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Abstract

Since Roth’s work on the generalized Sylvester equation (GSE) AX − YB = C in 1952,
related research has consistently attracted significant attention. Building on this, this review
systematically summarizes relevant research on GSE from five perspectives: research meth-
ods, constrained solutions, various generalizations, iterative algorithms, and applications.
Furthermore, we provide comments on current research, put forward several intriguing
questions, and offer prospects for future research trends. We hope this work can fill the
gap in the review literature on GSE and offer some inspiration for subsequent studies in
the field.
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1. Introduction
This review commences with the famous Sylvester equation

AX− XB = C

with unknown X, named after the British mathematician James Joseph Sylvester
(1814–1897) [1]. For a detailed discussion of this equation, refer to the review article [2] by
Rajendra Bhatia, a Fellow of the Indian National Science Academy. The core of our review
revolves around the generalized Sylvester equation (abbreviated as GSE):

AX−YB = C

with unknown X and Y.
In 1952, Roth established the necessary and sufficient conditions for the solvability

of GSE over a field by means of block matrix equivalence. Since then, a large number of
papers on GSE have been published in rapid succession. The solvability conditions and
explicit expressions of the general solution for GSE have been investigated from diverse
perspectives: linear transformations, generalized inverses, matrix decompositions, real
(complex) representations, determinant representations, and semi-tensor products, etc.
Extensive studies have been conducted on various constrained solutions (e.g., ⋆-congruent,
symmetric, self-adjoint, positive (semi)definite, per(skew)symmetric, bi(skew)symmetric,
re-(non)negative definite, re-(non)positive definite, η-Hermitian, η-skew-Hermitian, ϕ-
Hermitian, and equality-constrained solutions) of GSE, as well as its various best ap-
proximate solutions when the solvability conditions are not satisfied. Furthermore, the
generalizations of GSE in different algebraic structures (e.g., unit regular rings, principal
ideal domains, division rings, module-finite rings, commutative rings, Artinian rings,
noncommutative rings, dual numbers, dual quaternions), operator equations, tensor equa-
tions, polynomial matrix equations, Sylvester-polynomial-conjugate matrix equations, and
formal aspects have also shown remarkable vitality. Iterative algorithms for solving var-
ious solutions to GSE and its extended forms have also attracted considerable attention,
with continuous updates and optimizations. Finally, the relevant results of GSE have
demonstrated extraordinary significance in both theoretical applications (e.g., solvability of
matrix equations, dual number matrix factorizations, and microlocal triangularization of
pseudo-differential systems) and practical applications (e.g., hand-eye calibration problems,
and encryption and decryption of color images).

Qing-Wen Wang, the first author of this paper, has been engaged in researching and
teaching on the theory of matrix equations since the early 1990s, and has published over
100 related articles. Numerous scholars both domestically and internationally have suggested
that we systematically present the theory of solving linear matrix equations. To date, our
team has published three review articles, focusing, respectively, on solving the equations
AXB = C [3], AX = C and XB = D [4], as well as A1XB1 = C1 and A2XB2 = C2 [5].

As mentioned earlier, in the development history of research on GSE, its conclusions
are interrelated, mutually inspiring, mutually promotive, and progressively advanced,
forming a complex, intertwined, and extensive network. By reviewing numerous liter-
ature, analyzing and comparing, summarizing, questioning, and prospecting, we strive
to identify the commonalities, main threads, and approaches in these studies, aiming
to provide insights and inspiration for subsequent research on GSE. Thus, this work is
of significant value. In this paper, we intend to focus on GSE as the core theme, and
unfold its solution methods, solution categories, generalizations, iterative algorithms, as
well as theoretical and practical applications in a step-by-step manner, so as to provide a
comprehensive overview.
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The remainder of this paper consists of eight sections. Section 2 presents some neces-
sary notations and notes. In Section 3, we introduce Roth’s work on GSE published in [6],
which serves as the starting point for this paper. In Section 4, we summarize seven methods
for studying GSE, demonstrating diverse perspectives and research schemes. Various
solutions to GSE are discussed in detail in Section 5. We devote Section 6 to introducing
the generalizations of GSE in certain algebraic aspects. In Section 7, we enumerate several
classic iterative algorithms for solving various solutions to GSE and its generalized forms.
The theoretical and practical applications of GSE are presented in Section 8. Conclusions
are stated in Section 9.

2. Preliminaries
This section recalls some notations and definitions used throughout the paper. Ad-

ditionally, other necessary terminology for subsequent (sub)sections will be introduced
within each. A few symbols, due to their bulk, will be referenced via specific indices in
original sources, rather than being reproduced. This not only does not hinder readers’
understanding but also makes the paper more concise and readable.

Let F be a ring; let F[λ] be the polynomial ring over F with the variable λ; let Fm×n

be the set of all m × n matrices over F; let Fm×n[λ] be the set of all m × n polynomial
matrices over F with the variable λ. In particular, Fm = Fm×1. Let deg f (λ) be the degree
of f (λ) ∈ F[λ]; let rank(A(λ)) be the rank of A(λ) ∈ Fm×n[λ]; let AT be the transpose
of A ∈ Fm×n. The symbol det(A(λ)) denotes the determinant of A(λ) ∈ Fn×n[λ] for a
field F. The component-wise representation of A ∈ Fm×n can be denoted in the three
following forms:

A = [aij] = [ai,j] = [ai,j]m×n ∈ Fm×n.

The Kronecker product of A = [aij] ∈ Fm×n and B ∈ Fs×t is defined by

A⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
...

am1B am2B . . . amnB

 ∈ Fms×nt.

The matrices A ∈ Fm×n and B ∈ Fm×n are equivalent if there exist two nonsingular
matrices P ∈ Fm×m and Q ∈ Fn×n such that A = PBQ. Moreover, A(λ) ∈ Fm×n[λ]

and B(λ) ∈ Fm×n[λ] are equivalent if there exist two invertible polynomial matrices
P(λ) ∈ Fm×m[λ] and Q(λ) ∈ Fn×n[λ] such that A(λ) = P(λ)B(λ)Q(λ).

For a subspace T ⊆ Fn, let PT be the orthogonal projector onto T ; and let T ⊥ and
dim(T ) be the orthogonal complement and dimension of T , respectively. In addition,
denote AT = {At | t ∈ T } for A ∈ Fm×n. For two vector spaces V and W over a field F,
let τ be a linear transformation from V to W; then Ker(τ) and Im(τ) represent the kernel
space and the image of τ, respectively.

Let Z+, N, R, and C be the sets of all positive integers, natural numbers, real numbers,
and complex numbers, respectively. The symbol sign(a) stands for the sign of a ∈ R, and
∅ represents the empty set. Let the set of all (real) quaternions be

H = {q1 + q2i + q3j + q4k | i2 = j2 = k2 = −1, ijk = −1, q1, q2, q3, q4 ∈ R},

which is a four-dimensional noncommutative division algebra over R [7]. Let the conjugate
of a quaternion q = q1 + q2i + q3j + q4k ∈ H be

q = q1 − q2i− q3j− q4k.
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Let A = [aij] ∈ Hm×n. The conjugate of A is A = [aij] ∈ Hm×n, and the conjugate

transpose of A is A∗ = AT . Let

Aη = −ηAη and Aη∗ = −ηA∗η,

where η ∈ {i, j, k}. If A = Aη∗ (A = −Aη∗) for η ∈ {i, j, k}, then A is called η-Hermitian
(η-anti-Hermitian) [8]. An η-anti-Hermitian matrix is also called an η-skew-Hermitian
matrix. Moreover, Ai∗ = A∗ and Aj∗ = Ak∗ = AT for A ∈ Cm×n.

Denote
PA = A† A, QA = AA†, LA = I − A† A, RA = I − AA†,

where A† is the Moore–Penrose inverse [9] of a matrix A. The symbols A−1, rank(A),
R(A), andN (A) denote the inverse, rank, range, and null space of a matrix A, respectively.
In addition, A, A∗, and ∥A∥F are the conjugate, conjugate transpose, and Frobenius norm of
A ∈ Cm×n, respectively. Let I and 0 be the identity matrix and the null matrix, respectively,
with appropriate orders. Specifically, In denotes the n× n identity matrix. For a symmetric
matrix A ∈ Rm×m, A > 0 and A ≥ 0 denote the positive definite matrix and the positive
semidefinite matrix, respectively. In addition, denote A ≥ B if A− B ≥ 0 for matrices A
and B. The matrix

A = [A1, A2, . . . , An] =
[

A1 A2 . . . An

]
denotes a new matrix formed by arranging matrix blocks A1, A2, . . . , An (with the same
number of rows) column-wise. The symbol diag(σ1, . . . , σr) denotes a (block) diagonal
matrix with diagonal entries σ1, . . . , σr.

For a ring F and a ∈ F, a is regular (or inner-invertible) if there exists a− ∈ F such that
aa−a = a; a is (1, 2)-invertible (or reflexive) if there exists a(1,2) ∈ F such that aa(1,2)a = a
and a(1,2)aa(1,2) = a(1,2) (see [10]). The characteristic of a field F is denoted as char(F).

An equation or a system of equations is said to be solvable (consistent) if it has at least
one solution. The symbols “⇒” and “⇔” denote “imply” and “if and only if”, respectively.
For the reader’s convenience, we provide the main abbreviations used in this paper along
with their full names in Table 1.

Table 1. Abbreviations and their full names.

Full Name Abbreviation

Generalized Sylvester equation GSE

Roth’s equivalence theorem RET

Moore–Penrose inverse MP inverse

Singular value decomposition SVD

Generalized singular value decomposition GSVD

Canonical correlation decomposition CCD

Semi-tensor product STP

Second matrix–matrix semi-tensor product MM-2 STP

Conjugate gradient least-squares algorithm CGLSA

Alternating direction method ADM

Relaxed gradient-based iterative algorithm RGI algorithm

At the end of this section, we present three specific notes regarding this review.

(1) The selection of references follows the core principle of focusing on the theoretical
research and practical applications of GSE, with specific criteria as follows:
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(i) Time frame: It covers 19th-century foundational studies to 2025’s latest achieve-
ments. It includes classic works like Hamilton’s quaternion research (1844) and
Sylvester’s matrix equation study (1884), and emphasizes 2015–2025 recent
studies (over 30% of total);

(ii) Publication venues: Priority is given to peer-reviewed works, including top
journals (e.g., SIAM J. Matrix Anal. Appl.), authoritative monographs (e.g., by
Gohberg), and key conference papers (e.g., from IEEE ICMA);

(iii) Content types: Original research is the main focus, with a small number of
GSE-related review literature included. Only a few preprints/arXiv works are
selected, due to their significance for subsequent research.

(iv) Relevance scope: Though some research does not focus directly on GSE itself,
its traces of relevance to GSE are easily detectable. Thus, we regard such
content as an integral part of GSE-related research.

(2) Results closely related to the theme are rigorously presented as theorems, while less
relevant conclusions are briefly summarized narratively. Furthermore, the proofs of
these theorems are omitted here.

(3) The remarks in this paper include comments and suggestions on relevant results,
encompassing both previous researchers’ views and our reflections, questions,
and prospects.

3. Roth’s Equivalence Theorem
First, we specifically present the paper’s core equation:

AX−YB = C, (1)

where A = [ai,j] ∈ Fm×r, B = [bi,j] ∈ Fs×n, and C = [ci,j] ∈ Fm×n are given over a ring F.
Let F be a field. In 1952, Roth [6] first studied the necessary and sufficient conditions

for the solvability to the polynomial matrix form of Equation (1), i.e.,

A(λ)X(λ)−Y(λ)B(λ) = C(λ), (2)

where A(λ), B(λ), C(λ) ∈ Fn×n[λ], by using the normal form of polynomial matrices.

Theorem 1 ([6]). Equation (2) has a solution pair X(λ), Y(λ) ∈ Fn×n[λ] if and only if the
polynomial matrices [

A(λ) C(λ)
0 B(λ)

]
and

[
A(λ) 0

0 B(λ)

]
are equivalent.

Roth [6] has stated that Theorem 1 remains valid for rectangular polynomial matrices
of appropriate orders. Thus, the following theorem can be derived immediately.

Theorem 2 (Theorem 1, [6]). Let A ∈ Fm×r, B ∈ Fs×n, and C ∈ Fm×n. Then,

Equation (1) has a solution pair X ∈ Fr×n and Y ∈ Fm×s (3)

if and only if [
A C
0 B

]
and

[
A 0
0 B

]
are equivalent. (4)

We call this theorem Roth’s equivalence theorem (abbreviated as RET).
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Remark 1. It is easy to find that the study of Equation (1) is equivalent to that of the equation

AX + YB = C (5)

with given A = [ai,j] ∈ Fm×r, B = [bi,j] ∈ Fs×n, and C = [ci,j] ∈ Fm×n, by regarding −B in
Equation (1) as B in Equation (5). Thus, in this paper, we collectively refer to Equations (1) and (5)
as GSE.

4. Different Methods on GSE
Roth [6] considered Equation (1) based on the canonical forms of the polynomial

matrices. Subsequently, many scholars have provided different proofs of RET from various
perspectives. These proofs demonstrate the effectiveness and uniqueness of different
mathematical methods in considering Equation (1). In addition, these methods have also
had a profound impact on the subsequent study of different Sylvester-type equations.
This is precisely one of the enchantments of mathematics: reaching the same endpoint
through different paths, or even completely unrelated ones. Furthermore, mathematicians
ceaselessly pursue groundbreaking innovations and perpetually strive to discover the most
elegant path.

Remark 2. It is notable that it is easy to see that (3) implies (4) by[
I −Y
0 I

][
A 0
0 B

][
I X
0 I

]
=

[
A AX−YB
0 B

]
.

Therefore, one only needs to consider the sufficiency of RET, i.e., (4)⇒ (3).

4.1. Method by Linear Transformations and Subspace Dimensions

Let F be a field. Flanders and Wimmer [11] proved RET for m = r and s = n by
means of linear transformations and subspace dimension arguments. This method is more
fundamental and elementary than Roth’s method.

Proof of RET [11].

Step 1: Define ψi : Mr+s,2(r+s) → Mr+s by

ψ0(U, W) =

[
A 0
0 B

]
U −W

[
A 0
0 B

]
and ψ1(U, W) =

[
A C
0 B

]
U −W

[
A 0
0 B

]
.

Then, the condition (4) yields

dim(Ker(ψ0)) = dim(Ker(ψ1)).

Step 2: Let

U =

[
U11 U12

U21 U22

]
and W =

[
W11 W12

W21 W22

]
.

Then,

Ker(ψ0) =

{
(U, W)

∣∣∣∣∣ AU11 = W11 A, AU12 = W12B,
BU21 = W21 A, BU22 = W22B,

}
,

Ker(ψ1) =

{
(U, W)

∣∣∣∣∣ AU11 + CU21 = W11 A, AU12 + CU22 = W12B,
BU21 = W21 A, BU22 = W22B,

}
.
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Let
Z =

{[
U21 U22 W21 W22

]
| BU21 = W21 A, BU22 = W22B

}
.

For i = 0, 1, define

νi : Ker(ψi)→ Z, νi(U, W) =
[
U21 U22 W21 W22

]
.

Then, Im(ν1) ⊆ Im(ν0) = Z and Ker(ν1) = Ker(ν0). So, Im(ν1) = Im(ν0).

Step 3: Since (U, W) ∈ Ker(ψ0) with U22 = −I, there also exists such in Ker(ψ1). There-
fore, AU12 −W12B = C, i.e., (3) holds.

Remark 3.

(1) In [11], Flanders and Wimmer mentioned that, by making small modifications to the above
proof, one can similarly obtain the proof of RET under the condition of rectangular matrices
A, B, and C.

(2) In terms of linear transformations and subspace dimensions, Dmytryshyn et al. discussed
two highly complex systems of equations (see Theorem 1.1 in [12] and Theorem 1 in [13]).

4.2. Method by Generalized Inverses

Let F be a field. In 1955, Penrose [9] concisely defined the Moore–Penrose inverse of
any rectangular matrix through four matrix equations.

Definition 1 ([9,10]). Let A ∈ Fm×n. If there exists X ∈ Fn×m such that

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA,

then X is called the Moore–Penrose (abbreviated as MP) inverse of A and is denoted by A†.
Especially if X ∈ Fn×m satisfies the above Equation (1), then X is called an inner inverse of A and
is denoted by A−. Clearly, A† is a special inner inverse of A.

Since then, the theory of generalized inverses has flourished (see [10,14–18]), and it
has been widely used to study the solvability conditions of linear equations and represent
the explicit expressions of their general solutions when solvable. Penrose’s study on the
matrix equation AXB = C [9] is the most renowned.

In 1979, Baksalary and Kala [19] naturally utilized inner inverses to establish solvability
conditions and representations of the general solution for Equation (1).

Theorem 3 ([19]). Equation (1) has a solution pair X ∈ Fr×n and Y ∈ Fm×s if and only if(
I − AA−

)
C
(

I − B−B
)
= 0, (6)

in which case

X = A−C + A−ZB +
(

I − A−A
)
W,

Y = −
(

I − AA−
)
CB− + Z−

(
I − AA−

)
ZBB−,

where W and Z are arbitrary matrices with appropriate orders.
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Remark 4. In views of RET and Theorem 3, Baksalary and Kala (Remark 2, [19]) noted that

(6)⇔ (4)⇔ rank

[
A C
0 B

]
= rank(A) + rank(B).

They also pointed out that this result can be directly derived by using (Formula (8.7), [20]) in a
particular case, i.e.,

rank

[
A C
0 B

]
= rank(A) + rank(B) + rank

(
(I − AA−)C(I − B−B)

)
.

Moreover, they said that proof using generalized inverses is simpler than Roth’s [6] and Flanders
et al.’s [11]. In fact, this is indeed the case when considering the simplicity of the proof and its length.

Remark 5. Under the hypotheses of Theorem 3, it is easy to obtain that

(6) ⇔ R
(
C
(

I − B−B
))
⊆ N

((
I − AA−

))
⇔ CN (B) ⊆ R(A), (7)

which is also proved by Woude in (Lemma 3.2, [21]) according to an elementary method. In addition,
Woude applied this result to a control problem that occurs in almost non-stationary stochastic
processes via measurement feedback (see Theorems 3.3 and 4.1, [21]).

Remark 6. It is easy to show that the solvability of Equation (1) is equivalent to the existence of X
and Y such that [

I −Y
0 I

][
A 0
0 B

][
I X
0 I

]
=

[
A C
0 B

]
. (8)

In terms of a geometrical method, Olshevsky gave a cyclic argument over C as follows:

(3)⇒ (8)⇒ (4)⇒ (7)⇒ (3),

(see the proof of Theorem 1.2 in [22]).

Let F = C. Meyer [23] revealed an interesting result, that is, the solvability of
Equation (1) is equivalent to the existence of the upper block inner inverse of a certain
block matrix.

Theorem 4 (Theorems 1 and 2, [23]). The block triangular complex matrix

T =

[
A C
0 B

]

has an upper block triangular inner inverse if and only if

rank(T) = rank(A) + rank(B),

in which case,

T− =

[
A− −A−CB−

0 B−

]
,

is an inner inverse of T for any A− and B−.
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4.3. Method by Singular Value Decompositions

Let F = R. The singular value decomposition (abbreviated as SVD) [24], as an
important tool for the study of matrix theory, also plays a significant role in the research on
solutions of matrix equations. Chu [25] utilized the SVD to study the solvability conditions
and the representation of the general solution of Equation (5).

In fact, let the SVDs of A and B given in Equation (5) be

A = UADAVT
A and B = UBDBVT

B , (9)

where UA, UB, VA, and VB are orthogonal matrices with appropriate orders,

DA =

[
ΣA 0
0 0

]
, DB =

[
ΣB 0
0 0

]
,

ΣA = diag(α1, . . . , αk) with αi > 0 (1 ≤ i ≤ k), and ΣB = diag(δ1, . . . , δl) with δj > 0
(1 ≤ i ≤ l). Then,

(5) ⇔ UADAVT
A X + YUBDBVT

B = C ⇔ DAX̃ + ỸDB = C̃,

where X̃ = VT
A XVB, Ỹ = UT

AYUB, and C̃ = UT
ACVB. Partitioning the above equation

analogously to the partitioning of DA and DB, we obtain[
ΣA 0
0 0

][
X̃11 X̃12

X̃21 X̃22

]
+

[
Ỹ11 Ỹ12

Ỹ21 Ỹ22

][
ΣB 0
0 0

]
=

[
C̃11 C̃12

C̃21 C̃22

]
(10)

⇔
[

ΣAX̃11 + Ỹ11ΣB ΣAX̃12

Ỹ21ΣB 0

]
=

[
C̃11 C̃12

C̃21 C̃22

]
.

Based on the above discussion, the following theorem can be obtained.

Theorem 5 (Theorem 2, [25]). Under the notations in (9) and (10), let

UA =
[
UA1 UA2

]
and VB =

[
VB1 VB2

]
.

(1) Then, Equation (5) is solvable if and only if

C̃22 = 0, i.e., UT
A2

CVB2 = 0. (11)

(2) Suppose that (11) holds. Denote

C̃ = (c̃ij) and Mij =
[
αi δj

]
.

Then, X̃21, X̃22, Ỹ12, and Ỹ22 are arbitrary,

X̃12 = Σ−1
A C̃12, Ỹ21 = C̃21Σ−1

B , X̃11 = (x̃ij), and Ỹ11 = (ỹij),

where [
x̃ij

ỹij

]
= M†

ij c̃ij + (I −M†
ij Mij)Zij

for arbitrary Zij. Moreover, if Ỹ11 is arbitrary, then

X̃11 = Σ−1
A (C̃11 − Ỹ11ΣB).
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(3) If (11) holds, then

X = VA

[
Σ−1

A (UT
A1

CVB1 − Z1ΣB) Σ−1
A UT

A1
CVB1

Z2 Z3

]
VT

B ,

Y = UA

[
Z1 Z4

UT
A2

CVB1 Σ−1
B Z5

]
UT

B ,

where Z1, . . . , Z5 are arbitrary matrices with appropriate orders.

Remark 7. Interestingly, Chu in Theorem 1 of [25] utilized the generalized singular value decom-
position (abbreviated as GSVD) [26] to study the extended form of Equation (5) over R, i.e.,

AXE + FYB = C, (12)

where A, E, F, B, and C are given real matrices with appropriate orders. Eleven years later,
Xu et al. [27] once again discussed the solvability conditions, the general solution, and least-squares
solutions of Equation (12) over C by using the canonical correlation decomposition (abbreviated as
CCD) introduced in [28].

Remark 8. Inspired by solving Equation (5) via SVD, one can utilize equivalent normal forms
of A and B to study Equation (5) over a field, along with an approach similar to Theorem 5. In
fact, we only need to regard orthogonal matrices UA, UB, VA, and VB in (9) as invertible matrices,
the transpose VT

A and VT
B as the inverse V−1

A and V−1
B , and ΣA and ΣB as identity matrices of

appropriate orders.
It can be found that using the equivalent normal form of matrices to solve matrix equations is

also a very convenient method. This viewpoint has been confirmed multiple times in subsequent
research. Wang et al. used the elementary row and column transformations of matrices to give the
equivalent normal form of a matrix triplet [

A B C
]

with the same row number over an arbitrary division ring F (see Theorem 2.1, [29]). Similarly, the
equivalent normal form of another matrix triplet[

DT ET FT
]T

with the same column number can also be obtained (see Theorem 2.2, [29]). The two equivalent
normal forms are applied to solve the matrix equation

AXD + BYE + CZF = G, (13)

where X, Y, and Z are unknown (see Theorem 3.2, [29]).
Interestingly, He et al. utilized Theorem 2.1 of [29] to propose a simultaneous decomposition

of seven matrices over H (see Theorem 2.3, [30]), i.e.,
G A B C
D
E
F


and discussed Equation (13) once again by this decomposition (see Theorem 3.1, [30]). Com-
pared with the method in [29], which directly applies the equivalent normal forms of two matrix
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triplets to matrix G, the simultaneous decomposition is more concise. In addition, Ref. [31]
once again brilliantly demonstrates the important role of simultaneous decomposition in solving
matrix equations.

4.4. Method by Simultaneous Decompositions

Let F be a field. Remark 8 notes using equivalent canonical forms of the matrices A and
B to solve Equation (1). Can we find an equivalent canonical form that is simultaneously
related to the matrix triplet [

C A
B

]
(14)

so as to discuss Equation (1) more simply? Gustafson [32] gave a positive answer to
this problem.

Theorem 6 ([32]). Let A, B, and C be given in Equation (1). Then, there exist invertible matrices
T, U, V, and W of appropriate orders such that[

TCW TAU
VBW

]
=

[
C
′

A
′

B
′

]
, (15)

where

A′ =


Iz 0 0 0
0 It3 0 0
0 0 0 0
0 0 0 0
0 0 0 Ir2

0 0 0 0

, B′ =

Iz 0 0 0 0 0
0 It1 0 0 0 0
0 0 0 0 0 0
0 0 0 Ir1 0 0

, C′ =


Iz 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Ir1 0 0
0 0 0 0 Ir2 0
0 0 0 0 0 It2

,

z + t3 + r2 = rank(A), z + t1 + r1 = rank(B), and z + t2 + r1 + r2 = rank(C). We call (15)
the simultaneous decomposition of (14).

Remark 9. By elementary matrix row and column transformations, Gustafson designed the 12-step
algorithm to obtain the simultaneous decomposition of (14) (see (Section 3, [32])).

Applying the simultaneous decomposition of (14) to Equation (1) yields

(1) ⇔ T−1 A
′
U−1X−YV−1B

′
W−1 = T−1C

′
W−1

⇔ A
′
X
′ −Y

′
B
′
= C

′
, (16)

where X
′
= U−1XW and Y

′
= TYV−1. Thus, X = UX

′
W−1 and Y = T−1Y

′
V.

Theorem 7 ([32]). Equation (16) is solvable if and only if t2 = 0, in which case,

A′ =


Iz 0 0 0 0
0 It3 0 0 0
0 0 0 0 0
0 0 0 Ir2 0
0 0 0 0 0

, B′ =

Iz 0 0 0 0
0 It1 0 0 0
0 0 0 0 0
0 0 0 Ir1 0

, C′ =


Iz 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 Ir1 0
0 0 0 0 Ir2

,

X′ =


X11 X12 0 X14 0
X21 X22 0 X24 0
X31 X32 X33 X35 X35

X41 X42 0 X44 Ir2

, Y′ =


X11 − Iz X12 Y13 X14

X21 X22 − It1 Y23 X24

0 0 Y33 0
0 0 Y43 −Ir1

X41 X42 Y53 X44

,
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where the Xij and Yij are arbitrary matrices with appropriate orders.

Remark 10. The quiver theory introduced by Gabriel [33] is an important tool in the representation
theory of algebras. Gustafson [32] gave a novel interpretation of the existence of the simultaneous
decomposition of (14) from the perspective of the quiver theory. Finally, he gave a necessary and
sufficient condition for Equation (1) to have a solution by using the corresponding representation of
arrows (see Section 10, [32]). Note that refs. [12,34] also make use of the graph theory to discuss
linear matrix equations.

Remark 11. Wang et al. in Theorem 2.1 of [35] continued with the idea of simultaneous decompo-
sition and decomposed the following matrices over a division ring F:[

A B C
D

]
, (17)

where A, B, and C are of the same row number, and A and D are of the same column number. So,
Theorem 6 is a corollary of Theorem 2.1 of [35] (see Corollary 2.2, [35]). Also, it should be noted
that Theorem 2.1 of [29] is indeed a special case of Theorem 2.1 of [35] (see Corollary 2.3, [35]). In
addition, Wang et al. applied the simultaneous decomposition of (17) to solving two types of systems
of matrix equations. Interestingly, He et al. [36] further refined the simultaneous decomposition
presented by [35].

He et al. [37] further considered the simultaneous decompositions of two more general forms
over H: A

B C D
E

 and


A
B C

D
E

,

where matrices in the same row (or column) have the same number of rows (or columns), and applied
them to solving systems of quaternion matrix equations. Recently, Huo et al. [38] generalized the
simultaneous decomposition of (17) to quaternion tensors under the Einstein product.

4.5. Method by Real (Complex) Representations

It is well known that an associative algebra A with finite dimensions over a field F
is isomorphic to a subalgebra of the algebra Fn×n, where n is the dimension of A over F
(see [39]). We now consider the case of complex numbers, i.e., F = C.

Let A = A0 + A1i ∈ Cm×r, where A0, A1 ∈ Rm×r, and i is the imaginary unit such
that i2 = −1. Define a map

ϕ : Cm×r → R2m×2r with ϕ(A) = ϕ(A0 + A1i) =

[
A0 −A1

A1 A0

]
.

We call ϕ(A) a real representation of the complex matrix A [40]. Then, one can check that
ϕ(·) is an isomorphism of the real algebra Cm×r onto the real subalgebra{[

S0 −S1

S1 S0

]
| S0, S1 ∈ Rm×r

}
.

Then,
(5) ⇔ ϕ(A)ϕ(X) + ϕ(Y)ϕ(B) = ϕ(C).
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On the other hand, suppose that a real matrix pair

X̂ =

[
X11 X12

X21 X22

]
and Ŷ =

[
Y11 Y12

Y21 Y22

]

is a solution pair of the following equation

ϕ(A)X̂ + Ŷϕ(B) = ϕ(C). (18)

Then, K−1
2r X̂K2n and K−1

2mŶK2s are also a solution pair of Equation (18), where

K2t =

[
0 It

−It 0

]
for t = m, n, r, s.

Let X̄ = 1
2 (X11 + X22) +

1
2 (X21 − X12)i and Ȳ = 1

2 (Y11 + Y22) +
1
2 (Y21 −Y12)i. Then,

ϕ(X̄) =
1
2

[
X11 + X22 X12 − X21

X21 − X12 X11 + X22

]
=

1
2

(
X̂ + K−1

2r X̂K2n

)
,

and ϕ(Ȳ) =
1
2

[
Y11 + Y22 Y12 −Y21

Y21 −Y12 Y11 + Y22

]
=

1
2

(
Ŷ + K−1

2mŶK2s

)
satisfy (18), so X̄ and Ȳ satisfy Equation (5).

Based on the above analysis, the problem of a complex matrix equation is transformed
into a problem of a real matrix equation by using the real representation of complex
matrices. Based on this consideration, Liu [40] proposed the following theorem for solving
Equation (5) over C.

Theorem 8 (Lemma 1.3, [40]). Let

A = A0 + A1i, B = B0 + B1i, and C = C0 + C1i

be given in Equation (5). Then, Equation (5) is consistent over C if and only if[
A0 −A1

A1 A0

][
X11 X12

X21 X22

]
+

[
Y11 Y12

Y21 Y22

][
B0 −B1

B1 B0

]
=

[
C0 −C1

C1 C0

]
(19)

is consistent over R, in which case,X = X0 + X1i = 1
2 (X11 + X22) +

1
2 (X21 − X12)i,

Y = Y0 + Y1i = 1
2 (Y11 + Y22) +

1
2 (Y21 −Y12)i,

(20)

where X11, X12, X21, X22, Y11, Y12, Y21, and Y22 constitute the general solution of Equation (19).
Furthermore, the explicit forms of X and Y given in (20) are

X0 =
1
2

P1ϕ(A)−ϕ(C)Q1 +
1
2

P2ϕ(A)−ϕ(C)Q2 + [U1, U2]

[
ϕ(B)Q1

ϕ(B)Q2

]
+ [P1Fϕ(A), P2Fϕ(A)]

[
V1

V2

]
,

X1 =
1
2

P2ϕ(A)−ϕ(C)Q1 −
1
2

P1ϕ(A)−ϕ(C)Q2 + [U1, U2]

[
−ϕ(B)Q2

ϕ(B)Q1

]
+ [P2Fϕ(A),−P1Fϕ(A)]

[
V1

V2

]
,

Y0 =
1
2

S1Eϕ(A)ϕ(C)ϕ(B)−T1 +
1
2

S2Eϕ(A)ϕ(C)ϕ(B)−T2 − [S1ϕ(A), S2ϕ(A)]

[
Û1

Û2

]
+ [W1, W2]

[
Eϕ(B)T1

Eϕ(B)T2

]
,

Y1 =
1
2

S2Eϕ(A)ϕ(C)ϕ(B)−T1 −
1
2

S1Eϕ(A)ϕ(C)ϕ(B)−T2 + [−S2ϕ(A), S1ϕ(A)]

[
Û1

Û2

]
+ [W1, W2]

[
Eϕ(B)T1

−Eϕ(B)T2

]
,
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where P1 = [Ir, 0], P2 = [0, Ir], S1 = [Im, 0], S2 = [0, Im],

Q1 =

[
In

0

]
, Q2 =

[
0
In

]
, T1 =

[
Is

0

]
, T2 =

[
0
Is

]
,

and Ui, Vi, Ûi, Wi (i = 1, 2) are arbitrary matrices over R with appropriate orders.

Remark 12. Liu [40] further used Theorem 8 to discuss the maximal and minimal ranks of
Equation (5)’s solutions, as seen in Section 5.6 of this paper.

Remark 13. We know that the quaternion algebra (or the quaternion division ring) cannot be a field
because it does not satisfy the commutative law. However, when studying matrix equations over H,
the method of converting the quaternion matrix equations to the real (or complex) matrix equations
by using the real (or complex) representation of quaternions [7] is widely applied. For example,
refs. [41,42] studied the special least-squares solutions of a class of quaternion matrix equations by
using the real representation and the complex representation of quaternions, respectively. Moreover,
the real (or complex) representation of some other quaternions mentioned in Remark 43 have been
explored in [43–46].

On the other hand, because real (or complex) representations have the drawback of a significant
increase in computational load, Wei et al. [47] introduced real structure-preserving methods over H
for LU decomposition, QR decomposition, and SVD, thereby solving quaternion linear systems.

4.6. Method by Determinable Representations

As is well known, Cramer’s rule for the linear equation Ax = b for unknown
vector x is an effective means of expressing its unique solution. In addition, it can
be found in Section 4.2 that the theory of generalized inverses is closely related to
the study of Equation (1). Naturally, we can consider whether Cramer’s rule for the
solutions of Equation (1) can be obtained through the determinant representations of
generalized inverses.

Generalized inverses (especially the MP inverse) over fields (particularly the complex
field) have been thoroughly discussed and applied to characterize various solutions of
matrix equations (see [10,15,48]). Notably, Kyrchei [49] presented the determinantal repre-
sentations of the MP inverse and the Drazin inverse [50] from the new perspective of limit
representations of generalized inverses in 2008.

When we consider the determinantal representations of generalized inverses in the
quaternion algebra, it relies on the theory of determinants of quaternion matrices. However,
due to the noncommutativity of quaternions, the determinants of quaternion matrices
become much more complicated (see [51,52]). It was not until several decades later, after
Kyrchei [53,54] introduced the theory of column-row determinants overH, that this problem
was effectively solved.

Definition 2 (Column-row determinants over H). (Definitions 2.4 and 2.5, [53]) Let
A = [aij] ∈ Hn×n, and let Sn be the symmetric group on In = {1, 2, . . . , n}.
(1) For i = 1, 2, . . . , n, the i-th row determinant of A is defined by

rdeti A = ∑
σ∈Sn

(−1)n−r(aiik1
aik1

ik1+1
. . . aik1+l1

i) . . . (aikr ikr+1
. . . aikr+lr ikr

),

σ = (i ik1 ik1+1 . . . ik1+l1)(ik2 ik2+1 . . . ik2+l2) . . . (ikr ikr+1 . . . ikr+lr ),

where ik2 < ik3 < . . . < ikr , and ikt < ikt+s for t = 2, . . . , r and s = 1, . . . , lt.
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(2) For j = 1, 2, . . . , n, the j-th column determinant of A is defined by

cdetj A = ∑
τ∈Sn

(−1)n−r(ajkr jkr+lr
. . . ajkr+1 jkr

) . . . (ajjk1+l1
. . . ajk1+1 jk1

ajk1
j),

τ = (jkr+lr . . . jkr+1 jkr ) . . . (jk2+l2 . . . jk2+1 jk2)(jk1+l1 . . . jk1+1 jk1 j),

where jk2 < jk3 < . . . < jkr and jkt < jkt+s for t = 2, . . . , r and s = 1, . . . , lt.

Remark 14. Kyrchei in Theorem 3.1 of [53] showed that if A ∈ Hn×n is Hermitian, i.e., A = A∗, then

rdet1 A = . . . = rdetn A = cdet1 A = . . . = cdetn A ∈ R.

Thus, Remark 3.1 [53] defines the determinant of a Hermitian matrix A by

det A = rdeti A = cdeti A, (i = 1, 2, . . . , n).

We now introduce some necessary notations. Let A ∈ Hm×n. Then, Rl(A), Rr(A),
Nl(A), and Nr(A) denote the left row space, the right column space, the left null space,
and the right null space of A, respectively. Let

α = {α1, . . . , αk} ⊆ {1, . . . , m} and β = {β1, . . . , βk} ⊆ {1, . . . , n},

where 1 ≤ k ≤ min{m, n}. By Aα
β, we denote the submatrix of A whose rows are indexed

by α and whose columns are indexed by β. If A is Hermitian, then |Aα
α| is the corresponding

principal minor of A. For 1 ≤ k ≤ n, let

Lk,n = {α | α = (α1, . . . , αk), 1 ≤ α1 < . . . < αk ≤ n}.

And, for i ∈ α and j ∈ β, let

Ir,m{i} = {α | α ∈ Lr,m, i ∈ α} and Jr,n{j} = {β | β ∈ Lr,n, j ∈ β}.

We denote the j-th column of A by a.j and its i-th row by ai.. And, A.j(b) is the matrix
that is obtained from A by replacing its j-th column by the column vector b ∈ Hm×1, and
Ai.(b) is the matrix obtained from A by replacing its i-th row by the row vector b ∈ H1×n.
Symbols a∗·j and a∗i· denoted the j-th column and the i-th row of A∗, respectively.

Kyrchei [55] obtained the Cramer’s rules for some left, right and two-sided quaternion
matrix equations by the theory of the column-row determinants over H. Song et al. [56]
then utilized results in [55] to further study the Cramer’s rule for the quaternion
matrix equation:

AXE + FYB = C, (21)

where A ∈ Hm×n, E ∈ Hs×q, F ∈ Hm×q, B ∈ Ht×q, and C ∈ Hm×q are given.

Theorem 9 (Theorem 3.1, [56]). Suppose that Equation (21) is consistent. Let

T = A∗(I + RF)A, S = E(I + LB)E∗, A11 = A∗RF AT†, A22 = A∗AT†,

E11 = S†EE∗, E22 = S†ELBE∗, Y10 = A†
22 A11 A∗CLBE∗ + LA22 A∗RFCE∗E22E†

11,

Y20 = A†
11 A22 A∗RFCE∗ + LA11 A∗CLBE∗E11E†

22.

Let K∗, L, M∗, and N be of full column rank matrices over H such that

Nr(T) = Rr(K∗), Nr(S) = Rr(L), Nr(F) = Rr(M∗), Nr(B) = Rr(N).
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Then, the general solution of Equation (21) is

xij =
rdetj(S + LL∗)j.(cA

i. )

det(T + K∗K)det(S + LL∗)
=

cdeti(T + K∗K).i(cE
.j)

det(T + K∗K)det(S + LL∗)
,

yhl =
rdetl(BB∗ + NN∗)l.(gA

h.)

det(F∗F + M∗M)det(BB∗ + NN∗)
=

cdeth(F∗F + M∗M).h(gE
.l )

det(F∗F + M∗M)det(BB∗ + NN∗)
,

where

cA
i. =

[
cdeti(T + K∗K).i(d.1) , . . . , cdeti(T + K∗K).i(d.s)

]
,

gA
h. =

[
cdeth(F∗F + M∗M).h(k.1) , . . . , cdeth(F∗F + M∗M).h(k.t)

]
,

cE
.j =

[
rdetj(S + LL∗)j.(d1.) , . . . , rdetj(S + LL∗)j.(dn.)

]T ,

gE
.l =

[
rdetl(BB∗ + NN∗)l.(k1.) , . . . , rdetl(BB∗ + NN∗)l.(kq.)

]T

with di. and d.j are the i-th row and j-th column of

(T + K∗K)T†(A∗RFCE∗ + A∗CLBE∗ + Y10 + Y20)S†(S + LL∗) + M + W,

respectively, and k.i and k j. are the i-th column and j-th row of

(F∗F + M∗M)(F†(C− AXE)B†)(BB∗ + NN∗) + Q,

respectively, for i = 1, . . . , m, j = 1, . . . , s, h = 1, . . . , q, and l = 1, . . . , t, where

M = (T + K∗K)T†(LA22 V1RE11 + LA11 V2RE22)S
†(S + LL∗),

W = TZLL∗ + K∗KZS + K∗KZLL∗, Q = F∗FHNN∗ + M∗MH(BB∗ + NN∗)

for arbitrary V1, V2, Z, and H with appropriate orders.

Remark 15. When E and F in Equation (21) are identity matrices, by Theorem 9, we immediately
derived the Cramer’s rule to the matrix equation over H:

AX + YB = C. (22)

Note that Theorem 9 uses the auxiliary matrices, i.e., K, L, M, and N, to derive the determinant
representation of the general solution of Equation (22). However, these auxiliary matrices are not
always easy to obtain in practical applications. Then, can we obtain Cramer’s rule for Equation (22)
only through its given coefficient matrices?

In order to answer the above problem, let us first take a look at another work of
Kyrchei [57]. Based on the column-row determinant theory and the limit representation of
the MP inverse, he gave the determinant representation of the MP inverse over H in [57].
This research has greatly promoted the study of Cramer’s rules to the various solutions of
matrix equations over H (see [58–64]). Denote

Hm×n
r = {A ∈ Hm×n | rank(A) = r}.
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Theorem 10 (Theorem 5, [57]). Let A ∈ Hm×n
r and A† =

[
a+i,j
]
∈ Hn×m. Then,

a+i,j =
∑β∈Jr,n{i} cdeti

(
(A∗A)·i(a∗·j)

)β

β

∑β∈Jr,n

∣∣∣(A∗A)
β
β

∣∣∣ =
∑α∈Ir,m{j} rdetj

(
(AA∗)j·(a∗i·)

)α

α

∑α∈Ir,m |(AA∗)α
α|

,

where i = 1, 2. . . . , n and j = 1, 2, . . . , m.

A result similar to Theorem 3 was given by Kyrchei in [58].

Theorem 11 (Lemma 5.1, [58]). The following are equivalent:

(1) Equation (22) is solvable;
(2) RACLB = 0;

(3) rank

[
A C
0 B

]
= rank

[
A 0
0 B

]
;

in which case,

X = A†C− A†VB + LAU and Y = RACB† + AA†V + WRB, (23)

where U, V, and W are arbitrary matrices of appropriate orders over H.

It is easy to see that

X = A†C and Y = CB† − AA†CB† (24)

are the partial solution pair of Equation (22) by taking U, V, and W as zero matrices in (23).
Then, by applying Theorem 10 to (24), Kyrchei [58] presented a new Cramer’s rule for the
partial solution of Equation (22), which only makes use of the coefficient matrices, i.e., A, B,
and C.

Theorem 12 (Theorem 5.2, [58]). Let A ∈ Hm×n
r1

and B ∈ Ht×q
r2 . Then, the partial solution pair

X = [xij] ∈ Hn×q and Y = [yg f ] ∈ Hm×t in (24) can be expressed as

xij =
∑β∈Jr1,n{i} cdeti

(
(A∗A).i(c

(1)
.j )
)β

β

∑β∈Jr1,n

∣∣∣(A∗A)
β
β

∣∣∣ ,

where c(1).j is the j-th columns of A∗C, and

yg f =
∑α∈Ir2,t{ f } rdet f

(
(BB∗). f (c

(2)
g. )
)α

α

∑α∈Ir2,t |(BB∗)α
α|

−
∑m

l=1 ∑α∈Ir1,m{l} rdetl

(
(AA∗)l.(ä

(1)
g. )
)α

α
∑α∈Ir2,t{ f } rdet f

(
(BB∗). f (c

(2)
l. )
)α

α

∑α∈Ir1,m |(AA∗)α
α|∑α∈Ir2,t |(BB∗)α

α|
,

where c(2)g. and ä(1)g. are the g-th rows of CB∗ and AA∗, respectively.

Remark 16. Note that although Kyrchei [58] gave the determinant representation of the particular
solution of Equation (22), the problem proposed in Remark 15 is not solved completely. That is to
say, Cramer’s rule for representing the general solution of Equation (22) only using the coefficient
matrices remains an unsolved problem.
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Interestingly, Song [65] considered the determinant representation for the general
solution of Equation (22) with the restricted conditions, i.e.,

Equation (22) subject to

Rr(X) ⊆ T1, Nr(X) ⊇ S1,

Rl(Y) ⊆ T2, Nl(Y) ⊇ S2,
(25)

where T1 ⊆ Hn, S1 ⊆ Hp, T2 ⊆ H1×t, and S2 ⊆ H1×m. Let PT ∈ Hn×n (QT ∈ Hn×n) denote
the right (left) H-orthogonal projector onto a right (left) H-vector subspace T ∈ Hn×1

(T ∈ H1×n ) along T ⊥.

Theorem 13 (Theorem 3.2, [65]). Let A, B, C, T1, T2, S1, and S2 be given in (25), and let

M = RAPT1
QS⊥2

, N = QT2 BPS⊥1
, T = A∗RQ

S⊥2
A + A∗A, S = I + LQT2 B,

and Y1 be such that

A∗RQ
S⊥2

AT†Y1 = A∗AT† A∗RQ
S⊥2

C and Y1LQT2 B = A∗CLQT2 B.

(1) The restricted Equation (25) is solvable if and only if

RMRAPT1
C = 0, RAPT1

CLQT2 B = 0, CLP
S⊥1

LN = 0, RQ
S⊥2

CLQT2 B = 0,

in which case,

X = (TPT1)
†C̃PS⊥1

+ PT1 LAPT1
U1PS⊥1

+ PT1 V1PS⊥1

= (TPT1)
†C̃PS⊥1

+ PT1 Z1PS⊥1
− PT11 Z1PS⊥1

= (TPT1)
†C̃PS⊥1

+ PT1∩Nr(A)U2PS⊥1
+ PT1 V2PS⊥1

,

Y = QS⊥2
(C− AX)(QT2 B)† + QS⊥2

V3RQT2 BQT2 ,

where

C̃ =

(
A∗RQ

S⊥2
C + A∗CLQT2 B + A∗RQ

S⊥2
CLQT2 B + Y1

)
S−1,

and Z1, V1, U1, V2, U2, and V3 are arbitrary matrices over H with appropriate dimensions.
(2) Let C∗1 , K∗1 , C1, and K2 be full column rank matrices such that

T1 = Nr(C1), T1 ∩Nr(T) = Rr(K∗1), T2 = Nl(C2), T2 ∩Nr(B) = Rl(K∗2).

Denote X = [xij] ∈ Hn×q and Y = [ykl ] ∈ Hm×t. If Equation (25) is solvable, then

xij =
cdeti(A∗A + C∗1 C1 + K∗1 K1).i(d.j)

det(A∗A + C∗1 C1 + K∗1 K1)
,

ykl =
rdetl(BB∗ + C2C∗2 + K2K∗2)l.(dk.)

det(BB∗ + C2C∗2 + K2K∗2)

with d.j is the j-th column of

T
(

A∗RQ
S⊥2

C + A∗CLQT2 B + A∗RQ
S⊥2

CLQT2 B + Y1

)
+ K∗1 K1Z1,

and dk. is the i-th row of
(C− AX)B∗ + Z2K2K∗2 ,
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where i = 1, . . . , n, j = 1, . . . , q, k = 1, . . . , m, l = 1, . . . , t, and Z1 and Z2 are arbitrary
matrices over H with appropriate orders.

4.7. Method by Semi-Tensor Products

To effectively handle multidimensional arrays and nonlinear problems, Chinese math-
ematician Daizhan Cheng [66] pioneered a new matrix product in 2001: the semi-tensor
product (abbreviated as STP). It exactly coincides with traditional matrix products when
the two factor matrices meet the dimension requirements. Due to the excellent properties
of STP [67], namely

(1) It is applied to any two matrices;
(2) It has certain commutative properties;
(3) It inherits all properties of the conventional matrix product;
(4) It enables easy expression of multilinear functions (mappings);

STP has been effectively applied to Boolean (control) networks, logical dynamic systems,
system biology, graph theory, formation control, finite automata and symbolic dynamics,
circuit design and failure detection, coding and cryptography, fuzzy control, engineering,
game theory, and so on (see [67–71] and references therein).

Definition 3 ([66]). Let F be a ring, A ∈ Fm×n, and B ∈ Fp×q. The left STP of A and B is
defined as

A ⋉ B =
(

A⊗ I t
n

)(
B⊗ I t

p

)
,

where t = lcm(n, p) is the least common multiple of n and p.

Remark 17. Similar to the left STP, Cheng [68] defined the right STP of A ∈ Fm×n and B ∈ Fp×q, i.e.,

A ⋊ B =
(

I t
n
⊗ A

)(
I t

p
⊗ B

)
,

where t = lcm(n, p). Both (Proposition 1.3, [67]) and (Proposition 2.3.2, [70]) show that the block
multiplication of matrices can be extended to the left STP. Unfortunately, the right STP does not
satisfy the block multiplication rule, which is a significant difference between the left STP and right
STP. Next, we use a simple example from [70] to demonstrate this limitation of the right STP: let
A = [a1 a2 a3 a4] and B = [b1 b2]

T . Then,

A ⋉ B = [a1b1 + a3b2 a2b1 + a4b2] and A ⋊ B = [a1b1 + a2b2 a3b1 + a4b2].

Partition A and B equally into A = [A1 A2] and B = [B1 B2]
T , respectively. According to the

block multiplication rule, we have

A1 ⋉ B1 + A2 ⋉ B2 = [a1 a2]⋉ b1 + [a3 a4]⋉ b2 = [a1b1 + a3b2 a2b1 + a4b2],

A1 ⋊ B1 + A2 ⋊ B2 = [a1 a2]⋊ b1 + [a3 a4]⋊ b2 = [a1b1 + a3b2 a2b1 + a4b2].

Obviously,

A ⋉ B = A1 ⋉ B1 + A2 ⋉ B2, but A ⋊ B ̸= A1 ⋊ B1 + A2 ⋊ B2.

This drawback makes the right STP unable to replace the left STP in many applications, greatly
limiting its use. Therefore, most scholars focus exclusively on research into the left STP. Based on
this, the STP referred to in this paper specifically denotes the left STP.
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Remark 18. As a generalization of the traditional matrix product, and given its extensive applica-
tion significance, the study of matrix equations under STP has emerged as an inevitable and pivotal
research direction. In 2016, Yao et al. [72] were the first to conduct research on the classical complex
matrix equation under STP:

A ⋉ X = B,

where X is unknown. Subsequently, building on the research framework of [72], investigations into
diverse matrix equations under STP have flourished (see [73–78]).

Regrettably, no studies directly addressing Equation (5) under STP have been published to
date. However, when the dimension of Y is constrained to equal that of XT , the exploration of
Sylvester-transpose matrix Equation [74]

A ⋉ X + XT ⋉ B = C

with unknown X may provide valuable guidance for this problem.
Notably, in 2019, Cheng and Liu [79], inspired by the research on cross-dimensional linear

systems [80], further proposed the second matrix–matrix semi-tensor product (abbreviated as MM-2
STP), denoted by ◦l . Subsequently, Wang [81] investigated the complex matrix equation under the
MM-2 STP:

A ◦l X = B,

where X is unknown, and A and B are given. So, exploring Equation (1) under MM-2 STP emerges
as a potential research topic. Additionally, Cheng [67] introduced the dimension-free matrix theory,
which systematically elucidates the deep mathematical insights underlying STP.

Since 2020, Liaocheng University’s team led by Professors Ying Li and Jianli Zhao
has utilized STP to propose several novel matrix representations, including complex,
quaternion, and octonion matrices. These representations have also been applied to solving
corresponding matrix equations, and have yielded effective numerical experimental results.

Ding et al. [82] first proposed the real vector representation for quaternion matrices,
whose properties were characterized by STP, as follows:

Definition 4 (Definitions 3.1–3.3, [82]). Let x = x1 + x2i + x3j + x4k ∈ H. Denote

vR(x) =
[

x1 x2 x3 x4

]T
.

Let x =
[

x1 . . . xn
]
∈ H1×n and y =

[
y1 . . . yn

]T
∈ Hn. Denote

vR(x) =


vR(x1)

...
vR(xn)

 and vR(y) =


vR(y1)

...
vR(yn)

.

For A ∈ Hm×n, the real column stacking form vR
c (A) and the real row stacking form vR

r (A) of A
are defined as

vR
c (A) =


vR(Col1(A))

vR(Col2(A))
...

vR(Coln(A))

 and vR
r (A) =


vR(Row1(A))

vR(Row2(A))
...

vR(Rowm(A))

,
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where Colj(A) (j = 1, . . . , n) and Rowi(A) (j = 1, . . . , m) are the j-th column and i-th row of
A, respectively.

Remark 19. For A ∈ Hm×n and B ∈ Hn×p, Theorem 3.3(3) of [82] shows

vR
r (AB) = G

(
vR

r (A)⋉ vR
c (B)

)
,

where

G =



F ⋉ (δ1
m)

T ⋉
[

I4mn ⊗ (δ1
p)

T
]

...

F ⋉ (δ1
m)

T ⋉
[

I4mn ⊗ (δ
p
p)

T
]

...

F ⋉ (δm
m)

T ⋉
[

I4mn ⊗ (δ1
p)

T
]

...

F ⋉ (δm
m)

T ⋉
[

I4mn ⊗ (δ
p
p)

T
]


, F = MQ ⋉

(
n

∑
i=1

(δi
n)

T ⋉ (I4n ⊗ (δi
n)

T)

)
,

MQ =


1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 −1 0 0 1 0 0 0

,

and δi
m (i = 1, . . . , m) is the i-th column of Im.

Using the real vector representation for quaternion matrices, Ding et al. [82] further
discussed the special least-squares solutions of quaternion matrix equation

AXB + CYD = E, (26)

where A ∈ Hm×n, B ∈ Hn×s, C ∈ Hm×k, D ∈ Hk×s, and E ∈ Hm×s. Denote

δk[i1, · · · , is] = [δi1
k , · · · , δis

k ],

W[m,n] = δmn[1, · · · , (n− 1)m + 1, · · · , m, · · · , nm],

and

Jη =



Jη
1
...

Jη
m
...

Jη
n


, Jη

m =



Jη
1m
...

Jη
rm
...

Jη
nm


, Rη =



Rη
1
...

Rη
m
...

Rη
n


, Rη

m =



Rη
1m
...

Rη
rm
...

Rη
nm


, m = 1, 2, . . . , n,
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where

for η = i, Ji
rm =


(

δ
(r−1)(2n−r+2)

2 +m−r+1
n(n+1)/2

)T

⊗ R4, r < m,(
δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T

⊗ I4, r ≥ m,
R4 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

;

for η = j, Jj
rm =


(

δ
(r−1)(2n−r+2)

2 +m−r+1
n(n+1)/2

)T

⊗ L4, r < m,(
δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T

⊗ I4, r ≥ m,
L4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

;

for η = k, Jk
rm =


(

δ
(r−1)(2n−r+2)

2 +m−r+1
n(n+1)/2

)T

⊗ S4, r < m,(
δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T

⊗ I4, r ≥ m,
S4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

;

for η = i, Ri
rm =


(

δ
(r−1)(2n−r+2)

2 +m−r+1
n(n+1)/2

)T

⊗ R′4, r < m,(
δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T

⊗ I4, r ≥ m,
R′4 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

;

for η = j, Rj
rm =


(

δ
(r−1)(2n−r+2)

2 +m−r+1
n(n+1)/2

)T

⊗ L′4, r < m,(
δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T

⊗ I4, r ≥ m,
L′4 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

;

for η = k, Rk
rm =


(

δ
(r−1)(2n−r+2)

2 +m−r+1
n(n+1)/2

)T

⊗ S′4, r < m,(
δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T

⊗ I4, r ≥ m,
S′4 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

.

Theorem 14 (Theorem 4.3 and Corollary 4.4, [82]). Let A, B, C, D, and E be given in
Equation (26), and let

M̂ =
[

M1 M2

]
,

where

M1 = G2 ⋉ G3 ⋉ vR
r (A)⋉W[4ns,4n2] ⋉ vR

c (B)⋉ Jη ,

M2 = G4 ⋉ G5 ⋉ vR
r (C)⋉W[4ks,4k2] ⋉ vR

c (D)⋉ Rη ,

and Gi has the same structure as G given in Remark 19 but differs in orders.

(1) Then, Equation (26) is consistent if and only if(
M̂M̂† − I4ms

)
vR

r (E) = 0.

(2) Let

SM =
{
(X, Y)

∣∣∣ X = Xη∗, Y = −Yη∗, ∥AXB + CYD− E∥ = min
}

.

Then,

SM =

{
(X, Y)

∣∣∣∣∣
[

vR
s (X)

vR
s (Y)

]
= M̂†vR

r (E) +
(

I2(n2+k2)+2(n+k) − M̂† M̂
)
y, y ∈ R2(n2+k2)+2(n+k)

}
.

(3) If (X̂, Ŷ) ∈ SM satisfies

∥X̂∥2 + ∥Ŷ∥2 = min
(X,Y)∈SM

(
∥X∥2 + ∥Y∥2

)
,

then [
vR

s (X̂)

vR
s (Ŷ)

]
= M̂†vR

r (E).
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Remark 20. Setting B and C in Equation (26) as identity matrices, Theorem 14 yields the corre-
sponding results for Equation (5) over H.

Remark 21. During the same period, Ding et al. [83] and Wang et al. [84] also developed the
real vector representation of quaternion matrices and applied this method to address problems in
quaternion matrix equations. Inspired by this idea, Liu et al. [85] proposed the left and right real
element representations of octonion matrices to solve the classical octonion matrix equation

AXB = C,

where X is unknown. Recently, Chen and Song [86] used the real vector representation of
quaternion matrices to study the least-squares lower (upper) triangular Toeplitz solutions and
(anti)centrosymmetric solutions of quaternion matrix equations.

Remark 22. It is known that real representations of quaternion matrices are not unique. For
instance, Liu et al. [87] defined three real representations of quaternion matrices. Interestingly,
Fan et al. first [88,89] proposed the L-representation for quaternion matrices by STP to systemati-
cally study the real representations of quaternion matrices. Moreover, L-representation serves as an
effective tool in solving quaternion matrix equations. Meanwhile, Zhang et al. [90] also defined the
L-representation for commutative quaternion matrices and applied it to solving the corresponding
matrix equations.

Following this idea, Fan et al. [91] established the C-representation of quaternion matrices,
which generalizes the complex representation of quaternion matrices. This new representation is
also applied to study η-Hermitian solutions of the quaternion matrix equation

AXB = C,

with unknown X. Similarly, Xi et al. [92] defined the LC-representation of reduced biquaternion
matrices to investigate the mixed solutions of the reduced biquaternion matrix equation

n

∑
i=1

AiXiBi = E, (27)

where Xi (i = 1, . . . , n) is unknown. Evidently, Equation (5) is the special case of Equation (27)
over reduced biquaternions.

Contemporaneously with [88,89], Fan et al. [93] also derived the minimal norm least-squares
(anti)-Hermitian solution of the quaternion matrix equation directly by the vectorization properties
of STP (i.e., Theorems 2.9 and 2.10, [93]) and the complex representation of quaternion matrix.
Recently, Liu et al. [94] directly used the vectorization properties of STP to investigate (skew)
bisymmetric solutions of the generalized Lyapunov quaternion matrix equation.

We contend that the four aforementioned STP-based methods—specifically, L-representation,
C-representation, LC -representation, and vectorization properties of STP—provide distinct perspec-
tives for the investigation of Equation (1).

5. Constrained Solutions of GSE
When GSE fails to satisfy solvability conditions, find its least-squares solution under a

certain matrix norm; since such solutions are always non-unique, further seeking for the
minimum-norm least-squares solution (also known as the best approximate solution) is a
common research approach. Furthermore, in practical applications, specific constraints are
often imposed on the solutions of GSE (e.g., symmetric solutions, re-(non)positive definite
solutions, equality-constrained solutions). Thus, this section focuses on various solutions
to GSE.
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5.1. Chebyshev Solutions and lp-Solutions

Let F = R. Ziętak studied the Chebyshev solutions [95] and the lp-solutions [96] of
Equation (5) by using the Chebyshev norm and the lp-norm of a matrix, respectively.

Definition 5. Let A = [ai,j] ∈ Rm×n and 1 < p < ∞. The Chebyshev norm of A, denoted by
∥A∥∞, is defined as

∥A∥∞ = max
1≤i≤m,1≤j≤n

|ai,j|,

where |ai,j| is the absolute value of ai,j for 1 ≤ i ≤ m and 1 ≤ j ≤ n. And, the lp-norm of A,
denoted by ∥A∥p, is defined as

∥A∥p =

(
m

∑
i=1

n

∑
j=1
|ai,j|p

)1/p

.

Theorem 15 (Theorem 2.2, [95]). Let r < m and s < n. Suppose that (4) is not satisfied. Then,
the matrices X∞ = [xkj] and Y∞ = [yil ] are a Chebyshev solution pair of Equation (5), i.e.,

∥AX∞ + Y∞B− C∥∞ = min
X,Y
∥AX + YB− C∥∞,

if and only if there exists V = [vij]( ̸= 0) ∈ Rm×n such that VT A = 0, VBT = 0,

vijsign(rij) > 0 for (i, j) ∈J1, and vij = 0 for (i, j) /∈J1,

where

rij =
r

∑
k=1

aikxkj +
s

∑
l=1

yilbl j − cij,

and J1 is an appropriate subset of J =
{
(i, j) | |rij| = ∥AX + YB− C∥∞

}
.

Remark 23. Moreover, Ziętak formulated the equivalent conditions for the Chebyshev solution of
Equation (5) by Theorem 3.3 of [95] and Theorem 4.1 of [95] under the assumption:

m = r + 1, n = s + 1, rank(A) = r, rank(B) = s, (28)

and another assumption:
A ̸= 0, B ̸= 0, r = s = 1, (29)

respectively.

Theorem 16 (Theorem 2.1, [96]). Let r < m, s < n, and 1 < p < ∞. Then, the matrices
Xp = [xi,j] and Yp = [yi,j] are an lp-solution of Equation (5), i.e.,

∥AXp + YpB− C∥p = min
X,Y
∥AX + YB− C∥p,

if and only if
VT A = 0 and VBT = 0,

where

V = [vi,j]m×n =
[
sign(ri,j)|ri,j|p−1

]
m×n

and ri,j =
r

∑
k=1

ai,kxk,j +
s

∑
l=1

yi,lbl,j − ci,j

for i = 1, 2, . . . , m and j = 1, 2, . . . , n.
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Ziętak [96] further presented additional characterizations of the lp-solutions of
Equation (5). Based on these characterizations, an algorithm was designed for solving
such solutions (see Section 7 for details).

Theorem 17 (Theorems 2.2 and 2.3, [96]). Let A, B, and C be given in Equation (5) and let
1 < p < ∞. Then, the following are equivalent:

(1) The matrices X∗ ∈ Rr×n and Y∗ ∈ Rm×s are the lp-solution of Equation (5);
(2) The following equalities hold:

min
X
∥AX + Y∗B− C∥p = min

Y
∥AX∗ + YB− C∥p = ∥AX∗ + Y∗B− C∥p;

(3) The columns x(∗)j of X∗ ∈ Rr×n are the lp-solutions of the linear systems

Ax = cj −Y∗bj (j = 1, 2, . . . , n)

and the columns y(∗)i of YT
∗ ∈ Rs×m are the lp-solutions of the linear systems

BTy = di − XT
∗ ai (i = 1, 2, . . . , m),

where x ∈ Rr, y ∈ Rs, cj, bj, di and ai are the appropriate columns of C, B, CT , and
AT , respectively.

Remark 24. Since

A(X + (I − A−A)W − A−ZB) + (Y + Z(I − BB−) + AA−ZBB−)B = AX + YB

for arbitrary W and Z, neither the Chebyshev solution nor the lp-solution of Equation (5) is unique.

Remark 25. Note that, in Theorem 2.1 of [27], Xu et al. gave the explicit expression of the l2-
solutions of Equation (12). Moreover, in Theorems 4.2 and 4.3 of [97], Liao et al. also consider the
best approximate solution of (12) to a given matrix pair (X f , Yf ) by using GSVD and CCD. There-
fore, when both E and F are identity matrices, we can immediately obtain decomposed expressions of
l2-solutions and the best approximate solution of Equation (5).

5.2. ⋆-Congruent Solutions

We now discuss Equation (5) under the constraint condition Y = X⋆, i.e.,

AX + X⋆B = C, (30)

where X⋆ denotes either XT or X∗. We call X satisfying Equation (30) a ⋆-congruent solution
of Equation (5).

Wimmer is the first to study the necessary and sufficient conditions for the solvability
of Equation (30) under ⋆ = ∗ over C (see Theorem 2, [98]). After that, De Terán and
Dopico [99] generalize the Wimmer’s work to a field F with char(F) ̸= 2, in which case, X⋆

denotes the transpose of X, except in the particular case F = C, where it may be either the
transpose or the conjugate transpose of X. Moreover, we call A ∈ Fn×n and B ∈ Fn×n are
⋆-congruent if there exists a nonsingular matrix P ∈ Fn×n such that P⋆AP = B.

Theorem 18 (Theorem 2.3, [99]). Let F be a field with char(F) ̸= 2. Then, Equation (30) is
solvable if and only if [

C A
B 0

]
and

[
0 A
B 0

]
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are ⋆-congruent.

Remark 26. Additionally, in Lemma 5.10 of [100], Byers and Kressner established the equivalent
conditions for the existence of a unique solution to Equation (30) only when ⋆ = T. Kressner et al.
generalized this result in Lemma 8 of [101] to include the case where ⋆ = ∗. In Theorems 2.1 and
2.2 of [102], Cvetković-Ilić investigated Equation (30) for the bounded linear operators under certain
conditions, in which case X⋆ denotes the adjoint operator of X.

5.3. (Minimum-Norm Least-Squares) Symmetric Solutions

Let F = R, s = m, r = n, and A = B for Equation (5), i.e.,

AX + YA = C. (31)

Chang and Wang [103] studied the symmetric, minimum-2-norm symmetric, least-squares
symmetric, and minimum-2-norm least-squares symmetric solutions of Equation (31) by
SVD over R. Let SRm×m be the set of all m×m real symmetric matrices, and let

A ◦ B = [aijbij] ∈ Fm×n

denote the Hadamard product of A = [aij] ∈ Fm×n and B = [bij] ∈ Fm×n.

Theorem 19 (Theorem 2.1, [103]). Let the SVD of A be

A = U

[
Σ 0
0 0

]
VT ,

where Σ = diag(σ1, . . . , σr) > 0, r = rank(A), and

U =
[
U1 U2

]
∈ Rm×m and V =

[
V1 V2

]
∈ Rn×n

are real orthogonal with

U1 ∈ Rm×r, U2 ∈ Rm×(m−r), V1 ∈ Rn×r, and V2 ∈ Rn×(n−r).

Denote

W1 = ΣUT
1 CV1 −VT

1 CTU1Σ, W2 = Σ−1
(

UT
1 CV1 + VT

1 CTU1

)
,

M1 = ΣVT
1 CTU1 −UT

1 CV1Σ, M2 = Σ−1UT
1 CV1.

Define
Φ = [φij] ∈ Rr×r and Ψ = [ψij] ∈ Rr×r,

where

φij =


1

σ2
i −σ2

j
, σi ̸= σj,

0, σi = σj,
and ψij = 1− |sign(σi − σj)|

for i, j = 1, . . . , r.

(1) Let
LI = {[X, Y] | X ∈ SRn×n, Y ∈ SRm×m, AX + YA = C}.

Then, LI ̸= ∅ if and only if

UT
2 CV2 = 0 and Ψ ◦

(
UT

1 CV1 −VT
1 CTU1

)
= 0,
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in which case

LI =

{[
V

[
Φ ◦W1 + Ψ ◦ (M2 −Y11) Σ−1UT

1 CV2

VT
2 CTU1Σ−1 X22

]
VT ,

U

[
Φ ◦M1 + Ψ ◦Y11 Σ−1VT

1 CTU2

UT
2 CV1Σ−1 Y22

]
UT

]

| X22 ∈ SR(n−r)×(n−r), Y11 ∈ SRr×r, Y22 ∈ SR(m−r)×(m−r)

}
.

(2) If [X̂, Ŷ] ∈ LI satisfies

∥[X̂, Ŷ]∥F = min
[X,Y]∈LI

(∥X̂∥2
F + ∥Ŷ∥2

F)
1
2 ,

then [X̂, Ŷ] ∈ LI is unique and

X̂ = V

[
Φ ◦W1 +

1
2 Ψ ◦M2 Σ−1UT

1 CV2

VT
2 CTU1Σ−1 0

]
VT ,

Ŷ = U

[
Φ ◦M1 +

1
2 Ψ ◦M2 Σ−1VT

1 CTU2

UT
2 CVΣ−1 0

]
UT .

(3) Let
LILS = {[X, Y] | X ∈ SRn×n, Y ∈ SRm×m, ∥AX + YA− C∥F = min}.

Then,

LILS =

{[
V

[
Φ ◦W1 + Ψ ◦ ( 1

2 W2 −Y11) Σ−1UT
1 CV2

VT
2 CTU1Σ−1 X22

]
VT ,

U

[
Φ ◦M1 + Ψ ◦Y11 Σ−1VT

1 CTU2

UT
2 CV1Σ−1 Y22

]
UT

]

| X22 ∈ SR(n−r)×(n−r), Y11 ∈ SRr×r, Y22 ∈ SR(m−r)×(m−r)

}
.

(4) If [X̂, Ŷ] ∈ LILS satisfies

∥[X̂, Ŷ]∥F = min
[X,Y]∈LILS

(∥X̂∥2
F + ∥Ŷ∥2

F)
1
2 ,

then [X̂, Ŷ] is unique and

X̂ = V

[
Φ ◦W1 +

1
4 Ψ ◦W2 Σ−1UT

1 CV2

VT
2 CTU1Σ−1 0

]
VT ,

Ŷ = U

[
Φ ◦M1 +

1
4 Ψ ◦W2 Σ−1VT

1 CTU2

UT
2 CV1Σ−1 0

]
UT .

5.4. Self-Adjoint and Positive (Semi)Definite Solutions

In this subsection, we consider Equation (1) with r = n, s = m and C = 0, i.e.,

AX−YB = 0, (32)
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which is required in optimal control theory [104].
Jameson et al. [105] explored the symmetric, positive semidefinite, and positive

definite real solutions of Equation (32) over R. Subsequently, Dobovišek [106] further
studied the self-adjoint, positive semidefinite, positive definite, minimal, and extreme
solutions of Equation (32) over C.

Definition 6 ([106]). If the nonnegative matrix Ym is such that (X, Ym) is a solution pair of
Equation (32), and Ym ≤ Y (or Ym ≥ Y) for all other solution pairs (X, Y) of Equation (32) with
the same X, then Ym is called a minimal (or maximal) solution of Equation (32). The minimal
and maximal solutions of Equation (32) are collectively referred to as the extreme solutions of
Equation (32).

Theorem 20 ([106]). Let A be of full column rank, m ≥ n,

A =

[
0
I

]
, B =

[
B1

B2

]
, and Y =

[
Y11 Y12

Y∗12 Y22

]
.

(1) (Theorem 6, [106]) Assume that AB∗ has at least one real eigenvalue or at least one conjugate
pair of eigenvalues. Then, Equation (32) has a non-zero self-adjoined solution pair, i.e.,
X∗ = X and Y∗ = Y.

(2) (Theorem 7, [106]) Equation (32) has a nonzero positive semidefinite solution Y, i.e., Y ≥ 0, if
and only if AB∗ has at least one real eigenvalue.

(3) (Theorem 8, [106]) Equation (32) has a positive definite solution Y, i.e., Y > 0, if and only if
AB∗ has only real eigenvalues and is diagonalizable.

(4) (Theorem 9, [106]) Equation (32) has a positive semidefinite solution, i.e., X ≥ 0, if and
only if the matrix A has at least one real eigenvalue, in which case, X ≥ 0 is nonzero if
rank(AB∗) > rank(B2).

(5) (Theorem 10, [106]) Equation (32) has a positive definite solution, i.e., X > 0, if and only if
all eigenvalues of B∗2 are real, B∗2 is diagonalizable, and rank(AB∗) = rank(A). Moreover, if
Y ≥ 0, then X > 0 if and only if all eigenvalues of B∗ are positive and B∗ is diagonalizable.

(6) (Theorem 11, [106]) If rank(B) < m, then Equation (32) with a fixed solution X does not
have an extreme solution for Y. If rank(B) = m, the solution Y is unique.

(7) (Theorem 12, [106]) If Equation (32) has a solution pair (X, Y) and Y ≥ 0, then there exists a
minimal solution Ym ≥ 0.

Remark 27. The expressions of self-adjoint, positive semidefinite, and positive definite solutions are
also presented when the solvability conditions are met (see (Theorems 6–10, [106])). Additionally,
Dobovišek discussed these solutions for m < n (see (Theorems 13–17, [106])) and for matrices A
and B without full rank (see (Theorems 18–20, [106])).

5.5. Per(Skew)Symmetric and Bi(Skew)Symmetric Solutions

It is well known that (skew)selfconjugate, per(skew)symmetric, and centro(skew)
symmetric matrices be applied to information theory, linear system theory, and numerical
analysis theory (see [107–110]). Let F = Ω be a finite dimensional central algebra with an
involution σ and char(Ω) ̸= 2 (see [111]). Wang et al. in [112,113] gave necessary and suffi-
cient conditions for the existence of per(skew)symmetric solutions and bi(skew)symmetric
solutions to Equation (1) over Ω, respectively.

Definition 7. For A = [ai,j] ∈ Ωm×n, let

A∗ = [σ(ai,j)] ∈ Ωn×m, A(∗) = [σ(an−j+1,m−i+1)] ∈ Ωn×m, A# = [am−i+1,n−j+1] ∈ Ωm×n.
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Then, A is called to be (skew)selfconjugate if A = A∗(−A∗), per(skew)symmetric if
A = A(∗)(−A(∗)), and centro(skew)symmetric if A = A#(−A#). If A is both (skew)selfconjugate
and per(skew)symmetric, then A is called to be bi(skew)symmetric. Moreover, a solution pair (X, Y)
of Equation (1) is called to be per(skew)symmetric (or bi(skew)symmetric) if both X and Y are
per(skew)symmetric (or bi(skew)symmetric).

Theorem 21 ([112]). Let A, B, C ∈ Ωm×n[λ].

(1) (Corollary 2.3, [112]) Equation (1) has a persymmetric solution pair (X, Y) if and only if there
exist invertible matrices P ∈ Ω2n×2n and Q ∈ Ω2m×2m such that

Q

[
A C
0 B

]
P−1 =

[
A 0
0 B

]
, (33)

P

[
−In 0

0 In

]
P(∗) =

[
−In 0

0 In

]
, (34)

Q

[
−Im 0

0 Im

]
Q(∗) =

[
−Im 0

0 Im

]
. (35)

(2) (Corollary 2.8, [112]) Equation (1) has a perskewsymmetric solution pair (X, Y) if and only if
there exist invertible matrices P ∈ Ω2n×2n and Q ∈ Ω2m×2m such that (33), P(∗)P = I2n,
and Q(∗)Q = I2m.

(3) (Corollary 2.13, [112]) Equation (1) has a solution pair (X, Y) such that X is persymmetric
and Y is perskewsymmetric if and only if there exist invertible matrices P ∈ Ω2n×2n and
Q ∈ Ω2m×2m such that (33), (34), and Q(∗)Q = I2m.

(4) (Corollary 2.16, [112]) Equation (1) has a solution pair (X, Y) such that X is perskewsym-
metric and Y is persymmetric if and only if there exist invertible matrices P ∈ Ω2n×2n and
Q ∈ Ω2m×2m such that (33), (35), and P(∗)P = I2n.

Theorem 22 ([113]). Let A, B, C ∈ Ωm×n[λ].

(1) (Corollary 2, [113]) Equation (1) has a bisymmetric solution pair (X, Y) if and only if there
exist invertible matrices P ∈ Ω2n×2n and Q ∈ Ω2m×2m such that

Q

[
A C
0 B

]
P−1 =

[
A 0
0 B

]
, (36)

P

[
0 In

−In 0

]
P∗ =

[
0 In

−In 0

]
, (37)

P

[
−In 0

0 In

]
P(∗) =

[
−In 0

0 In

]
, (38)

P#

[
0 In

In 0

]
P−1 =

[
0 In

In 0

]
, (39)

Q

[
0 Im

−Im 0

]
Q∗ =

[
0 Im

−Im 0

]
, (40)

Q

[
−Im 0

0 Im

]
Q(∗) =

[
−Im 0

0 Im

]
, (41)

Q#

[
0 Im

Im 0

]
Q−1 =

[
0 Im

Im 0

]
. (42)
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(2) (Corollary 5, [113]) Equation (1) has a biskewsymmetric solution pair (X, Y) if and only if
there exist invertible matrices P ∈ Ω2n×2n and Q ∈ Ω2m×2m such that (36),

P(∗)P = I2n, P

[
0 In

In 0

]
P∗ =

[
0 In

In 0

]
= P#

[
0 In

In 0

]
P−1, (43)

Q(∗)Q = I2m, Q

[
0 Im

Im 0

]
Q∗ =

[
Im 0
0 Im

]
= Q#

[
0 Im

Im 0

]
Q−1. (44)

(3) (Corollary 8, [113]) Equation (1) has a solution pair (X, Y) such that X is bisymmetric
and Y is biskewsymmetric if and only if there exist invertible matrices P ∈ Ω2n×2n and
Q ∈ Ω2m×2m such that (36)–(39), and (44).

(4) (Corollary 10, [113]) Equation (1) has a solution pair (X, Y) such that X is biskewsym-
metric and Y is bisymmetric if and only if there exist invertible matrices P ∈ Ω2n×2n and
Q ∈ Ω2m×2m such that (36), (40)–(42), and (43).

5.6. Maximal and Minimal Ranks of the General Solution

Let F = C, and let a solution pair (X, Y) of Equation (5) be

X = X0 + X1i ∈ Cr×n and Y = Y0 + Y1i ∈ Cm×s,

where X0, X1 ∈ Rr×n and Y0, Y1 ∈ Rm×s. Liu [40] determined the maximal and minimal
ranks for X, Y, X0, X1, Y0, and Y1.

Theorem 23 (Theorems 2.1 and 2.2, [40]). Let Equation (5) be consistent.

(1) Then,

max
AX+YB=C

rank(X) = min

{
n, r, r− rank(A) + rank

[
B
C

]}
,

max
AX+YB=C

rank(Y) = min{m, s, s− rank(B) + rank[A, C]},

min
AX+YB=C

rank(X) = rank

[
B
C

]
− rank(B),

min
AX+YB=C

rank(Y) = rank[A, C]− rank(A).

(2) Let

S1 =
{

X0 ∈ Rr×n | A(X0 + iX1) + (Y0 + iY1)B = C
}

,

S2 =
{

X1 ∈ Rr×n | A(X0 + iX1) + (Y0 + iY1)B = C
}

.

Then,

max
X0∈S1

r(X0) = min

r, n, rank


B0 0
B1 0
C1 A0

−C0 A1

− 2rank(A) + r

,

min
X0∈S1

r(X0) = rank


B0 0
B1 0
C1 A0

−C0 A1

− rank

[
A0

A1

]
− rank

[
B0

B1

]
,
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max
X1∈S2

r(X1) = min

r, n, rank


B0 0
B1 0
C0 A0

C1 A1

− 2rank(A) + r

,

min
X1∈S2

r(X1) = rank


B0 0
B1 0
C0 A0

C1 A1

− rank

[
A0

A1

]
− rank

[
B0

B1

]
.

(3) Let

S3 =
{

Y0 ∈ Rm×s | A(X0 + iX1) + (Y0 + iY1)B = C
}

,

S4 =
{

Y1 ∈ Rm×s | A(X0 + iX1) + (Y0 + iY1)B = C
}

.

Then,

max
Y0∈S3

r(Y0) = min

{
m, s, rank

[
A0 A1 C1 −C0

0 0 B0 B1

]
− 2rank(B) + s

}
,

min
Y0∈S3

r(Y0) = rank

[
A0 A1 C1 −C0

0 0 B0 B1

]
− rank[A0, A1]− rank[B0, B1],

max
Y1∈S4

r(Y1) = min

{
m, s, rank

[
A0 A1 C0 C1

0 0 B0 B1

]
− 2rank(B) + s

}
,

min
Y1∈S4

r(Y1) = rank

[
A0 A1 C0 C1

0 0 B0 B1

]
− rank[A0, A1]− rank[B0, B1].

Remark 28. In (Corollary 2.3, [40]), Liu also presented equivalent conditions for Equation (5) to
have a (all) real solution pair(s), i.e.,

X = X0 and Y = Y0,

and a (all) pure imaginary solution pair(s), i.e.,

X = iX1 and Y = iY1.

However, in (Section 3, [114]), Wang et al. provided two counterexamples to illustrate that the
items (a) and (c) in (Corollary 2.3, [40]) are incorrect.

5.7. Re-(Non)negative and Re-(Non)positive Definite Solutions

Let F = C. For a Hermitian matrix A ∈ Cn×n, i+(A), i−(A), and i0(A) rep-
resent the numbers of the positive, negative, and zero eigenvalues of A, respectively.
In Corollary 5.7 of [115], Wang and He established the maximal and minimal values of

i±(X + X∗) and i±(Y + Y∗)

for a solution pair (X, Y) of the complex matrix Equation

AXB + CYD = E, (45)

where A ∈ Cm×k2 , B ∈ Ck2×q, C ∈ Cm×k3 , D ∈ Ck3×q, and E ∈ Cm×q are given. This
result directly yields the equivalent conditions for re-positive definite, re-negative definite,
re-nonnegative definite, and re-nonpositive definite solutions to Equation (45).
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Definition 8 ([115]). Let A ∈ Cn×n and H(A) = A + A∗. The A is called to be re-positive
definite if H(A) > 0, re-nonnegative definite if H(A) ≥ 0, re-negative definite if H(A) < 0, and
re-nonpositive definite if H(A) ≤ 0.

Theorem 24 (Corollary 5.8, [115]). Let X ∈ Ck2×k2 and Y ∈ Ck3×k3 be a solution pair of
Equation (45). Denote

G1 =


0 −D C∗ 0
−D∗ 0 E∗ 0

C E 0 A
0 0 A∗ 0

, G2 =


0 −C∗ D 0
−C 0 E 0
D∗ E∗ 0 B∗

0 0 B 0

,

G3 =


0 −B A∗ 0
−B∗ 0 E∗ 0

A E 0 C
0 0 C∗ 0

, G4 =


0 −A∗ B 0
−A 0 E 0
B∗ E∗ 0 D∗

0 0 D 0

,

s1 = rank

 0 −A∗ B 0 0
−A 0 E C 0
B∗ E∗ 0 0 D∗

, s2 = rank


0 −B A∗ 0 0
−A E 0 C 0
B∗ 0 E∗ 0 D∗

0 0 C∗ 0 0

,

s3 = rank


0 −B A∗ 0 0
−A E 0 C 0
B∗ 0 E∗ 0 D∗

0 D 0 0 0

, s4 = rank

[
A
B∗

]
,

w1 = rank

 0 −C∗ D 0 0
−C 0 E A 0
D∗ E∗ 0 0 B∗

, w2 = rank


0 −D C∗ 0 0
−C E 0 A 0
D∗ 0 E∗ 0 B∗

0 0 A∗ 0 0

,

w3 = rank


0 −D C∗ 0 0
−C E 0 A 0
D∗ 0 E∗ 0 B∗

0 B 0 0 0

, w4 = rank

[
C

D∗

]
.

Then,

(1) X is re-positive definite if and only if

i+(G3) = rank
[

A C
]
+ rank(B) and i+(G3) ≥ rank

[
D
B

]
+ rank(A),

or i+(G3) ≥ rank
[

A C
]
+ rank(B) and i+(G4) = rank

[
D
B

]
+ rank(A).
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(2) X is re-negative definite if and only if

i−(G3) = rank
[

A C
]
+ rank(B) and i−(G4) ≥ rank

[
D
B

]
+ rank(A),

or i−(G3) ≥ rank
[

A C
]
+ rank(B) and i−(G4) = rank

[
D
B

]
+ rank(A).

(3) X is re-nonnegative definite if and only if

s1 − s4 + i−(G3)− s2 = 0 and s1 − s4 + i−(G4)− s3 ≤ 0,

or s1 − s4 + i−(G3)− s2 ≤ 0 and s1 − s4 + i−(G4)− s3 = 0.

(4) X is re-nonpositive definite if and only if

s1 − s4 + i+(G3)− s2 = 0 and s1 − s4 + i+(G3)− s3 ≤ 0,

or s1 − s4 + i+(G3)− s2 ≤ 0 and s1 − s4 + i+(G4)− s3 = 0.

(5) Y is re-positive definite if and only if

i+(G1) = rank
[

A C
]
+ rank(D) and i+(G2) ≥ rank

[
D
B

]
+ rank(C),

or i+(G1) ≥ rank
[

A C
]
+ rank(D) and i+(G2) = rank

[
D
B

]
+ rank(C).

(6) Y is re-negative definite if and only if

i−(G1) = rank
[

A C
]
+ rank(D) and i−(G2) ≥ rank

[
D
B

]
+ rank(C),

or i−(G1) ≥ rank
[

A C
]
+ rank(D) and i−(G2) = rank

[
D
B

]
+ rank(C).

(7) Y is re-nonnegative definite if and only if

w1 − w4 + i−(G1)− w2 = 0 and w1 − w4 + i−(G2)− w3 ≤ 0,

or w1 − w4 + i−(G1)− w2 ≤ 0 and w1 − w4 + i−(G2)− w3 = 0.

(8) Y is re-nonpositive definite if and only if

w1 − w4 + i+(G1)− w2 = 0 and w1 − w4 + i+(G2)− w3 ≤ 0,

or w1 − w4 + i+(G1)− w2 ≤ 0 and w1 − w4 + i+(G2)− w3 = 0.

Remark 29. When both B and C in Theorem 24 are taken as identity matrices with k2 = q and
m = k3, we can immediately obtain the equivalent conditions for the existence of re-positive definite,
re-negative definite, re-nonnegative definite, and re-nonpositive definite solutions of Equation (5).
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5.8. η-Hermitian and η-Skew-Hermitian Solutions

Let F = H. The η-Hermitian matrices have been employed in statistical multichannel
processing and widely linear modeling (see [116,117]). Yuan and Wang [118] considered the
least-squares η-Hermitian solution with the least norm to the quaternion matrix equation

AXE + FXB = C

with unknown X. After that, He and Wang [119] investigated the η-Hermitian solutions of
the matrix equation

AXAη∗ + BYBη∗ = C, (46)

where A, B, and C are given quaternion matrices with appropriate orders. Moreover, a
solution pair (X, Y) of Equation (46) is called to be η-Hermitian (η-skew-Hermitian) if both
X and Y are η-Hermitian (η-skew-Hermitian).

Theorem 25 (Corollaries 3.5 and 4.3, [119]). Let A, B, and C be given over H such that
C = Cη∗. Set

M = RAB and S = BLM.

Then, the following are equivalent:

(1) Equation (46) has an η-Hermitian solution pair (X, Y);
(2) RMRAC = 0 and RAC(RB)

η∗ = 0;

(3) rank

[
A C
0 Bη∗

]
= rank(A) + rank(B) and rank

[
A B C

]
= rank

[
A B

]
.

In this case,

X =A†C(A†)η∗ − 1
2

A†BM†C[I + (B†)η∗Sη∗](A†)η∗

− 1
2

A†(I + SB†)C(M†)η∗Bη∗(A†)η∗ − A†SW2Sη∗(A†)η∗ + LAU + Uη∗(LA)
η ,

Y =
1
2

M†C(B†)η∗[I + (S†S)η ] +
1
2
(I + S†S)B†C(M†)η∗

+ LMW2(LM)η + VLη
B + LBVη∗ + LMLSW1 + Wη∗

1 (LS)
η(LM)η ,

where W1, U, V, and W2 = Wη∗
2 are arbitrary quaternion matrices with appropriate sizes, and

min
AXAη∗+BYBη∗=C

rank(X) = 2rank
[
C B

]
− rank

[
0 Bη∗

B C

]
,

min
AXAη∗+BYBη∗=C

rank(Y) = 2rank
[

A C
]
− rank

[
0 Aη∗

A C

]
.

Remark 30. Inspired by Theorem 25, we now consider the η-Hermitian solutions of Equation (5)
over H, namely finding X and Y over H such that

AX + YB = C, X = Xη∗, and Y = Yη∗, (47)

where A, B, and C are given over H. By means of

X =
1
2
(X̂ + X̂η∗) and Y =

1
2
(Ŷ + Ŷη∗),

it is easy to check that the following are equivalent:
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(1) The statement (47) holds.
(2) There exist the matrices X̂ and Ŷ over H such that

AX̂ + ŶB = C and X̂Aη∗ + Bη∗Ŷ = Cη∗.

(3) There exist the matrices X̂ and Ŷ over H such that

[
A I

]
X̂

[
I 0
0 Aη∗

]
+
[

I Bη∗
]
Ŷ

[
B 0
0 I

]
=
[
C Cη∗

]
.

Therefore, solving the η-Hermitian solutions of Equation (5) reduces to solving an equation of
the form

AXB + CYD = E,

which has been solved by Baksalary and Kala [120]. By the same method, we have

(1) There exists a matrix pair (X, Y) such that

AX + YB = C and X = Xη∗,

if and only if there exist the matrices X̂, Ŷ, and Ẑ such that

AX̂ + ŶB = C and X̂Aη∗ + Bη∗Ẑ = Cη∗. (48)

(2) There exists a matrix pair (X, Y) such that

AX + YB = C and Y = Yη∗,

if and only if there exist the matrices X̂, Ŷ, and Ẑ such that

AX̂ + ŶB = C and ẐAη∗ + Bη∗Ŷ = Cη∗. (49)

Moreover, solvability conditions and expressions of the general solution to Equations (48) and (49)
can be obtained by Theorem 2.1 of [121].

Kyrchei [122] further discussed the η-skew-Hermitian solutions of Equation (46) under
C = −Cη∗ using a method similar to Theorem 25.

Theorem 26 (Corollary 4.4, [122]). Under the hypotheses of Theorem 25, the following are equivalent:

(1) Equation (46) has an η-skew-Hermitian solution pair (X, Y);
(2) RMRAC = 0 and RAC(RB)

η∗ = 0;

(3) rank

[
A C
0 Bη∗

]
= rank(A) + rank(B) and rank

[
A B C

]
= rank

[
A B

]
;

in which case, the η-skew-Hermitian solutions of Equation (46) are

X =A†C(A†)η∗ − 1
2

[
A†BM†C(A†)η∗ + A†C(A†BM†)η∗

]
− 1

2

[
A†BM†C(A†SB†)η∗ + A†SB†C(A†BM†)η∗

]
− A†SW2(A†S)η∗ − LAU + (LAU)η∗,

Y =
1
2

[
M†C(B†)η∗ + B†C(M†)η∗

]
+

1
2

[
M†C(B†)η∗(QS)

η∗ + QSB†C(M†)η∗
]

+ LMW2L†
M + VL†

B − LBVη∗ + LM LSW1 −Wη∗
1 L†

S Lη∗
M ,

where W1, U, V, and W2 = Wη∗
2 are arbitrary over H with appropriate sizes.
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Remark 31. Using a method similar to that in Remark 30, one can also consider the η-skew-
Hermitian solutions of Equation (5) over H, i.e., finding X and Y such that

AX + YB = C, X = −Xη∗, and Y = −Yη∗.

Remark 32. In terms of the determinant representations of the MP inverse over H (i.e., Theorem 10),
Kyrchei [122] also showed the Cramer’s rules for the partial η-Hermitian and η-skew-Hermitian
solution to Equation (46) under C = Cη∗ and C = −Cη∗, respectively.

5.9. ϕ-Hermitian Solutions

Let F = H. Rodman [7] introduced the quaternion matrix Aϕ over H, a generation of
A∗ and Aη∗, and defined the ϕ-Hermitian quaternion matrix as follows:

Definition 9 ([7]). Let ϕ : H→ H be a map.

(1) We call ϕ an anti-endomorphism if for any α, β ∈ H, ϕ satisfies

ϕ(αβ) = ϕ(β)ϕ(α) and ϕ(α + β) = ϕ(α) + ϕ(β).

An anti-endomorphism ϕ is called an involution if ϕ2 is the identity map.
(2) Let ϕ be a nonzero involution. Then, ϕ can be represented as a matrix in R4×4 with respect to

the basis {1, i, j, k}, i.e.,

ϕ =

[
1 0
0 T

]
,

where either T = −I3 (in which case ϕ is called a standard involution), or T ∈ R3×3 is an
orthogonal symmetric matrix with the eigenvalues {1, 1,−1} (in which case ϕ is called a
nonstandard involution).

(3) Let ϕ be a nonstandard involution and A = [ai,j] ∈ Hm×n. Define

ϕ(A) = [ϕ(ai,j)] ∈ Hm×n and Aϕ = ϕ(AT) ∈ Hn×m.

If A = Aϕ with m = n, then A is called a ϕ-Hermitian matrix.

He et al. [123] considered the ϕ-Hermitian solution Z = Zϕ of the following systemA1X−YB1 = C1,

A2Z−YB2 = C2,
(50)

where Ai, Bi, and Ci (i = 1, 2) are given matrices over H with appropriate orders.

Theorem 27 (Theorem 4.5, [123]). Let

A11 = RB2 B1, B11 = RA2 A2, C11 = B1LA11 , D11 = RA1 (RA2 C2B†
2 B1 − C1)LA11 , A22 = [LA2 ,−(RC11 B2)ϕ],

B22 =

[
RC11 B2

−(LA2 )ϕ

]
, C22 = (A†

2C2LB2 )ϕ + (B2)ϕ(C†
11)ϕD22(B†

11)ϕ − A†
2C2 − B†

11D11C†
11B2,

A = RA22 LB11 , B = B2LB22 , C = −RA22 (B2)ϕ, D = (LB11 )ϕ LB22 , E = RA22 C22LB22 , M = RAC,

Then, the following are equivalent:

(1) The system (50) has a solution (X, Y, Z) such that Z = Zϕ.
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(2) The following rank equalities hold:

rank

[
Ci Ai

Bi 0

]
= rank(Ai) + rank(Bi), i = 1, 2,

rank

[
C1 C2 A1 A2

B1 B2 0 0

]
= rank

[
A1 A2

]
+ rank

[
B1 B2

]
,

rank
[

C1 C2(A2)ϕ − A2(C2)ϕ A1 A2(B2)ϕ

B1 B2(A2)ϕ 0 0

]
= rank[A1 A2(B2)ϕ] + rank[B1 B2(A2)ϕ)],

rank

[
C2(A2)ϕ − A2(C2)ϕ A2(B2)ϕ

B2(A2)ϕ 0

]
= 2rank(A2(B2)ϕ),

rank


C1 C2(A2)ϕ − A2(C2)ϕ A1 A2(B2)ϕ

0 −(C1)ϕ 0 (B1)ϕ

B1 B2(A2)ϕ 0 0
0 (A1)ϕ 0 0

 = 2rank

[
A1 A2(B2)ϕ

0 (B1)ϕ

]
.

(3) The following equations hold:

RA2 C2LB2 = 0, D11LC11 = 0, RB11 D11 = 0, RMRAE = 0, RCELB = 0, RAELD = 0.

In this case,

X =
1
2
(X1 + (X5)ϕ), Y =

1
2
(X2 + (X4)ϕ), and Z =

1
2
(X3 + (X3)ϕ),

where X1, X2, . . . , X5 are given in (Formulas (4.24)–(4.39), [123]).

Remark 33.

(1) When A1 = B1 = C1 = 0, Theorem 27 yields the result for

A2Z−YB2 = C2 subject to Z = Zϕ,

which can be regarded as Equation (1) under the constrain that X is ϕ-Hermitian, i.e.,

AX−YB = C subject to X = Xϕ. (51)

(2) Note that ϕ-Hermitian matrices are a generalization of Hermitian matrices. In Theorems 5.1
and 5.2 of [121], He and Wang have investigated the following problem over C:

AX−YB = C subject to X = X∗ (or Y = Y∗),

which is clearly similar to the problem (51).
(3) By the same method as in Remark 30, we can also discuss the following problem:

AX−YB = C subject to X = Xϕ and Y = Yϕ.

5.10. Equality-Constrained Solutions

Let F = C. Wang et al. [124] considered the solvability conditions and the general
solution for Equation (5) over C under the following equality constraints:

A1X = C1, YB2 = C2, A3XB3 = C3, and A4YB4 = C4, (52)



Symmetry 2025, 17, 1686 39 of 102

where A1, A3, A4, B2, B3, B4, C1, C2, C3, and C4 are given.

Theorem 28 (Theorem 3.2, [124]). Let A1, B1, C1, B2, C2, A3, B3, C3, A4, B4, C4, A, B, and C
be given matrices over C with appropriate sizes. Set

T = A3LA1 , K = RB2 B4, ϕ1 = A†
1C1 + LA1 T†(C3 − A3 A†

1C1B3)B†
3 ,

ϕ2 = C2B†
2 + A†

4(C4 − A4C2B†
2 B4)K†RB2 , A11 = ALA1 LT , B11 = RKRB2 B,

C33 = ALA1 , D33 = RB3 , C44 = LA4 , D44 = RB2 B, E11 = C− Aϕ1 − ϕ2B,

Aa = RA11 C33, Bb = D33LB11 , Cc = RAa C44, Dd = D44LB11 ,

E = RA11 E11LB11 , M = RAa Cc, N = DdLBb , S = CcLM.

Then, the following are equivalent:

(1) Equation (5) under the constraints (52) is consistent.
(2) The following rank equations hold:

rank[A1, C1] = rank(A1), rank

[
C3

B3

]
= rank(B3), rank

[
A1 C1B3

A3 C3

]
= rank

[
A1

A3

]
,

rank

[
C2

B2

]
= rank(B2), rank[A4, C4] = rank(A4), rank

[
C4 A4C2

B4 B2

]
= rank[B4, B2],

rank


0 B2 BB3

A C2 CB3

A3 0 C3

A1 0 C1B3

 = rank


0 B2 BB3

A 0 0
A3 0 0
A1 0 0

, rank

 0 B B2

A C C2

A1 C1 0

 = rank

 0 B B2

A 0 0
A1 0 0

,

rank

 0 B B4 B2

A4 A A4C C4 A4C2

A1 C1 0 0

 = rank

 0 B B4 B2

A4 A 0 0 0
A1 0 0 0

,

rank


0 B4 B2 BB3

A3 0 0 C3

A1 0 0 C1B3

A4 A C4 A4C2 A4CB3

 = rank


0 B4 B2 BB3

A3 0 0 0
A1 0 0 0

A4 A 0 0 0

.

(3) The following equations hold:

RA1 C1 = 0, RT(C3 − A3 A†
1C1B3) = 0, C3LB3 = 0,

C2LB2 = 0, RA4 C4 = 0, (C4 − A4C2B†
2 B4)LK = 0,

RMRAa E = 0, ELBb LN = 0, RAa ELDd = 0, RCc ELBb = 0.

In this case,

X = A†
1C1 + LA1 T†(C3 − A3 A†

1C1B3)B†
3 + LA1 LTZ1 + LA1W1RB3 ,

Y = C2B†
2 + A†

4(C4 − A4C2B†
2 B4)K†RB2 + LA4W2RB2 + Z2RKRB2 ,

Z1 = A†
11(E11 − C33W1D33 − C44W2D44)− A†

11V7B1 + LA11 V6,

Z2 = RA11(E11 − C32W1D33 − C44W2D44)B†
11 + A11 A†

11V7 + V8RB11 ,

W1 = A†
a EB†

b − A†
aCc M†EB†

b − A†
aSC†

c EN†DdB†
b − A†

aSV4RN DdB†
b + LAa V1 + V2RBb ,

W2 = M†ED†
d + S†SC†

c EN† + LMLSV3 + LMV4RN + V5RDd ,

where V1, . . . , V8 are arbitrary matrices over C with appropriate orders.
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Remark 34. Inspired by Theorem 28, using the Kronecker product and the vectorization operation,
Wang et al. [125] investigated the minimum-norm least-squares solution for the quaternion tensor
system under the Einstein product:

A ∗N X + Y ∗N B = C (53)

subject to

A1 ∗N X = C1, A3 ∗N X ∗N B3 = C3,

Y ∗N B2 = C2, A4 ∗N Y ∗N B4 = C4,

where X and Y are unknown tensors and the others are given tensors over H. Thus, the minimum-
norm least-squares solution of the tensor Equation (53) is directly given in (Corollary 3.4, [125]),
which is also expounded in Section 6.5.

6. Various Generalizations of GSE
This section shows the generalizations of GSE to diverse domains such as various rings,

dual numbers, dual quaternions, linear operators, tensors, and matrix polynomials, as well
as its more general forms. This embodies another enchantment of mathematics: constantly
exploring more general problems to ultimately reveal the most essential conclusions.

6.1. Generalizing RET over Different Rings

RET given in Section 3 characterizes the equivalent condition for the solvability of GSE
over a field. This subsection mainly generalizes RET over the following algebraic structures:
unit regular rings, principal ideal rings, commutative rings, division rings, Artinian rings,
etc. To simplify expressions, we first introduce Guralnick’s definition in [126].

Definition 10 ([126]). If (3) is equivalent to (4) over a ring F, then we say that F has the
equivalence property.

6.1.1. Generalizing RET over Unit Regular Rings

A ring F is called to be unit regular if for any a ∈ F, there exists a unit u ∈ F such that

a = aua.

Hartwig [127] generalized RET to a unit regular ring, also extending Theorems 3 and 4.

Theorem 29 ([127]). Let F be a unit regular ring, and

M =

[
a c
0 b

]
∈ F2×2.

Then, the following statements are equivalent:

(1) M has an inner inverse with the form of

[
r s
0 t

]
∈ F2×2;

(2) ax− yb = c has a solution pair x, y ∈ F;
(3) (1− aa−)c(1− b−b) = 0 for all a− and b−;
(4) a1cb1 = 0, where a1 ∈ {x ∈ F | xa = 0} and b1 ∈ {x ∈ F | bx = 0};

(5) M = p

[
a 0
0 b

]
q, where p, q ∈ F are invertible;

(6) (1− aa(1,2))c(1− b(1,2)b) = 0 for all a(1,2) and b(1,2);

(7) M(1,2) =

[
a(1,2) −a(1,2)cb(1,2)

0 b(1,2)

]
is a reflexive inverse of M.



Symmetry 2025, 17, 1686 41 of 102

If F is a skewfield (or a commutative ring without zero divisors) and a, c, b ∈ Fn×n, then
items (1)–(7) are also equivalent to

(5a) rank(M) = rank(a) + rank(b);

(5b) rank
(
(1− aa(1,2))c(1− b(1,2)b)

)
= 0.

Remark 35. In the conclusions of [127], Hartwig mentioned that RET also holds for matrices
over Euclidean domains and unit regular rings. These rings are finite and elementary divisor rings
satisfying the cancellation law. However, whether these properties are sufficient to ensure that the
validity of RET remains an open problem. In [126], Guralnick considered parts of this problem.

6.1.2. Generalizing RET over Principal Ideal Domains

Building on Theorem 2 of [128], Feinberg [129] considered RET over principal ideal
domains and further extended it to a more general form.

Theorem 30 (Theorems 1 and 2, [129]). Let F be a principal ideal domain.

(1) Let A ∈ Fr×r, B ∈ Fs×s, and C ∈ Fr×s. Then, the matrix equation

AX + YB = C

is consistent if and only if [
A C
0 B

]
and

[
A 0
0 B

]
are equivalent.

(2) Let Mij ∈ Frj×rj for 1 ≤ i ≤ j ≤ t. Then,
M11 M12 . . . M1t

0 M22 . . . M2t
...

...
. . .

...
0 . . . 0 Mtt

 and


M11 0 . . . 0

0 M22 . . . 0
...

...
. . .

...
0 . . . 0 Mtt


are equivalent if and only if there exist Xij, Yij ∈ Fri×rj such that

Mij = MiiXij +
j

∑
k=i+1

Yik Mkj

for 1 ≤ i < j ≤ t.

Remark 36. Feinberg [129] also noted that it is easy to generalize Theorem 1 to a principal ideal
domain by a method similar to that of Theorem 1 of [129].

Let F = C. In view of Remark 6, we can see that (4) implies that there exist the
equivalence matrices to be of the upper block triangular, i.e.,[

I −Y
0 I

]
and

[
I X
0 I

]
.

Olshevsky [22] generalized the above conclusion by showing that, if any block upper
triangular matrix is equivalent to its block diagonal part, then the equivalent matrices can
also be chosen in the form of a block upper triangular matrix.
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Theorem 31 (Theorem 3.2, [22]). Let Aij ∈ Cni×nj for 1 ≤ i ≤ j ≤ k. If

G =



A11 0 . . . . . . 0
0 A22 0 . . . 0
... 0

. . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 Akk


and H =



A11 A12 . . . . . . A1k

0 A22 A23 . . . A2k
... 0

. . .
...

...
. . . . . . . . .

...
0 . . . . . . 0 Akk


are equivalent, then there exist Xij, Yij ∈ Cni×nj (1 ≤ i < j ≤ k) such that

In1 Y12 . . . . . . Y1k

0 In2 Y23 . . . Y2k
... 0

. . .
...

...
. . . . . .

...
0 . . . . . . 0 Ink


G



In1 X12 . . . . . . X1k

0 In2 X23 . . . X2k
... 0

. . .
...

...
. . . . . .

...
0 . . . . . . 0 Ink


= H.

Remark 37. Theorem 31 can also be derived from Theorem 30 (30).

6.1.3. Generalizing RET over Division and Module-Finite Rings

Let F be a ring with identity. For G ∈ Fa×b and H ∈ Fc×d, let

ER(G, H) =
{
(T, S) | T ∈ Fc×a, S ∈ Fd×b and TG = HS

}
.

Denote

M =

[
A C
0 B

]
,

where A, B, and C are given in Equation (1). For (T, S) ∈ ER(M, A), denote

T =
[

T1 T2

]
and S =

[
S1 S2

]
,

where T1 ∈ Fm×m, T2 ∈ Fm×s, S1 ∈ Fr×r, and S2 ∈ Fr×n. Then,

TM = AS ⇔

T1 A = AS1,

T1C + T2B = AS2.

Define a map

gM,R : ER(M, A)→ ER(A, A) by g((T1, T2), (S1, S2)) = (T1, S1). (54)

Gustafson et al. [130] gave a general characterization of the solvability of Equation (1)
over F based on the map gM,R, which is essentially similar to the method used by Hartwig
in [127].

Theorem 32 (Lemma 1, [130]). Equation (1) is consistent if and only if the map gM,R defined
in (54) is surjective.

Using Theorem 32, Gustafson et al. [130] further proved that RET also holds for a
division ring and for a ring which is finitely generated as modules over its center.
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Theorem 33 ([130]). A division ring (or a ring that is module-finite over its center) has the
equivalence property.

6.1.4. Generalizing RET over Commutative Rings

Let F be a commutative ring with identity. Gustafson [131] showed that RET remain
valid over the commutative ring F. By reducing this problem to Artinian rings, Gustafson
employed a simple argument with the composition length. This approach parallels that of
Flanders and Wimmer [11], who used linear transformations and subspace dimensions to
discuss RET over fields.

Theorem 34 (Theorem 1, [131]). A commutative ring with identity has the equivalence property.

Guralnick [132] further generalized Theorem 34 to finite sets of matrices over the com-
mutative ring F. Let F[x1, x2, . . . , xt] be the polynomial ring over F, where xi (i = 1, . . . , t)
is commute with each other and any element in F. For

C̃ =
{

Ci ∈ Fm×n | 1 ≤ i ≤ r
}

and D̃ =
{

Di ∈ Fm×n | 1 ≤ i ≤ r
}

,

we call that C̃ and D̃ are simultaneously equivalent if there exist invertible matrices
U ∈ Fm×m and V ∈ Fn×n such that UCiV = Di for any 1 ≤ i ≤ r (see [132,133]).

Theorem 35 (Theorem B(i), [132]). For Ai ∈ Fm×r, Bi ∈ Fs×n, and Ci ∈ Fm×n, let

Mi =

[
Ai Ci

0 Bi

]
and Ni =

[
Ai 0
0 Bi

]
,

where 1 ≤ i ≤ t. Suppose that the polynomial ring F[x1, x2, . . . , xt] has the equivalence property.
Then, the system of matrix equations

A1X−YB1 = C1,

A2X−YB2 = C2,

. . .

ArX−YBr = Cr,

(55)

has a common solution pair X ∈ Fr×n and Y ∈ Fm×s if and only if

M̃ = {Mi | 1 ≤ i ≤ r} and Ñ = {Ni | 1 ≤ i ≤ r}

are simultaneously equivalent.

Remark 38. Dmytryshyn and their collaborators [12,13] have done significant contributions on the
further generalizations of the system (55). Moreover, Dmytryshyn was awarded the SIAM Student
Paper Prize 2015 for their work [12].

Let F be a field with char(F) ̸= 2. We stipulate that, in the following systems from [12,13],
except for the unknown matrices, the remaining matrices are given with appropriate orders over F.
In Theorem 4.1 of [12], Dmytryshyn et al. first study the system

AiXk ± XjBi = Ci, (56)
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where i = 1, . . . , n, k, j ∈ {1, . . . , m}, 1 ≤ m ≤ 2n, and X1, . . . , Xm are unknown. Their method
for solving the system (56) extends that used in [11]. Based on the system (56), they then considered
the main research subject of [12], i.e.,AiXk ± XjBi = Ci, i = 1, . . . , n1,

Fi′Xk′ ± X⋆
j′Gi′ = Hi′ , i′ = 1, . . . , n2,

(57)

where

(i) k, j, k′, j′ ∈ {1, . . . , m}, 1 ≤ m ≤ (2n1 + 2n2), and X1, . . . , Xm are unknown;
(ii) For 1 ≤ l ≤ m, the symbol X⋆

l denotes the matrix transpose XT
l and for the complex number

field, also the matrix conjugate transpose X∗l ,

(see Theorem 1.1, [12]). In Theorem 6.1 of [12], they further generalized the system (57) to the
following form: AiXkKi − LiXjBi = Ci, i = 1, . . . , n1,

Fi′Xk′Mi′ + Ni′X⋆
j′Gi′ = Hi′ , i′ = 1, . . . , n2,

(58)

where j, k, j′, k′ ∈ {1, . . . , m}, 1 ≤ m ≤ (2n1 + 2n2), and X1, X2, . . . , Xm are unknown.
Let F be a skew field of char(F) ̸= 2 that is finite dimensional over its center. Interestingly,

two years later, Dmytryshyn et al. [13] generalized the system (58) over F including the complex
conjugation of unknown matrices, i.e.,

AiX
εi
i′ Mi − NiX

δi
i′′Bi = Ci,

(i) Of complex matrix equations, in which εi, δi ∈ {1, C, T, ∗} and XC = X̄ is the complex
conjugate of X;

(ii) Of quaternion matrix equations, in which εi, δi ∈ {1, ∗} and X∗ is the quaternion conjugate
transpose of X,

where i′, i′′ ∈ {1, . . . , t}, i = 1, . . . , s, 1 ≤ t ≤ 2s, and X1, . . . , Xt are unknown (see
Theorem 2, [13]). The system (57) is also extended over F (see Theorem 1, [13]).

6.1.5. Generalizing RET over Artinian and Noncommutative Rings

Let N be a subgroup of a finitely generated Abelian group M. If M and N ⊕M/N are
isomorphic, then N is a direct summand of M? This problem is raised by H. Matsumura,
and it is subsequently answered affirmatively by H. Toda. Miyata [134] showed that this
result can also be generalized to the more general case of module, i.e., if F is a commutative
Noetherian ring and M is a finitely presented F-module with a submodule N, then

M ∼= N ⊕M/N ⇔ N is a summand of M. (59)

We say that F has the extension property if (59) holds.
Guralnick [126] proved the equivalence between the equivalence property and the

extension property for an Artinian ring F.

Theorem 36 (Corollary 2.7, [126]). Let F be a right Artinian ring. Then, F has the extension
property if and only if F has the equivalence property.

Remark 39. In the proof of Theorem 3.4 of [126], Guralnick proposed a new perspective to prove
Theorem 34. Moreover, Guralnick in Theorem 3.5 of [126] showed that a commutative ring has
the extension property. Differing from Miyata [134] and Gustafson [131], this proof avoids the
completion of a local Noetherian ring.
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Guralnick [126] found that two special classes of Artinian rings (i.e., semisimple
Artinian rings and Artinian principal ideal rings) possess the equivalence property.

Theorem 37 (Theorem 2.4 and Corollary 4.6, [126]).

(1) A semisimple Artinian ring has the equivalence property.
(2) An Artinian principal ideal ring has the equivalence property.

Guralnick [126] finally discussed the more general case where F is a regular ring,
which generalizes Theorem 37 as well items (2) and (5) in Theorem 29.

Theorem 38 (Theorem 4.3, [126]). Let F be a regular ring. Then, F has the equivalence property
if and only if Fn×n is directly finite for all n.

Interestingly, Guralnick [135] gave a generalized definition of the equivalence property,
i.e., the generalized equivalence property.

Definition 11 ([135]). Let F be a ring with identity. For Aij ∈ Fni×mj (1 ≤ i ≤ j ≤ k), denote

Ã =


A11 0

. . .
0 Akk

 and B̃ =


A11 Aij

. . .
0 Akk

.

We define that F has the generalized equivalence property if Ã and B̃ are and equivalent imply that
there exist Xij ∈ Fni×nj and Yij ∈ Fmi×mj such that

I Xij
. . .

0 I

Ã = B̃


I Yij

. . .
0 I

.

Guralnick [135] then proved that not only semisimple Artinian rings and Artinian
principal ideal rings but also module finite R-algebras for a commutative ring R possess
the generalized equivalence property. This evidently generalizes Theorem 37.

Theorem 39 (Theorems 3.3, 3.6 and 3.7, [135]). A semisimple Artinian ring, an Artinian
principal ideal ring, or a module finite R-algebra for a commutative ring R has the generalized
equivalence property.

Remark 40. It is worth noting that the generalized form of Equation (5), i.e.,

AXB + CYD = E

with unknown X and Y, has also been discussed over fields, principal ideal domains, simple Artinian
rings, regular rings with identity, and the associative rings with unit by [120,136–139], respectively.

6.2. Generalizing RET to a Rank Minimization Problem

In a brief three-page article [140], Lin and Wimmer revealed that RET is essentially
a special case of a rank minimization problem over a field F. Let GI(k) be the set of all
invertible matrices of order k.
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Theorem 40 (Theorem 2, [140]). Let F be a field, and let A ∈ Fm×m, B ∈ Fn×n, and
C ∈ Fm×n. Then,

min
{

rank(AX−YB− C) | X, Y ∈ Fm×n}
=min

{
rank

(
P

[
A C
0 B

]
−
[

A 0
0 B

]
Q

)
| P, Q ∈ GI(m + n)

}
.

Subsequently, Ito and Wimmer [141] generalized Theorem 40 to Bezout domains under
the condition that A and B are regular. An integral domain F with identity is called a Bezout
domain if it satisfies that all finitely generated ideals are principal.

Theorem 41 (Theorem 3.1, [141]). Let F be a Bezout domain, and let A ∈ Fm×m, B ∈ Fn×n, and
C ∈ Fm×n. If A and B are regular over F, then

min
{

rank(AX−YB− C) | X, Y ∈ Fm×n}
=min

{
rank

(
P

[
A C
0 B

]
−
[

A 0
0 B

]
Q

)
| P, Q ∈ GI(m + n)

}

=rank

[
A C
0 B

]
− rank

[
A 0
0 B

]
=dim(R(A) + CN (B))− rank(A).

Remark 41. Theorem 41 also yields the equivalence of (3), (4), and (7) over a Bezout domain
directly (see (Corollary 3.2, [141])).

6.3. GSE over Dual Numbers and Dual Quaternions

In 1843, the Irish mathematician William Rowan Hamilton [142] invented quaternions
H (also called Hamilton quaternions or real quaternions). The set H is a noncommutative
associative division algebra, and it also generalizes the real field R and the complex field
C. The quaternion algebra has been effectively applied to mechanics, optics, color image
processing, signal processing, computer graphics, flight mechanics, quantum physics, and
so on (see [7,47,143–147]).

On the other hand, the British mathematician William Kingdon Clifford [148] in-
vented dual numbers and dual quaternions in 1873. Up to now, dual numbers have been
widely used in fields such as kinematics, statics, dynamics, robotics, and brain dynamics
(see [149–154]).

Definition 12 ([148]). A dual number is defined as

â = a0 + a1ε,

where a0, a1 ∈ R, and ε is the dual unit such that

ε ̸= 0, 0ε = ε0 = 0, 1ε = ε1 = ε and ε2 = 0. (60)

In this case, a0 is called primal/real/standard part of â, and a1 is called dual/infinitesimal part of â.
The set of all dual numbers is denoted by D, which is a commutative ring.

Fan et al. [155] established solvability conditions and expressions of the general
solution to Equation (5) over D by using the MP inverse and SVD.
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Theorem 42 (Theorem 3, [155]). Let

A = A0 + A1ε ∈ Dm×r, B = B0 + B1ε ∈ Ds×n, C = C0 + C1ε ∈ Dm×n,

where Ai ∈ Rm×r, Bi ∈ Rs×n, and Ci ∈ Rm×n (i = 0, 1). The SVDs of A0 and B0 are given by

A0 = P

[
Ω 0
0 0

]
QT and B0 = M

[
Λ 0
0 0

]
NT ,

where Ω = diag(ω1, . . . , ωl), l = rank(A0), Λ = diag(λ1, . . . , λt), t = rank(B0), and
P ∈ Rm×m, Q ∈ Rr×r, M ∈ Rs×s, and N ∈ Rn×n are orthogonal. Let

P =
[

P1 P2

]
, Q =

[
Q1 Q2

]
, M =

[
M1 M2

]
, N =

[
N1 N2

]
,

where P2 ∈ Rm×(m−l), Q2 ∈ Rr×(r−l), M2 ∈ Rs×(s−t), and N2 ∈ Rn×(n−t). Denote

J = C1 − A1 A†
0C0 − RA0 C0B†

0 B1, K1 = PT
2 A1Q2, K2 = MT

2 B1N2.

Then, Equation (5) has a solution pair X ∈ Dr×n and Y ∈ Dm×s if and only if

RA0 C0LB0 = 0 and RK1 PT
2 JN2LK2 = 0,

in which case,
X = X0 + X1ε and Y = Y0 + Y1ε

with

X0 =A†
0C0 + Q2K†

1 PT
2 JLB0 − A†

0 P1V11 MT
1 B0 + Q2V23 NT

1 + Q2(LK1 W4 − K†
1W3K2)NT

2 ,

Y0 =RA0 C0B†
0 + P2RK1 PT

2 JN2K†
2 MT

2 + P1(V11 MT
1 + V12 MT

2 ) + P2(W3 − RK1 W3K2K†
2)MT

2 ,

X1 =A†
0 J − A†

0 A1Q2(K†
1 PT

2 JN2 − K†
1W3K2 + LK1 W4)NT

2 − A†
0 P1(V11 MT

1 + V12 MT
2 )B1

− A†
0 R1B0 + LA0 R2 + A†

0 A1(A†
0 P1V11 MT

1 B0 −Q2V23 NT
1 ),

Y1 =RA0 JB†
0 + RA0 A1

(
A†

0 P1V11 MT
1 B0 −Q2V23 NT

1
)

B†
0 − P2RK1 PT

2 JN2K†
2 MT

2 B1B†
0

− P2
(
W3 − RK1 W3K2K†

2
)

MT
2 B1B†

0 + R1 − RA0 R1B0B†
0 ,

where V11, V12, V23, W3, W4, R1, and R2 are arbitrary matrices over D with appropriate sizes.

At the same time, due to the excellent property that dual quaternions can represent
both rotation and translation, the theory of dual quaternions is not only one of the most
powerful tools for handling rigid-body motion but also finds applications in computer
graphics, medical procedures, neural networks, proximity operations in spacecraft, modern
robotics, and so on (see [156–158]).

Definition 13 ([148]). A dual quaternion is defined as

q̂ = q0 + q1ε,

where q0, q1 ∈ H. The set of all dual quaternions is denoted by DH, which a noncommutative ring
with zero divisors.

Recently, Xie et al. [159], inspired by the hand–eye calibration problem in robotics
research, studied Equation (1) over DH.

Theorem 43 (Theorem 3.1, [159]). Let

A = A0 + A1ε ∈ DHm×r, B = B0 + B1ε ∈ DHs×n, C = C0 + C1ε ∈ DHm×n,
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where Ai ∈ Rm×r, Bi ∈ Rs×n, and Ci ∈ Rm×n (i = 0, 1). Set

A11 = A1LA0 , A2 = RA0 A11, A3 = RA0 , C3 = −RA0 C0, B2 = RB0 B1,

A4 = RA2 RA0 , A5 = −A4 A1 A†
0, C4 = A4(A1 A†

0C0 + C0B†
0 B1 − C1),

A6 = RA4 A5, C5 = RA4 C4, B3 = B2LB0 , B4 = C4LB0 .

Then, the following are equivalent:

(1) Equation (1) has a solution pair X ∈ DHr×n and Y ∈ DHm×s;
(2) C3LB0 = 0 and B4LB3 = 0;
(3) The following rank equations hold:

rank

[
B0 0
−C0 A0

]
= rank(B0) + rank(A0),

rank


B0 0 0 0
B1 B0 0 0
−C1 −C0 A0 A1

0 0 0 A0

 = rank

[
B0 0
B1 B0

]
+ rank

[
A0 A1

0 A0

]
;

in which case,
X = X0 + X1ε and Y = Y0 + Y1ε

with

X0 = A†
0(C0 + Y0B0) + LA0W, (61)

X1 = A†
0[C1 + Y0B1 + Y1B0 − A1 A†

0(C0 + Y0B0)− A11W] + LA0W1, (62)

Y0 = A†
3C3B†

0 + LA3U1 + U2RB0 ,

Y1 = A†
4(C4 − A5U1B0 − A4U2B2)B†

0 + LA4W3 + W4RB0 ,

W = A†
2 A3[C1 + Y0B1 + Y1B0 − A1 A†

0(C0 + Y0B0)] + LA2W2,

U1 = A†
6C5B†

0 + LA6W5 + W6RB0 , U2 = A†
4B4B†

3 + LA4W7 + W8RB3 ,

where W1, W2, . . . , W8 are arbitrary matrices over DH with appropriate sizes.

Remark 42. Subsequently, Xie and Wang [160] further investigated a more general form of
Equation (1) over DH, namely

AX + EXF = CY + D, (63)

where X and Y are unknown. Additionally, the systematic introduction to Equation (63) and its
more general forms can be found in the book [161].

Remark 43. After the Hamilton quaternions, different concepts of quaternions were proposed,
greatly enriching the quaternion theory, such as biquaternion (also called complexified quater-
nions), split quaternions, commutative quaternions (also called Segre biquaternions or reduced
biquaternions), generalized commutative quaternions, degenerate quaternions, degenerate pseudo-
quaternions, doubly degenerate quaternions, and quaternion algebras over a field (see [43,162–167]).

Interestingly, in Remark 8.2.7 of [168], Pottmann and Wallner introduced the concept of the
generalized quaternions, which, in specific cases, coincide with Hamilton quaternions, split quater-
nions, degenerate quaternions, pseudo-degenerate quaternions, and doubly degenerate quaternions.

The theory of dual numbers has also developed rapidly, giving rise to three-dimensional dual
numbers (also known as hyper-dual numbers), n-dimensional dual numbers (also known as higher
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dimensional dual numbers), interval dual numbers, fuzzy dual numbers, neutrosophic dual numbers,
and finite complex modulo integer neutrosophic dual numbers (see [169] and references therein).

One can see that dual quaternions are essentially a combination of dual numbers and quater-
nions. It is then natural to ask: given such a rich variety of quaternions and dual numbers, what
sparks will fly when they interact, and what applications will emerge?

6.4. Linear Operator Equations on Hilbert Spaces

Generalizing matrix equations to operator equations on Hilbert spaces or Hilbert
C∗-modules has been a mainstream research direction. For a C∗-algebra A , a Hilbert
C∗-module E [170,171] is a right A -module equipped with an A -valued inner product

⟨·, ·⟩ : E × E → A

such that its induced norm ∥x∥ = ∥⟨x, x⟩∥ 1
2 is complete.

The theory of generalized inverses also serves as an effective tool for studying operator
equations. Notably, most research requires the condition that the ranges of related oper-
ators are closed to ensure the existence of their MP inverses (see [172,173]). Interestingly,
Douglas [174] pioneered an alternative approach in Hilbert spaces without the strong con-
dition of closed ranges, which is known as the Douglas theorem. This work has provided
valuable inspiration for subsequent research on operator equations on Hilbert C∗-modules
(see [171,175]).

Let A be a C∗-algebra, and let E and F be Hilbert C∗-modules. The set of all bounded
A -linear maps

A : E → F

is denoted by L(E , F ). Particularly, L(E ) = L(E , E ). The adjoint of A ∈ L(E , F ) is a
map A∗ ∈ L(F , E ) such that

⟨Ax, y⟩ = ⟨x, A∗y⟩ for all x ∈ E , y ∈ F .

The range and the null space of an operator A are denoted byR(A) andN (A), respectively.
A closed submodule L of E is called to be orthogonally complemented [170] if

E = L ⊕L ⊥,

where L ⊥ = {x ∈ E : ⟨x, y⟩ = 0 for all y ∈ L }. And, L is the closure of L . Let PA∗ be
the projection of E ontoR(A∗). And, RA = I − PA∗ , where I is the identity operator on E .

Let A, B, C ∈ L(E ) be such that A and B are adjointable. Mousavi et al. [175]
investigated Equation (5) in Hilbert C∗-modules E , where only the range closures of
adjointable operators need to be orthogonally complemented.

Theorem 44 (Theorem 3.3, [175]). Let R(A), R(B), R(A∗), and R(B∗) are orthogonally
complemented. If

R(CRB) ⊆ R(A) andR(PB∗C∗) ⊆ R(B∗),

then Equation (5) is consistent, in which case,

X = Xh + Xp and Y = Yh + Yp,

where Xp and Yp satisfying AXp = PACRB and B∗Y∗p = PB∗C∗,

Xh = RAW1 + W2PB∗ and Yh = PAW3 + W4RB∗ ,
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where W1, W2, W3, W4 ∈ L(E) are arbitrary satisfying AW2PB∗ + PAW3B = 0.

Remark 44. In Example 2.1 of [175], Mousavi et al. gave the example to show that, in a Hilbert
C∗-module, an operator’s range closure being orthogonally complemented is weaker than its range
being closed.

Let A ∈ L(E , F ) satisfy thatR(A) is closed. In view of the orthogonal decompositions
of closed submodules, i.e.,

E = R(A∗)⊕N (A) and F = R(A)⊕N (A∗),

Karizaki et al. in Corollary 1.2 of [176] showed that the operator A can be decomposed into
the following matrix form

A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→
[
R(A)

N (A∗)

]
,

where A1 is invertible, and thus the MP inverse A† ∈ L(F , E ) of A is

A† =

[
A−1

1 0
0 0

]
:

[
R(A)

N (A∗)

]
→
[
R(A∗)
N (A)

]
.

Interestingly, four years after [175], Moghani et al. [177] supplemented the conclu-
sions on solving operator Equation (5) on Hilbert C∗-modules using the matrix forms of
adjointable operators and generalized inverses.

Theorem 45 (Theorem 3.2, [177]). Let A ∈ L(E , F ), B ∈ L (F , E ), and C ∈ L(F ) be such
that R(A) and R(B) are closed, R(A) = R(B∗), and R(A∗) = R(B). Then, the operator
Equation (5) has a solution pair X ∈ L(F , E ) and Y ∈ L(E , F ) if and only if

(I − AA†)C(I − B†B) = 0,

in which case,

X =
1
2

A†C +
1
2

A†C(I − B†B) +
1
2

WB + (I − A† A)Z,

Y =
1
2

AA†CB† + (I − AA†)CB† − 1
2

AWBB† + V(I − BB†),

where Z ∈ L(F , E ) and V ∈ L(E , F ) are arbitrary, and W ∈ L(E ) satisfies

(I − AA†)WBB† = 0.

Remark 45. In Section 4 of [177], Moghani et al. further studied the following operator equation

AXE + FYB = C,

where X and Y are unknown operators between Hilbert C∗-modules.

Let H be an infinite dimensional separable Hilbert space. Recently, An et al. [178]
revisited the operator Equation (1) in H. For A ∈ L(H), a (1, 2)-inverse A(1,2) of A is an
operator in L(H) satisfying AA(1,2)A = A and A(1,2)AA(1,2) = A(1,2).
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Theorem 46 (Theorem 2.1, [178]). Let A, B, and C ∈ L(H). Then, Equation (1) has a solu-
tion pair

X = A(1,2)C and Y = −(I − AA(1,2))CB(1,2)

if and only if
(I − AA(1,2))C(I − B(1,2)B) = 0.

For A, B ∈ L(H), we call that the operator pair (A, B) has the generalized Fuglede-
Putnam property [178,179] if

AX = YB for X, Y ∈ L(H) ⇒ A∗X = YB∗.

An et al. [178] then presented an interesting connection between the generalized orthogo-
nality and the solvability of the operator Equation (1) inH.

Theorem 47 (Theorem 2.9, [178]). Let A, B, and C ∈ L(H).

(1) If the operator Equation (1) is consistent, then invertible operators U, V ∈ H⊕H exist such that

U

[
A 0
0 B

]
=

[
A C
0 B

]
V.

(2) Suppose that (B, A) and (B, B) satisfy the generalized Fuglede–Putnam property.
If there exist invertible operators T, S ∈ H⊕H such that

T

[
A 0
0 B

]
=

[
A C
0 B

]
S,

and the (2, 2)-entry of ST∗ is invertible, then the operator Equation (1) is consistent.

Example 1. Note that Olshevsky in Section 2 of [22] designed an example to show that RET does
not hold in infinite dimensional spaces. Indeed, letH be an infinite dimensional separable Hilbert
space with the orthonormal basis {ei}∞

i=1. Define the operators A, C ∈ L(H) as

Ae3k+1 = 0, Ae3k+2 = 0, Ae3k+3 = e3k+2 (k = 0, 1, 2, . . .),

Ce1 = e1, and Cei = 0 (i ̸= 1).

Put B = A. Let

E =

[
A 0
0 B

]
and F =

[
A C
0 B

]
.

Then, one can observe that the operator E has the only the eigenvalue λ0 = 0. Corresponding to
this eigenvalue, there are a countable number of Jordan chains of lengths 1 and 2. Additionally, the
vectors of these chains form the orthonormal basis ofH⊕H. So, F has the same properties. Thus, E
and F are equivalent. On the other hand, the operator Equation (1) is not solvable. In fact, assume
that X and Y satisfy Equation (1). Then, AXe1 = e1, which is a contradiction with e1 /∈ R(A).

Inspired by Bhatia’s characterizations of the unique solution of Sylvester equation
(i.e., Theorem VII.2.3, [180]), An et al. [178] further proposed an integral expression for the
solution of the operator Equation (1) under the specific conditions. For A ∈ L(H), σ(A)

denotes the spectrum of A.

Theorem 48 (Theorem 2.17, [178]). Let A, B, and C ∈ L(H).
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(1) If the spectra of A and B are contained in the open right half-plane and the open left half-plane,
respectively, then the operator Equation (1) has the solution pair

X =
∫ ∞

0
e−2tACdt and Y = −

∫ ∞

0
Ce−2tBdt.

(2) Suppose that A and B are Hermitian operators such that

σ(A) ∩ σ(B) = ∅ and α +
1
2
= β,

where α and β are eigenvalues of A and B, respectively. Assume that, for an absolutely
integrable function f defined on R, its Fourier transform f̂ (s) satisfies

f̂ (s) =
1
s

,

where s ∈ σ(A)− σ(B). Then, the operator Equation (1) has the solution pair

X =
∫ ∞

−∞
e−itAC f (t)dt and Y =

∫ ∞

−∞
CeitB f (t)dt.

6.5. Tensor Equations

From the end of the 19th century to the present, the understanding of tensors in
multilinear algebra and physics has essentially gone through three ways: as multi-indexed
objects satisfying certain transformation rules, as multilinear maps, and as elements in the
tensor product of vector spaces (see [181] and references therein). On the other hand, the
direct interpretation of “tensors” as multidimensional arrays (or hypermatrices) has also
been widely accepted by many scholars (see [182–184] and references therein). Following
this habit, the tensors in this paper are referred to as multidimensional arrays.

Definition 14. Let F be a ring. An N-order I1 × . . .× IN-dimension tensor A over F is defined as
a multidimensional array with I1 I2 . . . IN entries, i.e.,

A =
[

ai1 ...iN

]
1≤ij≤Ij

(j = 1, . . . , N),

where ai1 ...iN ∈ F for 1 ≤ ij ≤ Ij and j = 1, . . . , N. Moreover, denote

(A)i1 ...iN
= ai1 ...iN .

The set of all N-order I1 × . . .× IN-dimensional tensors over F is denoted by FI1×...×IN .

Tensor theory has been effectively applied in diverse fields: image processing [185],
handwritten digit classification [186], hypergraphs [182], extreme learning machines [187],
signal processing and machine learning [188], quantum physics and mechanics [189], etc.
In addition, the review article [190] by Kolda and Bader introduced the theory of tensor
decomposition and its applications in psychometrics, chemometrics, numerical linear
algebra, computer vision, numerical analysis, neuroscience, and so on.

In the 2017 preprint [191], He et al. first discussed SVD and the MP inverse of
quaternion tensors under the Einstein product, establishing a fundamental framework for
solving quaternion tensor equations under the Einstein product.
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Definition 15 ([192]). Let

A =
[

ai1 ...iN j1 ...jN

]
∈ HI1×...×IN×J1×...×JN and B =

[
bj1 ...jN k1 ...kM

]
∈ HJ1×...×JN×K1×...×KM .

The Einstein product of A and B is defined as

A ∗N B =
[
ci1 ...iN k1 ...kM

]
∈ HI1×...×IN×K1×...×KM ,

where
ci1 ...iN k1 ...kM = ∑

j1 ...jN

ai1 ...iN j1 ...jN bj1 ...jN k1 ...kM ,

for 1 ≤ ij ≤ Ij, j = 1, . . . , N, 1 ≤ kt ≤ Kt, and t = 1, . . . , M.

The conjugate transpose A∗ of A =
[

ai1 ...iN j1 ...jM

]
∈ HI1×...×IN×J1×...×JM is

A∗ =
[
bj1 ...jM i1 ...iN

]
∈ HJ1×...×JM×I1×...×IN with bj1 ...jM i1 ...iN = ai1 ...iN j1 ...jM .

The MP inverse [193] of A ∈ HI1×...×IN×J1×...×JN is A† ∈ HJ1×...×JN×I1×...×IN satisfying

A∗NA† ∗NA = A,A† ∗NA∗NA† = A†, (A∗NA†)∗ = A∗NA†, (A† ∗NA)∗ = A† ∗NA.

Moreover, let the unit (or identity) tensor be

IIN =
[
ei1 ...iN j1 ...jN

]
∈ HI1×...×IN×I1×...×IN ,

where all diagonal entries ei1 ...iN i1 ...iN are 1 and all off-diagonal entries are 0. Definite

LA = I −A† ∗N A andRA = I −A ∗N A†,

where I denotes the unit tensor with appropriate dimensions.

Theorem 49 (Corollary 5.3, [191]). Let

A ∈ HI1×...×IN×J1×...×JN , B ∈ HH1×...×HM×L1×...×LM , C ∈ HI1×...×IN×L1×...×LM .

Then, Equation (5) over quaternion tensors under the Einstein product, i.e.,

A ∗N X + Y ∗M B = C (64)

has a solution pair

X ∈ HJ1×...×JN×L1×...×LM and Y ∈ HI1×...×IN×H1×...×HM

if and only if
RA ∗N C ∗M LB = 0,

in which case,

X = A† ∗N C − U1 ∗M B + LA ∗N U2,

Y = RA ∗N C ∗M B† +A ∗N U1 + U3 ∗M RB ,

where U1, U2, and U3 are arbitrary tensors over H with appropriate dimensions.
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Remark 46.

(1) Theorem 49 is a direct corollary of Theorem 5.1 of [191], which establishes the solvability
conditions and the general solution for the following quaternion tensor equation:

A ∗N X ∗M D + E ∗N Y ∗M B = C,

where X and Y are unknown and other tensors are given over H.
(2) Inspired by the transformation between tensors and matrices overR (see (Definition 2.8, [194])),

He et al. [191,195] defined an analogous transformation over H, i.e., the transformation f is a
map defined as

f : HI1×...×IN×J1×...×JN → H(I1 I2 ...·IN)×(J1 J2 ...·JN)

A ∈ HI1×...×IN×J1×...×JN 7→ A = f (A) ∈ H(I1 I2 ...IN)×(J1 J2 ...JN),

where the components of A are given by

(A)i1 ...iN j1 ...jN
f7→ (A)[i1+∑N

k=2(ik−1)∏k−1
s=1 Is][j1+∑N

k=2(jk−1)∏k−1
s=1 Js].

Lemma 2.2 of [191] shows that the transformation f is a bijection satisfying

f (A+ B) = f (A) + f (B) and f (A∗NC) = f (A) f (C)

for A,B ∈ HI1×...×IN×J1×...×JN and C ∈ HJ1×...×JN×L1×...×LN . The transformation f
ingeniously bridges quaternion tensors under the Einstein product and quaternion matrices
under the ordinary product. By virtue of its isomorphism property, f serves as a powerful tool
for studying problems related to quaternion tensors under the Einstein product.

(3) The work [191] on quaternion tensor equations has profoundly influenced subsequent research
on tensor equations over H (see [196–202]).

Subsequently, Wang et al. [125] discussed the minimum-norm least-squares solution
of the quaternion tensor equation of the form (64), i.e.,

A ∗N X + Y ∗N B = D

with the unknown X and Y . We now introduce some notations.
Let A = [ai1 ...iN j1 ...jM ] ∈ HI1×...×IN×J1×...×JM . The transpose AT of A is

AT = [bj1 ...jM i1 ...iN ] ∈ HJ1×...×JM×I1×...×IN ,

where bj1 ...jM i1 ...iN = ai1 ...iN j1 ...jM , and the conjugate A of A is

A = [ai1 ...iN j1 ...jM ] ∈ HI1×...×IN×J1×...×JM .

The symbol
A(i1 ...iN |:) = [ai1 ...iN :...:] ∈ HJ1×...×JM

stands for a subblock of A, and Vec(A) is a new tensor obtained by lining up all subtensor
in a column, where the t-th subblock of Vec(A) is A(i1 ...iN |:) for

t = iN +
N−1

∑
K=1

[
(iK − 1)

N

∏
L=K+1

IL

]
.
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Since A = A1 +A2j for A1,A2 ∈ CI1×...×IN×J1×...×JM , the complex representation tensor
of A is defined as

f (A) =
[
A1 A2

−A2 A1

]
∈ C2I1×...×2IN×2J1×...×2JM .

Let ΘA = [A1,A2],
−→A = (ReA1, ImA1, ReA2, ImA2),

Vec(
−→A ) =


Vec(ReA1)

Vec(ImA1)

Vec(ReA2)

Vec(ImA2)

, and KJM =


I iIJM 0 0
0 0 IJM iIJM

IJM −iIJM 0 0
0 0 IJM −iIJM

,

where i is imaginary unit such that i2 = −1.
Let A ∈ RI1×...×IN×J1×...×JN . The Frobenius norm ∥ · ∥F of A is

∥A∥F =

(
∑

i1 ...iN j1 ...jN

∣∣ai1 ...iN j1 ...jN

∣∣2)1/2

.

For B = B1 + B2j ∈ HJ1×...×JN×K1×...×KM , define

A • f (B) =
[
A⊗ B1 A⊗ B2

A⊗ (−B2) A⊗ B1

]
,

where ⊗ denotes the Kronecker product of two tensors. The the inverse of A ∈
CI1×...×IN×I1×...×IN is the tensor A−1 ∈ CI1×...×IN×I1×...×IN satisfying

A ∗N A−1 = A−1 ∗N A = I .

Theorem 50 (Corollary 3.4, [125]). Let A,B,D ∈ HJ1×...×JN×J1×...×JN , and let

HL1 =
{
[X ,Y ]

}
be the set of all X ,Y ∈ HJ1×...×JN×J1×...×JN such that

∥A ∗N X + Y ∗N B −D∥2
F = min

X1,Y1∈HI1×...×IN×J1×...×JN
∥A ∗N X1 + Y1 ∗N B −D∥2

F.

Denote A = A1 +A2j. Put

P01 =
[
A1 • f (IJN )

T A2 • f (IJN j)∗
]
∗N KJN , Q01 =

[
IJN • f (B)T 0

]
∗N KJN ,

T11 =
[
ReP01 ReQ01

]
, T12 =

[
ImP01 ImQ01

]
, E1 =

[
Vec(ReΘD)
Vec(ImΘD)

]
,

R1 =
(
I − T †

11 ∗N T11
)
∗N T T

12,

H1 = R†
1 +

(
I −R†

1 ∗N R1
)
∗N Z1 ∗N T12 ∗N T †

11 ∗N
(
T †

11
)T ∗N

(
I − T T

12 ∗N R†
1
)
,

Z1 =
(
I +

(
I −R†

1 ∗N R1
)
∗N T12 ∗N T †

11 ∗N
(
T †

11
)T ∗N T T

12 ∗N
(
I −R†

1 ∗N R1
))−1.
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(1) Then,

HL1 =
{
[X ,Y ]

∣∣ [Vec(
−→X )

Vec(
−→Y )

]
=
[
T †

11 −HT
1 ∗N T12 ∗N T †

11 HT
1

]
∗N E1

+
(
I − T †

11 ∗N T11 −R1 ∗N R†
1
)
∗NW1

}
,

whereW1 is arbitrary with appropriate dimensions.
(2) If [Xl1,Yl1] ∈ HL1 satisfies

∥∥[Xl1,Yl1]
∥∥2

F = min
[X ,Y ]∈HL1

(
∥X ∥2

F + ∥Y∥2
F
)
,

then [Xl1,Yl1] ∈ HL1 is unique and[
Vec(
−→Xl1)

Vec(
−→Yl1)

]
=
[
T †

11 −HT
1 ∗N T12 ∗N T †

11 HT
1

]
∗N E1.

Remark 47. Recently, some scholars have extended quaternion tensor equations under the Einstein
product to different categories. For instance, Jia and Wang [203] investigated split quaternion
tensor equations, while Yang et al. [204] explored dual split quaternion tensor equations. On
the other hand, tensor theory encompasses a variety of product operations, including the Einstein
product [192], k-mode Product [182], contracted product [205], T-product [206], Qt-product [207],
general product [208], cosine transform product (c-product) [209], and M-product [210,211].
Combined with Remark 43, the investigation of tensor equations over diverse quaternion algebras
under various tensor products reveals significant untapped research potential.

6.6. Polynomial Matrix Equations

As described in Section 3, Roth was the first to study the solvability conditions of
polynomial matrix Equation (2) via the equivalence of two block polynomial matrices.
Since then, the theoretical research and practical applications regarding this polynomial
matrix equation have gradually become more extensive and enriched. For instance, it is
successfully applied to multivariable linear discrete systems in stochastic control [212], the
algebraic regulator problem [213], etc. Next, we mainly discuss different approaches to
studying this polynomial matrix.

6.6.1. By the Divisibility of Polynomials

Let F be a field. Cheng and Pearson [214], in their research on the regulator problem
with internal stability, provided an equivalent characterization of the solvability of the
polynomial matrix equation

BX + YD = P (65)

with given polynomial matrix B ∈ Fp×n[λ], D ∈ Fp×p[λ], and P ∈ Fp×p[λ], by the
divisibility of a series of polynomials. Assume that rank(B) = r and rank(D) = p. Using
Lemma 2 of [214] (i.e., Smith normal form theorem for polynomial matrices), there exist
unimodular matrices Mb, Nb, Md, and Nd such that

MbBNb = Bd =

[
B0 0
0 0

]
and MdDNd = diag(d1, d2, . . . , dp), (66)
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where B0 = diag(b1, b2, . . . , br), b1b2 . . . bp ̸= 0, and d1d2 . . . dp ̸= 0. Left-multiplying (65)
by Mb and right-multiplying (65) by Nd yield that

BdX′ + Y′Dd = P′, (67)

where X′ = N−1
b XNd, Y′ = MbYM−1

d , and P′ = MbPNd. For a, b ∈ F[λ], a|b denotes a
divides b.

Theorem 51 (Lemma 6, [214]). Let B, D, and P be given in (65) with rank(B) = r and
rank(D) = p. Let b1, b2, . . . , br and d1, d2, . . . , dp be given in (66), and P′ = [p′ij] be given in
(67). Then, Equation (65) has a solution pair (X, Y) if and only if

(1) gij|p′ij for i = 1, . . . , r and j = 1, . . . , p;

(2) dj|p′ij if p > r, for i = r + 1, . . . , p and j = 1, . . . , p.

where gij is the monic greatest common divisor of bi and dj.

Remark 48. Notably, in Theorem 2 of [214], Cheng and Pearson equivalently transform the solv-
ability of a restricted regulator problem with internal stability into the solvability of Equation (65)
in a special form.

6.6.2. By Skew-Prime Polynomial Matrices

Let F be a field. In 1978, Wolovich [215] proposed a new approach to studying the
polynomial matrix equation

A(λ)X(λ) + Y(λ)B(λ) = C(λ) (68)

with given A(λ) ∈ Fp×m[λ], B(λ) ∈ Fq×t[λ], and C(λ) ∈ Fp×t[λ], based on skew-prime
polynomial matrices.

Definition 16 ([215,216]). Let A(λ) ∈ Fp×m[λ] and B(λ) ∈ Fq×p[λ] with q + m > p. Assume
that there exist M(λ) ∈ Fm×p[λ] and N(λ) ∈ Fp×q[λ] such that

A(λ)M(λ) + N(λ)B(λ) = Ip.

Then, A(λ) and B(λ) are called externally skew prime (or B(λ) and A(λ) are called internally
skew prime). Moreover, A(λ) and N(λ) are called relatively left prime while M(λ) and B(λ) are
called relatively right prime.

Suppose that A(λ) is nonsingular with p = m. Then, A−1(s)C(λ) can be factored in
dual prime form:

A−1(s)C(λ) = C̄(s) ¯A −1(s), (69)

where C̄(s) ∈ Fp×t[λ] and ¯A (s) ∈ Ft×t[λ] are relatively right prime.

Theorem 52 (Theorem 3 and Corollary 3, [215]). Let A(λ) ∈ Fp×p[λ] be nonsingular and let
¯A (s) be given in (69).

(1) If ¯A (s) and B(λ) are externally skew, then Equation (68) is consistent.
(2) Suppose that A(λ) and C(λ) are relatively left prime. Then, Equation (68) is consistent if

and only if ¯A (s) and B(λ) are externally skew prime.

Remark 49. Note that Wolovich proved the sufficiency of the item (2) in Theorem 52 via a con-
structive method, implying a new procedure to find a solution pair of Equation (68). Moreover,
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when C(λ) = I, all solutions of Equation (68) are characterized in (Section 5, [215]), and this
characterization is further used to obtain the unique solution of Equation (68).

6.6.3. By the Realization of Matrix Fraction Descriptions

Let F be a field. For given Q ∈ Fp×q[λ], R ∈ Fm×t[λ], and Φ ∈ Fp×t[λ], consider the
polynomial matrix equation

XR + QY = Φ, (70)

where X ∈ Fp×m[λ] and Y ∈ Fq×t[λ] are unknown. According to the realization of
matrix fraction descriptions presented in [217], Emre and Silverman [218] transformed
Equation (70) into a set of linear matrix equations when Q is nonsingular.

Let Fq[λ] and Fq(λ) be the sets of all q-tuples of polynomials in λ with coefficients in F
and all q-tuples of rational functions in λ over F, respectively. Assume that Q is nonsingular
with p = q. Let

FQ = {x ∈ Fp[λ] : Q−1x is strictly proper}.

For X1 ∈ Fp×m[λ] satisfying that Q−1X1 is strictly proper, define the following
F-linear maps:

G : Fm → FQ, u 7→ X1u for u ∈ Fm,

π : Fp(λ)→ Fp(λ), q 7→ strictly proper part of q,

πQ : Fp[λ]→ Fp[λ], x 7→ Qπ(Q−1x),

F : FQ → FQ, x 7→ πQ(zx),

H : FQ → Fp, x 7→ (Q−1x)−1,

where (Q−1x)−1 is the coefficient of λ−1 in the formal power series of Q−1x in λ−1. For
Z = Q−1X1, we call Σ = (F, G, H) the Q-realization of Z [217].

Let S ∈ Fp×n[λ] be such that its columns are a basis of FQ. Let (F, G1, H) be the
Q-realization of Q−1S. Let F̂, Ĝ1, and Ĥ denote the matrix representations of F, G1, and H,
respectively, with respect to the canonical bases of Fm and Fp, and the columns of S serving
as a basis of FQ. Put

R =
r

∑
j=0

u−jλ
j,

where u−j ∈ Fm×p. Define Φ̂ ∈ Fn×p uniquely by πQ(Φ) = SΦ̂, and for the unique
polynomial matrix Φ1, express Φ as

Φ = QΦ1 + SΦ̂. (71)

Moreover, let the linear equations be as follows:

r

∑
j=0

F̂jĜu−j = Φ̂, (72)

where Ĝ ∈ Fn×m are unknown.

Theorem 53 (Theorem 2.5, [218]). Let R, Q, and Φ be given in (70). Suppose that Q is nonsin-
gular with p = q. Denote

Ē(Q, R) = {(X1, Y1) | X1R + QY1 = Φ and Q−1X1 is strictly proper}.

The following are equivalent:
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(1) (X1, Y1) ∈ Ē(Q, R);
(2) Equation (72) has a solution Ĝ such that

X1 = SĜ and Y1 = Φ1 −Qp,

where Φ1 satisfies (71), and Qp is the polynomial part of Q−1X1R.

Remark 50.

(1) Under the hypotheses of Theorem 53, let

E(Q, R) = {(X, Y) | XR + QY = Φ}.

In terms of Lemma 2.2 of [218], Emre and Silverman have shown that

E(Q, R) = {(X1, Y1) + (X̄, Ȳ) | (X1, Y1) ∈ Ē(Q, R) and (X̄, Ȳ) ∈ H̄(Q, R)},

where H̄(Q, R) = {(QQ1,−Q1R) | Q1 is an arbitrary polynomial matrix}. This implies
that, to characterize E(Q, R), it is sufficient to characterize Ē(Q, R).

(2) In Section 3, [218], Equation (70) is further generalized to the case where Q is a general
polynomial matrix. In fact, for Q ∈ Fp×q[λ], there exist unimodular polynomial matrices M1

and M2 such that

M1QM2 =

[
Q̂ 0
0 0

]
,

where Q̂ is the nonsingular polynomial matrix. Let

X̂ = M1X =

[
X̂1

X̂2

]
, Ŷ = M−1

2 Y =

[
Ŷ1

Ŷ2

]
, M1Φ =

[
Φ̃1

Φ̃2

]
.

Then,

Equation (70) ⇔ X̂R +

[
Q̂ 0
0 0

][
Ŷ1

Ŷ2

]
=

[
Φ̃1

Φ̃2

]

⇔

X̂2R = Φ̃2,

X̂1R + Q̂Ŷ1 = Φ̃1.
(73)

So, Theorem 53 can be applied to the second equation of (73); see [219] for the first Equation
of (73).

6.6.4. By the Unilateral Polynomial Matrix Equation

Let F be a field. For given A, B, C ∈ Fn×n[λ], consider the following polynomial matrix
Equation (also called the bilateral polynomial matrix equation):

AX + YB = C, (74)

where X, Y ∈ Fn×n[λ] are unknown. Żak [220] proposed an algorithm for finding the
unique solution pair (X, Y) of Equation (74). In fact, let

A =
N

∑
i=0

λi Ai and B =
M

∑
j=0

λjBj.
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For C = [cij]n×n ∈ Fn×n[λ], denote

vecr(C) =
[
c11 . . . c1n c21 . . . c2n . . . cn1 . . . cnn

]T
.

Using the Kronecker product, Equation (74) can be transformed into the following unilateral
polynomial matrix equation:

AX+BY = C, (75)

where X = vecr(X), Y = vecr(Y), C = vecr(C),

A =
N

∑
i=0

λi(Ai ⊗ In), and B =
M

∑
j=0

λj(In ⊗ BT
j ).

Let

X =
M1−1

∑
i=0

λiXi and Y =
N1−1

∑
i=0

λiYi.

Denote
Ai = Ai ⊗ In and Bj = In ⊗ BT

j ,

where i = 0, 1, . . . , N and j = 0, 1, . . . , M. Then, by comparing of like powers, (75) can be
rewritten as 

B0 A0

B1 B0 A1 A0
... B1 B0

... A1 A0

BM
... B1 AN

... A1

BM
... AN

...
BM AN





Y0
...

YN1−1

X0
...

XM1−1


=



C0

C1
...
...
...


.

N1+M1 blocks

(76)

Let us assume without loss of generality that B0 is nonsingular, which implies that B0 is
also nonsingular. As shown by Feinstein and Bar-Ness in [221], performing a series of
elementary row operations on Equation (76) yields the following form:

In
. . .

In

L0

L1
...

L0 . . . L0

0 L


[

y
x

]
=

[
p1

p2

]
. (77)

Therefore, a necessary and sufficient condition for the solvability of Equation (74) is

rank
[

L p2

]
= rank(L),

in which case, we can obtain x by solving Lx = P2, and then compute y recursively.
Furthermore, the upper bound on the degree of Y in (75) are also given as follows:

Theorem 54 ([220]). For A and B given in (75), assume that

(1) A and B are relatively left prime;
(2) B is nonsingular and satisfies that B−1 is strictly proper;
(3) A1(λ)B

−1
1 (λ) is the right coprime factorization of B−1A, where B1(λ) is row reduced.
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If Equation (75) is consistent, then it has a solution pair (X(λ),Y(λ)) such that

degri X(λ) < degri B1(λ) and degY(λ) < degA1(λ),

where degri denotes the degree of the i-th row.

Remark 51. Żak [220] also noted that the number of equations in (77) can be further reduced by
using additional information about A and B given in (74). For instance, if a row of B has a degree
of zero, then the corresponding row of X is identically zero, so discard the relevant column and row
of L given in (77).

6.6.5. By the Equivalence of Block Polynomial Matrices

Let F be a field. Building upon Theorem 1, Wimmer [222] investigated the constant
solutions of the following polynomial matrix equation:

A(λ)X−YB(λ) = C(λ), (78)

where A(λ) ∈ Fm×n[λ], B(λ) ∈ Fp×k[λ], and C(λ) ∈ Fm×k[λ] are given.

Theorem 55 (Lemma 2.1, [222]). Equation (78) has a constant solution pair

X ∈ Fn×k and Y ∈ Fm×p

if and only if there exist two nonsingular constant matrices

R ∈ F(n+k)×(n+k) and S ∈ F(m+p)×(m+p)

such that [
A(λ) 0

0 B(λ)

]
R = S

[
A(λ) C(λ)

0 B(λ)

]
.

Remark 52. Theorem 55 also appeared as a lemma in the earlier article (Lemma 3, [223]), though
no complete proof was provided.

Remark 53. Let Ai ∈ Fm×n, Bi ∈ Fp×k, and Ci ∈ Fm×k for i = 1, 2. Using Theorem 55, Wimmer
(Theorem 1.1, [222]) showed that the system of matrix equationsA1X−YB1 = C1,

A2X−YB2 = C2,

has a solution pair X ∈ Fn×k and Y ∈ Fm×p if and only if there exist two nonsingular matrices
R ∈ F(n+k)×(n+k) and S ∈ F(m+p)×(m+p) such that

S

([
A1 C1

0 B1

]
− λ

[
A2 C2

0 B2

])
=

([
A1 0
0 B1

]
− λ

[
A2 0
0 B2

])
R.

Obviously, this result is also a generalization of RET. A similar research idea is also introduced in
Section 8.1.
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6.6.6. By Jordan Systems of Polynomial Matrices

Let A ∈ Cm×m[λ], B ∈ Cn×n[λ], and C ∈ Cm×n[λ] be such that det(A) ̸= 0 and
det(B) ̸= 0. According to Jordan systems of polynomial matrices, Wimmer [224] discussed
the solvability conditions for the polynomial matrix equations

AX−YB = C, (79)

where X, Y ∈ Cm×n[λ] are unknown. Let

σ(B) = {λ ∈ C | det(B(λ)) = 0},

and let the elementary divisors corresponding to λ1 ∈ σ(B) be

(λ− λ1)
l1 , . . . , (λ− λ1)

lq ,

where l1 ≥ . . . ≥ lq ≥ 1 and l = l1 + . . . + lq satisfying

det(B) = (λ− λ1)
lc(λ) and c(λ1) ̸= 0.

For r ∈ Z+, denote

Nr =


0 1

. . . . . .
. . . 1

0


r×r

.

Let the Jordan matrix of B associated to λ1 be

J = diag(λ1 I − Nl1 , . . . , λ1 I − Nlq). (80)

Then, there exist H ∈ Cn×l and Ĥ ∈ Cn×l [λ] such that

BH = Ĥ(λI − J),

where the columns of Ĥ are C-linearly independent (see [225]). Thus, H is called a right
Jordan system of B corresponding to λ1. Then, G is called a left Jordan system of A
corresponding to λ1 ∈ σ(A) if GT is a right Jordan system of AT .

For λ1 ∈ σ(A) ∩ σ(B), let G and H be left and right Jordan systems of A and B
corresponding to λ1, respectively. Then, (G, H) is called a pair of Jordan systems of (A, B)
corresponding to λ1. According to (80), partition

H =
[

H1 H2 . . . Hq

]
with Hj = [hj0, . . . , hj,lj−1] for j = 1, . . . , q. Similarly, assume that the elementary divisors
belonging to λ1 ∈ σ(A) are

(λ− λ1)
k1 , . . . , (λ− λ1)

kp ,

where k1 ≥ . . . ≥ kp ≥ 1. Partition

G =


G1
...

Gp

 with Gi =


gi0
...

gi,ki−1

 for i = 1, . . . , p.
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The k-th derivative of C(λ) is denoted by C(k)(λ). We call that (G, H) has the property (Σ) if

∑
ν+σ+τ=rij

giν
C(σ)(λ1)

σ!
hjτ = 0,

where rij = 0, 1, . . . , min(ki, lj)− 1, i = 1, . . . , p, and j = 1, . . . , q.

Theorem 56 (Theorem 1.1, [224]). Let A, B, and C be given in (79). Then, the following
are equivalent:

(1) Equation (79) is consistent;
(2) There exists a pair of Jordan systems (G, H) of (A, B) with property (Σ) for each λ ∈

σ(A) ∩ σ(B);
(3) All pairs of Jordan systems of (A, B) have property (Σ) for each λ ∈ σ(A) ∩ σ(B).

Remark 54. Wimmer [224] pointed out that Theorem 56 can also be extended to matrices over the
ring O(G) of complex holomorphic functions in a domain G.

6.6.7. By Linear Matrix Equations

Let F be a field. Assume that

A(λ) =
m

∑
i=0

Aiλ
i, B(λ) =

n

∑
i=0

Biλ
i, and C(λ) =

k

∑
i=0

Ciλ
i, (81)

where Ai, Bi, Ci ∈ Fr×r satisfying Am ̸= 0, Bn ̸= 0, and Ck ̸= 0. Consider the polynomial
matrix equation:

A(λ)X(λ) + Y(λ)B(λ) = C(λ), (82)

where X(λ), Y(λ) ∈ Fr×r[λ] are unknown.
Barnett [226] provided an equivalent condition for Equation (82) to have a unique

solution pair (X(λ), Y(λ)) with

deg X(λ) < n and deg Y(λ) < m. (83)

For H(λ) = ∑m
i=0 Hiλ

i with Hm ̸= 0, we say that H(λ) is regular if det(Hm) ̸= 0.

Theorem 57 ([226]). Let A(λ), B(λ), and C(λ) given in (81) be such that A(λ) and B(λ)
are regular and that deg C(λ) ≤ n + m − 1. Then, Equation (82) has a unique solution pair
(X(λ), Y(λ)) such that (83) if and only if det(A(λ)) and det(B(λ)) are relatively prime, (i.e., the
greatest common divisor is a constant independent λ).

Remark 55. Note that the condition in Theorem 57, i.e., that det(A(λ)) and det(B(λ)) are
relatively prime, implies that A(λ) and B(λ) are nonsingular (see [227]).

Subsequently, Feinstein and Bar-Ness [227] conducted further research on the solutions
to Equation (82) with (83); such special solutions are also called the minimal solutions.

Theorem 58 (Theorem II, [227]). Let A(λ), B(λ), and C(λ) given in (81) be such that A(λ)

and B(λ) are nonsingular and deg C(λ) ≤ n + m− 1. Assume that A(λ) (or B(λ)) is regular.
Then, Equation (82) has a unique minimal solution if and only if det(A(λ)) and det(B(λ)) are
relatively prime.
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Remark 56. In Theorem III of [227], Feinstein and Bar-Ness showed that, if Equation (82) has
a minimal solution (X(λ), Y(λ)), then (X(λ), Y(λ)) is not unique if and only if both A(λ) and
B(λ) are not regular.

Motivated by Theorem 57, Chen and Tian [228] proved that Equation (81) can be
reduced to a linear matrix equation. For A(λ) and B(λ) given in (81), let

AR =


0 0 . . . 0 −A0

I 0 . . . 0 −A1

0 I . . . 0 −A2
...

...
. . .

...
...

0 0 . . . I −Am−1

 and BL =


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
−B0 −B1 −B2 . . . −Bn−1

.

Theorem 59 (Lemma 3.1 and Theorems 1.1 and 1.3, [228]). Let A(λ), B(λ), and C(λ) given
in (81) be such that Am = Bn = Ir, and let HC(λ) be the set of all solutions (X(λ), Y(λ)) of
Equation (82) with (83).

(1) Let k < m + n. If Equation (82) is solvable, then HC(λ) ̸= ∅.
(2) Let k < m. There exists X(λ) satisfying (X(λ), Y(λ)) ∈ HC(λ) if and only if

An
RY +

n−1

∑
i=0

Ai
RYBi = C, (84)

where

Y(λ) =
m−1

∑
i=0

Yiλ
i, Y =


Y0
...

Ym−1

, C =


C0
...

Cm−1

.

(3) Let k < n. There exists Y(λ) satisfying (X(λ), Y(λ)) ∈ HC(λ) if and only if

XBm
L +

n−1

∑
i=0

AiXBi
L = C̃, (85)

where X(λ) = ∑n−1
i=0 Xiλ

i, X =
[

X0 . . . Xn−1

]
, and C̃ =

[
C0 . . . Cn−1

]
.

Remark 57.

(1) For A = [aij] ∈ Fp×q, let

row(A) =
[

a11 . . . ap1 a12 . . . ap2 . . . a1q . . . apq

]
.

and vec(A) = row(A)T . Then,

(84) ⇔
(

I ⊗ An
R +

n−1

∑
i=0

BT
i ⊗ Ai

R

)
vec(Y) = vec(C),

(85) ⇔ row(X)

(
I ⊗ Bm

L +
m−1

∑
i=0

Ai ⊗ Bi
L

)
= row(C̃).

(2) The explicit solutions to Equations (84) and (85) have been studied in [229,230], which also
serve as a starting point of Section 6.7 in this paper.

(3) Moreover, Sheng and Tian [228] mentioned that Theorem 59 still holds when the field F is
extended to a commutative ring with identity.
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6.6.8. By Root Functions of Polynomial Matrices

Let Ln×n
1 [a, b] denote the space of n× n matrix-valued functions that are Lebesgue

integrable over the interval [a, b]. Let

B(λ) = In +
∫ 0

−ω
eiλtb(t)dt, D(λ) = In +

∫ ω

0
eiλtd(t)dt, G(λ) =

∫ ω

−ω
eiλtg(t)dt,

where b ∈ Ln×n
1 [−ω, 0], d ∈ Ln×n

1 [0, ω], and g ∈ Ln×n
1 [−ω, ω]. Consider the following

linear entire matrix function equation

X(λ)B(λ) +D(λ)Y(λ) = G(λ), λ ∈ C, (86)

where X and Y are unknown n× n matrix functions

X(λ) =
∫ ω

0
eiλtx(t)dt and Y(λ) =

∫ 0

−ω
eiλty(t)dt

with x ∈ Ln×n
1 [0, ω] and y ∈ Ln×n

1 [−ω, 0]. Gohberg [231] proposed necessary and sufficient
conditions for the solvability of Equation (86) using the root functions of the coefficients.

Definition 17 ([231,232]). Let an n× n matrix function H(λ) be analytic at λ0 ∈ C. A Cn-
valued function φ is called a root function of H(λ) at λ0 of order (at least) k ∈ Z+ if φ is analytic
at λ0, φ(λ0) ̸= 0, and H(λ)φ(λ) has a zero at λ0 of order (at least) k.

Theorem 60 (Theorem 1.1, [231]). Equation (86) is consistent if and only if for each common
zero λ0 of det(B(λ)) and det(D(λ)), if φ is a root function of B(λ) at λ0 of order p and ψ is a
root function of D(λ)T at λ0 of order q, then ψ(λ)TG(λ)φ(λ) has a zero at λ0 of order at least
min{q, p}.

Let H(λ) be an analytic r × r matrix function, and let λ0 be a point in the domain
of analyticity of H(λ). If det(H(λ0)) = 0, then λ0 is called an eigenvalue of H(λ). Let
a Cr-vector valued function ϕ(λ) be analytic in a neighborhood of an eigenvalue λ0 of
F(λ). If ϕ(λ0) ̸= 0 and F(λ0)ϕ(λ0) = 0, then ϕ(λ) is called a right root function of F(λ) at
λ0. The order (at least) k of the right root function ϕ(λ) at λ0 is the order (at least) k of λ0

as a zero of the analytic function F(λ)ϕ(λ). Similarly, left root functions can be defined
(see [233]).

Utilizing the right and left root functions of polynomial matrices, Kaashoek and
Lerer [233] then presented a discrete version of Theorem 60. Let

L(λ) =
l

∑
j=0

λjLj, M(λ) =
m

∑
j=0

λj Mj, G(λ) =
ℓ+m−1

∑
j=0

λjGj, (87)

where Lj, Mj, Gj ∈ Cr×r with Ll ̸= 0 and Mm ̸= 0. Consider the following polynomial
matrix equation:

X(λ)L(λ) + M(λ)Y(λ) = G(λ), (88)

where X(λ) and Y(λ) are unknown. Define

L̂(λ) = λl L(λ−1) =
l

∑
j=0

λjLl−j, M̂(λ) = λm M(λ−1) =
m

∑
j=0

λj Mm−j,

G(λ) = λl+m−1G(λ−1) =
l+m−1

∑
j=0

λjGl+m−1−j.
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Theorem 61 (Theorem 1.1, [233]). For L(λ) and M(λ) given in (87), assume that both det(L(λ))
and det(M(λ)) do not vanish identically. Then, Equation (88) has a solution pair (X(λ), Y(λ))
such that

deg X(λ) ≤ m− 1 and deg Y(λ) ≤ l − 1

if and only if both of the following two conditions hold:

(1) For each λ0 ∈ C satisfying det(L(λ0)) = det(M(λ0)) = 0, if f (λ) is a right root function
of L(λ) at λ0 of order s and h(λ) is a left root function of M(λ) at λ0 of order t, then
h(λ)G(λ) f (λ) has a zero at λ0 of order at least min{s, t};

(2) If f◦(λ) is a right root function of L̂(λ) at zero of order s◦ and h◦(λ) is a left root function of
M̂(λ) at zero of order t◦, then h◦(λ)G(λ) f◦(λ) has a zero of order at least min{s◦, t◦}.

Remark 58. Kaashoek and Lerer proved Theorem 61 by means of Theorem 1.2 of [233], which is a
direct corollary of Theorems 3.2 and 4.1 of [234]. Although this proof strategy can be regarded as a
discrete version of the proof of Theorem 60, in the discrete case, the common spectrum at infinity
plays a crucial role, whereas in [231] there are no common root functions at infinity.

6.7. Sylvester-Polynomial-Conjugate Matrix Equations

For given matrices A, Bi(i = 1, . . . , k), and C, the matrix equation

k

∑
i=0

AiXBi = C

has been thoroughly investigated for its important role in control theory (see [229,230,235–237]).
Based on results in [230], Wu et al. [238] defined Sylvester sums and Kronecker maps, and
used them to discuss the following matrix equation over R:

n1

∑
i=0

AiXFi =
n2

∑
i=0

BiRFi,

where X is unknown and other matrices are given over R. Building on the work in [238], Wu
et al. [239–241] established the framework of conjugate products and Sylvester-conjugate
sums over C. Specifically, for A ∈ Cm×n and k ∈ N, define

A∗k =

A, for even k,

A, for odd k.

The conjugate product [239,241] of

A(λ) =
m

∑
i=0

Aiλ
i ∈ Cp×q[λ] and B(λ) =

n

∑
j=0

Bjλ
j ∈ Cq×r[λ]

is defined as

A(λ)⊛ B(λ) =
m

∑
i=0

n

∑
j=0

AiB∗ij λi+j.

For A ∈ Cn×n and k ∈ N, define

A
←−
k = Ak−2⌊ k

2⌋(AA
)⌊ k

2⌋,
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where ⌊·⌋ is the floor function (downward rounding). For Z ∈ Cr×p, F ∈ Cp×p, and

T(λ) =
t

∑
i=0

Tiλ
i ∈ Cn×r[λ],

we define the Sylvester-conjugate sum [241] of T(λ) and Z with respect to F by

T(λ)
F
⊞ Z =

t

∑
i=0

TiZ∗iF
←−
i . (89)

Remark 59. Note that Lemma 7 in ref. [241] reveals an intriguing relationship between the
conjugate product and the Sylvester-conjugate sum. Specifically, if A(λ) ∈ Cl×q[λ], B(λ) ∈
Cq×r[λ], F ∈ Cp×p, and Z ∈ Cr×p, then

(
A(λ)⊛ B(λ)

) F
⊞ Z = A(λ)

F
⊞
(

B(λ)
F
⊞ Z

)
.

On this basis, Wu et al. [241] investigated the following Sylvester-polynomial-
conjugate matrix equation:

ϕ1

∑
i=0

AiX∗iF
←−
i +

ϕ2

∑
j=0

BjY∗jF
←−
j =

ϕ3

∑
k=0

CkR∗kF
←−
k , (90)

where Ai ∈ Cn×n (i = 0, 1, . . . , ϕ1), Bj ∈ Cn×r (j = 0, 1, . . . , ϕ2), Ck ∈ Cn×m (k =

0, 1, . . . , ϕ3), R ∈ Cm×p, and F ∈ Cp×p are given, and X ∈ Cn×p and Y ∈ Cr×p are
unknown. Denote

A(λ) =
ϕ1

∑
i=0

Aiλ
i, B(λ) =

ϕ2

∑
i=0

Biλ
i, C(λ) =

ϕ3

∑
i=0

Ciλ
i, (91)

where Ai, Bi, and Ci are given in (90). Thus, by conjugate products and Sylvester-conjugate
sums, Equation (90) can be directly rewritten as

A(λ)
F
⊞ X + B(λ)

F
⊞Y = C(λ)

F
⊞ R. (92)

Additionally, we say that A(λ) ∈ Cn×n[λ] and B(λ) ∈ Cn×r[λ] are left coprime [239] if
all their greatest common left divisors are unimodular, which is also equivalent to the
existence of C(λ) ∈ Cn×r[λ] and D(λ) ∈ Cr×r[λ] such that

A(λ)⊛ C(λ) + B(λ)⊛ D(λ) = I.

Theorem 62 (Theorem 2, [241]). Assume that A(λ) and B(λ) given in (91) are left coprime.
Suppose that the unimodular polynomial matrix U(λ) ∈ C(n+r)×(n+r)[λ] satisfies[

A(λ) B(λ)
]
⊛U(λ) =

[
I 0

]
.

Then, all solutions of Equation (92) (or (90)) are[
X
Y

]
=

(
U(λ)⊛

[
C(λ) 0

0 I

])
F
⊞

[
R
Z

]
, (93)
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where Z ∈ Cr×p is arbitrary. Furthermore, if partition

U(λ) =

[
H(λ) N(λ)

L(λ) D(λ)

]

with N(λ) ∈ Cn×r[λ] and D(λ) ∈ Cr×r[λ], then (93) can be rewritten asX =
(

H(λ)⊛ C(λ)
) F
⊞ R + N(λ)

F
⊞ Z,

Y =
(

L(λ)⊛ C(λ)
) F
⊞ R + D(λ)

F
⊞ Z,

for arbitrary Z ∈ Cr×p.

Remark 60.

(1) Theorem 9 in ref. [239] guarantees the existence of the polynomial matrix U(λ) in Theo-
rem 62.

(2) Taking
ϕ1 = 0, ϕ2 = 1, B0 = 0, B1 = I, and ϕ3 = 0,

Equation (90) over R reduces to
AX + YB = C,

where A = A0, B = F, and C = C0R. Clearly, Theorem 62 is also a generalization of RET
over R.

(3) In Theorem 1 of [241], Wu et al. characterized the homogeneous case of Equation (90) more
specifically via a pair of right coprime polynomial matrices. Moreover, in Remark 4 of [241],
they utilized the same method to discuss a more general form of Equation (90), i.e.,

θ

∑
k=1

ωk

∑
i=0

AkiXkF
←−
i =

c

∑
j=0

CjRF
←−
j ,

where Xk(k = 1, . . . , θ) are unknown and others are given.
(4) It can be observed that Lemmas 11 and 12 of [241] are crucial for proving Theorem 62 and

Theorem 1 of [239]. Meanwhile, it should be noted that Lemmas 11 and 12 of [241] provide
only necessary conditions for left and right coprimeness, respectively. Thus, we contend that
exploring the converse problems of these two lemmas is interesting.

(5) Equation (90) generalizes a class of complex conjugate matrix equations (see [242–248]).
For systematic research on complex conjugate matrix equations and their applications in
discrete-time antilinear systems, refer to the monograph [249] by Wu and Zhang.

Inspired by [241], Mazurek [250] recently generalized Theorem 62 based on groupoids
and vector spaces.

Theorem 63 (Theorem 2, [250]). Let M11, M12, M21, and M22 be groupoids with binary opera-
tions commonly denoted by ⊕, and let V1 and V2 be finite-dimensional vector spaces over a field F.
Assume that for any i, j, k ∈ {1, 2}, two operations

⊠ : Mij ×Vj → Vi and ⊙ : Mij ×Mjk → Mik

are given such that

(1) (s⊕ t)⊠ vs. = s ⊠ vs. + t ⊠ vs. for i, j ∈ {1, 2}, s, t ∈ Mij, and vs. ∈ Vj;
(2) s ⊠ (ku + lv) = k(s ⊠ u) + l(s ⊠ v) for i, j ∈ {1, 2}, s ∈ Mij, k, l ∈ F, and u, vs. ∈ Vj;
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(3) s ⊠ (t ⊠ v) = (s⊙ t)⊠ vs. for i, j, k ∈ {1, 2}, s ∈ Mij, t ∈ Mjk, and vs. ∈ Vk.

Suppose that for a ∈ M11 and b ∈ M12, there exist p ∈ M11, g ∈ M12, d, q ∈ M21, and
h, w ∈ M22 such that

(i) ((a⊙ p)⊕ (b⊙ q))⊠ vs. = vs. for any vs. ∈ V1;
(ii) ((d⊙ g)⊕ (w⊙ h))⊠ u = u for any u ∈ V2,;
(iii) ((a⊙ g)⊕ (b⊙ h))⊠ u = 0 for any u ∈ V2.

Then, for c ∈ V1, the all solutions of the equation

a ⊠ x + b ⊠ y = c

are
(x, y) = (p ⊠ c + g ⊠ z, q ⊠ c + h ⊠ z),

where z ∈ V2 is arbitrary.

For a ring F with unity and a ring endomorphism σ of F, the skew polynomial ring
F[λ; σ] is the set of polynomials over F in the indeterminate λ with the usual addition
and multiplication subject to λa = σ(a)λ for any a ∈ F (see [251]). Specifically, the
multiplication in F[λ; σ] is given by(

n

∑
i=0

aiλ
i

)(
m

∑
j=0

bjλ
j

)
=

n

∑
i=0

m

∑
j=0

aiσ
i(bj)λ

i+j (94)

for ∑n
i=0 aiλ

i, ∑m
j=0 bjλ

j ∈ F[λ; σ]. The set of m× n matrices over the skew polynomial ring
F[s; σ] is denoted by Fm×n[s; σ]. Assume that F is also a finite-dimensional vector space
over a field K, and put

M11 = Fn×n[s; σ], M12 = Fn×m[s; σ], M21 = Fm×n[s; σ],

M22 = Fm×m[s; σ], V1 = Fn×p, V2 = Fm×p,

with the usual addition (denoted by ⊕) and the skew multiplication (94) (denoted by ⊙) of
polynomial matrices. Then, applying Theorem 63, Mazurek obtained the relevant result
(i.e., Theorem 3, [250]) for Equation

A(λ)⊠ X + B(λ)⊠Y = C,

where A(λ) ∈ Fn×n[λ; σ], B(λ) ∈ Fn×m[λ; σ], and C ∈ Fn×p are given, and X ∈ Fn×p and
Y ∈ Fm×p are unknown.

Remark 61. In the proof of Theorem 1 in [250], Mazurek showed that Theorem 62 is an immediate
corollary of Theorem 3 of [250].

Moreover, analogous to the conjugate product of complex matrices, Wu et al. [252]
further defined the j-conjugate product of quaternion matrices. The j-conjugate of
A ∈ Hm×n is ←→

A = −jAj.

For k ∈ Z+, inductively define A◦k =
←−−−→
A◦(k−1) with A◦0 = A. Then, the j-conjugate

product [252] of

A(λ) =
m

∑
i=0

Aiλ
i ∈ Hp×q[λ] and B(λ) =

n

∑
j=0

Bjλ
j ∈ Hq×r[λ]
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is defined as

A(λ)⊛ B(λ) =
m

∑
i=0

n

∑
j=0

AiB◦ij λi+j.

We say that A(λ) ∈ Hn×n[λ] and B(λ) ∈ Hn×m[λ] are ⊛-left coprime [250] if there exists a
unimodular polynomial matrix U(λ) ∈ H(n+m)×(n+m)[λ] such that[

A(λ) B(λ)
]
⊛U(λ) =

[
I 0

]
.

Let the map σ be σ : H→ H with σ(h) = −jhj for h ∈ H. Then, σ is an automorphism on
H. So, the j-conjugate product is the product of matrices over H[λ; σ]. Similarly to (89),
Mazurek [250] defined the Sylvester-j-conjugate sum over H,

T(λ)
F
⊞ V = T0V +

t

∑
m=1

Tmσm(V)σm−1(F) . . . σ1(F)σ0(F)

for T(λ) = ∑t
i=0 Tiλ

i ∈ Hn×r[λ], V ∈ Hr×p, and F ∈ Hp×p. Applying Theorem 3 of [250]
to matrices over H[λ; σ] yields the following result immediately.

Theorem 64 (Theorem 4, [250]). Let A(λ) ∈ Hn×n[λ] and B(λ) ∈ Hn×m[λ] be ⊛-left coprime.
Then, there exist

P(λ) ∈ Hn×n[λ], G(λ) ∈ Hn×m[λ], D(λ), Q(λ) ∈ Hm×n[λ], H(λ), W(λ) ∈ Hm×m[λ]

such that

A(λ)⊛ P(λ) + B(λ)⊛ Q(λ) = In, D(λ)⊛ G(λ) + W(λ)⊛ H(λ) = Im,

A(λ)⊛ G(λ) + B(λ)⊛ H(λ) = 0.

Moreover, given F ∈ Hp×p and C ∈ Hn×p, the general solution of the matrix equation

A(λ)
F
⊞ X + B(λ)

F
⊞ Y = C

is X = P(λ)
F
⊞ C + G(λ)

F
⊞ Z,

Y = Q(λ)
F
⊞ C + H(λ)

F
⊞ Z,

where Z ∈ Hm×p is arbitrary.

Remark 62. Theorem 64 not only generalizes Theorem 62 to H, but also presents a more general
result than the relevant results in [87,253–261].

6.8. Generalized Forms of GSE

In Section 4.3, we can see that the SVD plays an important role in solving Equation (1).
Then, will the development of the SVD promote research on a more general form of
Equation (1)? The work in [31,262,263] shows that it is affirmative.

De Moor and Zha [262] established GSVD of a finite number k ∈ Z+ of matrices over C.

Theorem 65 (GSVD for any k matrices (Theorem 1, [262])). Let

A1 ∈ Cn0×n1 , A2 ∈ Cn1×n2 , . . . , Ak−1 ∈ Cnk−2×nk−1 , and Ak ∈ Cnk−1×nk .
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Then, there exist unitary matrices U1 ∈ Cn0×n0 and Vk ∈ Cnk×nk , and nonsingular matrices
Xj ∈ Cnj×nj (j = 1, . . . , k− 1) such that

U∗1 A1X1 = Λ1, Z1 A2X2 = Λ2, . . . , Zi−1 AiXi = Λi, . . . , Zk−1 AkVk = Λk,

where Zj = X∗j (or = X−1
j ) for j = 1, 2, . . . , k− 1 (i.e., both choices are always possible),

Λj =



I 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
0 I 0 0 . . . 0 0
0 0 0 0 . . . 0 0
0 0 I 0 . . . 0 0
0 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . I 0
0 0 0 0 . . . 0 0



r1
j

r1
j−1 − r1

j

r2
j

r2
j−1 − r2

j

r3
j

r3
j−1 − r3

j

. . .

rj
j

nj−1 − rj−1 − rj
j

r1
j r2

j r3
j r4

j . . . rj
j nj − rj

(j = 1, 2, . . . , k− 1) with r0 = 0 and rj = ∑
j
i=1 ri

j = rank(Aj),

Λk =



Λ1
k 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0
0 Λ2

k 0 0 . . . 0 0
0 0 0 0 . . . 0 0
0 0 Λ3

k 0 . . . 0 0
0 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . Λk

k 0
0 0 0 0 . . . 0 0



r1
k

r1
k−1 − r1

k
r2

k
r2

k−1 − r2
k

r3
k

r3
k−1 − r3

k
. . .
rk

k
nk−1 − rk−1 − rk

k

(95)

r1
k r2

k r3
k r4

k . . . rk
k nk − rk

with rk = ∑k
i=1 ri

k = rank(Ak), and Λi
k ∈ Cri

k×ri
k (i = 1, 2, . . . , k) are diagonal with positive diagonal elements.

It is easy to see that there exists an elementary column transformation that turns Λk

given in (95) into the matrix Λ′k consisting of only zero and identity matrix blocks. So, under
the hypotheses of Theorem 65, there exist nonsingular matrices U1 ∈ Cn0×n0 , V′k ∈ Cnk×nk ,
and Xj ∈ Cnj×nj (j = 1, . . . , k− 1) such that

U∗1 A1X1 = Λ1, Z1 A2X2 = Λ2, . . . , Zi−1 AiXi = Λi, . . . , Zk−1 AkV′k = Λ′k. (96)

In this case, Λ1, . . . , Λk−1, and Λ′k only have zero and identity blocks.
Following the idea analogous to that in (96), He (Lemma 2.1, [263]) considered the

pure product singular value decomposition (PSVD) for four quaternion matrices, i.e.,
A1

I A2

I A3

I A4

,
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where A1 ∈ Hq1×q2 , A2 ∈ Hq2×q3 , A3 ∈ Hq3×q4 , and A4 ∈ Hq4×q5 . Using the PSVD, He
further investigated the system of generalized Sylvester matrix equations over H:

X1 A1 − B1X2 = C1,

X2 A2 − B2X3 = C2,

X3 A3 − B3X4 = C3,

X4 A4 − B4X5 = C4,

where X1, X2, . . . , X5 are unknown (see Theorems 4.1 and 4.2, [263]).
Inspired by He’s aforementioned work, since the GSVD of an arbitrary number k of

matrices has been established, can we then consider a system of k generalized Sylvester
equations? That is to say, consider

X1 A1 − B1X2 = C1,

X2 A2 − B2X3 = C2,
...

Xk Ak − BkXk+1 = Ck,

(97)

where k ∈ Z+, and X1, X2, . . . , Xk+1 are unknown.
To answer this question, let us first take a look at the work of He et al. in [31]. In terms

of Theorem 65, He et al. in Theorem 2.2 of [31] gave the simultaneous decomposition of
fifteen matrices over C, i.e.,

B1

A1 E1 C1

D1 B2

A2 E2 C2

D2 B3

A3 E3 C3

D3


,

where Ai, Bi, Ci, Di, Ei (i = 1, 2, 3) are given matrices over C with appropriate orders. By
this simultaneous decomposition of fifteen matrices, they further studied the following
system of complex matrix equations:

A1X1B1 + C1X2D1 = E1,

A2X2B2 + C2X3D2 = E2,

A3X3B3 + C3X4D3 = E3,

where X1, . . . , X4 are unknown (see Theorems 3.1 and 3.6, [31]). Interestingly, they also
demonstrated the simultaneous decomposition of 5k matrices by the same means, i.e.,
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

B1

A1 E1 C1

D1 B2

A2 E2 C2

D2
. . .

. . . . . .
Bk

Ak Ek Ck

Dk


,

where k ∈ Z+, and Ai, Bi, Ci, Di, Ei (i = 1, 2, . . . , k) are given matrices over C with appro-
priate orders (see Theorem 4.1, [31]). Next, it is natural to consider the system

A1X1B1 + C1X2D1 = E1,

A2X2B2 + C2X3D2 = E2,
...

AkXkBk + CkXk+1Dk = Ek,

(98)

where X1, X2, . . . , Xk+1 are unknown. Obviously, Problem (97) is a special case of the
system (98). However, only one conjecture on the solvability conditions of the system (98)
was presented, i.e., (Conjecture 4.2, [31]). The conjecture was not officially solved until 2025
(see Corollary 4.4, [34]). Moreover, in Theorem 2.1 of [34], He et al. further investigated

(98) subject to

G1X1 = P1, G2X2 = P2, . . . , Gk+1Xk+1 = Pk+1,

X1H1 = Q1, X2H2 = Q2, . . . , Xk+1Hk+1 = Qk+1,
(99)

where X1, X2, . . . , Xk+1 are unknown. Furthermore, Xie et al. [264] studied the following
system over H: 

A1X1 + Y1B1 + C1Z1D1 + F1Z2G1 = E1,

A2X2 + Y2B2 + C2Z2D2 + F2Z3G2 = E2,

A3X3 + Y3B3 + C3Z3D3 + F3Z4G3 = E3,

(100)

where Xi, Yi, Zi (i = 1, 2, 3), and Z4 are unknown.
Up to this point, we can observe that the systems (99) and (100) encompass most of the

current formal generalizations of Equation (1) without considering differences in number
sets, such as [121,265–271].
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Remark 63. However, there are currently no published studies on the more generalized system
as follows: 

l
∑

j=1
A1,jX1jB1,j + A1,l+1X1,l+1B1,l+1 + A1,l+2X2,l+1B1,l+2 = C1,

l
∑

j=1
A2,jX2,jB2,j + A2,l+1X2,l+1B2,l+1 + A2,l+2X3,l+1B2,l+2 = C2,

...
l

∑
j=1

Ai,jXi,jBi,j + Ai,l+1Xi,l+1Bi,l+1 + Ai,l+2Xi+1,l+1Bi,l+2 = Ci ,

...
l

∑
j=1

Ak,jXk,jBk,j + Ak,l+1Xk,l+1Bk,l+1 + Ak,l+2Xk+1,l+1Bk,l+2 = Ck ,

(101)

subject to

{
Gi,jXi,j = Pi,j, Xi,j Hi,j = Qi,j for 1 ≤ i ≤ k, 1 ≤ j ≤ l + 1,

Gk+1,l+1Xk+1,l+1 = Pk+1,l+1, Xk+1,l+1 Hk+1,l+1 = Qk+1,l+1,

where l, k ∈ Z+, Ai,j, Bi,j, Ci (1 ≤ i ≤ k, 1 ≤ j ≤ l + 2), Gi,j, Pi,j, Hi,j, Qi,j (1 ≤ i ≤ k, 1 ≤ j ≤
l + 1), Gk+1,l+1, Pk+1,l+1, Hk+1,l+1, and Qk+1,l+1 are given, and Xi,j (1 ≤ i ≤ k, 1 ≤ j ≤ l + 1)
and Xk+1,l+1 are unknown. So, this is also an interesting problem.

Remark 64. Through the continuous research on the generalizations of Equation (1), it can be found
that the GSVD gradually becomes ineffective, while the tool of the generalized inverse has always
been an effective method. However, we also find that the generalized inverse theory has little success
in studying the systems of equations that simultaneously couple multiple (≥2) unknown matrices.

For instance, for given matrices A, B, and C, the systemAX−YB = C,

X−Y = 0,
(102)

is consistent if and only if the Sylvester equation

AX− XB = C (103)

is consistent. At present, there are almost no articles that directly represent the general solution of
the Sylvester equation using only the generalized inverses of the coefficient matrices. However, it
can be intuitively observed that, using the Kronecker product, SVD, or STP to discuss the Sylvester
equation is a feasible option.

It is noted that Liu put forward an open problem in [40], that is, to study the equivalent
conditions for the solvability of the system of matrix equations over C:A1X + YB1 = C1,

A2X + YB2 = C2,
(104)

where X and Y are unknown. Clearly, the system (104) is a generalization of both Equation (5) and
the system (102). Later, using the rank equalities, Wang et al. [114] solved this problem over H
under the certain condition, i.e.,

rank
[

A1 A2

]
= rank(A1) + rank(A2) and rank

[
B1

B2

]
= rank(B1) + rank(B2). (105)

This wonderful work is illuminating for completely solving Equation (103) and the system (104) by
using rank equalities or the generalized inverses.
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Theorem 66 (Theorem 2.8, [114]). Let A1, A2 ∈ Hm×p, B1, B2 ∈ Hq×n, and C1, C2 ∈
Hm×n be such that every matrix equation in system (104) is consistent. If (105) holds, then
system (104) is consistent if and only if

rank


B1 0
B2 0
−C1 A1

C2 A2

 = rank

[
A1

A2

]
+ rank

[
B1

B2

]
,

rank

[
A1 A2 −C1 C2

0 0 B1 B2

]
= rank

[
A1 A2

]
+ rank

[
B1 B2

]
,

rank

 0 B1 B2

A1 0 0
A2 0 F

 = rank

[
A1

A2

]
+ rank

[
B1 B2

]
,

rank

 0 B1 B2

A1 0 0
A2 0 F̂

 = rank

[
A1

A2

]
+ rank

[
B1 B2

]
,

where

F = A1(A(1,2)
2 C2 − A(1,2)

1 C1)

[
B1

−B2

](1,2)[
B1

−B2

]
+ ΩB1,

F̂ = A2(A(1,2)
2 C2 − A(1,2)

1 C1)

[
B1

−B2

](1,2)[
B1

−B2

]
+ ΩB2,

Ω =
[
−A1 A2

][
−A1 A2

](1,2)(
RA2 C2B(1,2)

2 − RA1 C1B(1,2)
1

)
with RA1 = I − A1 A(1,2)

1 .

Remark 65. For more research on Equation (104), please refer to [222,272].

7. Iterative Algorithms
Analytical solutions of GSE over various algebras have been introduced in

Sections 5 and 6. However, in practical applications, challenges such as high compu-
tational complexity, stability, and robustness issues often arise. Therefore, investigating
numerical solutions to GSE is imperative. In this section, we primarily present the relevant
results on the numerical solutions of GSE. First, several iterative algorithms that directly
address the GSE are proposed.

In 1984, Ziętak [96] proposed an algorithm (Algorithm 1) for computing the lp-solution of
Equation (5) over R, using the equivalence between items (1) and (3) of Theorem 17.

Theorem 67. Let {Xt} and {Yt} be generalized by Algorithm 1, and let 1 < p < ∞. Then,
the sequence {Rt = AXt + YtB} is convergent. Moreover, if X̂ ∈ Rr×n and Ŷ ∈ Rm×s satisfy
R̂ = AX̂ + ŶB, where

R̂ = lim
t→∞

Rt,

then X̂ and Ŷ are the lp-solution of Equation (5).

Remark 66. When p = 2, Ziętak (Theorem 3.3, [96]) showed that the iterative process in
Algorithm 1 ends after two iterations for any arbitrary initial matrix Y0, i.e., matrices X1 and
Y1 are the l2-solution of Equation (5).
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Algorithm 1 Algorithm [96] for the lp-solution of Equation (5) over R

Require: Given matrices A ∈ Rm×r, B ∈ Rs×n, and C ∈ Rm×n; Initial matrices: Y0 ∈ Rm×s;
Ensure: Sequences: {Xt ∈ Rr×n} and {Yt ∈ Rm×s};

1: for t = 1, 2, . . . do
2: for j = 1, 2, . . . , n do
3: Let cj and bj be j-th columns of C and B, respectively;

4: Solve the lp-solution x(t)j of the linear system Ax = cj −Yt−1bj;

5: Set the j-th column of Xt as x(t)j ;
6: end for
7: for i = 1, 2, . . . , m do
8: Let di and ai be the i-th columns of CT and AT , respectively;
9: Solve the lp-solution y(t)i of the linear system BTy = di − XT

t ai;

10: Set the i-th column of YT
t as y(t)i ;

11: end for
12: Compute γ2t−1 = ∥AXt + Yt−1B− C∥p;
13: Compute γ2t = ∥AXt + YtB− C∥p;
14: if the sequence {γt} is not decreasing then
15: Break
16: end if
17: end for

In 1985, analogous to Algorithm R [273] for a nonlinear matrix equation, Ziętak [95]
devised Algorithm T (Algorithm 2). Based on this algorithm, Ziętak [95] further discussed
the Chebyshev solution of Equation (5) under the conditions (29) and (28).

Algorithm 2 Algorithm T [95] for the Chebyshev Solution of Equation (5) over R

Require: Matrices A ∈ Rm×r, B ∈ Rs×n, and C ∈ Rm×n; Initial matrices X0 ∈ Rr×n and
Y0 ∈ Rm×s; Tolerance ϵ > 0 (for termination criterion);

Ensure: Convergent sequences: {Xk ∈ Rr×n} and {Yk ∈ Rm×s};
1: Initial residual matrix: R0 = AX0 + Y0B− C;
2: Initial residual norm: γ0 = ∥R0∥∞;
3: Set iteration index: k← 0;
4: Termination criterion: |γ2k+1 − γ2k| < ϵ;
5: while Termination criterion not satisfied do
6: R2k = AXk + YkB− C;
7: γ2k = ∥R2k∥∞;
8: for j = 1 to n do
9: Extract the j-th column of R2k: r(2k)

j ;

10: Solve the Chebyshev solution h(k)j of Ah = −r(2k)
j ;

11: Set the j-th column of Xk+1 as x(k+1)
j = x(k)j + h(k)j ;

12: end for
13: R2k+1 = AXk+1 + YkB− C;
14: γ2k+1 = ∥R2k+1∥∞;
15: for i = 1 to m do
16: Extract the i-th column of RT

2k+1: s(2k+1)
i ;

17: Solve the Chebyshev solution g(k)i of BT g = −s(2k+1)
i ;

18: Set the i-th column of YT
k+1 as y(k+1)

i = y(k)i + g(k)i ;
19: end for
20: k← k + 1
21: end while
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Remark 67. From Algorithm 2, it follows that x(k+1)
j are the Chebyshev solutions of

Ax = cj −Ykbj (j = 1, . . . , n)

and y(k+1)
i are the Chebyshev solutions of

BTy = di − XT
k+1ai (i = 1, . . . , m),

where cj, bj, di, and ai are the columns of C, B, CT and AT , respectively. Moreover, one can derive
that the sequence {γl} given by Algorithm 2 is convergent.

Theorem 68 (Theorems 5.2 and 5.3, [95]). Let A, B, and C be given in Equation (5).

(1) Suppose that (29) is satisfied. If
Z∗ = AX∗ + Y∗B

is a cluster point of the sequence {Z2k} generated by Algorithm 2, then X∗ and Y∗ are a
Chebyshev solution of Equation (5)

(2) Suppose that (28) is satisfied and matrix A satisfies Haar’s condition, i.e., det(Ai) ̸= 0 for
i = 1, . . . , m, where Ai is the matrix obtained from A by deletion of the i-th row. Then, the
matrices X1 and Y1 generated by Algorithm 2 are the Chebyshev solution of Equation (5) for
arbitrary initial matrices X0 and Y0.

In 2008, using Kronecker products, Yang and Huang [274] derived the normwise
backward errors of the approximate solutions of Equation (5) over R, as well as their upper
and lower bounds.

Definition 18 ([275]). Let A ∈ Rm×m, B ∈ Rn×n, and C ∈ Rm×n, and let X̃, Ỹ ∈ Rm×n be a
numerical solution of Equation (5). Put

η =
{
(∆A, ∆B, ∆C) | (A + ∆A)X̃ + Ỹ(B + ∆B) = C + ∆C

}
and η(X̃, Ỹ) = min

(∆A,∆B,∆C)∈η

∥∥∥∥[ 1
θ1

∆A,
1
θ2

∆B,
1
θ3

∆C
]∥∥∥∥

F
,

where θ1, θ2, θ3 > 0 are parameters. Then, η(X̃, Ỹ) is referred to as the relative backward error if
θ1 = ∥A∥F, θ2 = ∥B∥F, θ3 = ∥C∥F; it is termed the absolute backward error if θ1 = θ2 = θ3 = 1.

Theorem 69 (Theorem 1, [274]). Under the hypotheses Definition 18, let

R = C− AX̃− ỸB and T =
[
θ1(X̃T ⊗ Im), θ2(In ⊗ Ỹ),−θ3(In ⊗ Im)

]
.

Then
∥R∥F√

nθ2
3 + θ2

1∥X̃∥2
F + θ2

2∥Ỹ∥2
F

≤ η(X̃, Ỹ) = ∥T†Vec(R)∥2 ≤
∥R∥F√

θ2
3 + θ2

1λn
(
X̃T X̃

)
+ θ2

1λm
(
ỸỸT

) ,

where Vec(·) denotes the column-wise vectorization of a matrix, and λn(·) denotes the largest
eigenvalue of a n× n positive semidefinite matrix.

In 2011, Li et al. [276] extended the classical conjugate gradient least-squares algorithm
(abbreviated as CGLSA) to compute the optimal solution of Equation (5) over R with
symmetric pattern constraints, i.e., consider

min
X∈SRm×m ,Y∈SRn×n

∥AX + YB− C∥F, (106)
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where A, B, C ∈ Rn×m, and SRm×m denotes the set of all m×m real symmetric matrices.

Theorem 70 (Theorems 1 and 2, [276]). Let A, B, C ∈ Rn×m.

(1) For any arbitrary initial matrices X(0) ∈ SRm×m and Y(0) ∈ SRn×n, the matrix sequence
{X(k)} and {Y(k)} generated by Algorithm 3 will converge to a solution of Problem (106)
with finitely many steps in exact arithmetic.

(2) Let

S =

{
[X, Y]

∣∣∣∣∣X =
1
2
(AT H + HT A) and Y =

1
2
(HBT + BHT)

}

for arbitrary H ∈ Rn×m. If [X(0), Y(0)] ∈ S, then by Algorithm 3 we can obtain the unique
least norm solution of Problem (106).

Remark 68. Under the conditions of Theorem 70, if matrix pair [X, Y] ∈ S is a solution of Prob-
lem (106), then it is the unique least norm solution. Additionally, Li et al. (Theorem 3, [276]) character-
ized the minimization property of Algorithm 3, which ensures that the algorithm converges smoothly.

The classic alternating direction method (abbreviated as ADM) is an extension of
the augmented Lagrangian multiplier method [277]. In 2017, inspired by [278], Ke and
Ma [279] applied ADM to solve the nonnegative solutions of Equation (5) over R, i.e.,

find X(≥ 0) ∈ Rs×n and Y(≥ 0) ∈ Rm×l s.t. AX + YB = C,

where A ∈ Rm×s, B ∈ Rl×n, and C ∈ Rm×n. Note that Problem (107) is equivalent to the
following quadratic programming problem:

min
X∈Rs×n ,Y∈Rm×l

1
2
∥AX + YB− C∥2

F s.t. X ≥ 0 and Y ≥ 0,

which is further equivalent to

min
X,U∈Rs×n ,Y,V∈Rm×l

1
2
∥AX + YB− C∥2

F s.t. X = U, Y = V, U ≥ 0, and V ≥ 0. (107)

For A = (aij) ∈ Rm×n, let P+(A) = [bij] ∈ Rm×n, where bij = max{0, aij}.

Definition 19 ([279]). A point (X, Y, U, V) satisfies the KKT conditions for Problem (107), i.e.,
there exist the matrices Λ and Π such that

AT(AX + YB− C) + Λ = 0, (AX + YB− C)BT + Π = 0, X−U = 0,

Y−V = 0, Λ ≤ 0 ≤ U, Λ⊙U = 0, Π ≤ 0 ≤ V, Π⊙V = 0,

where ⊙ denotes the component-wise multiplication.

Theorem 71 (Theorem 4.1 and Corollary 4.1, [279]). Let the sequence {Wk = (Xk, Yk, Uk, Vk, Λk,
Πk)} be generated by Algorithm 4.

(1) Suppose that {Wk} satisfies

lim
k→∞

(Wk+1 −Wk) = 0.

Then, any accumulation point (X, Y, U, V, Λ, Π) of {Wk} satisfies the KKT conditions for
Problem (107).

(2) If {Wk} converges, then it converges to a KKT point of Problem (107).
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Algorithm 3 Extended CGLSA [276] for the real symmetric solution of Equation (5)

Require: Given matrices: A, B, C ∈ Rn×m; Initial matrices: X(0) ∈ SRm×m and Y(0) ∈
SRn×n; Tolerance ϵ > 0 (for termination criterion);

Ensure: The symmetric solution: X(k) and Y(k);
1: The initial residual matrix: R0 = C− AX(0) −Y(0)B;
2: P0,1 = 1

2 (AT R0 + RT
0 A) and P0,2 = 1

2 (R0BT + BRT
0 );

3: Q0,1 = P0,1 and Q0,2 = P0,2;
4: M0 = AQ0,1 + Q0,2B;
5: Set iteration index: k = 0;
6: while ∥Pk,1∥2

F + ∥Pk,2∥2
F > ϵ do

7: Update iteration index: k← k + 1
8: Mk = AQk,1 + Qk,2B

9: αk =
∥Pk,1∥2

F+∥Pk,2∥2
F

∥Mk∥2
F

10: Update solution matrices: X(k+1) = X(k) + αkQk,1 and Y(k+1) = Y(k) + αkQk,2;
11: Rk+1 = Rk − αk Mk;
12: Pk+1,1 = Pk,1 − αk

2 (AT Mk + MT
k A) and Pk+1,2 = Pk,2 − αk

2 (MkBT + BMT
k );

13: βk =
∥Pk+1,1∥2

F+∥Pk+1,2∥2
F

∥Pk,1∥2
F+∥Pk,2∥2

F
;

14: Qk+1,1 = Pk+1,1 + βkQk,1 and Qk+1,2 = Pk+1,2 + βkQk,2;
15: end while
16: Output the final solution: X(k+1) and Y(k+1).

Algorithm 4 ADM [279] for the nonnegative solution of Equation (5) over R

Require: Given matrices: A ∈ Rm×r, B ∈ Rs×n, and C ∈ Rm×n; Initial matrices:
Y0, U0, V0, Λ0, Π0 = 0; Penalty parameters: α, β > 0; γ ∈ (0, 1.618); Tolerance ϵ > 0;

Ensure: The nonnegative solution: X(k+1) and Y(k+1);
1: Set iteration index: k = 0;
2: while k < maxiter do
3: Xk+1 = (AT A + αI)−1(ATC + αUk − ATYkB−Λk);
4: Yk+1 = (CBT + βVk − AXk+1BT −Πk)(BBT + βI)−1;
5: Uk+1 = P+(Xk+1 +

1
α Λk);

6: Vk+1 = P+(Yk+1 +
1
β Πk);

7: Λk+1 = Λk + γα(Xk+1 −Uk+1);
8: Πk+1 = Πk + γβ(Yk+1 −Vk+1);
9: if ∥AXk+1 + Yk+1B− C∥F ≤ ϵ and Xk+1, Yk+1 ≥ 0 then

10: Output Xk+1, Yk+1 and return
11: end if
12: k← k + 1;
13: end while

We observe that GSE has numerous generalizations, as discussed in Section 6. Conse-
quently, the iterative algorithms for these generalized forms specialize to the corresponding
results of GSE as special cases. Next, for convenience, we present the key algorithms
related to these generalizations in an enumerated form.

(I) In 2006, Peng et al. [280] showed an efficient iterative algorithm for solving the
following matrix equation over R:

AXB + CYD = E, (108)

where X and Y are unknown. They noted that the algorithm can also be used to
construct symmetric, antisymmetric, and bisymmetric solutions of (108) with only
minor changes.
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(II) The condition number is an important topic in numerical analysis, characterizing
the worst-case sensitivity of problems to input data perturbations. A large condition
number indicates an ill-posed problem. Consider the following matrix equation:AX−YB = C,

DX−YE = F,
(109)

where X and Y are unknown.

(i) In 1996, Kågström and Poromaa [281] presented LAPACK-style algorithms
and software for solving Equation (109) over C.

(ii) In 2007, Lin and Wei [282] studied the perturbation analysis for Equation (109)
over R, explicitly deriving the expressions and upper bounds for normwise,
mixed, and componentwise condition numbers.

(iii) In 2013, Diao et al. [283] developed the small sample statistical condition
estimation algorithm to evaluate the normwise, mixed, and componentwise
condition numbers of Equation (109) over R. In [283], they also investigated
the effective condition number for Equation (109) and derived sharp pertur-
bation bounds using this condition number.

(III) In 2008, Dehghan and Hajarian [284] proposed an iterative algorithm to solve the
reflexive solutions of Equation (109) over R.

(IV) In 2010, Dehghan and Hajarian [285] presented an iterative algorithm for solving
the generalized bisymmetric solutions of the generalized coupled Sylvester matrix
equation over R: AXB + CYD = M,

EXF + GYH = N,
(110)

where X and Y are unknown generalized bisymmetric matrices.
(V) In 2012, inspired by the least-squares QR-factorization algorithm in [286], Li and

Huang [287] proposed an iterative method to find the best approximate solution
of Equation (110) over R, where unknown matrices X and Y are constrained to be
symmetric, generalized bisymmetric, or (R, S)-symmetric.

(VI) In 2018, inspired by [288,289], Lv and Ma (Section 3, [290]) proposed a parametric
iterative algorithm for Equation (109) over R. Moreover, in (Section 4, [290]), they
developed an accelerated iterative algorithm based on this parametric approach.
Note that Ref. [289] is a monograph on iterative algorithms for the constrained
solutions of matrix equations.

(VII) Interestingly, in 2024, Ma et al. [291] proposed a Newton-type splitting iterative
method for the coupled Sylvester-like absolute value equation R:A1XB1 + C1|Y|D1 = E1,

A2YB2 + C2|X|D2 = E2,

where X and Y are unknown. Here, |A|means that each component of a matrix A is
absolute-valued.

(VIII) The algorithms in [292–294] suffer from parameter tuning challenges, particularly for
large-scale problems. To address this limitation, in 2025, Shirilord and Dehghan [295]
recently proposed an advanced gradient descent-based parameter-free method to
solve Equation (109) over R.
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In the final part of this section, we further enumerate some iterative algorithms for
solving the generalizations of GSE, which involve an arbitrary number of unknown (or
coefficient) matrices.

(A) In 2005–2006, using the hierarchical identification principle, Ding and Chen [293,294]
presented a large family of iterative methods for the more general form of Equation (5)
over R, i.e.,

Ai,1X1Bi,1 + Ai,2X2Bi,2 + . . . + Ai,pXpBi,p = Ci, i = 1, 2, . . . , p, (111)

where X1, X2, . . . , Xp are unknown. These iterative methods subsume the well-known
Jacobi and Gauss–Seidel iterations. Subsequent scholars have conducted more exten-
sive research on numerical algorithms for Equation (111).

(a) In 2010, based on the conjugate gradient method, Dehghan and Hajarian [296]
constructed an iterative method for Equation (111) over R with the generalized
bisymmetric solutions (X1, X2, . . . , Xp).

(b) In 2012, Dehghan and Hajarian [297] introduced two iterative methods for
solving (111) over R with the generalized centro-symmetric and central anti-
symmetric solutions (X1, X2, . . . , Xp).

(c) In 2014, Hajarian [298] solved Equation (111) over C by the matrix form of the
conjugate gradients squared method.

(d) In 2016, Hajarian [299] presented the generalized conjugate direction algorithm
for computing Equation (111) with the symmetric solutions (X1, X2, . . . , Xp).

(e) In 2017, based on the Hestenes–Stiefel version of the biconjugate residual (BCR)
algorithm, Hajarian [300] solved the generalized Sylvester matrix equation

f

∑
i=1

(AiXBi) +
g

∑
j=1

(CjYDj) = E

over R with the generalized reflexive solutions (X, Y). In 2018, Lv and Ma [301]
introduced another Hestenes–Stiefel version of BCR method for computing the
centrosymmetric or anti-centrosymmetric solutions of Equation (111) over R.

(f) In 2018, inspired by [302], Sheng [292] proposed a relaxed gradient-based
iterative (abbreviated as RGI) algorithm to solve Equation (109), and further
generalized this algorithm to Equation (111). Moreover, numerical examples
in [292] demonstrate that the RGI algorithm outperforms the iterative algo-
rithm in [294] in terms of speed, elapsed time, and iterative steps.

(g) In 2018, Hajarian [303] extended the Lanczos version of BCR algorithm to find
the symmetric solutions (X, Y, Z) of the matrix equation over R:

AiXBi + CiYDi + EiZFi = Gi, i = 1, 2, . . . , t.

In 2020, Yan and Ma [304] also used the Lanczos version of BCR algorithm to
study Equation (111) over R with the (anti-)reflexive solutions (X1, X2, . . . , Xp).

(B) In 2009, from an optimization perspective, Zhou et al. [305] developed a novel iterative
method for solving Equation (111) over R and its more general form, i.e.,

si,1

∑
j=1

Ai,1,jX1Bi,1,j +
si,2

∑
j=1

Ai,2,jX2Bi,2,j + . . . +
si,p

∑
j=1

Ai,p,jXpBi,p,j = Ci, i = 1, 2, . . . , p

with unknown X1, X2, . . . , Xp, which contains iterative methods in [293,294] as special
cases. In 2015, by extending the generalized product biconjugate gradient algorithms,
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Hajarian gave [306] four effective matrix algorithms for the coupled matrix equation
over R:

l

∑
j=1

(
Ai,1,jX1Bi,1,j + Ai,2,jX2Bi,2,j + . . . + Ai,l,jXl Bi,l,j

)
= Di, i = 1, 2, . . . , l,

where X1, X2, . . . , Xl are unknown.
(C) In 2011, Wu et al. [307] constructed an iterative algorithm to solve the coupled

Sylvester-conjugate matrix equation over C:

p

∑
j=1

(
AijXjBij + CijX jDij

)
= Fi, i = 1, 2, . . . , n,

where X1, X2, . . . , Xp are unknown. In 2021, inspired by [307], Yan and Ma [308]
proposed an iterative algorithm for the generalized Hamiltonian solutions of the
generalized coupled Sylvester-conjugate matrix equations over C:

q

∑
j=1

(
AijXjBij + CijY jDij

)
= Mi,

q

∑
j=1

(
EijYjFij + GijX j Hij

)
= Ni,

where i = 1, . . . , p, and Xj and Yj (j = 1, . . . , q) are unknown generalized Hamilto-
nian matrices.

(D) In 2015, inspired by [309,310], Hajarian [311] obtained an iterative method for the
coupled Sylvester-transpose matrix equations over R:

l

∑
k=1

(
A1,kXB1,k + C1,kXT D1,k + E1,kYF1,k

)
= M1,

l

∑
k=1

(
A2,kXB2,k + C2,kXT D2,k + E2,kYF2,k

)
= M2

with unknown X and Y, by developing the biconjugate A-orthogonal residual and the
conjugate A-orthogonal residual squared methods. Based on this developed method,
Hajarian [311] also considered the coupled periodic Sylvester matrix equations
over R: A1,jXjB1,j + C1,jXj+1D1,j + E1,jYjF1,j = M1,j,

A2,jXjB2,j + C2,jXj+1D2,j + E2,jYjF2,j = M2,j,
for j = 1, 2, . . . ,

where Xj and Yj are unknown periodic matrices with a period.
(E) Discrete-time periodic matrix equations are an important tool for analyzing and

designing periodic systems [312]. More related studies are as follows:

(a) In 2017, Hajarian [313] introduced a generalized conjugate direction method for
solving the general coupled Sylvester discrete-time periodic matrix equations
over R:

m

∑
j=1

(
AijXiBij + CijXi+1Dij + EijYiFij + GijYi+1Hij

)
= Mi, i = 1, 2, . . . ,

m

∑
j=1

(
ÂijXi B̂ij + ĈijXi+1D̂ij + ÊijYi F̂ij + ĜijYi+1Ĥij

)
= M̂i, i = 1, 2, . . . ,
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where Xi and Yi are unknown periodic matrices with a period.
(b) In 2022, Ma and Yan [314] proposed a modified conjugate gradient algo-

rithm for solving the general discrete-time periodic Sylvester matrix equations
over R:

h

∑
j=1

(
AijXiBij + CijXi+1Dij + EijYiFij + GijYi+1Hij

)
= Mi, i = 1, 2, . . . , T,

where Xi and Yi are unknown periodic matrices of period T.

(F) Interestingly, in 2014, Dehghani-Madiseh and Dehghan [315] presented the general-
ized interval Gauss–Seidel iteration method for the outer estimation of the AE-solution
set of the interval generalized Sylvester matrix equation over R:

p

∑
i=1

AiXi +
q

∑
j=1

YjBj = C,

where Xi (i = 1, . . . , p) and Yj (j = 1, . . . , q) are unknown interval matrices.
(G) In 2018, Hajarian [316] established the biconjugate residual algorithm for solving the

matrix equation over R:

s

∑
i=1

AiXBi +
t

∑
j=1

CjYDj = M,

where X and Y are the unknown generalized reflexive and anti-reflexive matrices,
respectively.

(H) In 2022, based on Kronecker product approximations, Li et al. [317] established a
preconditioned modified conjugate residual method for solving the following tensor
equation over R:

X1 ×1 A11 +X2 ×2 A12 + . . . +Xn−1 ×n−1 A1(n−1) +Xn ×n A1n = B1,

X2 ×1 A21 +X3 ×2 A22 + . . . +Xn ×n−1 A2(n−1) +X1 ×n A2n = B2,
...

...
...

Xn ×1 An1 +X1 ×2 An2 + . . . +Xn−2 ×n−1 An(n−1) +Xn−1 ×n Ann = Bn,

where X1, . . . ,Xn are unknown. Here, A×k B denotes the k-mode product [182] of a
tensor A ∈ RI1×I2×···×In and a matrix B ∈ Rm×Ik .

Remark 69. We believe that the iterative algorithms for numerical solutions of GSE and its
generalizations summarized in this section can also provide certain inspiration and guidance for the
study of numerical solutions to other linear equations.

8. Applications to GSE
In this section, we mainly introduce several applications of GSE in both theoretical and

practical problems. It is also worth noting that the generalizations of GSE find applications
in pole and eigenstructure assignment [318], scalar functional observer design [319], robots
and acoustic source localization [320], pseudo-differential system [321], control theory [249],
parametric control [322], model reference tracking control [323], etc.
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8.1. Theoretical Applications
8.1.1. Solvability of Matrix Equations

In 1988, Wimmer [223] utilized the solvability condition of the polynomial matrix
form of Equation (1) (i.e., Theorem 55) to give a necessary and sufficient condition for the
consistency of the matrix equation over a field F:

X− AXB = C, (112)

where A ∈ Fp×p, B ∈ Fq×q, and C ∈ Fp×q.

Theorem 72 (Theorem 2, [223]). Equation (112) has a solution X ∈ Fp×q if and only if there
exist nonsingular matrices S, R ∈ F(p+q)×(p+q) such that

S

(
λ

[
I 0
0 B

]
+

[
A C
0 I

])
R =

(
λ

[
I 0
0 B

]
+

[
A 0
0 I

])
.

Remark 70. The core of the proof of Theorem 72 is that

(112) ⇔

X− AY = C,

Y = XB,
⇔ (A + λI)Y− X(I + λB) = −C.

Furthermore, using a special polynomial matrix form of Equation (5), Huang and
Liu [237] considered the solvability condition for the matrix equation

k

∑
i=0

AiXBi = C (113)

with unknown X over a ring with identity.

Theorem 73 (Theorems 1 and 2, [237]). Let F be a ring with identity, and let A ∈ Fn×n,
Bi ∈ Fm×q (i = 0, 1, . . . , k), and C ∈ Fn×q. Denote

B(λ) =
k

∑
i=0

Biλ
i ∈ Fm×q[λ].

(1) Then, Equation (113) is solvable if and only if the polynomial matrix equation

(λI − A)X(λ) + Y(λ)B(λ) = C

has a solution pair X(λ) ∈ Fn×q[λ] and Y(λ) ∈ Fn×m[λ].
(2) Suppose that F is a division ring and A is algebraic (or F is a finitely generated as module

over its center). Then, Equation (113) is solvable if and only if[
λI − A −C

0 B(λ)

]
and

[
λI − A 0

O B(λ)

]

are equivalent.

Remark 71.

(1) Theorem 73 remains valid when F is a finite dimensional central simple algebra over a field
(see Theorems 3 and 4, [235]).
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(2) In Corollaries 1–3 of [237], Huang and Liu indicated that relevant results regarding the
solvability of the equations AX− XB = C, X− AXB = C, and AXB = C can be directly
derived by Theorem 73.

8.1.2. UTV Decomposition of Dual Matrices

In 2024, Xu et al. [324] presented the UTV decomposition of dual complex matrices
based on the solvability conditions and general solution representations of Equation (1)
over C (i.e., Theorem 3).

For as, ai ∈ C, a = as + aiε represents a dual complex number, where ε is the dual unit
given in (60). The set of all dual complex numbers is denoted by DC. For A = As + Aiε ∈
DCn×p, A has unitary columns if n ≥ p and A∗A = In, where A∗ = A∗s + A∗i ε is the
conjugate transpose of A. For A = As + Aiε ∈ DCn×n, A is unitary if A∗A = AA∗ = In; A
is diagonal if both As and Ai are diagonal; and A is nonsingular if AA−1 = A−1 A = In for
some A−1 ∈ DCn×n.

We say that A = As + Aiε ∈ DCm×n has the UTV decomposition [324] if

A = UTV∗, (114)

where U = Us + Uiε ∈ DCm×k has unitary columns, T = Ts ∈ Ck×k is triangular and
nonsingular, and V = Vs + Viε ∈ DCn×k has a unitary standard part Vs.

Theorem 74 (Theorem 3.1, [324]). Let A = As + Aiε ∈ DCm×n. Assume that the UTV
decomposition of As is given by

As = UsTsV∗s ,

where both Us ∈ Cm×k and Vs ∈ Cn×k have unitary columns, and Ts ∈ Ck×k is triangular and
nonsingular. Then, the UTV decomposition of A exists if and only if

(Im −UsU∗s )Ai(In −VsV∗s ) = 0,

in which case,

Ui = (Im −UsU∗s )AiVsT−1
s + UsP and Vi = A∗i Us(T−1

s )∗ −VsT∗s P∗(T−1
s )∗,

where P ∈ Ck×k is arbitrary skew-Hermitian matrix.

Remark 72. The proof of Theorem 3.1 in [324] shows that the pivotal step in proving Theorem 74
is that A has UTV decomposition if and only if the matrix equation

UiTsV∗s + UsTsV∗i = Ai

is consistent for unknown Ui ∈ DCm×k and Vi ∈ DCn×k.

8.1.3. Microlocal Triangularization of Pseudo-Differential Systems

In 2013, using the solvability of Equation (1) over C, Kiran [321] constructed a recursive
scheme to factorize a pseudo-differential system into lower and upper triangular systems
(LU factorization) independent of lower order terms.

Let OPS0
N(Ω) be the set of all N × N pseudo-differential systems of order 0 defined

on an open subset Ω of Rn. In addition, the notation and terminology in this subsection
follow that in [325,326].
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Definition 20 (Definition 2.2, [321]). A matrix valued operator A ∈ OPS0
N(Ω) admits LU

factorization if
A = LU,

where L ∈ OPS0
N(Ω) is an elliptic lower triangular matrix whose principal symbol has the identity

on the diagonal entries, and U ∈ OPS0
N(Ω) is an upper triangular matrix.

Theorem 75 (Theorem 2.3, [321]). Let λ1(x, ξ), . . . , λN(x, ξ) be N sections of eigenvalues of
the principal symbol of A ∈ OPS0

N(Ω), including multiplicities, in a conic neighborhood Γ of
(x0, ξ0) ∈ T∗Ω \ {0}. If

λ−1
i (0) ∩ λ−1

j (0) ∩ Γ = ∅, i ̸= j,

then A is microlocally triangularizable in Γ independent of lower order terms. Moreover, the system
admits LU factorization independent of lower order terms in Γ if and only if the principal symbol of
A admits an LU factorization where the first N − 1 eigenvalues of the upper triangular matrix do
not vanish in Γ.

Remark 73.

(1) In Sections 3.3 and 3.4 of [321], Kiran showed that the triangularization scheme in Theorem 75
can also be applied to symbolic hierarchies.

(2) Lemma 2.5 of [321] shows that Equation (1) over C has a unique solution X if and only if A
or B is nonsingular. However, there is a simple counterexample to its sufficiency. Indeed, if
both A and B are identity matrices (and thus nonsingular), the solution X of Equation (1) is
obviously not unique for a given C. For instance, take X = C and Y = 0, or X = 2C and
Y = C. This minor error, however, does not affect the existence of solutions to Equation (1).

8.2. Practical Applications
8.2.1. Calibration Problems

The late 1970s to early 1980s witnessed a surge of interest in deploying robotic manip-
ulators for automated manufacturing. However, integrating robots as core components in
flexible manufacturing systems remained challenging across many industrial applications,
prompting extensive research into the manipulator calibration [327].

Inspired by [328,329], Zhuang et al. [330] first solved a specialized form of
Equation (1) to address a robot calibration problem: the calibration of the robot/world
(i.e., the BASE transformation) and tool/flange (i.e., the TOOL transformation). As a
matter of fact, robot manipulator calibration refers to the procedure of enhancing a robot
manipulator’s accuracy by adjusting its control software.

Figure 1 provides a schematic illustration of the geometry of a robotic cell. The
world coordinate frame serves as an external reference frame. The base coordinate frame
is defined within the robot structure. The flange coordinate frame is defined on the
mounting surface of the robot end effector. The tool frame is positioned at a point inside the
end effector.
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Figure 1. Geometry of a robotic system.

Then, the robot kinematic model can be transformed into the following form:

AX = YB, (115)

where

(i) A is the known homogeneous transformation from end effector pose measurements,
(ii) B is derived from the calibrated manipulator internal-link forward kinematics;
(iii) X is the unknown transformation from the tool frame to the flange frame;
(iv) Y is the unknown transformation from the world frame to the base frame.

Assume that there are n pose measurements for i = 1, 2, . . . n. Thus, the calibration problem
is reduced to solving the system of equations

AiX = YiB, i = 1, 2, . . . n.

Subsequently, Zhuang et al. elaborated on the solution of Equation (115) using the rotational
properties of quaternions in Section 3 of [330].

Subsequently, the robot manipulator calibration problem is further optimized by con-
sidering Equation (115) through different approaches: dual quaternion method [331–335],
new hybrid calibration method [336], least-squares approach [337], Kronecker product
method [338], 3D position measurements [339], nonlinear optimization and evolution-
ary computation [340], 2D positional features [341], dual Lie algebra [342], symbolic
method [343], linear matrix inequality and semi-definite programming optimization [344],
probabilistic framework [345], transference principle [346], etc.

8.2.2. Encryption and Decryption Schemes for Color Images

The RGB (red, green, blue) color channels can be directly mapped to the imaginary
parts (i, j, k) of a pure imaginary quaternion matrix. Naturally, a dual quaternion matrix can
represent two color images since both its standard and infinitesimal parts are quaternion
matrices. By solving Equation (1) over DH (i.e., Theorem 43), Xie et al. (Section 4, [159])
proposed the encryption and decryption schemes for color images, as shown in Figure 2.
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Figure 2. Encrypting and decrypting color images.

The specific encryption and decryption processes for color images are presented in
Algorithms 5 and 6, respectively. To ensure the uniqueness of the decrypted color images
(X̂0, X̂1) output by Algorithmic 6, the encryption dual quaternion matrices A and B must
be restricted to satisfy Condition P, i.e., both the standard parts and the infinitesimal parts
of A and B are of either full row rank or full column rank.

Algorithm 5 Color image encryption scheme

1: Input: two original color images X0 and X1, two color images Y0 and Y1 as keys, and
two encryption dual quaternion matrices A and B satisfying Condition P;

2: Output: two encrypted color images C0 and C1 by

A(X0 + X1ε)− (Y0 + Y1ε)B = C0 + C1ε.

Algorithm 6 Color image decryption scheme

1: Input: the encryption matrices A and B, the keys Y0 and Y1, and the encrypted color
images C0 and C1 from Algorithm 5.

2: Output: two decrypted color images X̂0 and X̂1 by (61) and (62) in Theorem 43.

As illustrated in Figure 3, Xie et al. [159] selected two color images (i.e., Bike 1 and
Bike 2) as the objects to be encrypted, and another two color images (i.e., Sunflower and
Big-Windmill) as the keys. They first encrypted Bike 1 and Bike 2 using Algorithm 5,
obtaining the two encrypted color images (see Figure 4). Subsequently, Algorithm 6 was
applied to decrypt the encrypted images, resulting in the two decrypted color images (see
Figure 5). Moreover, the structural similarity index measures (SSIM) of both decrypted
images are shown in Table 2, which fully demonstrates the high effectiveness of their
decryption scheme.

Table 2. SSIM values for the decrypted color images.

Color Image SSIM

Bike 1 0.99

Bike 2 0.99
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Figure 3. Two original color images and keys.

Figure 4. Two encrypted color images (generated by Algorithm 5).

Figure 5. Two decrypted color images (generated by Algorithm 6).

Remark 74. Recently, research on encrypting and decrypting color images and color videos by
solving matrix or tensor equations has attracted attention in [203,204,347].

9. Conclusions
Research on GSE and its generalizations has long been a vibrant field, boasting both

profound theoretical value and extensive practical application prospects. This compre-
hensive review encompasses 75 theorems, 74 remarks, and 347 references spanning from
1844 to 2025, covering pure mathematics (linear algebra, abstract algebra, operators, ten-
sors, semi-tensor products, polynomial matrices, etc.), computational mathematics (it-
erative algorithms, condition numbers, etc.), and applied mathematics (robotics, image
processing, encryption/decryption schemes, etc.). Centered on solving GSE, this paper
elaborates on five dimensions—methods, constraints, generalizations, algorithms, and
applications—distilling the field’s essence through point-by-point analysis and synthesis.
A network diagram (i.e., Figure 6) intuitively illustrates the GSE research’s core framework.
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Figure 6. Core framework of GSE research.

As shown in Figure 6, let us start with “AX−YB = C (GSE)” in the red box, which is
the core research object of the entire paper. The orange boxes show the various generaliza-
tions of GSE in different mathematical fields, which greatly enriches the relevant research.
Then, looking down, the red box “SOLUTIONS” represents the main problem discussed
in GSE and its generalizations, that is, the problem of solving equations, which is the core
of the entire research. The green box on the right imposes the relevant constraint on the
solution of the equation due to the demand for special matrices or specific conditions in
practical applications. Further down, the purple box is a further elaboration on solving the
equation: first, discuss the solvability conditions of the relevant equation; in the solvable
case, study the representation of its analytical solution (explicit solution); in the unsolvable
case, consider the analytical solution of its best approximation solution (minimum-norm
least squares solution); finally, when the relevant analytical solution cannot be obtained, or
when constrained by factors such as computational complexity, it is necessary to further
study the numerical solution of related problems by designing iterative algorithms and
continuously enhance computational efficiency. The blue box on the left contains various
methods for tackling related solving problems, and also different approaches that can be
chosen to solve the same problem. The gray box at the bottom is the purpose or end-point of
all previous theoretical research, that is, to serve applications, which includes two aspects:
theoretical applications and practical applications.

In the narrative of this paper, we have provided detailed introductions, in the form of
remarks, to several interesting problems worthy of further exploration. For the convenience
of readers, we have hereby compiled Table 3 to briefly summarize these problems.
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Table 3. Open problems for further research on GSE.

Number Remark Number Open Problem

1 Remarks 15 and 16 Cramer’s rule for GSE only through coefficient matri-
ces (partially solved)

2 Remark 18 Solving GSE under STP (or MM-2 STP)

3 Remark 22
Solving the GSE via L-representation, C-
representation, LC -representation, and vectorization
properties of STP, respectively,

4 Remark 35
Discussing RET from a single common prop-
erty of Euclidean domains and unit regular rings
(partially solved)

5 Remark 43
Research on the fundamental properties and applica-
tions of combinations of different types of quaternions
and dual numbers

6 Remark 47 Investigating GSE tensor equations under different
tensor products and quaternion algebras.

7 Remark 60 (4) Exploring converse problems for Lemmas 11 and 12 of [241]

8 Remark 63 Solving the restricted system (101)

9 Remark 64 Solving the system (104) (partially solved)

Numerous researchers worldwide have made significant contributions to GSE-related
studies. Owing to the authors’ limitations, we have not been able to cover all GSE research
findings, and there may inevitably be inadequacies. We offer our apologies here. Moreover,
as GSE research advances rapidly with continuous innovations, this paper’s framework
and content will grow increasingly rich and substantial as developments unfold. Finally,
we kindly request experts and readers to offer their valuable insights, assisting us in further
refining the summarization work in this field.

Author Contributions: Conceptualization, Q.-W.W. and J.G.; Methodology, Q.-W.W. and J.G.; Investi-
gation, Q.-W.W. and J.G.; Writing—Original Draft Preparation, Q.-W.W. and J.G.; Writing—Review
and Editing, Q.-W.W. and J.G.; Supervision, Q.-W.W.; Funding Acquisition, Q.-W.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number [12371023].

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: The authors sincerely appreciate the editor and the anonymous reviewers for
their insightful comments and valuable suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sylvester, J.J. Sur l’équation en matrices px = xq. C. R. Acad. Sci. Paris 1884, 99, 67–71, 115–116. (In French)
2. Bhatia, R.; Rosenthal, P. How and why to solve the operator equation AX− XB = Y. Bull. Lond. Math. Soc. 1997, 29, 1–21.
3. Wang, Q.W.; Xie, L.M.; Gao, Z.H. A survey on solving the matrix equation AXB = C with applications. Mathematics 2025, 13, 450.

[CrossRef]
4. Wang, Q.W.; Gao, Z.H.; Gao, J. A comprehensive review on solving the system of equations AX = C and XB = D. Symmetry

2025, 17, 625.
5. Wang, Q.W.; Gao, Z.H.; Li, Y.F. An overview of methods for solving the system of matrix equations A1XB1 = C1 and A2XB2 = C2.

Symmetry 2025, 17, 1307. [CrossRef]
6. Roth, W.E. The equations AX−YB = C and AX− XB = C in matrices. Proc. Am. Math. Soc. 1952, 3, 392–396.

http://doi.org/10.3390/math13030450
http://dx.doi.org/10.3390/sym17081307


Symmetry 2025, 17, 1686 92 of 102

7. Rodman, L. Topics in Quaternion Linear Algebra; Princeton University Press: Princeton, NJ, USA, 2014.
8. Horn, R.A.; Zhang, F. A generalization of the complex Autonne-Takagi factorization to quaternion matrices. Linear Multilinear

Algebra 2012, 60, 1239–1244. [CrossRef]
9. Penrose, R. A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [CrossRef]
10. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications, 2nd ed.; Springer: New York, NY, USA, 2003.
11. Flanders, H.; Wimmer, H.K. On the matrix equations AX− XB = C and AX−YB = C. SIAM J. Appl. Math. 1977, 32, 707–710.
12. Dmytryshyn, A.; Kågström, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl.

2015, 36, 580–593. [CrossRef]
13. Dmytryshyn, A.; Futorny, V.; Klymchuk, T.; Sergeichuk, V.V. Generalization of Roth’s solvability criteria to systems of matrix

equations. Linear Algebra Appl. 2017, 527, 294–302. [CrossRef]
14. Rao, C.R.; Mitra, S.K. Generalized Inverse of Matrices and Its Applications; Wiley: New York, NY, USA, 1971.
15. Wang, G.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Springer: Singapore, 2018.
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