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Abstract: Graph labeling is the process of assigning labels to vertices and edges under
certain conditions. This paper investigates the graceful local antimagic labeling of var-
ious graph families, excluding symmetric labelings, using computational experiments
and Python-based algorithms. Through these experiments, we identify new results and
patterns within specific graph classes. The study expands on the existing literature by
offering computational evidence, proposing algorithms for the verification of labelings,
and exploring the relationship between the local antimagic labeling and the chromatic
number. Our results increase the understanding of graph labeling and offer insights into its
computational aspects.

Keywords: graceful labeling; antimagic labeling; local antimagic labeling; graceful
antimagic labeling

1. Introduction
The study of graph labeling has become an important and active research topic within

graph theory. It was developed largely due to its wide range of applications in various
areas, such as coding theory, communication networks, cryptography, and optimal circuits.
Distinguishing between various major classes of labelings is important, specifically the
classes of vertex labeling, edge labeling and total labeling. Vertex labeling refers to the
labeling of vertices, edge labeling refers to the labeling of edges, and total labeling refers to
the labeling of both the vertices and edges of a graph. Bloom and Golomb also explored the
applications of graph labeling in other scientific fields [1,2]. As a result of these numerous
applications, extensive research has been conducted in this area of graph theory.

The concept of graceful labeling was first introduced in 1966 by Rosa [3], who referred
to it as a β-valuation. Later, Golomb renamed this graceful labeling [4]. The oldest and
most widely studied type of vertex labeling is graceful labeling. Let the vertices of G be
labeled using the set {0, 1, . . . , |E(G)|}. The labeling is said to be graceful if the edges of
G are labeled according to the absolute difference in its incident vertices, such that every
edge has a unique label. A graph G is called graceful if it allows for a graceful labeling.
The Graceful Tree Conjecture, also known as the Ringel–Kotzig conjecture, posits that all
trees have a graceful labeling. This conjecture is still unsolved. The purpose of this labeling
was to provide a different method of approaching Ringel’s conjecture [5], which posits
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that the complete graph K2n+1 can be decomposed into 2n + 1 subgraphs, all of which are
isomorphic to a tree of size n. In recent years, the concept of graceful labeling has attracted
a lot of attention in the research community, as can be seen in [6–13].

The concept of antimagic graphs was defined by Hartsfield and Ringel [14]. Antimagic
labeling is the assignment of distinct positive integers to the edges of the graph such
that each vertex v is assigned the sum of the labels of the edges incident to it (that is,
the weight of vertex v) and all the vertex weights are pairwise distinct. Thus, antimagic
labeling generates a set of pairwise distinct vertex weights for G. Ahmed et al. introduced
a new idea by combining both the concepts of graceful and antimagic labeling, calling this
graceful antimagic labeling [15]. Also, they found that the following connected graphs
K2, P4, K4, K5 − K3, P6 and a special tree on six vertices denoted by T6 are graceful but not
graceful antimagic.

Hartsfield and Ringel [16] posited two theories regarding antimagic graphs. Every
connected graph other than K2 is antimagic. Cranston et al. [17] proved that regular graphs
with an odd degree are antimagic. Bača et al. [18] constructed antimagic labelings of
complete multipartite graphs. In [19] Arumugam et al. discussed a labeling concept called
local antimagic labeling, defined as a labeling in which the adjacent vertices have distinct
weights. Arumugam et al. [19] proposed that every connected graph other than K2 is
local antimagic. Haslegrave [20] proved the conjecture of Arumugam et al. in [19] using
the probabilistic method. Further research in this area has the potential to provide new
insights into the structure and properties of graphs, as well as to find new applications in
various fields.

Another fundamental concept in graph theory is the chromatic number, which refers to
the minimum number of colors needed to color a graph’s vertices such that no two adjacent
vertices have the same color. This means that the graph is colored in such a way that each
pair of connected vertices is assigned a distinct color, where the goal is to use as few colors
as possible. The chromatic number provides valuable information about the structure of a
graph and is commonly used in problems related to scheduling, map coloring, and resource
allocation, where the constraints prevent adjacent entities from sharing the same resource
or colors.

The study of graceful antimagic and local antimagic labeling led to a deeper under-
standing of the labeling of graphs and their applications in diverse fields. This analysis
inspired further research into graceful local antimagic labeling and chromatic numbers,
aiming to establish new results and techniques for labeling graphs with specific properties.

Graceful local antimagic labeling f is an injection from the vertex set of G
into the set {0, 1, . . . , |E(G)|}, such that the induced edge labeling f ∗, defined as
f ∗(uv) = | f (u)− f (v)|, for every edge uv ∈ E(G) has the following properties:

(i) f ∗(uv) ̸= f ∗(zw) for all pairs of distinct edges uv, zw ∈ E(G);
(ii) For all adjacent vertices u and v, wt f ∗(u) ̸= wt f ∗(v), where wt f ∗(u) = ∑

uv∈E(G)
f ∗(uv),

i.e., f ∗ is a local antimagic labeling.

The graceful local antimagic chromatic number of graph G is denoted by χgla(G),
and is defined as the minimum number of colors taken over all colorings of G induced by
graceful local antimagic labelings of G.

In this research, we utilize Python-based algorithms to computationally derive graceful
labelings. Algorithm 1 generates all possible graceful labelings, providing a comprehensive
framework for further analysis. Algorithm 2 identifies the labelings that are graceful
antimagic. Algorithm 3 focuses on finding graceful local antimagic labelings derived
from Algorithm 1. Finally, Algorithm 4 refines the labelings from Algorithm 3 to identify
labelings where the maximum number of vertices share the same weights; this leads to
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calculation of the chromatic number. Using these algorithms, we investigate the graceful
antimagic labeling of trees with nine vertices.

Algorithm 1 Graceful labeling of a graph

1: Input: G
2: Output: Graceful labelings of G
3: L = {0, 1, . . . , |E|}
4: Randomly assign a distinct label from L to each vertex in V
5: num_GLs = 0 ▷ Initialize the count of graceful labelings
6: GLs = [] ▷ To store all graceful labelings
7: while the labeling is not graceful do
8: for each edge (u, v) ∈ E do
9: label(u, v) = | f (u)− f (v)|

10: if label(u, v) /∈ edges_labels then
11: Add label(u, v) to edges_labels
12: else
13: Reassign labels to vertices
14: Break
15: end if
16: end for
17: if the labeling is graceful then
18: num_GLs + = 1
19: GLs.append (labeling)
20: end if
21: end while
22: return num_GLs, GLs

Algorithm 2 Graceful antimagic labeling of a graph

1: Input: G, graceful_labelings
2: Output: Graceful antimagic labelings of G
3: num_GALs := 0
4: GALs := []
5: for labeling in graceful_labelings do
6: for v ∈ V(G) do
7: v_weight← 0
8: for u ∈ V(G) do
9: if (u, v) ∈ E(G) then

10: v_weight← v_weight + label(u, v)
11: end if
12: end for
13: end for
14: if v_weight is in vertices_weights then
15: Labeling is not graceful antimagic
16: else
17: vertices_weights.append (v_weight)
18: end if
19: end for
20: if labeling is graceful_antimagic then
21: num_GALs + = 1
22: GALs.append (labeling)
23: end if
24: return num_GALs, GALs
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Algorithm 3 Graceful local antimagic labeling of a graph

1: Input: G, graceful_labelings
2: Output: graceful local antimagic labelings of G
3: num_GLALs := 0
4: GLALs := []
5: for labeling in graceful_labelings do
6: for v ∈ V(G) do
7: v_weight← 0
8: for u ∈ V(G) do
9: if (u, v) ∈ E(G) then

10: v_weight← v_weight + label(u, v)
11: if v_weight = u_weight then
12: Labeling is not graceful local antimagic
13: else
14: vertices_weights.append (v_weight)
15: end if
16: end if
17: end for
18: end for
19: end for
20: if labeling is graceful_local_antimagic then
21: num_GLALs + = 1
22: GLALs.append (labeling)
23: end if
24: return num_GLALs, GLALs

Algorithm 4 Minimum graceful local antimagic labeling of a graph

1: Input: A graph G = (V, E) with |V| vertices and |E| edges
2: Output: Minimum graceful local antimagic labeling of G
3: Find all possible graceful local antimagic labeling of G by Algorithm 3
4: for labeling in graceful local antimagic labelings do
5: count vertices_weights
6: end for
7: for count in vertices_weights_count do
8: if count is minimum then
9: Labeling is minimal graceful local antimagic labeling of G

10: end if
11: end for

2. Main Results
In [15], Ahmed et al. found that connected graphs P4, P6, and a tree T6 are graceful but

not graceful antimagic, as shown in Figure 1. It is of interest to characterize all graphs that
possess the same properties. We verified these results and computationally investigated
the graceful antimagic labeling of trees on 9 vertices.
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Figure 1. Graceful local antimagic labelings of P4, P6 and a tree T6, which are not graceful antimagic.
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Let G be a graph and V(G) and E(G) be its vertex set and edge set. We define a
mapping f : V(G) → {0, 1, 2, . . . , |E(G)|} such that for any vi, vj ∈ V(G), f (vi) ̸= f (vj).
The following algorithm generates all possible graceful labelings. We use the following
notations in our algorithms: graceful labelings (GLs), graceful antimagic labelings (GALs),
and graceful local antimagic labelings (GLALs) of a given graph. num_GLs will denote the
number of possible graceful labelings for a graph and for other types of labeling.

The Algorithm 1 finds all possible graceful labelings of a given graph. In Line 4, it
randomly assigns labels to the vertices. Line 7 applies a while loop to check if the labeling
is graceful. In Lines 8 and 9, labels | f (u)− f (v)| are assigned to the edges. Lines 10 to 13
can be used to check if any edge has already received a specific label. If it has, the algorithm
reassigns labels to the vertices; otherwise, it concludes that the labeling is graceful. Lines 17
to 19 count all possible graceful labelings. Finally, Line 22 returns the number of graceful
labelings and all possible graceful labelings of the graph.

Since Algorithm 1 finds all possible graceful labelings, Line 4 iterates over all pos-
sible permutations of the set {0, 1, 2, . . . , |E|}, resulting in m! = |E|! permutations. Thus,
the complexity of Line 4 is O(m!). Line 8 has complexity O(|E|) since it iterates over the
edge set. Line 9 has constant complexity O(1). Line 10 has complexity O(|E| − 1) as it
checks each edge, Line 11 has complexity O(1), and Line 13 has complexity O(n) because it
assigns new labels to the vertices. Therefore, the total complexity of Algorithm 1 is O(m!).
where m = |E| is the number of edges.

Using Algorithm 1, the following algorithm identifies the labelings that are
graceful antimagic.

Let there be k graceful labelings in a graph of order n. Algorithm 2 identifies all
possible graceful antimagic labelings for the graph G. In Line 5, the algorithm iterates over
all possible graceful labelings of G. Line 6 iterates over all the vertices of the graph. Line 7
initializes the weight of all vertices to 0. Lines 8 to 10 iterate over all neighbors of a vertex v
and update its weight by adding the corresponding edge weight. Lines 14 to 18 check if
the vertex weight is already present in the vertex weights. If the weight is already present,
the labeling is not graceful antimagic, and the algorithm is false; otherwise, the vertex
weight is added to the list of vertex weights. Lines 20 to 22 count the possible graceful
antimagic labelings of a graph. Finally, Line 24 returns the number of graceful antimagic
labelings and all possible graceful antimagic labelings of graph G.

In Algorithm 2, Line 5 has complexity O(k) as it iterates over all the graceful labeling
sets of the graph. Line 6 has complexity O(n) since it iterates over all the vertices. Line 7
has constant complexity O(1). Line 8 has complexity O(n) because it iterates over all the
vertices. Line 9 iterates over the edge list, so its complexity is O(m). Line 14 checks if the
vertex weight is already present, which takes O(n− 1) time. Lines 15 and 17 have constant
complexity O(1). Since every graceful labeling is reiterated over the entire edge list and we
iterate over the edge list for every pair of vertices, the dominant term in the complexity is
O(kmn). Therefore, the overall complexity of Algorithm 2 is

O(kmn),

where m = |E| is the number of edges and n = |V| is the number of vertices.
The following algorithm focuses on finding graceful local antimagic labelings derived

from Algorithm 1.
The Algorithm 3 has a complexity O(kmn). The explanation of the complexity of

Algorithm 3 is the same as that for Algorithm 2. In the following algorithm, we refine the
labelings from Algorithm 3 to identify labelings where the maximum number of vertices
has the same weight.
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3. Summary of Trees
Let Tn denote the number of non-isomorphic trees on n vertices; then, the graceful

labeling GTn, graceful antimagic labeling GATn, and graceful local antimagic GLATn up to
10 vertices can be calculated.

All the possible trees up to 10 vertices are discussed in Table 1.

Table 1. Summary of trees upto 10 vertices.

n Tn GTn GATn GLATn

3 1 1 1 1
4 2 2 1 2
5 3 3 3 3
6 6 6 4 6
7 11 11 11 11
8 23 23 23 23
9 47 47 47 47
10 106 106 106 106

In the table, the first column represents the number of vertices, the second column
represents the number of possible trees, the third column represents the number of trees
for which the graceful labeling GL exists, the fourth column represents the number of trees
for which the graceful antimagic labeling GAL exists, and the fifth column represents the
number of trees in which most of the vertices share the same weights.

4. Summary of Path Graph
Let GL denote all nonsymmetric graceful labelings of the paths on n vertices, GAL

graceful antimagic labeling, GLAL graceful local antimagic, and MGLAL minimum grace-
ful local antimagic labelings (most of the vertices have the same weight). Table 2 summa-
rizes the path graphs with up to 12 vertices.

Table 2. Summary of paths upto 12 vertices.

n GL GAL GLAL MGLAL

3 1 1 1 1
4 1 0 1 1
5 2 1 2 1
6 6 0 6 1
7 8 2 8 1
8 10 2 10 1
9 30 4 30 1
10 74 5 74 2
11 162 8 162 9
12 332 9 332 4

In the table, the first column represents the number of vertices, the second column
represents all GLs, the third column represents the GALs, the fourth column represents
GLALs, and the fifth column represents the number of GLALs in which most of the vertices
share the same weight. Regarding the chromatic number of GLA labelings, up to 12 vertices
can be observed.

In Table 3, the graceful local antimagic labelings for paths with up to 14 vertices are
presented. These labels provide the minimum number of colors needed, which can be used
to determine the chromatic number of paths.
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Table 3. Graceful local antimagic labelings of paths upto 14 vertices.

n f (v1), f (v2), f (v3), . . . , f (vn−1), f (vn)

3 0, 2, 1
4 0, 3, 1, 2
5 1, 2, 4, 0, 3
6 1, 4, 0, 5, 3, 2
7 1, 6, 0, 4, 3, 5, 2
8 1, 6, 0, 7, 3, 4, 2, 5
9 1, 7, 0, 8, 3, 4, 6, 2, 5
10 1, 8, 0, 9, 3, 6, 2, 7, 5, 4

2, 7, 1, 8, 0, 9, 5, 4, 6, 3
11 1, 8, 2, 10, 0, 9, 4, 5, 7, 3, 6

1, 10, 0, 8, 3, 9, 2, 6, 5, 7, 4
2, 8, 3, 10, 0, 9, 1, 5, 6, 4, 7
2, 9, 1, 10, 0, 6, 5, 3, 8, 4, 7
2, 9, 3, 8, 0, 10, 1, 5, 6, 4, 7
3, 10, 0, 9, 1, 4, 8, 2, 7, 5, 6
4, 1, 9, 0, 10, 3, 7, 2, 8, 6, 5
4, 2, 8, 3, 6, 7, 0, 10, 1, 9, 5
4, 6, 3, 7, 8, 2, 9, 1, 10, 0, 5

12 1, 10, 0, 11, 3, 8, 2, 9, 5, 6, 4, 7
2, 9, 1, 10, 0, 11, 5, 6, 8, 3, 7, 4
2, 9, 3, 8, 0, 11, 1, 10, 6, 5, 7, 4
3, 11, 0, 10, 1, 5, 6, 8, 2, 9, 4, 7

13 2, 11, 3, 10, 0, 12, 1, 7, 6, 4, 9, 5, 8
3, 8, 6, 9, 5, 4, 10, 2, 11, 1, 12, 0, 7

14 2, 11, 3, 10, 0, 13, 1, 12, 6, 7, 9, 4, 8, 5

The labeling of paths where we obtain minimum number of colors that correspond to
the graceful local antmagic Chromatic number χgla, as shown in Figures 2–11.

Path of five vertices:
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Figure 2. Graceful local antimagic labeling of 5 vertces.

Path of six vertices:
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Figure 3. Graceful local antimagic labeling of 6 vertces.

Path of seven vertices:
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Figure 4. Graceful local antimagic labeling of 7 vertces.

Path of eight vertices:
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Figure 5. Graceful local antimagic labeling of 8 vertces.
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Figure 6. Graceful local antimagic labeling of 9 vertces.
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Path of ten vertices:
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Figure 7. Graceful local antimagic labeling of 10 vertces.

Path of eleven vertices:
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Figure 8. Graceful local antimagic labeling of 11 vertces.

Path of twelve vertices:
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Figure 9. Graceful local antimagic labeling of 12 vertces.

Paths of thirteen vertices:
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Figure 10. Graceful local antimagic labelings of 13 vertces.

Paths of fourteen vertices:
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Figure 11. Graceful local antimagic labelings of 14 vertces.

χgla(P3) = χgla(P4) = 3, χgla(P5) = χgla(P6) = χgla(P7) = χgla(P8) = 4,

χgla(P9) = 5, χgla(P10) = 6, χgla(P11) = χgla(P12) = χgla(P13) = χgla(P14) = 7

5. Summary of Cycle Graph
In Table 4, the graceful local antimagic labelings for cycles with up to

11 vertices are presented. These labels provide the minimum number of colors needed,
which can be used to derive the chromatic number of cycles.

Table 4. Summary of graceful local antimagic labelings upto 11 vertices.

n f (v1), f (v2), f (v3), . . . , f (vn−1), f (vn)

3 0, 1, 3
4 0, 2, 1, 4
7 0, 5, 3, 6, 2, 1, 7
8 0, 5, 6, 2, 4, 7, 1, 8
11 0, 8, 3, 9, 2, 4, 7, 6, 10, 1, 11

The labeling of the cycle in which we obtained the minimum number of colors, as
shown in Figure 12:
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Figure 12. Graceful local antimagic labeling of cycles.

χgla(C3) = 3, χgla(C4) = 4, χgla(C7) = 4, χgla(C8) = 5, χgla(C11) = 7.

In [15], Ahmed et al. list all graceful antimagic labelings of trees with up to eight
vertices. Computationally, we determined that all trees of nine vertices have a graceful
antimagic labelings, which are listed in Figure 13:
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Figure 13. All graceful antimagic trees on 9 vertices.

Theorem 1. The double star Sn,m is the graceful local antimagic for n, m ∈ N, n ̸= 1.

Proof. Since S2,2 ∼= P4 and P4 is the graceful local antimagic under the vertex labelings:
According to [15], Sn,m, (n, m) ̸= (2, 2) are graceful antimagic, which implies that

Sn,m, (n, m) ̸= (2, 2) are graceful local antimagic, as shown in Figure 14, which completes
the proof.

0

3 1

2

3

2

1

Figure 14. Graceful local antimagic labeling of P4.

6. Conclusions
In this research, we introduced and explored the concept of graceful local antimagic

labeling for various families of graphs, utilizing Python-based algorithms as computational
tools. The proposed algorithms provided a systematic approach to generating and refining
graph labelings, enabling the identification of graceful, graceful antimagic, and graceful
local antimagic labelings. Furthermore, we extended this analysis to compute the chromatic
number of graphs by identifying labelings where the maximum number of vertices share
the same weights.
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