
Academic Editors: Sergei Odintsov,

Marek T. Malinowski, Hsien‑

Chung Wu, Ziye Zhang and

Rongrong Yu

Received: 28 August 2025

Revised: 22 September 2025

Accepted: 24 September 2025

Published: 5 October 2025

Citation: Orbay, K.; Orbay, M.;

Sezgin, A. An Exhaustive Analysis of

the OR‑Product of Soft Sets: A

Symmetry Perspective. Symmetry

2025, 17, 1661. https://doi.org/

10.3390/sym17101661

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

An Exhaustive Analysis of the OR‑Product of Soft Sets: A
Symmetry Perspective
Keziban Orbay 1,*, Metin Orbay 2 and Aslıhan Sezgin 1

1 Department of Mathematics and Science Education, Faculty of Education, Amasya University,
05100 Amasya, Türkiye; aslihan.sezgin@amasya.edu.tr

2 Department of Mathematics, Polatlı Faculty of Arts and Science, Ankara Hacı Bayram Veli University,
06900 Ankara, Türkiye; metin.orbay@hbv.edu.tr

* Correspondence: keziban.orbay@amasya.edu.tr

Abstract

This paper provides a theoretical investigation of the OR‑product (∨‑product) in soft set
theory, an operation of central importance for handling uncertainty in decision‑making.
A comprehensive algebraic analysis is carried out with respect to various types of subsets
and equalities, with particular emphasis onM‑subset andM‑equality, which represent the
strictest forms of subsethood and equality. This framework reveals intrinsic algebraic sym‑
metries, particularly in commutativity, associativity, and idempotency, which enrich the
structural understanding of soft set theory. In addition, certain missing results on OR‑
products in the literature are completed, and our findings are systematically compared
with existing ones, ensuring a more rigorous theoretical framework. A central contribu‑
tion of this study is the demonstration that the collection of all soft sets over a universe,
equipped with a restricted/extended intersection and the OR‑product, forms a commu‑
tative hemiring with identity under soft L‑equality. This structural result situates the OR‑
product within one of themost fundamental algebraic frameworks, connecting soft set the‑
ory with broader areas of algebra. To illustrate its practical relevance, the int‑uni decision‑
making method on the OR‑product is applied to a pilot recruitment case, showing how
theoretical insights can support fair and transparent multi‑criteria decision‑making under
uncertainty. From an applied perspective, these findings embody a form of symmetry
in decision‑making, ensuring fairness and balanced evaluation among multiple decision‑
makers. By bridging abstract algebraic development with concrete decision‑making ap‑
plications, the results affirm the dual significance of the OR‑product—strengthening the
theoretical framework of soft set theory while also providing a viable methodology for
applied decision‑making contexts.

Keywords: soft set; OR‑product; soft subsets; soft equal relations; hemiring

1. Introduction
Most of the problems encountered in everyday life are vague rather than precise. In

recent years, scientists and engineers have shown increasing interest in modeling vague‑
ness, as many problems in economics, engineering, environmental science, social science,
and medicine involve data containing various forms of uncertainty. To address such chal‑
lenges, several theoretical frameworks have been developed, including Probability Theory,
Fuzzy Set Theory [1], Intuitionistic Fuzzy Set Theory, Vague Set Theory, Interval Mathe‑
matics, and Rough Set Theory. Molodtsov [2] observed in 1999 that these frameworks have
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inherent limitations. He further noted that these limitationsmay arise from the inadequacy
of the parameterization tools employed in these theories.

In this context, Molodtsov’s Soft Set (SS) Theory ismarkedly distinct from these other
approaches. Because it imposes no restrictions on approximate descriptions, SS is highly
useful, broadly applicable, and adaptable. FollowingMaji et al. [3], who applied SS theory
to a decision‑making problem, the theory has been extensively employed in addressing
real‑life decision‑making problems involving uncertainty [4–19]. Since then, SS theory
and its various extensions have attracted considerable attention and have been widely and
effectively applied to decision‑making problems [19–33].

Research on SS theory has progressed along two main directions: its application
to real‑life decision‑making problems and the development of its theoretical foundations.
In this regard, numerous scholars have investigated the principles of SS theory in re‑
cent years. Maji et al. [34] conducted a comprehensive theoretical study of SSs, in‑
cluding soft subsets, soft equality, and SS operations. Pei and Miao [35] redefined cer‑
tain concepts within SS theory, while several fundamental properties were further em‑
phasized in [36–38]. Ali et al. [39] introduced novel operations on SSs. Subsequent
studies [40–54] identified various conceptual misconceptions in the literature and pro‑
posed improved methods to address them. Restricted and extended intersection, union,
and difference—key operations in SS theory—were systematically redefined and stud‑
ied in detail in [55–57], where earlier contributions were integrated, missing results were
completed, and corrected theorems were provided. These works [55–57] significantly ad‑
vanced the theory by filling a critical gap, serving as a valuable resource for newcomers
to the field, and offering insights for future research on SSs. As a result, research on SSs
has substantially expanded in recent years [58–72].

Soft subsets and soft equal relations are fundamental concepts within the framework
of SS theory. Maji et al. [34] introduced a rigorous formulation of soft subsets, which was
later extended by Pei and Miao [35] and Feng et al. [37]. Qin and Hong [73] developed
congruence relations on SSs, thereby enriching the structural foundations of the theory.
Jun and Yang [74] explored a broader class of soft subsets, which we refer to as J‑soft equal
relations, a terminology adopted here for consistency. Building upon this line of research,
Liu et al. [75] provided a concise yet influential note inspired by the innovations of Jun and
Yang. Feng and Li [76] further advanced this work by examining soft subsets in relation
to soft product operations. Unlike the preliminary study in [75], Feng and Li [76] focused
on diverse forms of soft subsets and conducted a detailed algebraic analysis of soft prod‑
uct operations. Their work offered a systematic theoretical treatment of the AND‑product
and OR‑product, filling gaps in the literature and clarifying their algebraic properties with
respect to specific notions of soft subsethood and equality. Additional progress on soft
subsets and equal relations can be found in [77–81]. In particular, Ali et al. [81] introduced
generalized finite relaxed soft equality and generalized finite relaxed unions and intersec‑
tions, thereby providing a more robust and comprehensive framework for generalization.
Complementing these advances, Chen et al. [69] proposed a novel ES‑structure for SSs
based on soft J‑subsets, which resolved deficiencies in earlier structures and yielded an
entirely new algebraic system of SSs with the structure of a distributive lattice.

Çağman and Enginoğlu [8] introduced four distinct types of products in soft set the‑
ory: the AND‑product, OR‑product, AND–NOT‑product, and OR–NOR‑product. They
also proposed uni–int operators and a uni–int decision function for the AND‑product,
thereby formulating a uni–int decision‑making method that reduces a set to its relevant
subset based on the parameters specified by decision‑makers. Feng et al. [10] extended
this approach by introducing newly defined notions and developing several innovative
schemes and algorithms to address soft decision‑making problems more effectively. From
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a different perspective, Sezgin et al. [82] undertook a rigorous theoretical investigation of
the AND‑product (∧‑product), analyzing its complete algebraic properties in relation to
soft F‑subsets and soft M‑equality. Their work not only resolved certain incomplete re‑
sults concerning the AND‑product in the literature but also systematically compared the
newly established properties with previously obtained findings, thereby clarifying and
strengthening the theoretical foundations of soft set theory.

The central objective of this paper is to deliver a systematic and rigorous exploration of
the OR‑product, which has long served as a cornerstone in decision‑making studies, and
to extend its theoretical foundations by demonstrating its applicability to real decision‑
making scenarios, thereby highlighting the dual strength of the contribution in advanc‑
ing both algebraic theory and practical methodology. Although certain algebraic prop‑
erties of the OR‑product have previously been examined in the literature by several re‑
searchers [34,39,48,74–76] in connectionwith various notions of soft subsets and soft equal‑
ities, this paper undertakes a comprehensive investigation of its full range of algebraic
properties, with particular emphasis on M‑subset and M‑equality—the strictest forms of
subsets and equalities—and systematically compares these findings with earlier results.
Furthermore, we establish that the collection of all soft sets over a universe, equipped with
restricted/extended intersection and the OR‑product, constitutes a commutative hemiring
with identity under soft L‑equality by rigorously analyzing the distributive properties of
the OR‑product over selected soft set operations. This structural characterization is not
merely a routine observation; rather, it significantly enriches the algebraic foundations of
soft set theory by embedding theOR‑productwithin one of itsmost central algebraic frame‑
works. To underscore the practical significance of these theoretical advancements, we fur‑
ther employ the int‑uni decision‑making method on the OR‑product in a real‑world pilot
recruitment scenario. In this application, multiple decision‑makers evaluate candidates
against distinct elimination criteria, and the proposed approach ensures a fair, transparent,
andmathematically sound process for narrowing selections under uncertainty. The results
thus reinforce the dual significance of the OR‑product, affirming it as both a mathemati‑
cally rigorous construct and a practically applicable tool, thereby deepening the theoretical
framework of soft set theory while simultaneously extending its relevance to real‑world
decision‑making problems. Moreover, as symmetry underlies many algebraic structures,
examining theOR‑product through a symmetry‑oriented perspective clarifies its structural
and decision‑theoretic relevance.

The remainder of this paper is organized as follows: Section 2 reviews the basic con‑
cepts of SS theory. Section 3 presents a comprehensive study of the OR‑product and its al‑
gebraic properties with respect to various types of soft subsets and equalities while system‑
atically comparing the results with those previously obtained in the literature. Section 4
focuses on the distributive properties of the OR‑product over other SS operations, thereby
revealing the underlying algebraic structures formed by combining the OR‑product with
other fundamental operations. In Section 5, the int‑uni decision‑making method of Çağ‑
man and Enginoğlu [8] is applied to the OR‑product in the context of a pilot recruitment
case study, demonstrating its ability to provide a fair, transparent, and mathematically
rigorous framework for real‑world decision‑making under uncertainty. Finally, Section 6
offers concluding remarks and outlines potential directions for future research.

2. Materials and Methods

Definition 1 ([1]).  Let U be the universal set, E be the parameter set (PS), P(U) be the power set
of  U and Ỻ ⊆ E. A pair (F,  Ỻ) is called a soft set (SS) over U where F is a set‑valued function
such that F : Ỻ → P(U) .
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Henceforth, let SE(U) denote the collections of all the SSs defined over U, SỺ(U) de‑
note the collection of all SSs over U with the fixed PS Ỻ, where Ỻ⊆E. That is, while in
SỺ(U), each soft set has Ỻ as its PS ; whereas in SE(U), the PS may vary.

Definition 2 ([40]).  Let (F,Ỻ) be an SS . (F,Ỻ) is called a relative null SS with respect to the PS
Ỻ, denoted by ∅Ỻ, if  F(σ) = ∅ for all σ ∈Ỻ.(F,  Ỻ) is called a relative whole SS with respect
to the PS Ỻ, denoted by UỺ, if  F(σ) = U for all σ ∈Ỻ. The relative whole SS  UE with respect
to E is called the absolute SS .

We denote by ∅∅ the unique SS with an empty PS , called the empty SS . It should
be noted that ∅∅ and ∅Ỻ are distinct SSs [41]. Unless stated otherwise, we consider SSs
with non‑empty PS in what follows.

Maji et al. [34] first proposed the notion of a soft subset, referred to here as a soft
M‑subset—as defined below.

Definition 3 ([34]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. (Ђ,℣) is called a soft M‑subset of (Q,Ͷ),
denoted by (Ђ, ℣) 

∼
⊆M(Q,Ͷ), if ℣  ⊆Ͷ and Ђ(չ) = Q(չ), for all չ∈℣. (Ђ,℣) and (Q,Ͷ) are said to be

soft M‑equal, denoted by (Ђ,W) =M(Q,Ͷ), if (Ђ,℣) 
∼
⊆M(Q,Ͷ) and (Q,Ͷ) 

∼
⊆M(Ђ,℣).

Definition 4 ([35]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. (Ђ,℣) is called a soft F‑subset of  (Q,Ͷ),
denoted by (Ђ,℣)

∼
⊆F(Q,Ͷ), if ℣  ⊆ Ͷ and Ђ(չ) ⊆ Q(չ), for all չ∈℣. (Ђ,℣) and (Q,Ͷ) are said

to be soft F‑equal, denoted (Ђ,W) =F(Q,Ͷ), if  (Ђ,℣)
∼
⊆F(Q,Ͷ) and (Q,Ͷ)

∼
⊆F(Ђ,℣).

It should be noted that the definitions of a soft F‑subset and soft F‑equality were ini‑
tially introduced by Pei and Miao [36], although several papers incorrectly attribute these
definitions to Feng et al. [37]. For this reason, the notation “F” refers to Feng.

Proposition 1 ([74]).  Let (Ђ,℣) and (L,Ͷ) be SSs. Then, (Ђ,℣) = M (L,Ͷ) if and only if
(Ђ,℣) = F(L,Ͷ).

If two SSs satisfy such soft equivalence, then they are essentially identical, as they
have the same set of parameters and approximate functions [75]. Thus, (Ђ, ℣) = M(L,Ͷ)
means that (Ђ,℣) = (L,Ͷ), where ℣ and Ͷ are fixed subsets of U.

Definition 5 ([74]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. (Ђ,℣) is called a soft J‑subset of (Q,Ͷ),
denoted by (Ђ,℣) 

∼
⊆J(Q,Ͷ), if for all չ∈℣, there exists ն∈ Ͷ such thatЂ(չ) ⊆Q(ն). (Ђ,℣) and (Q,Ͷ)

are said to be soft J‑equal, denoted (Ђ,W) =J(Q,Ͷ), if (Ђ,W) 
∼
⊆J(Q,Ͷ) and (Q,Ͷ) 

∼
⊆J(Ђ,℣).

Proposition 2 ([75,76]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. Then, (Ђ,℣) 
∼
⊆M(Q,Ͷ) ⇒

(Ђ,℣) 
∼
⊆F(Q,Ͷ) ⇒(Ђ,℣) 

∼
⊆J(Q,Ͷ); however, the converse may not be true.

Definition 6 ([75]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. (Ђ,℣) is called a soft L‑subset of (Q,Ͷ),
denoted by (Ђ,℣)

∼
⊆L(Q,Ͷ), if for all չ∈℣, there exists ն∈Ͷ such that Ђ(չ) = Q(ն). (Ђ,℣) and (Q,Ͷ)

are said to be soft L‑equal, denoted (Ђ,℣)=L(Q, Ͷ), if (Ђ, ℣) 
∼
⊆L(Q, Ͷ) and (Q, Ͷ) 

∼
⊆L(Ђ, ℣).

Proposition 3 ([75]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. Then, (Ђ,℣)
∼
⊆M(Q,Ͷ) ⇒

(Ђ,℣) 
∼
⊆L(Q,Ͷ) ⇒ (Ђ,℣) 

∼
⊆J(Q,Ͷ) and (Ђ,℣) =M (Q,Ͷ) ⇒ (Ђ,℣) =L (Q,Ͷ) ⇒ (Ђ,℣) =J

(Q,Ͷ) . However, the converse may be true.
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Remark 1 ([75]).  Soft J‑equality is the weakest among the considered equality relations, while
soft M‑equality (and thus soft F‑equality) is the strongest. The soft L‑equality lies somewhere
in between.

For further discussion on various types of soft equalities, see References [73–81].

Definition 7 ([39]).  Let (Ђ,℣) be an SS . The relative complement of an SS  (Ђ,℣), de‑
noted by (Ђ,℣)r, is defined by (Ђ,℣)r

= (Ђr,℣), where Ђr : ℣→ P(U)  is a mapping given
by (Ђ,℣)r

= U\Ђ(ρ) =
(
Ђ(ρ))′ = Ђ′(ρ)  for all ρ ∈ ℣.

Definition 8 ([34]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. The AND‑product (∧‑product) of the SSs
(Ђ,℣) and (Q,Ͷ) is an SS defined by (Ђ,℣)∧(Q,Ͷ) = (S,℣xͶ), where S(ρ,σ) = Ђ(ρ)∩Q(σ) for all
(ρ,σ)∈℣xͶ.

Definition 9 ([34]).  Let (Ђ,℣) and (Q,Ͷ) be two SSs. The OR‑product (∨‑product) of the SSs
(Ђ,℣) and (Q,Ͷ) is an SS defined by (Ђ,℣)∨(Q,Ͷ) = (S,℣xͶ), where S(ρ,σ) = Ђ(ρ)∪Q(σ) for all
(ρ,σ)∈℣x Ͷ.

Definition 10 ([55]).  Let (Ђ,℣) and (Q,Ͷ) be SSs.  The restricted intersection of  (Ђ,℣) and 
(Q,Ͷ), denoted by (Ђ,℣) ∩R (Q,Ͷ), is defined as (Ђ,℣) ∩R (Q,Ͷ) =(Y,S), where S = ℣ ∩
Ͷ. Here, if  ℣∩Ͷ ̸= ∅, then Y(չ) = Ђ(չ) ∩Q(τ), for all չ ∈ S, and if  ℣∩Ͷ = ∅, then (Ђ,℣)∩R

(Q,Ͷ) = ∅∅.

Definition 11 ([55]).  Let (Ђ,℣) and (Q,Ͷ) be SSs .  The restricted union of  (Ђ,℣) and (Q,Ͷ),
denoted by (Ђ,℣) ∪R (Q,Ͷ), is defined as (Ђ,℣) ∪R (Q,Ͷ) = (Y,S), where S = ℣ ∩ Ͷ. Here,
if  ℣ ∩ Ͷ ̸= ∅, then Y(չ) = Ђ(չ) ∪Q(τ), for all չ ∈ S, and if  ℣ ∩ Ͷ = ∅, then (Ђ,℣) ∩R

(Q,Ͷ) = ∅∅.

Definition 12 ([39]).  Let (Ђ,℣) and (Q,Ͷ) be SSs .  The extended intersection of  (Ђ,℣) and 
(Q,Ͷ) is the SS (Y,S), denoted by (Ђ,℣)∩ε (Q,Ͷ) = (Y, S),where S = ℣∪Ͷ, and for all չ ∈ S,

Y(չ) =


Ђ(չ), չ ∈ ℣\Ͷ
Q(չ), չ ∈ Ͷ\℣

Ђ(չ) ∩ Q(չ), չ ∈ ℣∩Ͷ

Definition 13 ([34]). Let (Ђ,℣)  and (Q,Ͷ) beSSs .  The extended union of  (Ђ,℣)  and (Q,Ͷ) 
is the SS (Y,S), denoted by  (Ђ,℣) ∪ε (Ђ,Ͷ) = (Y, S), where S = ℣∪Ͷ, and for all չ ∈ S,

Y(չ) =


Ђ(չ), չ ∈ ℣\Ͷ
Q(չ), չ ∈ Ͷ\℣

Ђ(չ) ∪ Q(չ), չ ∈ ℣∩Ͷ

Definition 14 ([83]).  Let (Ђ,℣)  and (Q,Ͷ) be SSs .  The soft binary piecewise intersection op‑
eration of  (Ђ,℣)  and (Q,Ͷ) is the SS (Y,℣), denoted by  (Ђ,℣)

∼
∩ (Q,Ͷ ) = (Y,℣), where for

all չ∈℣,

Y(չ) =

{
Ђ(չ), չ ∈ ℣\Ͷ

Ђ(չ) ∩ Q(չ), չ ∈ ℣∩Ͷ
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Definition 15 ([83]).  Let (Ђ,℣)  and (Q,Ͷ) be SSs .  The soft binary piecewise union operation
of  (Ђ,℣)  and (Q,Ͷ) is the SS (Y,℣), denoted by  (Ђ,℣)

∼
∪ (Q,Ͷ ) = (Y,℣), where for all չ∈℣,

Y(չ) =

{
Ђ(չ), չ ∈ ℣\Ͷ

Ђ(չ) ∪ Q(չ), չ ∈ ℣∩Ͷ

3. Results
This section presents a comprehensive investigation of the OR‑product in the con‑

text of algebraic properties, particularly with respect to various types of soft subsets and
equalities—most notably, M‑subsets and M‑equality. Furthermore, the results are com‑
pared with those previously established in the literature [34,39,40,48,75,76]. The following
results can be viewed as algebraic symmetries of the OR‑product, reflecting the balance,
regularity, and harmony of operations within soft set theory.

Proposition 4.  SE(U) is closed under OR‑product. That is, if (Զ,Ỻ) and (Պ ,Ͷ) are two SSs over
U, then their OR‑product (Զ,Ỻ)∧(Պ,Ͷ) is also a SS over U.

Proposition 5.  SỺ(U) is not closed under OR‑product.

Proof.  Let (Զ,Ỻ) and (Պ,Ỻ)∈ SỺ (U). Then, (Զ,Ỻ)∨(Պ,Ỻ)∈ SỺxỺ(U); that is,
(Զ,Ỻ)∨(Պ,Ỻ)/∈ SỺ(U). □

Example 1.  Let E = {ҽ1, ҽ2, ҽ3, ҽ4} be the PS , Ỻ = {ҽ1, ҽ3} be the subset of  E, U =

{ҹ1, ҹ2, ҹ3, ҹ4} be the universal set, and (Զ,Ỻ) and (Պ,Ỻ) be SSs over U such that

(Զ,Ỻ) = {(ҽ1, ∅), (ҽ3, U)}, (Պ,Ỻ) = {(ҽ1, {ҹ3}), (ҽ3, ∅)}

Let (Զ,Ỻ)∨(Պ,Ỻ)= (₴ ,ỺxỺ). Thereby,

(₴ , x) = {((ҽ1, ҽ1), {ҹ3}), ((ҽ1, ҽ3), ∅), ((ҽ3, ҽ1), U), ((ҽ1, ҽ1), U)}

It is observed that (₴,ỺxỺ) ∈SỺxỺ, which implies thatSỺ(U) is not closed under OR‑product.

Note 1. Maji et al. [34] proposed that the associative law holds for the OR‑product as regards soft
M‑equality (and, consequently, soft F‑equality). However, in [39], it was demonstrated that

(Զ,Ỻ) ∨ ((Պ,Ͷ) ∨ (Ք,Ѡ )) ̸=M ((Զ,Ỻ)∨(Պ, Ͷ)) ∨ (Ք,Ѡ )

since, from a set‑theoretic perspective, Ỻ x(Ͷ xѠ)  ̸= (ỺxͶ)xѠ. That is, the associativity fails
under soft M‑equality due to the non‑associativity of the Cartesian product of parameter sets. As
shown in [75], the associative law for the OR‑product holds only in the sense of soft L‑equality,
rather than soft M‑equality.

Proposition 6 ([75]).  (Զ,Ỻ)∨((Պ,Ͷ)∨(Ք,Ѡ)) =L((Զ,Ỻ)∨(Պ,Ͷ))∨(Ք,Ѡ) (Generalized Soft As‑
sociative Laws).

Example 2.  Let E = {ҽ1, ҽ2, ҽ3, ҽ4} be the PS , T = {ҽ2, ҽ3}, W = {ҽ1} and L = {ҽ4} be
the subsets of  E, U = {ҹ1, ҹ2, ҹ3, ҹ4, ҹ5} be the universal set, and (₹, T ), (Ꮼ,W) and (Ϫ,L) be
SSs over U such that
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(₹, T ) = {(ҽ2, {ҹ3, ҹ4}), (ҽ3, {ҹ1})}, (Ꮼ,W) = {(ҽ1, ∅)}, (Ϫ,L) = {(ҽ4, {ҹ1, ҹ3, ҹ5})}

We show that (₹, T ) ∨ [(Ꮼ,W) ∨ (Ϫ,L)] ̸=M [(₹, T ) ∨ (Ꮼ,W)] ∨ (Ϫ,L) and (₹, T ) ∨
[(Ꮼ,W) ∨ (Ϫ,L)] =L [(₹, T ) ∨ (Ꮼ,W)] ∨ (Ϫ,L). Since T x(WxL) ̸= (T xW)xL from a set‑
theoretic point of view (₹, T )∨ [(Ꮼ,W) ∨ (Ϫ,L)] ̸=M [(₹, T ) ∨ (Ꮼ,W)]∨ (Ϫ,L). Let (Ꮼ,W)

∨ (Ϫ,L) = (౮,WxL), then (౮,WxL) = {((ҽ1, ҽ4), {ҹ1, ҹ3, ҹ5}). Let (₹, T )∨ (౮,WxL) =
(X, T x(WxL)). Thus,

(X, T x(WxL)) = {((ҽ2, (ҽ1, ҽ 4)), {ҹ1, ҹ3, ҹ4, ҹ5}), ((ҽ3, (ҽ1, ҽ 4)), {ҹ1, ҹ3, ҹ5})}

Assume that (₹, T ) ∨ (Ꮼ,W) = (₾, T xW). Thereby, (₾, T xW) =

{((ҽ2, ҽ1), {ҹ3, ҹ4}), ((ҽ3, ҽ1), {ҹ1})}. Suppose that (₾, T xW) ∨ (Ϫ,L) = (ლ, (T xW)xL).
Therefore,

(ლ, (T xW)xL) = {(((ҽ2, ҽ1), ҽ4), {ҹ1, ҹ3, ҹ4, ҹ5}), (((ҽ3, ҽ1), ҽ4), {ҹ1, ҹ3, ҹ5})}

It is observed that(X, T x(WxL)) =L (ლ, (T xW)xL).

Note 2.  By Proposition 4 and Proposition 6, it can be deduced that the algebraic structure
(SE(U),∨) forms a semigroup only in the sense of L‑soft equality, not in the sense of M‑soft equality.
Moreover, since the OR‑product is not closed in SỺ(U), it follows from Proposition 5 and Example
1 that the structure (SỺ(U),∨) cannot be a semigroup, even in the sense of the soft L‑equality.

Proposition 7 ([76]).  Let (Զ,Ỻ) and (Պ,Ͷ) be two SSs. Then, (Զ,Ỻ)∨(Պ,Ͷ)=L(Պ,Ͷ)∨(Զ,Ỻ)
(Generalized soft commutative laws).

Proposition 8.  Let (Զ,Ỻ),(Պ,Ỻ) and (Պ,Ͷ) beSSs. Then, (Զ,Ỻ)∨(Պ,Ͷ)  ̸=M(Պ,Ͷ)∨(Զ,Ỻ), more‑
over (Զ,Ỻ)∨(Պ,Ỻ)  ̸=M (Պ,Ỻ)∨(Զ,Ỻ).

Proof.  Since ỺxͶ ̸= ͶxỺ, it is evident that (Զ,Ỻ)∨(Պ,Ͷ) ̸=M(Պ,Ͷ)∨(Զ,Ỻ). Suppose that
(չ,ն)∈ỺxỺ such that չ ̸= ն and let (Զ,Ỻ)∨(Պ,Ỻ) = (H,ỺxỺ), where H(չ,ն) = Զ(չ)∪Պ(ն) for all
(չ,ն)∈ỺxỺ and (Պ,Ỻ)∨(Զ,Ỻ) = (K,ỺxỺ), where K(չ,ն) = Պ(չ)∪Զ(ն) for all (չ,ն)∈ỺxỺ. Since
Զ(չ)∪Պ(ն) is not necessarily equal toՊ(չ)∪Զ(ն), it follows that (Զ,Ỻ)∨(Պ,Ỻ) ̸=M(Պ,Ỻ)∨(Զ,Ỻ).
□

Example 3.  Let E = {ҽ1, ҽ2, ҽ3} be the PS , T = {ҽ1, ҽ2} be the subset of  E, 
U = {ҹ1, ҹ2, ҹ3, ҹ4}  be the universal set, and (₹, T ) and (F, T ) be SSs over U such that

(₹, T ) = {(ҽ1, {ҹ1, ҹ4}), (ҽ2, ∅)}, (F, T ) = {(ҽ1, {ҹ3}), (ҽ2, {ҹ2})}

Let (₹, T ) ∨ (F, T ) = (₾, T xT ). Thereby,

(₾, T xT ) = {((ҽ1, ҽ1), {ҹ1, ҹ3, ҹ4}), ((ҽ1, ҽ2), {ҹ1, ҹ2, ҹ4}), ((ҽ2, ҽ1), {ҹ3}), ((ҽ2, ҽ2), {ҹ2})}

Let (F, T ) ∨ (₹, T ) = (₼, T xT ). Thus,

(₼, T xT ) = {((ҽ1, ҽ1), {ҹ1, ҹ3, ҹ4}), ((ҽ1, ҽ2), {ҹ3}), ((ҽ2, ҽ1), {ҹ1, ҹ2, ҹ4}), ((ҽ2, ҽ2), {ҹ2})}
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It is observed that (₾, T xT ) ̸=M (₼, T xT ), which implies that OR‑product is not commu‑
tative in the sense of M‑equality, and even theSSs involved have the samePSs.

Proposition 9.  Let (Զ,Ỻ) and (Պ,Ͷ) be two SSs. If (Զ,Ỻ)=M(Պ,Ͷ), then (Զ,Ỻ)∨(Պ,Ͷ)=M

(Պ,Ͷ)∨(Զ,Ỻ).

Example 4 illustrates that Proposition 9 cannot be reversed in general, that is,
(Զ,Ỻ)∨(Պ,Ͷ)=M(Պ,Ͷ)∨(Զ,Ỻ) does not imply that (Զ,Ỻ)=M(Պ,Ͷ).

Example 4.  Let E = {ҽ1, ҽ2, ҽ3, ҽ4} be the PS , Ỻ = Ͷ = {ҽ1, ҽ3}  be the subsets of E and U =
{ҹ1, ҹ2, ҹ3, ҹ4, ҹ5} be the universal set. Let (Զ, Ỻ) and (Պ,Ͷ) be SSs defined as follows:

(Զ,Ỻ) = {(ҽ1, {ҹ2, ҹ5}), (ҽ3 , {ҹ2, ҹ5 })}, (Պ,Ͷ) = {( ҽ1 , {ҹ1, ҹ3, ҹ4 }), (ҽ3, {ҹ1, ҹ2, ҹ3, ҹ4)}

Then,

(Զ,Ỻ) ∨ (Պ,Ͷ) =M{(( ҽ1, ҽ1), U ), (( ҽ1, ҽ3), U ), (( ҽ3, ҽ1), U ), (( ҽ3, ҽ3), U)}.

(Պ,Ͷ) ∨ (Զ,Ỻ) =M{(( ҽ1, ҽ1), U ), (( ҽ1, ҽ3), U ), (( ҽ3, ҽ1), U ), (( ҽ3, ҽ3), U)}.

It is observed that (Զ,Ỻ)∨(Պ,Ͷ) =M(Պ,Ͷ)∨(Զ,Ỻ); however, (Զ,Ỻ)  ̸=M(Պ,Ͷ).

Proposition 10 ([76]).  Let (Զ,Ỻ) be an SS . Then, (Զ,Ỻ)∨UͶ =L UͶ ∨ (Զ,Ỻ) =L UͶ.

Note 3.  By Proposition 10, it follows that UͶ commutes with any SS whose PS is Ͷ under OR‑
product as regards soft L‑equality. In addition, UͶserves as the absorbing element of OR‑product
in SỺ(U) as regards L‑equality.

Proposition 11.  Let (Զ,Ỻ) be an SS . Then, (Զ,Ỻ)∨UE =L UE ∨ (Զ,Ỻ) =L UE.

Note 4.  By Proposition 11, we deduce that UEcommutes with any SS under OR‑product,
and UE is the absorbing element for OR‑product in SE(U) as regards L‑equality.

Proposition 12.  Let (Զ,Ỻ) be an SS . Then, (Զ,Ỻ)∨UỺ =M UỺ∨(Զ,Ỻ) =M UỺxỺ.

Proof.  Let UỺ = (S,Ỻ), where S(չ) = U for all չ∈Ỻ. Then, (Զ,Ỻ)∨UỺ =M (Զ,Ỻ)∨(S,Ỻ) =M

(H,ỺxỺ), where H(չ,ն) = Զ(չ)∪S(ω) = Զ(չ) ∪ U = U for all (չ,ն)∈ỺxỺ. Hence, (H,ỺxỺ)
=M UỺxỺ.

Let UỺ∨ (Զ,Ỻ)=M (S,Ỻ)∨(Զ,Ỻ) =M (K,ỺxỺ), where K(չ,ն) = S(չ) ∪ Զ(ն) = U ∪
Զ(ն) = U for all (չ,ն)∈ ỺxỺ. Hence, (K,ỺxỺ) =M UỺxỺ. □

Remark 2.  Proposition 12 demonstrates that, although UỺ commutes with any SS whose PS
is Ỻ under OR‑product as regards soft M‑equality as well; UỺ is not the absorbing element for
OR‑product in SỺ(U) when considered under M‑equality.

Proposition 13.  Let (Զ,Ỻ) and (Պ,Ͷ) be two SSs. If (Զ,Ỻ) = UỺor (Պ,Ͷ) = UͶ, then (Զ,Ỻ)∨
(Պ,Ͷ) needs not be soft M‑equal to (Պ,Ͷ)∨(Զ,Ỻ).
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Proof.  Without loss of generality, let (Պ,Ͷ) =M UͶ. Then, (Զ,Ỻ)∨(Պ,Ͷ)
=M (Զ,Ỻ) ∨ UͶ =M UỺxͶ, (Պ,Ͷ)∨(Զ,Ỻ) =UͶ∨(Զ,Ỻ)=M UͶx. SinceUỺxB ̸=M UͶx, (Զ,Ỻ)

∨ (Պ,Ͷ) ̸=M (Պ,Ͷ) ∨ (Զ,Ỻ) .□

Example 5.  Let E = {ҽ1, ҽ2, ҽ3, ҽ4} be the PS , T = {ҽ2, ҽ4} and W = {ҽ2} be the subsets
of  E, U = {ҹ1, ҹ2, ҹ3, ҹ4} be the universal set, and (₹, T ) and (F,W) be SSs over U such that

(₹, T ) = {(ҽ2, U), (ҽ4, U)} = UT , (F,W) = {(ҽ1, {ҹ3, ҹ4})}

Let (₹, T ) ∨ (F,W) = (₾, T xW), where

(₾, T xW) = {((ҽ2, ҽ1), U), ((ҽ4, ҽ2), U)}

Let (F,W) ∨ (₹, T ) = (ლ,WxT ), where

(ლ,WxT ) = {((ҽ2, ҽ2), U), ((ҽ2, ҽ4), U)}

It is observed that (₾, T xW) =M (ლ,WxT ).

Proposition 14 ([76]).  Let (Զ,Ỻ) be an SS . Then, (Զ,Ỻ)∨∅Ỻ =L ∅Ỻ ∨ (Զ,Ỻ) =L (Զ,Ỻ).

Proposition 15.  Let (Զ,Ỻ) be an SS . Then, (Զ,Ỻ)∨∅E =L ∅E ∨ (Զ,Ỻ) =L(Զ,Ỻ).

Note 5.  Propositions 14 and 15 show that ∅Ỻcommutes with any SS with PS Ỻ under OR‑
product and ∅Ỻis the identity element for OR‑product in SỺ(U) under OR‑product as regards
soft L‑equality. Moreover, ∅Ecommutes with any SS under OR‑product, and ∅Eis the identity
element for OR‑product in SE(U) as regards L‑equality, not M‑equality.

Example 6.  Let E = {ҽ1,ҽ2,ҽ3} be the PS ,Ỻ = {ҽ1,ҽ3} be the subset of E and U = {ҹ1,ҹ2,ҹ3,ҹ4,ҹ5}
be the universal set. Let (Զ,Ỻ) and (Պ,E) be SSs defined as follows:

(Զ,Ỻ) {( ҽ1 , {ҹ1, ҹ3 }), (ҽ3, {ҹ2, ҹ4 })}, (Պ, E) {( ҽ1, ∅ ), ( ҽ2, ∅ ), ( ҽ3, ∅ )} ∅E

Then,

(Զ,Ỻ) ∨ ∅E= {(( ҽ1, ҽ1) , {ҹ1, ҹ3 }), (( ҽ1, ҽ2), {ҹ1, ҹ3} ), (( ҽ1, ҽ3) , {ҹ1, ҹ3 }),
(( ҽ3, ҽ1) , {ҹ2, ҹ4 }), (( ҽ3, ҽ2), {ҹ2, ҹ4} ), (( ҽ3, ҽ3) , {ҹ2, ҹ4}))}

∅E∨(Զ,Ỻ) {(( ҽ1, ҽ1) , {ҹ1, ҹ3 }), (( ҽ1, ҽ3), {ҹ2, ҹ4} ), (( ҽ2, ҽ1) , {ҹ1, ҹ3 }),
(( ҽ2, ҽ3) , {ҹ2, ҹ4 }), (( ҽ3, ҽ1), {ҹ1, ҹ3} ), (( ҽ3, ҽ3) , {ҹ2, ҹ4))}

It is observed that (Զ,Ỻ)∨∅E =L ∅E ∨ (Զ,Ỻ) =L(Զ,Ỻ); however, (Զ,Ỻ)∨∅E ̸=M(Զ,Ỻ)
and ∅E∨(Զ,Ỻ) ̸=M(Զ,Ỻ).

Proposition 16.  Let (Զ,Ỻ) and (Պ,Ỻ) be SSs. If either (Զ,Ỻ) =M ∅Ỻ or (Պ,Ỻ) =M ∅Ỻ, then it
does not necessarily follow that (Զ,Ỻ)∨(Պ,Ỻ) =M(Պ,Ỻ)∨(Զ,Ỻ).

Example 7. Let E = {ҽ1,ҽ2,ҽ3,ҽ4} be thePS ,Ỻ = {ҽ1,ҽ3} be the subset of E andU = {ҹ1,ҹ2,ҹ3,ҹ4,ҹ5}
be the universal set. Let (Զ,Ỻ) and (Պ,Ỻ) be SSs defined as follows:

(Զ,Ỻ) = {( ҽ1, ∅) , (ҽ3, ∅)} = ∅Ỻ, (Պ,Ͷ) = {( ҽ1 , {ҹ1, ҹ4 }), (ҽ3, {ҹ3, ҹ4})}



Symmetry 2025, 17, 1661 10 of 25

Then,

(Զ,Ỻ) ∨ (Պ,Ỻ) = {(( ҽ1, ҽ1), {ҹ1, ҹ4} ), (( ҽ1, ҽ3), {ҹ3, ҹ4 } ), (( ҽ3, ҽ1), {ҹ1, ҹ4} ), (( ҽ3, ҽ3), {ҹ3, ҹ4 })}

(Պ,Ỻ) ∨ (Զ,Ỻ) = {(( ҽ1, ҽ1), {ҹ1, ҹ4} ), (( ҽ1, ҽ3), {ҹ1, ҹ4} ), (( ҽ3, ҽ1), {ҹ3, ҹ4} ), (( ҽ3, ҽ3), {ҹ3, ҹ4})}

It is observed that ∅Ỻ∨(Պ,Ỻ) ̸=M(Պ,Ỻ)∨∅Ỻ.

Proposition 17.  Let (Զ,Ỻ) and (Պ,Ỻ) be SSs. If one of the SSs is ∅Ỻ, then (Զ,Ỻ)∨(Պ,Ỻ) 
=M(Պ,Ỻ)∨(Զ,Ỻ) if and only if the other SS is a constant function (CF), that is, a SS whose
approximate value is the same subset of U for every parameter in Ỻ.

Proof.  Without loss of generality, let (Զ,Ỻ) and (Պ,Ỻ) be SSs such that (Զ,Ỻ) =M∅Ỻ.

Necessity: Let (Զ,Ỻ)∨(Պ,Ỻ) =M(Պ,Ỻ)∨(Զ,Ỻ), that is, ∅Ỻ∨(Պ,Ỻ) =M(Պ,Ỻ)∨∅Ỻ. Sup‑
pose that (չ,ն)∈ỺxỺ such that չ = ն. Then, ∅Ỻ∨(Պ,Ỻ)=M(Պ,Ỻ)∨∅Ỻ implies that ∅∪Պ(ն) =
Պ(չ)∪∅, where չ = ն. We observe thatՊ(չ) =Պ(չ) is already satisfied for all (չ,ն)∈ỺxỺ such
that չ = ն. Thus, the condition holds automatically in this case and provides no constraint
onՊ

Let (չ,ն)∈ỺxỺ such that չ  ̸= ն. Suppose ∅Ỻ∨(Պ,Ỻ) =M(Պ,Ỻ)∨∅Ỻ. Then, by the
definition of the OR‑product, this implies that ∅∪Պ(ն) = Պ(չ)∪∅, which simplifies to Պ(չ)
=Պ(ն). Since this must hold for all for all (չ,ն)∈ỺxỺwith չ  ̸= ն, it follow thatՊ assigns the
same subset of U to every parameter in Ỻ, that is, Պ is an CF.

Sufficiency: Let (Զ,Ỻ) =M∅Ỻ and Պ be an CF. Let (Զ,Ỻ)∨(Պ,Ỻ) =M(H,ỺxỺ), where
H(չ,ն) = Զ(չ)∪Պ(ն) = ∅∪Պ(ն) = Պ(ն) for all (չ,ն)∈ỺxỺ. Let (Պ,Ỻ)∨(Զ,Ỻ) = (W, ỺxỺ), where
W(չ,ն) = Պ(չ)∪Զ(ն) =Պ(չ)∪∅ = Պ(չ), for all (չ,ն)∈ỺxỺ. Since Պ is an CF, it follows that Պ(չ)
= Պ(ն) for all չ, ն ∈ Ỻ. Hence, H(չ,ն) = W(չ,ն) for all (չ,ն)∈ỺxỺ, which implies that (H,
ỺxỺ)=M(W, ỺxỺ). Thus, (Զ,Ỻ)∨(Պ,Ỻ)=M(Պ,Ỻ)∨(Զ,Ỻ). □

Proposition 18.  Let (Զ,Ỻ) be an SS . Then, ∅∅∨(Զ,Ỻ) =M(Զ,Ỻ)∨∅∅ =M ∅∅.

Proof.  Since ∅xỺ = Ỻx∅ = ∅, and ∅∅ is the unique SS with an empty PS , the result
follows immediately. □

Note 6.  Proposition 18 shows that ∅∅commutes with any SS under the OR‑product in SE(U),
and that ∅∅is the absorbing element of OR‑product in SE(U) with respect to soft M‑equality,
soft L‑equality and soft J‑equality. Therefore, combining Propositions 11 and 18, we observe that
both ∅∅and UEare the absorbing elements for OR‑product in SE(U) as regards L‑equality. How‑
ever, it is well‑known that a magma can have at most one absorbing element. That is, within a
binary operation on a set, two distinct absorbing elements cannot coexist. Hence, it is not possible
that for (SE(U),∨) to have two different absorption elements under soft M‑equality. In fact, ∅∅is
the unique absorbing element for the OR‑product in SE(U) in the sense of soft M‑equality.

Corollary 1.  Let (Զ,Ỻ) and (Պ,Ͷ) be SSs. Then, (Զ,Ỻ)∨(Պ,Ͷ)  =M(Պ,Ͷ)∨(Զ,Ỻ) if and only if
Ỻ = Ͷ and Զ(չ)∪Պ(ն) = Պ(չ)∪Զ(ն), for all (չ,ն) ∈ Ỻx Ỻ such that չ  ̸= ն.

Example 8.  Let E = {ҽ1,ҽ2,ҽ3,ҽ4} be the PS ,Ỻ = {ҽ1,ҽ3} be the subset of E and U = {ҹ1 ,ҹ2,ҹ3, ҹ4}
be the universe set. Let (Զ,Ỻ) and (Պ,Ỻ) be the SSs defined as follows:

(Զ,Ỻ) = {( ҽ1,{ҹ1, ҹ2}) , (ҽ3, {ҹ 1, ҹ2, ҹ4})}
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(Պ,Ỻ) = {( ҽ1 , {ҹ1, ҹ4 }), (ҽ3, {ҹ2, ҹ4})}

Then,

(Զ,Ỻ)∨(Պ,Ỻ) = {(( ҽ1, ҽ1), {ҹ1, ҹ2, ҹ4} ), (( ҽ1, ҽ3), {ҹ1, ҹ2, ҹ4} ), (( ҽ3, ҽ1), {ҹ1, ҹ2, ҹ4 ), (( ҽ3, ҽ3), {ҹ1, ҹ2, ҹ4})}

(Պ,Ỻ)∨(Զ,Ỻ) = {(( ҽ1, ҽ1), {ҹ1, ҹ2, ҹ4} ), (( ҽ1, ҽ3), {ҹ1, ҹ2, ҹ 4}), (( ҽ3, ҽ1), {ҹ1, ҹ2, ҹ4} ), (( ҽ3, ҽ3), {ҹ1, ҹ2, ҹ4})}.

It is observed that (Զ,Ỻ)∨(Պ,Ỻ) =M(Պ,Ỻ)∨(Զ,Ỻ), provided that for all չ ̸= ն, the condition
Զ(չ)∪Պ(ն) = Պ(չ)∪Զ(ն) holds.

Proposition 19. Let (Զ,Ỻ) and (Պ,Ͷ) beSSs. (Զ,Ỻ)∨(Պ,Ͷ) =M ∅ỺxB if and only if  (Զ,Ỻ) =M

∅Ỻ and (Պ,Ͷ) =M ∅Ͷ.

Proof.  Necessity: Let (Զ,Ỻ)∨(Պ,Ͷ) =M (Ք,ỺxͶ),whereՔ(չ,ն) =Զ(չ)∪Պ(ն), for all (չ,ն)∈ỺxͶ.
Let ∅ỺxB = M(T,ỺxͶ), where T(չ,ն) = ∅ for all (չ,ն)∈ ỺxͶ. Since, Ք(չ,ն) = T(չ,ն) = Զ(չ)∪Պ(ն)
= ∅, then Զ(չ) = ∅ for all չ∈Ỻ, and Պ(ն) = ∅ for all ն∈ Ͷ. Hence, (Զ,Ỻ) =M ∅Ỻ and
(Պ,Ͷ) =M ∅Ͷ. Sufficiency: It is obvious. □

Proposition 20.  Let (Զ,Ỻ) be a SS . Then, (Զ,Ỻ)∨(Պ,Ͷ) =M ∅∅if and only if  (Զ,Ỻ) =M

∅∅ or (Պ,Ͷ) = ∅∅ .

Proposition 21.  Let (Զ,Ỻ), (Պ,Ͷ), and (Ք,Ѡ) be SSs. If (Զ,Ỻ) 
∼
⊆F(Պ,Ͷ), then (Զ,Ỻ)∨(Ք,Ѡ) 

∼
⊆F(Պ,Ͷ)∨(Ք,Ѡ) and (Ք,Ѡ) ∨(Զ,Ỻ)

∼
⊆F(Ք,Ѡ)∨(Պ, Ͷ).

Proof.  Let (Զ,Ỻ)
∼
⊆F(Պ,Ͷ). Then, Ỻ⊆Ͷ and hence, ỺxѠ⊆ Ͷx Ѡ. Moreover, since (Զ,Ỻ)

∼
⊆F(Պ,Ͷ), then Զ(չ)⊆Պ(չ) for all չ∈Ỻ. Thus, Զ(չ)∪Ք(ն)⊆Պ(չ)∪Ք(ն) for all (τ, ω) ∈ỺxѠ.
Thus, (Զ,Ỻ)∨(Ք,Ѡ)

∼
⊆F(Պ,Ͷ)∨(Ք,Ѡ). The proof of (Ք,Ѡ)∨(Զ,Ỻ)

∼
⊆F(Ք,Ѡ)∨(Պ,Ͷ) is anal‑

ogous and therefore omitted. □

Proposition 22.  Let (Զ,Ỻ), (Պ,Ͷ), and (Ք,Ѡ) be SSs. If (Զ,Ỻ)∨(Ք,Ѡ)
∼
⊆F(Պ,Ͷ)∨(Ք,Ѡ) and

(Ք,Ѡ) ̸=F ∅∅, then (Զ,Ỻ) 
∼
⊆F(Պ,Ͷ).

Proof.  Let (Զ,Ỻ)∨(Ք,Ѡ)
∼
⊆F(Պ,Ͷ)∨(Ք,Ѡ) and (Ք,Ѡ) ̸=F ∅∅.  Then, ỺxѠ⊆ͶxѠ and

Ѡ  ̸= ∅. Hence, Ỻ⊆Ͷ. Let (Զ,Ỻ)∨(Ք,Ѡ) = (Ђ,ỺxѠ), where Ђ(չ,ն) = Զ(չ)∪Ք(ն) and
(Պ,Ͷ)∨(Ք,Ѡ) = (Y,ͶxѠ), where Y(չ,ն) = Պ(չ)∪Ք(ն), for all (չ,ն)∈ ỺxѠ. Since Ỻ⊆Ͷ, չ∈Ỻ
implies that չ∈Ͷ. By assumption, since (Ђ,ỺxѠ)

∼
⊆F(Y,ͶxѠ), then Ђ(չ,ն)⊆Y(չ,ն) for all

(չ,ն)∈ỺxѠ. Thus, Ђ(չ,ն) = Զ(չ)∪Ք (ն) ⊆Պ (չ)∪Ք(ն) = Y(չ,ն), implying that Զ(չ)⊆Պ(չ) for all
չ∈Ỻ. Thus, (Զ,Ỻ)

∼
⊆F(Պ,Ͷ). □

Note 7.  In [69], it was shown that if (Զ,Ỻ), (Պ,Ͷ), (Ք,Ѡ) and (Ђ,D) are SSs such that
(Զ,Ỻ)

∼
⊆J(Պ,Ͷ) and (Ք,Ѡ)

∼
⊆J(Ђ,D), then then it follows that (Զ,Ỻ)∨(Ք,Ѡ)

∼
⊆J(Պ,Ͷ)∨(Ђ,D).

However, Proposition 23 demonstrates that this property also holds in the context of F‑subsets,
which are strictly stronger than J‑subsets. This implies that the distributive behavior of the OR‑
product is preserved under a stricter inclusion relation.

Proposition 23.  Let (Զ,Ỻ), (Պ,Ͷ), (Ք,Ѡ) and (Ђ,D) be SSs. If (Զ,Ỻ)
∼
⊆F(Պ,Ͷ) and

(Ք,Ѡ)
∼
⊆F(Ђ,D), then (Զ,Ỻ)∨(Ք,Ѡ) 

∼
⊆F(Պ,Ͷ)∨(Ђ,D) and (Ք,Ѡ)∨(Զ,Ỻ)

∼
⊆F(Ђ,D)∨(Պ,Ͷ).
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Proof.  Let (Զ,Ỻ)
∼
⊆F(Պ,Ͷ) and (Ք,Ѡ)

∼
⊆F(Ђ,D). Then, Ỻ⊆ Ͷ andѠ⊆ D. Hence, ỺxѠ⊆

ͶxD. By assumption, Զ(չ)⊆Պ(չ) for all չ∈Ỻ and Ք(ն)⊆Ђ(ն) for all ն∈Ѡ. Thus, Զ(չ)∪Ք(ն)
⊆Պ(չ)∪Ք(ն) for all (τ, ն) ∈ ỺxѠ. Thus, (Զ,Ỻ)∨ (Ք,Ѡ)

∼
⊆F(Պ,Ͷ)∨ (Ђ,D). The proof of

(Ք,Ѡ)∨(Զ,Ỻ)
∼
⊆F(Ђ,D)∨(Պ,Ͷ) is analogous and therefore omitted. □

Proposition 24.  Let (Զ,Ỻ), (Պ,Ͷ), (Ք,Ѡ) and (Ђ,D) be SSs. Then, [(Զ,Ỻ)∨(Պ,Ͷ)] ∪R

[ (Ք,Ѡ)∨(Ђ,D)] =M[(Զ,Ỻ)∪R(Ք,Ѡ)]∨[ (Պ,Ͷ) ∪R(Ђ,D)].

Proposition 25.  Let (Զ,Ỻ) and (Պ,Ͷ) be SSs. Then, ∅ỺxB
∼
⊆F(Զ,Ỻ)∨(Պ,Ͷ), ∅ͶxỺ

∼
⊆F(Պ,Ͷ)∨

(Զ,Ỻ), (Զ,Ỻ)∨(Պ,Ͷ) 
∼
⊆FUỺxBand (Պ,Ͷ) ∨(Զ,Ỻ)

∼
⊆F UͶxỺ.

Proposition 26 ([76]).  Let (Զ,Ỻ) be an SS . Then, in general, (Զ,Ỻ)∨(Զ,Ỻ) ̸=J(Զ,Ỻ); although
it holds that (Զ,Ỻ)

∼
⊆L(Զ,Ỻ)∨(Ψ,Ỻ). Moreover, if (Զ,Ỻ) is a sublattice SS , then (Զ,Ỻ)∨(Զ,Ỻ)

=L(Զ,Ỻ).

Note 8.  Proposition 26 demonstrates that the OR‑product is not idempotent with respect to soft
J‑equality. However, under certain conditions, it is idempotent in the sense of soft L‑subset.

Regarding soft M‑equality, we have the following results:

Proposition 27.  Let (Զ,Ỻ) be an SS . Then, (Զ,Ỻ)∨(Զ,Ỻ) ̸=M(Զ,Ỻ).

Proof.  OR‑product is not idempotent under OR‑product as regards soft M‑equality since
ỺxỺ ̸= Ỻ. □

Proposition 28 ([40]). Let (Զ,Ỻ) and (Պ,Ͷ) beSSs. Then, (Զ,Ỻ) ∧ (Պ,Ͷ)r =M(Զ,Ỻ)r ∨(Պ,Ͷ)r.

Note 9.  In [34], it was proposed that the AND‑product distributes over the OR‑product, and vice
versa, with respect to soft M‑equality. However, [39] demonstrated that these assertions do not hold
due to the inequality of the PSs of the SSs on both sides of the distributive laws. Similarly, in [74],
it was suggested that the AND‑product distributes over the OR‑product, and vice versa, with
respect to soft J‑equality; yet counterexamples provided in [75,76] disproved these claims. Finally,
the correct formulations of the soft distributive laws were established as follows:

Proposition 29 ([75,76]).  Let (Զ,Ỻ), (Պ,Ͷ) and (Ք,Ѡ) be SSs. Then,

(i)  (Զ,Ỻ)∧((Պ,Ͷ)∨(Ք,Ѡ))
∼
⊆L((Զ,Ỻ) ∧(Պ,Ͷ))∨((Զ,Ỻ) ∧(Ք,Ѡ)).

(ii)  (Զ,Ỻ)∨((Պ,Ͷ)∧(Ք,Ѡ))
∼
⊆L((Զ,Ỻ)∨(Պ,Ͷ)) ∧((Զ,Ỻ)∨(Ք,Ѡ)).

(iii)  ((Զ,Ỻ)∧(Պ,Ͷ))∨(Ք,Ѡ)
∼
⊆L((Զ,Ỻ)∨(Ք,Ѡ)) ∧(Պ,Ͷ)∨(Ք,Ѡ)).

(iv)  ((Զ,Ỻ)∨(Պ,Ͷ))∧(Ք,Ѡ)
∼
⊆L((Զ,Ỻ) ∧(Ք,Ѡ))∨(Պ,Ͷ) ∧(Ք,Ѡ)).

Proposition 30 ([82]).  Let (Զ,Ỻ) and (Պ,Ͷ) be SSs. Then, (Զ,Ỻ)∧(Պ,Ͷ)
∼
⊆F (Զ,Ỻ)∨(Պ,Ͷ).

Note 10.  In ([82]), it is demonstrated by a counterexample that (Զ,Ỻ)∧(Պ,Ͷ)=M(Զ,Ỻ)∨(Պ,Ͷ)
does not imply (Զ,Ỻ)=M(Պ,Ͷ).

Proposition 31 ([82]).  Let (Զ,Ỻ) and (Պ,Ͷ) be SSs. (Զ,Ỻ)∧(Պ,Ͷ)=M(Զ,Ỻ)∨(Պ,Ͷ) if and only
if Զ and Պ are the same CFs.

Corollary 2 ([82]).  Let (Զ,Ỻ) be an SS . (Զ,Ỻ)∧(Զ,Ỻ)=M(Զ,Ỻ)∨(Զ,Ỻ) if and only if Զ is an CF.
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4. Distributions
In this section, we establish the distributive properties of the OR‑product over the

restricted, extended, and soft binary piecewise operations of SS , respectively.

4.1. Distributions of OR‑Product over Restricted SS Operations

In this subsection, we examine the distributive properties of the OR‑product over re‑
stricted SS operations. It is important to note that in [48], only the left distributive laws of
the OR‑product over restricted SS operations were established, and the condition where
the intersection of the PSs is empty was overlooked. In contrast, here we address the
distributions of the OR‑product over restricted SS operations while explicitly considering
and including these previously omitted cases.

Theorem 1.  Let (Զ,Ỻ),(Պ,Ͷ), and (Ք,Ѡ) be SSs. Then,

(1)  (Զ,Ỻ)∨[(Պ,Ͷ)∪R(Ք,Ѡ)])]=M[(Զ,Ỻ)∨(Պ,Ͷ)]∪R[(Զ,Ỻ)∨(Ք,Ѡ)].

(2)  (Զ,Ỻ)∨[(Պ,Ͷ)∩R(Ք,Ѡ)])]=M[(Զ,Ỻ)∨(Պ,Ͷ)]∩R[(Զ,Ỻ)∨(Ք,Ѡ)].

(3)  [(Զ,Ỻ)∩R(Պ,Ͷ)]∨(Ք,Ѡ))]=M[(Զ,Ỻ)∨H,Ѡ)]∩R[(Պ,Ͷ)∨(Ք,Ѡ)].

(4)  [(Զ,Ỻ)∪R(Պ,Ͷ)]∨(Ք,Ѡ))]=M[(Զ,Ỻ)∨(Ք,Ѡ)]∪R[(Պ,Ͷ)∨(Ք,Ѡ)].

Proof  . (1) The PS of the LHS is Ỻx(Ͷ∩Ѡ), and the PS of the RHS is (ỺxͶ)∩ (ỺxѠ),
where Ỻx(Ͷ∩Ѡ) = (ỺxͶ)∩ (ỺxѠ). Assume that (Պ,Ͷ)∪R (Ք,Ѡ)=M(K, Ͷ∩Ѡ), where
K(ն) = Պ(ն)∪Ք(ն) for all ն∈Ͷ∩Ѡ. Let (Զ,Ỻ)∨(K, Ͷ∩Ѡ)=M(Z,Ỻx(Ͷ∩Ѡ)), where Z(չ,ն) =
Զ(չ)∪K(ն) for all (չ,ն)∈ Ỻx(Ͷ∩Ѡ). Hence, for all (չ,ն)∈ Ỻx(Ͷ∩Ѡ),

Z(չ, ն) = Զ(չ)∪K(ն) = Զ(չ)∪(Պ(ն) ∪Ք(ն))

Let (Զ,Ỻ)∨(Պ,Ͷ)=M(M,ỺxͶ), where M(չ,ն) = Զ(չ)∪Պ(ն) for all (չ,ն)∈ỺxͶ and (Զ,Ỻ)∨
(Ք,Ѡ)=M(N,ỺxѠ), where N(չ,ն) = Զ(չ)∪Ք(ն) for all (չ,ն)∈ỺxѠ. Let (M,ỺxͶ) ∪R(N,ỺxѠ)
=M(Ђ,(ỺxͶ)∪(ỺxѠ)), whereЂ(չ,ն) =M(չ,ն)∪N(չ,ն) for all (չ,ն)∈ (ỺxͶ)∩(ỺxѠ). Thus, for
all (չ,ն)∈ (ỺxͶ)∩(ỺxѠ),

Ђ(չ, ն) = (չ, ն)∪N(չ, ն) = Զ(չ)∪Պ(ն)]∪[Զ(չ) ∪Ք(ն)]

Note that if Ͷ∩Ѡ = ∅, thenỺx(Ͷ∩Ѡ) = (ỺxͶ)∩(ỺxѠ) = ∅, which implies that both
sides equal ∅∅. Therefore, in all cases, Z = Ђ, and the proof is complete.

(3) The PS of the LHS is (Ỻ∩Ͷ)xѠ, the PS of the RHS is (ỺxѠ)∩(ͶxѠ), where
(Ỻ∩Ͷ)xѠ = (ỺxѠ)∩(ͶxѠ). Let (Զ,Ỻ)∩R(Պ,Ͷ)=M(K,Ỻ∩Ͷ), where K(չ) = Զ(չ)∩Պ(չ) for all
չ∈Ỻ∩Ͷ and (K,Ỻ∩Ͷ)∨(Ք,Ѡ)=M(S,(Ỻ∩Ͷ)xѠ), where S(չ,ն) =K(չ)∪Ք(ն) for all (չ,ն)∈(Ỻ∩Ͷ)
xѠ. Hence, for all (չ,ն)∈(Ỻ∩Ͷ)xѠ,

L(չ, ն) = [Զ(չ)∩Պ(չ)]∪Ք(ն) = [Զ(չ)∪Ք(ն)] ∩ [Պ(չ)∪Ք(ն)]

Let (Զ,Ỻ)∨(Ք,Ѡ)=M(M,ỺxѠ),whereM(չ,ն) =Զ(չ)∪Ք(ն) for all (չ,ն)∈ỺxѠ and (Պ,Ͷ)∨
(Ք,Ѡ) = (J, ͶxѠ), where J(չ,ն) = Պ(չ)∪Ք(ն) for all (չ,ն)∈ͶxѠ. Let (M,ỺxѠ)∩R(J, ͶxѠ)
=M(Ђ,(ỺxѠ)∩(ͶxѠ)), where Ђ(չ,ն) = M(չ,ն)∩J(չ,ն) for all (չ,ն)(ỺxѠ)∩(ͶxѠ). Thus, for
all (չ, ն)∈ (ỺxѠ)∩(ͶxѠ),

Ђ(չ, ն) = M(չ, ն)∩J(չ, ն) = [Զ(չ)∪Ք(ն)]∩[Պ(չ) ∪Ք(ն)]
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Note that ifỺ∩Ͷ = ∅, then (Ỻ∩Ͷ)xѠ = (ỺxѠ)∩(ͶxѠ) = ∅, which implies that both
sides equal ∅∅. Thus, in all cases, L = Ђ, and the proof is complete. □

Theorem 2.  (S E(U),∩R,∨) is a commutative hemiring with identity∅E as regards soft L‑equality
(and hence J‑equality).

Proof.  Let (F,Ỻ), (G,Ͷ) ∈ SE(U). It is known that (SE (U),∩R) is a commutative monoid
with identity UE [41,55]. Hence, (SE (U),∩R) is a semigroup. Moreover, (S E(U),∨) is
a semigroup in the sense of soft L‑equality (and therefore also in the sense of soft J‑
equality). The OR‑product distributes over restricted intersection from both sides. There‑
fore, (SE (U),∩R,∨) forms a semiring in the sense of soft L‑equality (and consequently
J‑equality). Since the restricted intersection ∩R is commutative in SE(U), and for any
(F,Ỻ) ∈ SE(U), (F,Ỻ) ∩R UE =M UE ∩R (F,Ỻ) =M (F,Ỻ) [41,55] and (F,Ỻ) ∨ UE =L

UE ∨ (F,Ỻ) =L UE, it follows that UE is the zero element of (SE (U),∩R,∨). Therefore,
(SỺ (U),∩R,∨) is a hemiring as regards soft L‑equality (and hence J‑equality). Addition‑
ally, since (F,Ỻ) ∨ (G,Ͷ) =L (G,Ͷ) ∨ (F,Ỻ) and (F,Ỻ) ∨ ∅E =L ∅E ∨ (F,Ỻ) =L (F,Ỻ),
(SỺ (U),∩R,∨) is a commutative hemiring with identity ∅E as regards soft L‑equality (and
hence J‑equality). □

4.2. Distributions of OR‑Product over Extended SS Operations

In this subsection, we examine the distributions of the OR‑product over extended SS
operations. It is worth noting that in [48], only the left distributive properties of the OR‑
product over extended SS operations were established, and some parts of the proof were
incomplete. In contrast, here we provide a comprehensive treatment of the distributions of
the OR‑product over restricted SS operations, ensuring that no parts of the proof are omit‑
ted.

Theorem 3.  Let (Զ,Ỻ),(Պ,Ͷ), and (Ք,Ѡ) be SSs. Then,

a. (Զ,Ỻ)∨[(Պ,Ͷ)∩ε(Ք,Ѡ)])]=M[(Զ,Ỻ)∨(Պ,Ͷ)]∩ε[(Զ,Ỻ)∨(Ք,Ѡ)] [39].
b. (Զ,Ỻ)∨[(Պ,Ͷ)∪ε(Ք,Ѡ)])]=M[(Զ,Ỻ)∨(Պ,Ͷ)]∪ε[(Զ,Ỻ)∨(Ք,Ѡ)] [39].
c. [(Զ,Ỻ)∪ε(Պ,Ͷ)]∨(Ք,Ѡ))]=M[(Զ,Ỻ)∨(H,Ѡ)]∪ε[(Պ,Ͷ)∨(Ք,Ѡ)].
d. [(Զ,Ỻ)∩ε(Պ,Ͷ)]∨(Ք,Ѡ))]=M[(Զ,Ỻ)∨(Ք,Ѡ)]∩ε[(Պ,Ͷ)∨(Ք,Ѡ)].

Proof.  (a) The PS of the LHS is Ỻx(Ͷ∪Ѡ), the PS of the RHS is (ỺxͶ)∪(ỺxѠ), where
Ỻx(Ͷ∪Ѡ) = (ỺxͶ)∪(ỺxѠ). Let (Պ,Ͷ)∩ε(Ք,Ѡ)=M(M,Ͷ∪Ѡ), where

M(ն) =


Պ(ն), ն ∈ Ͷ\Ѡ
Ք(ն), ն ∈Ѡ\Ͷ

Պ(ն) ∩Ք(ն), ն ∈ Ͷ∩Ѡ

for all ն∈Ͷ∪Ѡ, and let (Զ,Ỻ)∨(M,Ͷ∪Ѡ)=M(S,Ỻx(Ͷ∪Ѡ)), where S(չ,ն) = Զ(չ)∪M(ն) for all
(չ,ն)∈Ỻx(Ͷ∪Ѡ). (Note here that չ∈Ỻ and ն∈Ͷ∪Ѡ). Hence,

S(չ, ն) =


Զ(չ) ∪Պ(ն), (չ, ն) ∈ Ỻx(Ͷ\Ѡ)

Զ(չ) ∪Ք(ն), (չ, ն) ∈ Ỻx(Ѡ\Ͷ)
Զ(չ) ∪ [Պ(ն) ∩Ք(ն)], (չ, ն) ∈ Ỻx(Ͷ∩Ѡ)
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Let (Զ,Ỻ)∨(Պ,Ͷ)=M(K,ỺxͶ), where K(չ,ն) = Զ(չ)∪Պ(ն) for all (չ,ն)∈ỺxͶ and (Զ,Ỻ)∨
(Ք,Ѡ)=M(Ђ,ỺxѠ), where Ђ(չ,ն) = Զ(չ)∪Ք(ն) for all (չ,ն)∈ỺxѠ. Suppose that (K,ỺxͶ) ∩ε

(Ђ,ỺxѠ)=M(Y,(ỺxͶ)∪(ỺxѠ)), where

Y(չ, ն) =


K(չ, ն), (չ, ն) ∈ (ỺxͶ)\(ỺxѠ)

Ђ(չ, ն), (չ, ն) ∈ (ỺxѠ)\(ỺxͶ)
K(չ, ն) ∩Ђ(չ, ն), (չ, ն) ∈ (ỺxͶ) ∩ (ỺxѠ)

for all (չ,ն)∈(ỺxͶ)∪(ỺxѠ). Hence,

Y(չ, ն) =


Զ(չ) ∪Պ(ն), (չ, ն) ∈ (ỺxͶ)\(ỺxѠ)

Զ(չ) ∪Ք(ն), (չ, ն) ∈ (ỺxѠ)\(ỺxͶ)
{Զ(չ) ∪Պ(ն)] ∩ [Զ(չ) ∪Ք(ն)], (չ, ն) ∈ (ỺxͶ) ∩ (ỺxѠ)

Here, if Ͷ =Ѡ = ∅, then Ͷ∪Ѡ = ∅, which implies that both sides are equal ∅∅.
Thus, in all cases, N = Y, and the proof is complete.

(c) The PS of the LHS is (Ỻ∪Ͷ)xѠ, the PS of the RHS is (ỺxѠ)∪(ͶxѠ), where
(Ỻ∪Ͷ)xѠ = (ỺxѠ)∪(ͶxѠ). Let (Զ,Ỻ)∪ε(Պ,Ͷ)=M(M,Ỻ∪Ͷ), where for all չ∈Ỻ∪Ͷ,

M(չ) =


Զ(չ), չ ∈ Ỻ\Ͷ
Պ(չ), չ ∈ Ͷ\Ỻ

Զ(չ) ∪Պ(չ), չ ∈ Ỻ∩Ͷ

Assume that (M,Ỻ∪Ͷ)∨(Ք,Ѡ)=M(S,(Ỻ∪Ͷ)xѠ), where S(չ,ն)=M(չ)∪Ք(ն) for all (չ,ն)∈
(Ỻ∪Ͷ)xѠ. (Here չ∈Ỻ∪Ͷ and ն∈Ѡ). Hence,

S(չ, ն) =


Զ(չ) ∪Ք(ն) , (չ, ն) ∈ (Ỻ\Ͷ)xѠ
Պ(չ) ∪Ք(ն) , (չ, ն) ∈ (Ͷ\Ỻ)xѠ

[Զ(չ) ∪Պ(չ)] ∪Ք(ն), (չ, ն) ∈ (Ỻ∩Ͷ)xѠ

Let (Զ,Ỻ)∨(Ք,Ѡ)=M(K,ỺxѠ), where K(չ,ն) = Զ(չ)∪Ք(ն) for all (չ,ն)∈(ỺxѠ). Let
(Պ,Ͷ)∨(Ք,Ѡ)=M(Ђ,ͶxѠ), where Ђ(չ,ն) = Պ(չ)∪Ք(ն). Assume that (K,ỺxѠ) ∪ε(Ђ,ͶxѠ)
=M(Y,(ỺxѠ)∪(ͶxѠ)), where

Y(չ, ն) =


K(չ, ն), (չ, ն) ∈ (ỺxѠ)\(ͶxѠ)

Ђ(չ, ն), (չ, ն) ∈ (ͶxѠ)\(ỺxѠ)

K(չ, ն) ∪Ђ(չ, ն), (չ, ն) ∈ (ỺxѠ) ∩ (ͶxѠ)

Therefore,

Y(չ, ն) =


Զ(չ) ∪Ք(ն), (չ, ն) ∈ (ỺxѠ)\(ͶxѠ)

Պ(չ) ∪Ք(ն), (չ, ն) ∈ (ͶxѠ)(ỺxѠ)

[Զ(չ) ∪Ք(ն)] ∪ [Պ(չ) ∪Ք(ն)], (չ, ն) ∈ (ỺxѠ) ∩ (ͶxѠ)

Here, ifỺ = Ͷ = ∅, thenỺ∪Ͷ = ∅, which implies that both sides are equal ∅∅. Thus,
in all circumstances, N = Y, and the proof is complete. □

Theorem 4.  (SE(U),∩ε,∨) is a commutative hemiring with identity ∅E as regards soft L‑equality
(and hence J‑equality).

Proof.  Let (F,Ỻ), (G,Ͷ) ∈ SE(U). It is known that (SE(U),∩ε) is a commutative monoid
with identity ∅∅ [41,55]. Hence, (SE(U),∩ε) is a semigroup. Moreover, (SE(U),∨) is a
semigroup in the sense of soft L‑equality (hence J‑equality). The OR‑product distributes
over extended intersection from both sides. Therefore, (SE(U),∩ε,∨) is a semiring. Since
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the extended intersection ∩ε is commutative in SE(U), and for any (F,Ỻ) ∈ SE (U),
(F,Ỻ)∩ε ∅∅ =M ∅∅ ∩ε (F,Ỻ) =M (F,Ỻ) by [41,55] and (F,Ỻ)∨ ∅∅ =M ∅∅ ∨ (F,Ỻ) =M

∅∅, it follows that ∅∅ is the zero element of (SE(U),∩ε,∨). Therefore, (SE(U),∩ε,∨) is a
hemiring as regards soft L‑equality (hence J‑equality). In addition, since (F,Ỻ)∨ (G,Ͷ) =L

(G,Ͷ) ∨ (F,Ỻ) and (F,Ỻ) ∨ ∅E =L ∅E ∨ (F,Ỻ) =L (F,Ỻ), (SE(U),∩ε,∨) forms a commu‑
tative hemiring with identity ∅E as regards soft L‑equality (and hence J‑equality). □

4.3. Distributions of OR‑Product over Soft Binary Piecewise Operation

In this subsection, we investigate the distributions of OR‑product over soft binary
piecewise operations.

Theorem 5.  Let (Զ,Ỻ),(Պ,Ͷ), and (Ք,Ѡ) be SSs. Then,

(1)  (Զ,Ỻ)∨[(Պ,Ͷ)
∼
∩(Ք,Ѡ)]=M[(Զ,Ỻ)∨(Պ,Ͷ)]

∼
∩[(Զ,Ỻ)∨(Ք,Ѡ)].

(2)  (Զ,Ỻ)∨[(Պ,Ͷ)
∼
∪(Ք,Ѡ)]=M[(Զ,Ỻ)∨(Պ,Ͷ)]

∼
∪[(Զ,Ỻ)∨(Ք,Ѡ)].

(3)  [(Զ,Ỻ)
∼
∪(Պ,Ͷ)]∨(Ք,Ѡ)=M[(Զ,Ỻ)∨(Ք,Ѡ)]

∼
∪[(Պ,Ͷ)∨(Ք,Ѡ)].

(4)  [(Զ,Ỻ)
∼
∩(Պ,Ͷ)]∨(Ք,Ѡ)=M[(Զ,Ỻ)∨(Ք,Ѡ)]

∼
∩[(Պ,Ͷ)∨(Ք,Ѡ)].

Proof.  (1) The PS of the SSs of both sides is ỺxͶ. Let (Պ,Ͷ)
∼
∩ (Ք,Ѡ)=M(T,Ͷ), where

T(ն) =

{
Պ(ն), ն ∈ Ͷ\Ѡ

Պ(ն) ∩Ք(ն), ն ∈ Ͷ∩Ѡ

for all ն∈Ͷ. Let (Զ,Ỻ)∨(T,Ͷ)=M(S,ỺxͶ), where S(չ,ն) = Զ(չ)∪T(ն) for all (չ,ն)∈ỺxͶ. Hence,

S(չ, ն) =

{
Զ(չ) ∪Պ(ն), (չ, ն) ∈ Ỻx(Ͷ\Ѡ)

Զ(չ) ∪ [Պ(ն) ∩Ք(ն)], (չ, ն) ∈ Ỻx(Ͷ∩Ѡ)

for all (չ,ն)∈Ỻx Ͷ.
Let (Զ,Ỻ)∨(Պ,Ͷ)=M(K,ỺxͶ), where K(չ,ն) = Զ(չ)∪Պ(ն) for all (չ,ն)∈ỺxͶ, and let

(Զ,Ỻ)∨(Ք,Ѡ)=M(Ђ,ỺxѠ), where Ђ(չ,ն) = Զ(չ)∪Ք(ն) for all (չ,ն)∈ỺxѠ. Assume that
(K,ỺxͶ)

∼
∩(Ђ,ỺxѠ) = (R,(ỺxͶ), where

R(չ, ն) =

{
K(չ, ն), (չ, ն) ∈ (ỺxͶ)\(ỺxѠ)

K(չ, ն) ∩Ђ(չ, ն), (չ, ն) ∈ (ỺxͶ) ∩ (ỺxѠ)

for all (չ,ն)∈ỺxͶ. Hence,

R(չ, ն) =

{
Զ(չ) ∪Պ(ն), (չ, ն) ∈ (ỺxͶ)\(ỺxѠ)

{Զ(չ) ∪Պ(ն)] ∩ [Զ(չ) ∪Ք(ն)], (չ, ն) ∈ (ỺxͶ) ∩ (ỺxѠ)

for all (չ,ն)∈ỺxͶ. Here, ifỺ = Ͷ = ∅, thenỺxͶ = ∅, which implies that both sides equal
∅∅. Thus, in all circumstances, S = R, and the proof is complete.

(3) The PS of the SS of both sides is ỺxѠ. Let (Զ,Ỻ)
∼
∪(Պ,Ͷ)=M(T,Ỻ) where

T(չ) =

{
Զ(չ), չ ∈ Ỻ\Ͷ

Զ(չ) ∪Պ(չ), չ ∈ Ỻ∩Ͷ
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for all չ∈Ỻ. Let (M,Ỻ)∨(Ք,Ѡ) =M (S,(ỺxѠ), where S(չ,ն) = T(չ)∪Ք(ն), for all (չ,ն)∈ỺxѠ.
Hence,

S(չ, ն) =

{
Զ(չ) ∪Ք(ն) , (չ, ն) ∈ (Ỻ\Ͷ)xѠ

[Զ(չ) ∪Պ(չ)] ∪Ք(ն), (չ, ն) ∈ (Ỻ∩Ͷ)xѠ

for all (չ,ն)∈ỺxѠ.
Let (Զ,Ỻ)∨(Ք,Ѡ) =M(K,ỺxѠ), where K(չ,ն) = Զ(չ)∪Ք(ն), for all (չ,ն)∈ỺxѠ and let

(Պ,Ͷ)∨(Ք,Ѡ) =M(Ђ,ͶxѠ), where Ђ(չ,ն) = Պ(չ)∪Ք(ն), for all (չ,ն)∈ỺxѠ. Assume that
(K,ỺxѠ)

∼
∪(Ђ,ͶxѠ) =M(R,ỺxѠ), where

R(չ, ն) =

{
K(չ, ն), (չ, ն) ∈ (ỺxѠ)\(ͶxѠ)

K(չ, ն) ∪Ђ(չ, ն), (չ, ն) ∈ (ỺxѠ) ∩ (ͶxѠ)

for all (չ,ն)∈ỺxѠ. Thus,

R(չ, ն) =

{
Զ(չ) ∪Ք(ն), (չ, ն) ∈ (ỺxѠ)\(ͶxѠ)

[Զ(չ) ∪Ք(ն)] ∪ [Պ(չ) ∪Ք(ն)], (չ, ն) ∈ (ỺxѠ) ∩ (ͶxѠ)

Here, if Ỻ =Ѡ = ∅, then ỺxѠ = ∅, which implies that both sides equal ∅∅. Thus,
in all circumstances, S = R, and the proof is complete. □

Note 11.  Since soft binary piecewise operations are non‑associative operations in SE(U) [83], they
do not form a semigroup in SE(U). Additionally, because the OR‑product is not closed inSỺ(U),
the structure (SỺ(U),V) cannot be a semigroup even under soft L‑equality. Hence, the OR‑
product combined with soft binary piecewise operation cannot form any algebraic structure in either
in SE(U) or in SỺ(U).

5. Int‑uni Decision‑Making Method Applied to OR‑Product
In this section, the int‑uni operator and int‑uni decision function, as defined by Çağ‑

man and Enginoğlu [8], are applied for the OR‑product to develop an int‑uni decision‑
making method.

Throughout this section, all OR‑products of the SSs over U are assumed to be con‑
tained in the setV(U). The approximation function of theOR‑product of (₹, T ) and (F,W),
denoted by ₹T VFW , is defined as follows:

₹T VFW : T xW → P(U),

where ₹T VFW (𝓉,𝓌) = ₹(𝓉) ∪ F(𝓌) for all (𝓉,𝓌) ∈ T xW .

Definition 16 ([8]).  Let (₹, T ) and (F,W) be SS over U . Then, int‑uni operators for OR‑
product, denoted by int𝓉 − uni𝓌 and int𝓌 − uni𝓉 are defined respectively as

int𝓉 − uni𝓌 : V(U) → P(U) ,

int𝓉 − uni𝓌(₹T VFW ) =
∩

𝓉∈T (
∪

𝓌∈W (₹T VFW (𝓉,𝓌)))

int𝓌 − uni𝓉 : V(U) → P(U),

int𝓌 − uni𝓉(₹T VFW ) =
∩

𝓌∈W (
∪

𝓉∈T (₹T VFW (𝓉,𝓌)))
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Definition 17 ([8]).  Let (₹, T )V(F,W) ∈ V(U) . Then, int‑uni decision function for OR‑
product, denoted by int‑uni are defined by

int‑uni : V(U) → P(U),

int‑uni(₹T VFW ) = [int 𝓉 − uni𝓌(₹T VFW )] ∪ [int𝓌 − uni𝓉(₹T VFW )]

The values int‑uni(₹T VFW ), called int‑uni decision set of  ₹T VFW , is a subset of  U.
Assume that a set of parameters and a set of options are given. The int‑uni decision‑

making method, structured as follows, is then employed to select a collection of optimal
options tailored to the problem at hand.

Step 1: Select feasible subsets from the collection of parameters.
Step 2: Construct the soft sets (SSs) corresponding to each selected parameter subset.
Step 3: Compute the OR‑product of the constructed soft sets.
Step 4: Determine the product using the int‑uni decision function.
We are now ready to demonstrate how soft set theory can be applied to the int‑uni

decision‑making problem using the OR‑product.

Example 9.  The pilot recruitment process comprises multiple stages, including interviews, psy‑
chotechnical assessments, simulator evaluations, and medical examinations. Critical parameters in‑
fluencing the overall evaluation include candidates’ English language proficiency, technical knowl‑
edge, competence in mathematics and physics, visual memory, and social skills. To establish a
young and dynamic team of pilots, an airline company has initiated a structured recruitment pro‑
gram. Due to the high volume of applications, the company has implemented a two‑stage evaluation
framework designed to ensure both efficiency and fairness. This process is jointly administered by
Mr. Ahmet from the Human Resources department and Mr. Mehmet, a member of the board
of directors.

Stage One: Candidate Filtering
The primary objective of the first stage is to reduce the candidate pool to a manageable size.

To this end, the company applies the int–uni decision‑making method, a systematic and mathemat‑
ically rigorous approach for filtering applicants. Mr. Ahmet and Mr. Mehmet evaluate candidates
based on their interview performance and examination outcomes, with special attention to eliminat‑
ing those who fail to demonstrate essential qualities necessary for professional pilot training. The
evaluation emphasizes not only overall performance but also specifically targets candidates whose de‑
ficiencies in key parameters make them unsuitable for further consideration. This decision‑making
framework is operationalized through the int–uni method applied to the OR‑product of soft sets,
ensuring consistency, transparency, and analytical rigor in candidate elimination. During this
process, Mr. Ahmet and Mr. Mehmet focus on the parameters they absolutely want to see in candi‑
dates to be eliminated. Using the int‑uni decision‑making method on the OR‑product allows them
to make well‑founded and objective decisions.

Stage Two: Comprehensive Evaluation and Training
Candidates who pass the initial evaluation are invited to participate in a more comprehensive

interview process in the second stage. Those who qualify are then enrolled in an intensive training
program designed to prepare them for the professional responsibilities of aviation. Upon successful
completion of this training, candidates are formally recognized as qualified pilots and integrated
into the company’s professional pilot team.
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Let U = {ծ1, ծ2, . . . , ծ21} denote the universal set of all candidates whose applications have
been validated for the pilot recruitment process. Let the set of parameters for identifying candidates
to be eliminated be

E = {ҩ1, ҩ2, . . . , ҩ8}

 where each parameter ҩi, i = 1, 2, . . . , 8 corresponds to:

ҩ1: “Not confident and self‑disciplined”
ҩ2: “Insufficient mathematical knowledge and creative ability”
ҩ3: “Lacking adequate English speaking proficiency”
ҩ4: “Lacking adequate situational awareness”
ҩ5: “Not having leadership spirit and the ability to work as part of a team”
ҩ6: “Poor ability to understand technical information”
ҩ7: “Unable to remain calm under pressure”
ҩ8: “Having poor communication skills”

To address the pilot selection problem effectively, we apply the int‑uni decision‑making method
based on the OR‑product operation of soft sets. This approach systematically integrates the evalua‑
tions of both decision‑makers, Mr. Ahmet and Mr. Mehmet, considering the parameters they deem
critical for candidate elimination. The method ensures a transparent, rigorous, and fair selection
process by filtering out candidates who lack essential qualifications.

The solution procedure is structured as follows:

Step 1. Determining the sets of parameters

The decision‑makers select the parameters that represent the characteristics they absolutely do
want in the pilot candidates who will be eliminated. These sets are defined as follows:

For Mr. Ahmet (T ): T = {ҩ1, ҩ3, ҩ6}, meaning Mr. Ahmet does not want a pilot who is not
confident and self‑disciplined, who lacks adequate English speaking proficiency, and who has a poor
ability to understand technical information.

For Mr. Mehmet (W) : W = {ҩ2, ҩ5, ҩ7}, meaning Mr. Mehmet does not want a pilot who
has insufficient mathematical knowledge and creative ability, who does not have the leadership spirit
and the ability to work as part of a team, and who is unable to remain calm under pressure.

These parameters represent undesirable qualities that make a pilot unsuitable for selection, and
therefore serve as criteria for their elimination.

Step 2. Constructing the SSs using the PSs defined in Step 1

In the first stage, the decision makers conduct in‑depth interviews with the candidates. Follow‑
ing these interviews, each candidate is systematically evaluated against the predetermined objectives
and constraints, represented by the two designated parameter sets,T  and W .

Mr. Ahmet andMr. Mehmet then construct their respective soft sets (SSs) by identifying and
assessing the specific parameters they consider essential for the elimination of candidates. Based on
the parameter sets defined in Step 1, the decision‑makers build the corresponding soft sets, denoted
by (Ջ, T ) and (б,W), respectively.

(Ջ, T ) = {(ҩ1, {ծ1, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}),
(ҩ3, {ծ1, ծ2, ծ5, ծ7, ծ8, ծ9, ծ12, ծ13, ծ14, ծ15, ծ16, ծ19, ծ20}),
((ҩ6,{ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ14, ծ15, ծ16, ծ18, ծ21})},

(б,W) = {(ҩ2, {ծ2, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20})),
(ҩ5, {ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ20}),

(ҩ7, {ծ1, ծ2, ծ4, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ16, ծ18, ծ19, ծ20)}}.

(Ջ, T ) denotes the soft set constructed by Mr. Ahmet, representing the group of pilot can‑
didates to be eliminated based on the undesirable parameters contained in T . Similarly, (б,W) 
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denotes the soft set constructed by Mr. Mehmet, representing the group of candidates to be elim‑
inated due to undesirable parameters contained in W . It is important to emphasize that, within
this framework, the decision makers’ primary objective is not the direct selection of candidates but
rather their systematic elimination—an approach necessitated by the exceptionally high volume of
applications received.

Step 3. Determine the OR‑product of SSs:

ՋT VՋW ={(
(ҩ1, ҩ2),

{
ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14,

ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21

})
,(

(ҩ1, ҩ5),

{
ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11,

ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21

})
,(

(ҩ1, ҩ7),

{
ծ1, ծ2, ծ4, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13,
ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21

})
,(

(ҩ3, ҩ2),

{
ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11,

ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20

})
,(

(ҩ3, ҩ5),

{
ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12,
ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20

})
,(

(ҩ3, ҩ7),

{
ծ1, ծ2, ծ4, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12,
ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20

})
,(

(ҩ6, ҩ2),

{
ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13,
ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21

})
,(

(ҩ6, ҩ5),

{
ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11,

ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ20, ծ21

})
,(

(ҩ6, ҩ7),

{
ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12,
ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21

})}
,

Step 4. Determine the set of int‑uni (ՋT VбW ):

int𝓉 − uni𝓌(ՋT VбW ) =
∩

𝓉∈T

(∪
𝓌∈W ((ՋT VбW )(𝓉,𝓌))

)
We first determine ∪𝓌∈W ((ՋT VбW )(𝓉,𝓌)):

(ՋT VбW )(ҩ1, ҩ2) ∪ (ՋT VбW )(ҩ1, ҩ5) ∪ (ՋT VбW )(ҩ1, ҩ7)

= {ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∪{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∪{ծ1, ծ2, ծ4, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}

= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}

(ՋT VбW )(ҩ3, ҩ2) ∪ (ՋT VбW )(ҩ3, ҩ5) ∪ (ՋT VбW )(ҩ3, ҩ7)

= {ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20}
∪{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20}

∪{ծ1, ծ2, ծ4, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20}
= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20}

(ՋT VбW )(ҩ6, ҩ2) ∪ (ՋT VбW )(ҩ6, ҩ5) ∪ (ՋT VбW )(ҩ6, ҩ7)

= {ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21}
∪{ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ20, ծ21}

∪{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21}
= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
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Thus,

(int𝓉 − uni𝓌)(ՋT VՋW ) =
∩

𝓉∈T (
∪

𝓌∈W ((ՋT VбW )(𝓉,𝓌))) =

{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∩{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20}

∩{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}

is obtained.

(int𝓌 − uni𝓉)(ՋT VбW ) =
∩

𝓌∈W

(∪
𝓉∈T ((ՋT VбW )(𝓉,𝓌))

)
We first determine 

∪
𝓉∈T ((ՋT VՋбW )(𝓉,𝓌)):

(ՋT VбW )(ҩ1, ҩ2) ∪ (ՋT VбW )(ҩ3, ҩ2) ∪ (ՋT VбW )(ҩ6, ҩ2)

= {ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∪{ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20}
∪{ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21}

= {ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}

(ՋT VбW )(ҩ1, ҩ5) ∪ (ՋT VбW )(ҩ3, ҩ5) ∪ (ՋT VбW )(ҩ6, ҩ5)

= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∪{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20}

∪{ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ14, ծ15, ծ16, ծ17, ծ18, ծ20, ծ21}
= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}

(ՋT VбW )(ҩ1, ҩ7) ∪ (ՋT VбW )(ҩ3, ҩ7) ∪ (ՋT VбW )(ҩ6, ҩ7)

= {ծ1, ծ2, ծ4, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∪{ծ1, ծ2, ծ4, ծ5, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20}

∪{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21}
= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}

is obtained. Therefore,

(int𝓌 − uni𝓉)(ՋT VбW ) =
∩

𝓌∈W (∪𝓉∈T ((ՋT VбW )(𝓉,𝓌))) =

∩{ծ1, ծ2, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∩{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21}
∩{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21}
= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ18, ծ19, ծ20, ծ21}

Thus,

int‑uni(ՋT VбW ) = [int 𝓉 − uni𝓌 (ՋT VбW )] ∪ [int𝓌 − uni𝓉 (ՋT VбW )]

= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
∪{ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}
= {ծ1, ծ2, ծ4, ծ5, ծ6, ծ7, ծ8, ծ9, ծ11, ծ12, ծ13, ծ14, ծ15, ծ16, ծ17, ծ18, ծ19, ծ20, ծ21}

Thus, in the airline company’s pilot recruitment process, out of the 21 candidates, 19 were
eliminated during the first stage. The remaining candidates, {ծ3, ծ10} advanced to the second stage,
where they will undergo a comprehensive training program. Candidates who successfully complete
this programwill be formally admitted to the company’s professional pilot team. The outcome of this
first stage reflects the set of options that simultaneously satisfy the elimination criteria established
by both Mr. Ahmet and Mr. Mehmet.
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By employing the int–uni decision‑making method on the OR‑product, the process system‑
atically integrates the evaluators’ distinct preferences, ensuring that only the candidates meeting
both decision‑makers’ requirements remain. This procedure embodies a symmetry of evaluation,
where decision‑makers participate on equal footing and candidates are judged under balanced and
transparent rules. This methodological framework not only guarantees fairness and transparency in
candidate selection but also demonstrates the practical applicability of algebraic soft set operations
to real‑world decision‑making scenarios. Unlike conventional decision‑making approaches, which
often treat evaluation parameters in a rigid or isolated manner, the proposed framework offers a
mathematically consistent yet flexible tool for handling multi‑criteria decisions under uncertainty.

6. Conclusions
This study delivers the first rigorous and exhaustive algebraic formalization of the

OR‑product, elevating it from a partially explored concept to a cornerstone of soft set the‑
ory with far‑reaching theoretical and practical significance. While previous works focused
on limited aspects of its behavior with respect to specific soft subsets and equalities, our
research systematically establishes its full framework under M‑subset and M‑equality. By
proving that the class of all soft sets over a universe, endowed with a restricted/extended
intersection and the OR‑product, constitutes a commutative hemiring with identity un‑
der soft L‑equality, we uncover a deep algebraic structure that situates the OR‑product
at the core of modern algebra, linking it naturally to automata theory, formal languages,
and algebraic logic. This algebraic formulation highlights intrinsic structural symmetries
that reinforce the central role of the OR‑product within the symmetric architecture of mod‑
ern algebra.

Beyond its theoretical contributions, the integration of the OR‑product with the int–
uni decision‑makingmethod demonstrates its practical utility in real‑world scenarios. In a
pilot recruitment study,multiple decision‑makers applied distinct elimination criteria, and
the proposed framework ensured a transparent, equitable, and mathematically rigorous
selection process under uncertainty. This dual emphasis highlights the OR‑product as
both a mathematically robust construct and a valuable tool for applied decision‑making.

Taken together, these results position the OR‑product at the nexus of abstract algebra
and operational decision science, filling a critical gap in the literature by bridging founda‑
tional mathematics with practical methodology. Beyond bridging theory and practice, our
findings emphasize the dual manifestation of symmetry: algebraic symmetry in formal op‑
erations and decision‑theoretic symmetry in ensuring equitable and transparent outcomes.
Future research may explore the distributive properties of other soft products, their inte‑
grationwithmulti‑criteria andAI‑driven decision frameworks, and their potential synergy
with emerging paradigms such as rough–fuzzy hybrid models and granular computing,
paving the way for both theoretical innovation and real‑world impact.
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