladder operators A™ and A~ can be readily

calculated as
a?AE

[A-,AT] = o (23)

This commutation relation corresponds to the zero-degree polynomial Heisenberg
algebra, where the commutator reduces to a constant.
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4.1. Factorization

Since H' # H, the system is no longer Hermitian. This implies that orthogonality is
no longer guaranteed.
Let us point out that the following commutation relation is satisfied:

[H,A*] = £AEA®, (24)
after defining the adjoint ladder operators as
(A%)" = BT, (25)

It follows straightforwardly that B* is indeed the ladder operator of H':

[H,A*]" = +AE(A%)T,
[H*,Bﬂ —  TAEBT, (26)
[H*,Bi] — +AEB*.

At this point, we have two Hamiltonians with their respective ladder operators, and, as
is expected, both can be factorized in terms of their respective ladder operators as follows:

H =ATA™ 4+ E, (27)
H' =B*B~ +E,. (28)

The eigenstates of H' are constructed analogously:
B gpg=0,  ¢u=ci(B)'¢  neN, (29)
where ¢, represents the eigenfunctions of H. After simplification, it is easy to verify that
Pn = ¥y, (30)
and that both sets share the same real eigenvalues.

4.2. Biorthogonality

From the mathematical relations established above, it follows that

<¢m|H¢n> = En<¢m|¢n>r
(H Gl ipn) Enn(fm|¢n),
(En - Em)<¢m|¢n> = 0 (31)

Hence, the inner product (¢, |i,) must vanish for all m # n. Nevertheless, accord-
ing to [24,25], the biorthogonal inner product—distinct from the conventional one—is
defined as follows:

(ulgn) = [ $)p(x)dx, )

Q

but, since we have already stated that ¢, = ¢};, we surprisingly recover a more familiar relation:
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(@l = [ 9 () () = G 3)

It is important to note that we are restricted to an arbitrary, but suitable, choice of a non-
negative m(x), with the requirement that this choice, together with appropriate boundary
conditions, generates well-defined and normalizable eigenfunctions as described above.

5. Implementation

In this section, we illustrate the theoretical framework by applying it to specific mass
profiles usually found in the literature [8,12,17], thus highlighting its practical implications.
To this end, we present the following mass profiles:

m(x) = mo(o + 6x2), (34)
m(x) = mp + cos(x), (35)
m(x) = 5 Tof,ge’g", (36)

where my, 0,0, and { are constants. The constants in each expression are chosen solely for
illustrative purposes. Accordingly, natural units are employed in the examples, such that
h=AE=a=1.

5.1. Normalization Constants

All normalization constants in the examples were obtained by numerical integration
of Equation (33). However, it is worth noting that, under certain conditions, they can be
approximated by 7r—1/4.

To this end, let us rewrite Equation (18):

Po(x) = com/*(x) exp(zAhEFZ(x)> exp(—iAF(x)). (37)
With this expression in mind, we compute
X
/1/)81/)0 dx = |c0\2/ 1ml/z(x) exp(—?lflfz(x)> dx. (38)
X

Note that, as long as m(x) > 0, F(x) is monotonally increasing, F~! exists for all x:

F(x):/\/m(x)dx = Z—i: m(x). (39)

Using this property, we apply the change in variable u = @ F(x). It follows that

A U B
/¢3¢0dx: v |c0|2/u0 e dy = Niv: |co|2?[erf(u1) “erf(ug)].  (40)

If u1 > 1and uy < —1, then

i ol
/l/JOl/JO dx =~ ‘C0| \/E\/E (41)

Therefore, the ground-state normalization constant could be approximated by
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1/4

In the illustrative examples, we set i = AE = 1 for visualization purposes, which
leads to the numerical value 0.751126.
5.2. Quadratic Mass Profile

We consider a mass profile similar to that presented in [8]. In this example, we use
m(x) =1+x*>and A = % Given this mass profile, the following functions are calculated:

Br(x) = 5 ( ((;‘2 ﬁ;m . sinhﬂ(x)), (44)

pix) = 3, )

V(x) = %(\/ﬁx + Sinh_l(’“))z + % ( (2 i 12~ (x27fl)3> (46)
+ %i(mx +sinh ™! (x)),

Yo(x) = 07511265 (VEH whsinh ()" (12 | 1y1/4 )

X {cos(% (mx + sinhfl(x)>> - isin(ll—()(mx + sinhfl(x)>>}.

As mentioned previously, the corresponding excited states can be found by iteratively
applying the creation operator. The mass profile, potential, ground, and first excited states
are visualized in Figure 1.

Eigenfunctions and Complex Potential with m(x) = 1 + x, /\=%

113
25

88
25

m(x)
Re[V(x)]
----- Im[V(x)]
Re[y:l+E,

63
25

38
25

13
25

Figure 1. The figure shows the quadratic mass profile mg(c + 6x2) (yellow), the real and imaginary
parts of the potential (solid and dashed black lines, respectively), and the first eigenfunctions, with
their real and imaginary parts shown in blue and red, respectively. Here, mg =6 =0 = 1.
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Notice that the parameter A controls the imaginary parts of the potential and, con-
sequently, the eigenfunctions. The higher the A parameter is, the higher the number of
oscillations that we can encounter, even in the ground state. Next, the real and imaginary
parts of ¢g(x, A) are shown in Figure 2.

Real Part‘of Wo(X,A) ‘ ‘ Complex Part of Wo(x,A)

X X
Figure 2. The figure shows the real (left) and imaginary (right) parts of the ground state for the
quadratic mass profile as the parameter A increases.
5.3. Cosinusoidal Mass Profile
Let us consider the cosinusoidal mass profile (35). After implementing it, we obtain

the following functions:

1
a(x) = mr (48)

sin(x)

Br(x) = 2.89828E(0.5x|0.952381) + 4(cos(x) + 1.1)3/2’ (49)
Bitx) = 3, (50)
( cos(x 7 sin”(x) )
(cos(x) +1.1)2  4(cos(x) 4 1.1)3 (51)
+ 4.2E(0.5x]0.952381)2 + (0.579655i) E(0.5x|0.952381),
¥o(x) = 0.751126(cos (x) + 1.1)1/ 4~ 42E05x10952381)° (50579655 F (0.5x|0.952381)) 52)

— isin(0.579655E(0.5x|0.952381))).

Here, E(¢|k) denotes the elliptic integral of the second kind. We again obtain a com-
plex potential and the corresponding eigenstates by applying the creation operator (See
Figure 3).

In the cosinusoidal mass profile, the effect of the A parameter is once again evident.
As A increases, the number of oscillations increases, even in the ground state. In Figure 4,
the real and imaginary components of the ground state y(x, A) are displayed.
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Eigenfunctions and Complex Potential with m(x) = 1.1 + cos(x), /\=%
z_:— -.h—"’ ‘\‘ "' ~“~._..— = m(X)

\ RelV(x)
6_3 =~ " ~~
25| VA VY /1T | === Im[V(x)]
w| TN A 4 RelunlEs
» \ N R Im{y.J+E,
1 A I ) N
[ ~_" oo

! 4=z -"I".— ! ! !

Figure 3. This figure shows the cosinusoidal mass profile my + cos(x) (yellow), the real and imaginary
parts of the potential (solid and dashed black lines, respectively), and the first eigenfunctions, with
their real and imaginary parts shown in blue and red, respectively. Here, mg = 1.1.

Real Part of yy(x,A) , _ Complex Part of go(x,A)

©
T

)
T

IS

N
T

Figure 4. This figure shows the real (left) and imaginary (right) parts of the ground state for the
cosinusoidal mass profile as the parameter A increases.

5.4. Exponential Mass Profile

The exponential mass profile (36) illustrated in Figure 5 was previously analyzed
in [12]. Applying this profile in our framework yields a complex potential, as well as the

ground state of the system. The corresponding functions obtained from this mass profile
are presented below:

/1-1
a(x) = Txe’ (53)

Br(x) = e (—e* + "1 —8e)

4y/e —1el~x

(54)
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Bix) = 2, 65)
3 1\ , 217 4divel-x
V<x>=‘§(1‘z>e et st 56)
2el—x el—x 1—x
Po(x) = 1.19134¢~ 1 (¢~¥)1/4 (cos(%) +isin<:\/%>>. (57)

The complex potential, as well as the ground and first excited states of the system, are
shown in Figure 5.

Figure 6 illustrates the effect of the A parameter on the ground state, modulating the
imaginary part of the potential and its corresponding eigenfunction. As A increases, the
number of oscillations in the ground state also increases.

Eigenfunctions and Complex Potential with m(x) = 1‘9—: /\=\;23

29
50

179
50

—— m(x)
Re[V(x)]
----- Im[V(x)]
Rely]+E,

129
50

79
50

29
50

10 15

Figure 5. This figure shows the exponential mass profile (yellow), the real and imaginary parts of the
potential (solid and dashed black lines, respectively), and the first eigenfunctions, with their real and
imaginary parts shown in blue and red, respectively. Here, my = 1 = 1.

Real Part of yo(x,A) , Complex Part of yyo(x,A)

X X

Figure 6. This figure shows the real (left) and imaginary (right) parts of the ground state for the
exponential mass profile as the parameter A increases.
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6. Physical Interpretation of A

The first appearance of A is as an unbounded, real integration constant, which arises
when integrating Equation (11). This parameter modulates the complex part of the ladder
operators as well as the complex contribution to the potential. Moreover, A ultimately con-
trols the phase and, consequently, the positions of the zeros of the real and imaginary parts
of the eigenfunctions. Another notable effect is that the entire spectrum exhibits an upward
shift proportional to A2, while the spacing between adjacent levels remains unchanged.

The following discussion is based on numerical insights that give clues regarding
the direct physical implications of A. However, we were unable to derive exact formulas
applicable to the entire spectrum; thus, we restricted our analysis to the ground and first
excited states.

6.1. Expectation Values

We investigate the expectation values of £, p, and T for the ground state, as well as
the corresponding probability density. The expectation value of the position operator (£)
involves ||, so any phase contribution cancels out; hence, it is completely independent
of A.

The expectation value of the canonical momentum (p) is a different story. Since the
operator involves a derivative with respect to position, a linear dependence on A naturally
arises. One may ask whether an appropriate position-dependent mass, momentum, or
pseudo-momentum operator could be defined. Some examples can be found in the litera-
ture [26,27]; however, these operators have been reported to be non-Hermitian or possess
a predefined ordering. Additionally, they fail to reproduce the kinetic term of the BDD
Hamiltonian, which is necessary for our analysis. Therefore, we restrict ourselves to a
qualitative rather than quantitative analysis using the canonical momentum.

6.2. The Expectation Values of the Canonical Momentum p

The expectation value of the canonical momentum for the eigenstate 1; is calculated
as follows:

X X
o) = [ wism puts = [ (<ing w69

If we focus on the derivative of the ground state, it is evident that the derivative brings
down one A; hence, we expect (fg) to follow a linear dependence on A.

This integral was evaluated numerically for x € (—o0,00) and A € [—10,10]. The
aforementioned linear dependence is observed, the higher the A, the lower (py) (see
Figure 7).

For the first excited state, the expectation value (p1) exhibits a non-linear dependence.
This arises because ¢; is obtained from  via the operator A", which introduces a factor
of A. Consequently, the overall contribution is of order A3: two powers come from A+
and its complex conjugate, and the third from the derivative (see Figure 8).
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Expectation value (p,) with m(x) = x* + 1 Expectation value (p,) with m(x) = cos(x)+1.1
] B3

10}

<po>
o
‘
<po>
o

Expectation value {p,) with m(x) =

exp(-x)
1-1/e
15F 7

1.0

<po>
o
>

o :
—1.0F
-1.5E N P

-10 -5 0 5 10

A

Figure 7. Ground-state momentum expectation values for the three mass profiles, illustrating their
approximately linear dependence on A.

Expectation value (p4) with m(x) = x* + 1

Expectation value {(p4) with m(x) = cos(x)+1.1

6000
4000
4000}
2000 2000l
A A
S o S of
v |V
2000 -2000
-4000
-4000( 1
| - - -6000f, | |
-10 -5 0 5 10 -10 -5

Expectation value (p4) with m(x) = exp(-x)

600

- N . 1-1/e
400
200
0
-200
-400
-10 -5 0 5 10

<pq>

-600

A

Figure 8. First-excited-state momentum expectation values for the three mass profiles, illustrating
their approximately cubic dependence on A.

6.3. The Expectation Values of the Kinetic Energy T

The expectation value of the BDD kinetic operator is as follows:

i} ”d 1 d

(Ty) :/x? ‘P?T‘Pidxz/ 1%‘ (x) T2 dxm(x) dx ¥i(x) dx (59)

x
X0
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Following the same reasoning as before, we expect (Tp) to exhibit a quadratic depen-
dence on A, since the second derivative extracts two powers of A from the phase.

Upon numerical integration over A € [—10,10], we find that (Tp) follows indeed a
quadratic dependence on A (see Figure 9).

Expectation value (TO) with m(x) = x* + 1 Expectation value (To) with m(x) = cos(x)+1.1

-10 -5 0 5 10 -10 -5 0 5 10

Figure 9. Ground-state average kinetic energy (Tp) for the first two mass profiles, showing an
approximately quadratic dependence on A. The third profile could not be calculated due to the rapid
decay of the mass, which prevented numerical convergence.

Meanwhile, (T}) exhibits a quartic dependence, ¢; and its complex conjugate con-
tribute with one lambda each; then, the second derivative will bring down two more (see

Figure 10).
Expectation value (T;) with m(x) = x* + 1 Expectation value (T;) with m(x) = cos(x)+1.1
20,000 20,000
15,000 15,000
N ’L
’; 10,000 'V 10,000
5,000 5,000
0 0
-10 -5 0 5 10

Figure 10. First-excited-state average kinetic energy (T) for the first two mass profiles, showing an
approximately quartic dependence on A. The third profile could not be calculated due to the rapid
decay of the mass, which prevented numerical convergence.

6.4. The Probability Current

The probability current for the BDD Hamiltonian is well known and can be found
in [28]. It can be derived from the time-dependent Schrodinger equation and its complex
conjugate by multiplying the first by ¢* and the second by ¢, adding the two to eliminate
the potential term, and grouping terms to identify p and j. The resulting expression is
as follows:

0 = gy [0 0 — i T ] (60)

By using this equation, the probability currents associated with the ground states of
each of the three problems were calculated:
e~ (v T4sinh ! (1))

](X):— \/E

(61)
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0.817588A1/0.47619 cos(x) + 0.52381¢84E(05x]0.952381)*

J&) = cos(x) + 1.1 ©2)
J=-2 0 (63)

VT
For the three examples discussed, the probability currents are non-zero for A # 0.
Since these currents correspond to the flow of charge carriers, they are directly related to
the electrical current: larger values of A lead to higher currents, and a positive A produces a
current in the negative direction (see Figure 11).

Ground-state probability current, J(x,A), with m(x) = x2 + 1 Ground-state probability current, J(x,A), with m(x) = cos(x)+1.1

— A=-6
A=-4

— A=-6

A=-4
— A=-2

—
/ \ — A=-2
S — A=0 ’ S > — a=0
— A=4 — A=4
-2 A=6 -2 A=6

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

J(x,A)
J(x,A)

Figure 11. Ground-state probability currents J(x) corresponding to the three position-dependent mass
profiles. Each current depends linearly on A, with the spatial profile determined by the respective

mass function.

7. PT Symmetry, Pseudo-Hermiticity, and Related Properties

When dealing with non-Hermitian systems, one often encounters complex spectra
or relies on PT symmetry or pseudo-Hermiticity to ensure real eigenvalues; see, for ex-
ample, [29,30]. Interestingly, in our system, the spectrum remains entirely real despite the
absence of an obvious PT-symmetric or pseudo-Hermitian structure.

7.1. PT Symmetry

PT symmetry is a property that requires a Hamiltonian H to be invariant under
parity—time transformations:

[H,PT] =0. (64)

This relation alone is not sufficient to guarantee the reality of the spectrum. The
eigenfunctions of H must also be eigenfunctions of the P7 operator; otherwise, the PT
symmetry is said to be broken, and some eigenvalues may become complex [31-33].

The first step, therefore, is to check whether H is invariant under parity—time transfor-
mations, defined as P : (x,p) — (—x,—p)and T : (x,p,i) — (x, —p, —i).

These definitions have some implications for the potential: the real part must be even,
and the imaginary part odd. More importantly, when we examine the kinetic term of
the BDD Hamiltonian, we find that PT symmetry requires m(x) = m(—x). This is not a
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restriction in our mathematical framework, and we can easily choose a mass profile that
does not satisfy this condition; therefore, our systems are not necessarily PT-symmetric.

7.2. Pseudo-Hermiticity and Anti-Pseudo-Hermiticity

PT-symmetric systems belong to a broader class of Hamiltonians, known as Pseudo-
Hermitian. Pseudo-Hermiticity ensures the reality of the spectrum by imposing the follow-
ing intertwining relation [20-22,34]:

H'y =yH, (65)

which is equivalent to
HY = yHy L. (66)

This definition of Pseudo-Hermiticity requires # to be linear.
Let us take a look to our H and H', both of which can be expressed as a kinetic plus a
potential part:
H=K+V, H =T+V* (67)

The kinetic part is hermitian; meanwhile, the potential parts are related by the complex
conjugation operation, which we denote K. This complex conjugation operation has the
property K?y(x) = Kip*(x) = ¢(x), so that K = 1 and K = K.

Now, consider the following expression:

2 Pyr(x 2m! (x *(x
KTK () = KTy* (x) = K(‘z;:(x) R )>' (©8)

KTK 'p(x) = (— W dy(x) | Wl (x) dlp(x)) = Typ(x). (69)

2m(x) dx? 2m2(x) dx

This shows that KTK~! = K. Next, let us see what happens with V(x):

KV (x)K 'p(x) = KWV (x)p* (x) = V*(x)p(x). (70)

Hence, KVK™! = V*.
Finally, we can identify that

KHK™' = K(T+V)K™' = KTK ' + KVK~' =T+ V* = H', (71)

which is precisely Equation (66).
We also need to remember that the complex conjugate operator is not linear, but an
antilinear operator:
K(ap(x) +bp(x)) = a*Kyp + b*K¢p (72)

This allows us to conclude that our system belongs to the class of anti-pseudo-
Hermitian operators [22].

8. Discussion

Non-Hermitian, position-dependent mass Hamiltonians with complex ladder opera-
tors and real, equidistant spectra have been presented. A first-order differential operator sat-
isfying the Heisenberg—Weyl algebra was constructed based on the BenDaniel-Duke Hamil-
tonian. To illustrate the method, three distinct mass profiles were examined: quadratic,
cosinusoidal, and exponential. It was found that the parameter A, which introduces a
displacement in the energy spectrum and governs the imaginary part of the Hamiltonians,
significantly affects the behavior of the eigenfunctions. In particular, as A increases, the



Symmetry 2025, 17, 1690

16 of 18

number of oscillations rises, and the positions of the nodes shift, even in the ground state.
Notably, the ground state may exhibit oscillatory behavior solely due to variations in the
A parameter.

To quantify the impact of A, we numerically calculated expectation values of the
momentum and kinetic energy operators, as well as the corresponding probability currents.
For the ground state, the momentum expectation value (py) and probability currents J(x)
exhibit a linear dependence on A, while the ground-state kinetic energy (Tj) shows an
approximately quadratic dependence. For the first-excited state, (p1) displays a cubic
dependence on A, and (T;) exhibits a quartic dependence, illustrating how higher-order
contributions emerge in excited states. These results demonstrate that the parameter A
systematically controls not only the eigenfunctions but also the dynamical observables of
the system.

Since the Hamiltonians are non-Hermitian, the eigenstates are not orthogonal in the
conventional sense. However, we demonstrate that the eigenstates of H and H' form
a biorthogonal system and belong to the class of anti-pseudo-Hermitian systems. This
structure preserves a generalized version of the superposition principle and supports a
well-defined ladder operator formalism.

A natural extension of the present work could involve using supersymmetric quantum
mechanics (SUSY QM) to generate new Hamiltonian systems that possess higher-order
ladder operators. In this approach, an intertwining operator connects a known Hamiltonian
to a new partner system through appropriate seed solutions, allowing for the construction
of complex spectra with controlled features. Importantly, the parameter A could continue
to modulate both systems, while the resulting higher-order ladder operators may provide
connections to analogs of nonlinear systems that naturally emerge within the SUSY for-
malism. This perspective opens a potential avenue for exploring richer non-Hermitian
structures and spectral engineering possibilities.

Furthermore, complex potentials have optical analogs in photonic systems, where
spatially varying complex refractive indices can simulate non-Hermitian Hamiltonians.
As far as we know, direct analogs of position-dependent mass systems have not yet been
explored, but it is conceivable that spatially varying effective masses could be implemented
using engineered photonic lattices or waveguide arrays. Such optical realizations might
provide a versatile platform for testing higher-order ladder operators and exploring spectral
engineering possibilities that could emerge from SUSY-inspired constructions, representing
an interesting avenue for future investigation.
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Abbreviations

The following abbreviations are used in this manuscript:

PDM Position-dependent mass
PIM Position-independent mass
BDD  BenDaniel-Duke
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