
Academic Editor: Michel Planat

Received: 29 November 2024

Revised: 5 January 2025

Accepted: 8 January 2025

Published: 9 January 2025

Citation: Juan, J.S.-T.; Ciou, H.-C.;

Lin, M.-J. The One-Fault

Dimension-Balanced Hamiltonian

Problem in Toroidal Mesh Graphs.

Symmetry 2025, 17, 93. https://

doi.org/10.3390/sym17010093

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

The One-Fault Dimension-Balanced Hamiltonian Problem in
Toroidal Mesh Graphs
Justie Su-Tzu Juan * , Hao-Cheng Ciou and Meng-Jyun Lin

Department of Computer Science and Information Engineering, National Chi Nan University, Puli,
Nantou 545, Taiwan; s107321033@ncnu.edu.tw (H.-C.C.); s109321056@ncnu.edu.tw (M.-J.L.)
* Correspondence: jsjuan@ncnu.edu.tw

Abstract: Finding a Hamiltonian cycle in a graph G = (V, E) is a well-known problem. The
challenge of finding a Hamiltonian cycle that avoids these faults when faulty vertices or
edges are present has been extensively studied. When the edge set of G is partitioned into
k dimensions, the problem of dimension-balanced Hamiltonian cycles arises, where the
Hamiltonian cycle uses approximately the same number of edges from each dimension
(differing by at most one). This paper studies whether a dimension-balanced Hamiltonian
cycle (DBH) exists in toroidal mesh graphs Tm,n when a single vertex or edge is faulty,
called the one-fault DBH problem. We establish that Tm,n is one-fault DBH, except in
the following cases: (1) both m and n are even; (2) one of m and n is 3, while the other
satisfies mod 4 = 3 and is greater than 6; (3) one of m and n is odd, while the other satisfies
mod 4 = 2. Additionally, this paper resolves a conjecture from prior literature, thereby
providing a complete solution to the DBP problem on Tm,n.

Keywords: toroidal mesh graph; Hamiltonian; dimension-balanced; faulty vertex;
faulty edge

1. Introduction
With the widespread use of networks today, we can represent the topological structure

of the network with graphs, where vertices represent devices, and edges between vertices
represent communication between those devices. The connection paths between vertices in
the graph can show the network’s operational efficiency, where a Hamiltonian cycle can
connect all the vertices and return to the original vertex, ensuring the network remains
smooth. The Hamilton problem is a famous problem in interconnection networks [1–5].
However, when some vertices or edges fail, the Hamiltonian cycle is disrupted, causing
data transmission issues. This inconvenience requires new routes for data transmission to
be ensured in the network. Therefore, scholars have further discussed Hamiltonian cycles,
particularly whether Hamiltonian cycles still exist in network graphs when there are faulty
vertices or edges [6–15].

Given a graph G = (V, E) whose edge set E(G) is partitioned into k dimensions (E = E1

∪ E2 ∪ . . . ∪ Ek), a cycle C in G for i with 1 ≤ i ≤ k has edges in i-dimension Ei(C), defined as
E(C) ∩ Ei. A cycle C is called a dimension-balanced cycle (DBC for short) if ||Ei(C)| − |Ej(C)||
≤ 1 for all i and j with 1 ≤ i < j ≤ k. If C is also a Hamiltonian cycle (passing through all
vertices in the graph), it is called a dimension-balanced Hamiltonian cycle (DBH for short). If G
contains a DBC of every length between 3 and |V|, G is called dimension-balanced pancyclic
(DBP for short). If G contains a DBC of every length between a and |V(G)|, G is called
dimension-balanced a-pancyclic (a-DBP). If for any vertex x in G there exists a DBC containing

Symmetry 2025, 17, 93 https://doi.org/10.3390/sym17010093

https://doi.org/10.3390/sym17010093
https://doi.org/10.3390/sym17010093
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3654-2560
https://orcid.org/0009-0005-5699-3974
https://doi.org/10.3390/sym17010093
https://www.mdpi.com/article/10.3390/sym17010093?type=check_update&version=2


Symmetry 2025, 17, 93 2 of 15

x whose length can be any integer between a and |V(G)|, G is called dimension-balanced
a-vertex-pancyclic (a-DBVP). Moreover, a cycle C is called a weakly dimension-balanced cycle
(WDBC for short) if ||Ei(C)| − |Ej(C)|| ≤ 3 for all i and j with 1 ≤ i < j ≤ k. If C is also
a Hamiltonian cycle, it is called a weakly dimension-balanced Hamiltonian cycle (WDBH for
short). Similarly, if G contains a WDBC of every length between 3 and |V|, G is called
weakly dimension-balanced pancyclic (WDBP for short).

A cycle Cn with n vertices forms a toroidal mesh graph Tm,n when taking the Cartesian
product of Cm and Cn. It is defined as follows: vertex set V(Tm,n) = {(x, y) | 0 ≤ x ≤ m − 1; 0
≤ y ≤ n − 1}, and edge set E(Tm,n) = {(x1, y1)(x2, y2) | x1 = x2 and |y1 − y2| = (1 or n − 1) or
|x1 − x2| = (1 or m − 1) and y1 = y2}. Figure 1 shows an example of T4,3. The toroidal mesh
graph is an important interconnection network graph. We partition its edges into two sets:
horizontal edges and vertical edges. Thus, E(Tm,n) = E1 ∪ E2, where E1 = {(i, j)(i + 1, j) | 0 ≤
i ≤ m − 2; 0 ≤ j ≤ n − 1} ∪ {(m − 1, j)(0, j) | 0 ≤ j ≤ n − 1} and E2 = {(i, j)(i, j + 1) | 0 ≤ i ≤
m − 1; 0 ≤ j ≤ n − 2} ∪ {(i, n − 1)(i, 0) | 0 ≤ i ≤ m − 1}. This paper’s research is based on
this partition.
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The dimension-balanced Hamiltonian problem was first proposed in 2012 [16], and
originated from the 3D reconstruction problem using Gray codes [17]. It has been widely
explored since then [18–21]: the authors of [16] first studied the DBH problem on Tm,n, and
the DBP problem on Tm,n was solved [18]. Subsequently, the extension problem known as
the WDBH problem was raised, and the WDBH problem on Tm,n was solved in [19], and
then, the WDBP problem was also studied [20]. In addition, [21] conducted research on the
DBH problem on a 3-Dimensional Toroidal Mesh Graph Tm,n,r.

The design of the network-on-chip (NoC) has become a significant research focus
in recent years. Congestion in the NoC can lead to a decline in network performance.
Therefore, the efficient selection of paths and the development of effective strategies to
address congestion are critical for optimizing NoC performance. This topic has attracted
considerable attention in recent studies [22,23]. Through abstraction, some NoCs can be
represented as a toroidal mesh graph. A dimension-balanced Hamiltonian cycle on a
toroidal mesh graph provides a foundation for designing simple algorithms with low
communication costs, effectively mitigating congestion. In addition to being used to assist
in the design of NoC, toroidal mesh graphs are also very helpful for research in fields such
as cryptography and graphics. The dimension-balanced Hamiltonian cycle problem in
toroidal mesh graphs has been discussed in [16]. The question of whether a dimension-
balanced Hamiltonian cycle exists for toroidal mesh graphs Tm,n has been thoroughly
discussed. This paper focuses on the problem of dimension-balanced Hamiltonian cycles
in toroidal mesh graphs with a faulty point f or faulty edge e.

A graph G is called k-node Hamiltonian if it remains Hamiltonian after removing any
k-nodes; a graph G is called k-edge (or say k-link) Hamiltonian if it remains Hamiltonian
after removing any k edges (links); G is called k-fault Hamiltonian if it remains Hamiltonian
after removing any k-nodes and/or edges [5,6]. In recent years, many researchers have
studied the Hamiltonian problem on several topologies with faulty nodes or edges, like
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Cartesian product graphs [8,11], locally twisted cubes [10], augmented cubes [7,12], hyper-
cube graphs [13], the basic WK-recursive pyramid [14], and so on. This gives us strong
motivation to study DBC problems with faulty nodes or edges.

Therefore, we have the following definitions which define a dimension-balanced
Hamiltonian on a graph G with faulty nodes and/or edges. A graph G is called k-node
dimension-balanced Hamiltonian (k-node DBH for short) if it has a DBH after removing any
k-nodes; a graph G is called k-edge dimension-balanced Hamiltonian (k-edge DBH for short) if
it remains Hamiltonian after removing any k edges; a graph G is called k-fault dimension-
balanced Hamiltonian (k-fault DBH for short) if it remains Hamiltonian after removing any
k-nodes and/or edges.

This paper mainly discusses under what conditions a toroidal mesh graph is one-fault
dimension-balanced Hamiltonian. The main contributions of this paper are as follows:

• We completely solve the one-fault dimension-balanced Hamiltonian problem on the
toroidal mesh graph Tm,n.

• We prove the three conjectures in [18]: when m and n ≥ 5 are both odd numbers, for
k = ⌊ 1(mn − 1) / 4⌋, there is a DBC of length 4k in Tm,n; therefore, Tm,n is (2 max{m, n}
− 1)-DBP and (2 max{m, n} − 1)-DBVP.

The rest of this paper is organized as follows. In Section 2, the problem of finding
dimension-balanced Hamiltonian cycles in Tm,n − f is discussed. According to the parity
of m and n, there are three subsections: both m and n are even; both m and n are odd; one
of m and n is even and the other is odd. Section 3 illustrate the problem in Tm,n − e and
presents our conclusions.

2. Main Research Results
Due to the complexity of the faulty vertex problem, this section mainly discusses it.

Note that since the toroidal mesh graph is vertex-symmetric [24], the faulty vertex can
be assumed to be any position in the graph. Finding a dimension-balanced Hamiltonian
cycle in the graph with the faulty vertex in any position suffices. This section discusses the
problem based on the parity of m and n.

2.1. Both m and n Are Even

Theorem 1. When both m and n are even, Tm,n − f does not have a dimension-balanced Hamiltonian
cycle, where f is any vertex in the graph.

Proof of Theorem 1. Since both m and n are even, the vertices can be divided into black
and white vertices in an alternating manner (see Figure 2 as an example), ensuring black
vertices are only connected to white vertices and vice versa. Thus, Tm,n can be considered a
bipartite graph. The cycle in a bipartite graph must have an even number of vertices. When
both m and n are even, mn − 1 is odd. Thus, Tm,n − f does not have a Hamiltonian cycle,
and therefore, it does not have a dimension-balanced Hamiltonian cycle. □
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2.2. Both m and n Are Odd

This section discusses whether Tm,n − f has a dimension-balanced Hamiltonian cycle
when both m and n are odd. The proof will be given through two theorems, with all cases
classified based on the remainders of m and n divided by 8. A detailed classification is
shown in Table 1, where p and q are non-negative integers. Since Tm,n is vertex-symmetric,
without loss of generality, we say n = 3 when m or n equals 3. First, we introduce a
useful lemma.

Table 1. Classification of cases when both m and n are odd.

m m, n Are Odd

n 3 5 + 8p 7 + 8p 9 + 8p 11+ 8p

3 Thm. 2 (a) Thm. 2 (b) Cor. 1 Thm. 2 (c) Cor. 1

5 + 8q Thm. 2 (b) Thm. 3 (a) Thm. 3 (b) Thm. 3 (c) Thm. 3 (d)

7 + 8q Cor. 1 Thm. 3 (b) Thm. 3 (e) Thm. 3 (f) Thm. 3 (g)

9 + 8q Thm. 2 (c) Thm. 3 (c) Thm. 3 (f) Thm. 3 (h) Thm. 3 (i)

11 + 8q Cor. 1 Thm. 3 (d) Thm. 3 (g) Thm. 3 (i) Thm. 3 (j)

Lemma 1 [18]. If m is odd, Tm,3 does not embed every 4k-DBC for k with 3 < k < ⌊3m/4⌋.

Corollary 1. When m ≡ 3 (mod 4) and m ≥ 7, Tm,3 − f does not have a dimension-balanced
Hamiltonian cycle, where f is any vertex in the graph.

Proof of Corollary 1. Let m = 7 + 4p, where p is a non-negative integer. The number of
vertices of Tm, 3 − f is 20 + 12p = 4(5 + 3p). According to Lemma 1, we know that Tm, 3 does
not have a DBC with a length of 4(5 + 3p). So, Tm, 3 − f does not have a DBH, where f is
any vertex in the graph. □

In the following figures, the red dot represent faulty vertex f in each figure; the blue
dashed lines represent edges that will be removed when forming a larger image, and the
red lines represent newly added edges, for convenience.

Theorem 2. When m = 3 or m ≡ 1 (mod 4), Tm,3 − f has a dimension-balanced Hamiltonian cycle,
where f is any vertex in the graph.

Proof of Theorem 2. The following will be divided into three cases to prove this theorem.

Case (a). When m = 3: It can be seen from Figure 3 that Tm,3 − f has a dimension-balanced
Hamiltonian cycle. In the figure, the red node denotes the faulty vertex. In the subsequent figures,
the red nodes have the same meaning.

Case (b). When m = 5 + 8p, n = 3: Figure 4 shows how to form a DBH in T5+8p,3 − f from one
DBH in T5,3 − f and p DBHs in T8,3. In this case, if we delete the edge set {(0, 2)(4, 2)} ∪ {(5 +
8x, 2)(12 + 8x, 2) | 0 ≤ x < p} and add {(0, 2)(4 + 8p, 2)} ∪ {(4 + 8x, 2)(5 + 8x, 2) | 0 ≤ x < p},
we obtain the Hamiltonian cycle C onT5+8p,3 − f, where |E1(C)| = 7 + 12p = |E2(C)|. Therefore,
||E1(C)| − |E2(C)|| = 0, and cycle C satisfies the condition of dimension balance, so C is a DBH
on T5+8p,3 − f. In Figure 4, the blue dotted lines represent the edges that need to be deleted when
merging the graphs, and the red lines represent the edges that need to be added when merging the
graphs. In the subsequent figures, the blue dotted lines and the red lines have the same meaning.

Case (c). When m = 9 + 8p, n = 3: Figure 5 shows how to form a DBH in T9+8p,3 − f from one
DBH in T9,3 − f and p DBHs in T8,3. In this case, if we delete the edge set {(0, 2)(8, 2)} ∪ {(9 + 8x,
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2)(16 + 8x, 2) |0 ≤ x < p} and add {(0, 2)(8 + 8p, 2)} ∪ {(8 + 8x, 2), (9 + 8x, 2) |0 ≤ x < p}, we
obtain the Hamiltonian cycle C on T9+8p,3 − f, where |E1(C)| = 13 + 12p = |E2(C)|. Therefore,
||E1(C)| − |E2(C)|| = 0, and cycle C satisfies the condition of dimension balance, so C is a DBH
on T9+8p,3 − f. □
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Case (b). When m = 7 + 8p, n = 5 + 8q: In this case, similarly to case (a), a DBH for T7+8p,5+8q − f
will be constructed. Please refer to Figure 9 for the DBH of T7,5 − f, DBH of T8,5, DBH of T7,8, HC
of T8,8 and construction method. The obtained HC C on T7+8p,5+8q − f has |E1(C)| = 17 + 20p +
q(28 + 32p) = |E2(C)|, so C is a DBH on T7+8p,5+8q − f. Since Tm,n has symmetry, by transposing
this figure, a DBH on T5+8p,7+8q − f can be obtained. Every subsequent case when m and n are not
equal has this property, which will not be described again.

Case (c). When m = 9 + 8p, n = 5 + 8q: Similarly to case (a), a DBH for T9+8p,5+8q − f will be
constructed with a DBH of T9,5 − f, p HCs of T8,5, q HCs of T9,8, and pq HCs of T8,8. Please refer
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to Figure 10. The constructed HC C has |E1(C)| = 22 + 20p + q(36 + 32p) = |E2(C)|. Therefore,
C is a DBH of T9+8p,5+8q − f.

Case (d). When m = 11 + 8p, n = 5 + 8q: Similarly to case (b), a DBH for T11+8p,5+8q − f will
be constructed with a DBH of T11,5 − f, p DBHs of T8,5, q DBHs of T11,8, and pq HCs of T8,8.
Please refer to Figure 11. The constructed HC C has |E1(C)| = 27 + 20p + q(44 + 32p) = |E2(C)|.
Therefore, C is a DBH of T11+8p,5+8q − f.

Case (e). When m = 7 + 8p, n = 7 + 8q: Similarly to case (a), a DBH for T7+8p,7+8q − f will be
constructed with a DBH of T7,7 − f, p HCs of T8,7, q HCs of T7,8, and pq HCs of T8,8. Please refer
to Figure 12. The constructed HC C has |E1(C)| = 24 + 28p + q(28 + 32p) = |E2(C)|. Therefore,
C is a DBH of T7+8p,7+8q − f.

Case (f). When m = 9 + 8p, n = 7 + 8q: Similarly to case (b), a DBH for T9+8p,7+8q − f will be
constructed with a DBH of T9,7 − f, p HCs of T8,7, q DBHs of T9,8, and pq HCs of T8,8. Please refer
to Figure 13. The constructed HC C has |E1(C)| = 31 + 28p + q(36 + 32p) = |E2(C)|. Therefore,
C is a DBH of T9+8p,7+8q − f.

Case (g). When m = 11 + 8p, n = 7 + 8q: Similarly to case (a), a DBH for T11+8p,7+8q − f will be
constructed with a DBH of T11,7 − f, p HCs of T8,7, q HCs of T11,8, and pq HCs of T8,8. Please refer
to Figure 14. The constructed HC C has |E1(C)| = 38 + 28p + q(44 + 32p) = |E2(C)|. Therefore,
C is a DBH of T11+8p,7+8q − f.

Case (h). When m = 9 + 8p, n = 9 + 8q: Similarly to case (a), a DBH for T9+8p,9+8q − f will be
constructed with a DBH of T9,9 − f, p HCs of T8,9, q HCs of T9,8, and pq HCs of T8,8. Please refer
to Figure 15. The constructed HC C has |E1(C)| = 40 + 36p + q(36 + 32p) = |E2(C)|. Therefore,
C is a DBH of T9+8p,9+8q − f.

Case (i). When m = 11 + 8p, n = 9 + 8q: Similarly to case (b), a DBH for T11+8p,9+8q − f will be
constructed with a DBH of T11,9 − f, p DBHs of T8,9, q HCs of T11,8, and pq HCs of T8,8. Please
refer to Figure 16. The constructed HC C has |E1(C)| = 49 + 36p + q(44 + 32p) = |E2(C)|.
Therefore, C is a DBH of T11+8p,9+8q − f.

Case (j). When m = 11 + 8p, n = 11 + 8q: Similarly to case (a), a DBH for T11+8p,11+8q − f will be
constructed with a DBH of T11,11 − f, p HCs of T8,11, q HCs of T11,8, and pq HCs of T8,8. Please
refer to Figure 17. The constructed HC C has |E1(C)| = 60 + 44p + q(44 + 32p) = |E2(C)|.
Therefore, C is a DBH of T11+8p,11+8q − f.
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From the analysis of the above ten cases, it can be seen that when m and n are both
odd numbers, even if there is a faulty vertex f, a DBH can be created in Tm,n − f, so the
proof is completed. □

2.3. One of m and n Is Even and the Other Is Odd

This section will discuss whether Tm,n − f still has a dimension-balanced Hamiltonian
cycle when one of m and n is even and the other is odd. The following theorem is the
main analytical result of this section, which discusses all possibilities of the remainder after
dividing m by 8. Please refer to Table 2 for specific classification cases, where p and q are
non-negative integers. Since Tm,n is equivalent to Cm × Cn and isomorphic to Cn × Cm,
it can be assumed without loss of generality that m is an even number and n is an odd
number. When n is an even number and m is an odd number, the corresponding DBH
can be obtained by transposing the DBH obtained in the theorem (horizontally versus
vertically).

Table 2. Classification of cases when one of m and n is even and the other is odd.

m m Is Even and n Is Odd

n 4 + 8p 6 + 8p 8 + 8p 10 + 8p

3 + 2q Thm. 4 (a) Thm. 4 (b) Thm. 4 (c) Thm. 4 (d)

For convenience, Ym is defined as the graph generated by the Cartesian product of Cm

and P2, which is called a prism graph, where Pn is the path of n vertices. Compared to Tm,n,
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the vertex set is the same and the edge set is the edge that lacks “crossing” edges in the
vertical part (in fact, the vertical part only has two vertices, and the original definition is
that there is an edge connecting the two vertices). It is defined as follows: vertex set V(Ym)
= {(x, y) | 0 ≤ x ≤ m − 1; 0 ≤ y ≤ 1}; edge set E(Ym) = {(x1, y1)(x2, y2) | x1 = x2 and |y1

− y2| = 1, or |x1 − x2| = (1 or m − 1) and y1 = y2}. On the other hand, YT
n represents the

graph generated by the Cartesian product of P2 and Cm, and its vertex set V(YT
n ) = {(x, y) |

0 ≤ x ≤ 1; 0 ≤ y ≤ m − 1}, and its edge set E(YT
n ) = {(x1, y1)(x2, y2) | x1 = x2 and |y1 − y2|

= (1 or n − 1), or |x1 − x2| = 1 and y1 = y2}.

Theorem 4. When one of m and n is even and the other is odd integer, both are greater than 2, Tm, n

− f has a dimension-balanced Hamiltonian cycle, where f is any vertex in the graph.

Proof of Theorem 4. Without loss of generality, it is assumed that m is an even number and
n is an odd number. Since m, n ≥ 3, we start from the graph of T4,3 to find the dimension-
balanced Hamiltonian cycle when there is a faulty vertex. As shown in Table 2, four cases
are discussed based on the remainder of m divided by eight.

Case (a). m = 4 + 8p, n = 3 + 2q: Firstly, please refer to Figure 18. If we put p DBHs of T8,3 on the
right hand side of the DBH of T4,3 − f, delete the edge set {(0, 2)(3, 2)} ∪ {(4 + 8x, 2)(11 + 8x, 2) |
0 ≤ x < p}, and add {(0, 2)(3 + 8p, 2)} ∪ {(3 + 8x, 2)(4 + 8x, 2) | 0 ≤ x < p}, we obtain a DBH
C1 of T4+8p,3 – f, where |E1(C1)| = 6 + 12p, |E2(C1)| = 5 + 12p. Again, in Figure 18 and the
subsequent figures, the red node denotes the faulty vertex, the blue dotted lines represent the edges
that need to be deleted when merging the graphs, and the red lines represent the edges that need to
be added when merging the graphs.

Next, as Figure 19 shows, if we put p DBHs of Y8 on the right hand side of the DBH of Y4,
delete the edge set {(0, 4)(3, 4)} ∪ {(4 + 8x, 4)(11 + 8x, 4) | 0 ≤ x < p}, and add {(0, 4)(3 + 8p, 4)}
∪ {(3 + 8x, 4), (4 + 8x, 4) | 0 ≤ x < p}, a DBH C2 of Y4+8p is obtained, where |E1(C2)| = 4 + 8p =
|E2(C2)|.

Lastly, if we put q C2s under C1 then delete the edge set {(0, 0)(0, 2)} ∪ {(0, 3 + 2x)(0, 4 + 2x)
| 0 ≤ x < q} and add the edge set {(0, 0)(0, 2 + 2q)} ∪ {(0, 2 + 2x), (0, 3 + 2x) | 0 ≤ x < q}, there is
an HC C3 of T4+8p,3+2q − f. As Figure 20 shows, after the calculation, |E1(C3)| = 6 + 12p + q(4 +
8p), |E2(C3)| = 5 + 12p + q(4 + 8p); therefore, C3 is a DBH of T4+8p,3+2q − f because ||E1(C3)|
− |E2(C3)|| = 1.

Case (b). m = 6 + 8p, n = 3 + 2q: Similarly to case (a), a DBH for T6+8p,3+2q − f will be constructed
with a DBH of T6,3 − f, the same p DBHs of T8,3, q DBHs of Y6, and the same pq DBHs of Y8.
Please refer to Figure 22. Place p DBHs of T8,3 on the right side of the DBH of T6,3 − f. After
deleting and connecting the appropriate edges, the DBH C1 at T6+8p,3 is obtained. Then, place p
DBHs of Y8 to the right of the DBH of Y6, and after deleting and connecting the appropriate edges,
the DBH C2 at T6+8p,8 can be obtained. Finally, place q pieces of C2s under C1, delete and connect
the appropriate edges, and obtain the HC C3 at T6+8p,3+2q. Since |E1(C3)| = 8 + 12p + q(6 +
8p), |E2(C3)| = 9 + 12p + q(6 + 8p). Therefore ||E1(C3)| − |E2(C3)|| = 1, C3 is a DBH on
T6+8p,3+2q − f.

Case (c). m = 8 + 8p, n = 3 + 2q: Similarly to case (a), a DBH for T8+8p,3+2q − f will be constructed
with a DBH of T8,3 − f, the same p DBHs of T8,3, and the same q + pq DBHs of Y8. Please refer to
Figure 21, which shows how to connect these DBHs to form an HC C of T8+8p,3+2q. Since |E1(C)|
= 12 + 12p + q(8 + 8p), |E2(C)| = 11 + 12p + q(8 + 8p). Therefore ||E1(C)| − |E2(C)|| = 1, C
is a DBH on T8+8p,3+2q − f.

Case (d). m = 10 + 8p, n = 3 + 2q: Similarly to case (a), a DBH for T10+8p,3+2q − f will be
constructed with a DBH of T10,3 − f, the same p DBHs of T8,3, q DBHs of Y10, and the same pq
DBHs of Y8. Please refer to Figure 23, which shows how to connect these DBHs to form an HC C of
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T10+8p,3+2q. Since |E1(C)| = 14 + 12p + q(10 + 8p), |E2(C)| = 15 + 12p + q(10 + 8p). Therefore
||E1(C)| − |E2(C)|| = 1, C is a DBH on T10+8p,3+2q − f.

From the analysis of the above four cases, it can be known that for all m and n that are
an even number and an odd number, respectively, if there is a faulty vertex, a DBH in Tm,n

− f can be obtained. Therefore, this proof is completed. □
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3. Conclusions
From the discussion in the previous section, it can be seen that in most cases of m and

n, the dimension-balanced Hamiltonian cycle DBH can be found in Tm,n − f for any faulty
vertex f. The following corollary can be drawn.

Corollary 2. Assuming that f is any vertex in the graph Tm,n, Tm,n − f has a dimension-balanced
Hamiltonian cycle DBH, except in the following cases:
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(1) When m and n are both even numbers;
(2) When one of m and n is 3, and the other satisfies mod 4 = 3 and is greater than 6.

Proof of Corollary 2. According to Theorem 1 and Corollary 1, we know there is no
dimension-balanced Hamiltonian cycle on Tm,n − f for any faulty vertex f when (1) both m
and n are even or (2) one of m and n is 3 and the other satisfies mod 4 = 3 and is greater
than 6. On the other hand, according to Theorems 2–4, Tm,n − f has a dimension-balanced
Hamiltonian cycle DBH when the above is not true for m and n. □

In addition, there are three conjectures in the literature [18]. If the following conjecture
(that is, Conjecture 1) is true, the other two conjectures (that is, Conjectures 2 and 3) are
also true, since it has already been proven in the remaining cases.

Conjecture 1 [18]. When m and n ≥ 5 are both odd numbers, for k = ⌊(mn − 1)/4⌋, there is a DBC
of length 4k in Tm,n.

Conjecture 2 [18]. For odd m and n ≥ 5, Tm,n is (2max{m, n} − 1)-DBP.

Conjecture 3 [18]. For odd m and n ≥ 5, Tm,n is (2max{m, n} − 1)-DBVP.

Since it has been proven in [18] that when k = ⌊(mn − 3)/4⌋, there is a DBC of length 4k
in Tm,n, we only need to discuss when k = (mn − 1)/4, that is, when mn − 1 = 4k. Theorem
3 (a), (c), (e), (g), (h), and (j) answer this question, so this paper also proves the correctness
of the three conjectures in the literature [18]. And the following corollary can be concluded.

Corollary 3. When m and n ≥ 5 are both odd numbers, for k = ⌊ (mn − 1) / 4 ⌋, there is a DBC of
length 4k in Tm,n; therefore Tm,n is (2max { m, n } − 1)-DBP and (2max { m, n } − 1)-DBVP.

In addition, the following has been proven in [16]:

Theorem 5 [16]. There are dimension-balanced Hamiltonian cycles for Tm,n, except mn ≡ 2 (mod
4), that is, one of m and n is odd and the other satisfies mod 4 = 2.

Since a Hamiltonian cycle does not use all of its edges (in fact, there are two edges at
any vertex that are not used), and because T m,n is a vertex-symmetric graph, if any edge is
faulty, then through appropriate rotation, a dimension-balanced Hamilton cycle without
using the faulty edge can be obtained. That is to say, the following corollary can be drawn.

Corollary 4. There are dimension-balanced Hamiltonian cycles for Tm,n – e, except mn ≡ 2 (mod
4), where e is any edge of Tm,n.

According to Corollaries 2 and 4 and the definition of one-fault dimension-balanced
Hamiltonian, we draw the following conclusion.

Corollary 5. Tm,n is one-fault dimension-balanced Hamiltonian, except in the following cases:
(1) When m and n are both even numbers;
(2) When one of m and n is 3, and the other satisfies mod 4 = 3 and is greater than 6;
(3) When one of m and n is odd, and the other satisfies mod 4 = 2.

Proof of Corollary 5. Corollary 2 shows that Tm,n − f has a DBH for any node f, except
(1) or (2). So, Tm,n is not one-fault dimension-balanced Hamiltonian when (1) or (2) holds.
Corollary 4 shows that Tm,n − e has a DBH for any edge e, except (3). So, Tm,n is not
one-fault dimension-balanced Hamiltonian when (3) holds. In addition, since it is true
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that Tm,n − f and Tm,n − e both have a DBH, except (1), (2), and (3), Tm,n is one-fault
dimension-balanced Hamiltonian, except (1), (2), and (3). □

Table 3 shows a comparison of this study with previous works. Where two-fault
H means two-fault Hamiltonian. Note that the DBP and WDBH problem under other
conditions (both m and n are even, or one of them is even and the other is odd) has
also been studied already. The DBP and WDBP problem is completed by [18] and [20],
respectively (except for the DBP problem, three conjectures remain unsolved). From Table 3,
it can be observed that, compared to previous works, our study is the first to investigate
the one-fault DBH problem on Tm,n. Moreover, we resolved a conjecture previously left
open in the DBP problem on Tm,n, thereby completing the solution of the DBP problem.

Table 3. A brief summary of previously obtained results and our results.

Reference Multiprocessor Systems Problems

[5] Toroidal mesh graph (Tm,n) two-fault H

[16] Toroidal mesh graph (Tm,n) DBH

[18] Toroidal mesh graph (Tm,n) DBP

[19] Toroidal mesh graph (Tm,n) WDBH

[20] Toroidal mesh graph (Tm,n) WDBP

[21] 3-dimensional toroidal
mesh graph (Tm,n,r)

DBH

This paper Toroidal mesh graph (Tm,n) one-fault DBH and DBP

It is not difficult to see, based on Theorems 2–5, that an algorithm for identifying a
dimension-balanced Hamiltonian cycle on a toroidal mesh network (Tm,n) can be obtained
when given the input size m, n and the locations of faulty nodes. Since the automorphism
adjustment based on the faulty node or edge is performed in linear time, the time complexity
of the algorithm is proportional to the length of the Hamiltonian cycle, which is O (mn).

In 2000, [5] proved that if m ≥ 3, n ≥ 3, and n is odd, Tm,n − F has a Hamilto-
nian cycle for any F with |F| ≤ 2. And whether Tm,n − F has a DBH for any F with
|F| = 1 has been solved in this paper. Therefore, building on the current results, a potential
future research direction is to explore the conditions under which a toroidal mesh graph
Tm,n in this partition is two-fault dimension-balanced Hamiltonian based on the values of
m and n. Additionally, another avenue for future study could involve investigating the
dimension-balanced Hamiltonian cycle problem on a toroidal mesh graph under different
partitioning schemes, expanding the applicability of the proposed approach. Please note
that the DBHs constructed in this paper are all discussed based on the edge partitions E1

and E2 defined at the beginning of this paper, and there is no guarantee that there is a
DBH on Tm,n − f or Tm,n – e for any partition of the edge set. Therefore, such studies could
provide deeper insights into the fault tolerance and adaptability of Hamiltonian cycles in
various configurations of toroidal mesh graphs.
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