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Abstract: Inthis paper, we consider the reducibility of a class of nonlinear almost periodic Hamiltonian
systems. Under suitable hypothesis of analyticity, non-resonant conditions and non-degeneracy con-
ditions, by using KAM iteration, it is shown that the considered Hamiltonian system is reducible to an
almost periodic Hamiltonian system with zero equilibrium points for most small enough parameters.
As an example, we discuss the reducibility and stability of an almost periodic Hill’s equation.
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1. Introduction

In this paper, we are concerned with the reducibility of the almost periodic Hamilto-
nian system

ẋ = (A + εQ(t))x + εg(t) + h(x, t), x ∈ R2n, (1)

where A has multiple possible eigenvalues, Q(t), g(t), and h(x, t) are all analytic almost
periodic with respect to t, and ε > 0 is a sufficiently small parameter.

First, we review some relevant definitions for almost periodic systems. If A(t) is an
d × d almost periodic matrix, the equation

dx
dt

= A(t)x, x ∈ Rd (2)

is reducible if there exists a regular almost periodic transformation

x = κ(t)z,

where κ(t) and κ−1(t) are almost periodic and bounded, which transforms Equation (2)
into

dz
dt

= Dz, y ∈ Rd (3)

where D is constant.
In recent years, the reducibility for linear equations has attracted the attention and been

studied by many researchers. The well known Floquet theorem states that every periodic
differential Equation (2) can be reduced to a constant coefficient differential Equation (3) by
means of a periodic change of variables with the same period as A(t). But this result no
longer holds true for the quasi-periodic and almost periodic linear equation; more details
can be seen in [1]. If the coefficient matrix satisfies the “full spectrum” condition, Johnson
and Sell [2] proved the reducibility of the quasi-periodic linear system (2).

Later, many authors [3–12] paid attention to the reducibility for the following quasi-
periodic linear system:

dx
dt

= (A + ϵQ(t))x, x ∈ Rd. (4)

where ϵ is a sufficiently small parameter.
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In 1996, Xu and You [13] studied the reducibility for the almost-periodic linear system

dx
dt

= (A + εQ(t))x, x ∈ Rn. (5)

They proved that system (5) is reducible in the case that A has different eigenvalues, for
most sufficiently small ε through KAM iteration and a “space structure”. Later, ref. [14]
studied the case in which system (5) is Hamiltonian and A has possible multiple eigenval-
ues; they obtained reducibility results similar to those in [13].

In 2017, J. Li, C. Zhu, and S. Chen [15] studied the quasi-periodic case of (1). It was
shown that for most sufficiently small parameters, under some assumptions of analyticity,
non-resonant and non-degeneracy conditions, through a quasi-periodic symplectic change
of variables, the considered system was changed into a quasi-periodic Hamiltonian system
with zero equilibrium points.

Motivated by [13–15], we will extend the reducible results of [15] to the case of
almost periodic Hamiltonian systems. Under some suitable assumptions, we will obtain a
similar result.

Theorem 1. Consider the almost periodic Hamiltonian system (1) in which A is a 2n × 2n matrix
that can be diagonalized with multiple possible eigenvalues λ1, λ2, · · · , λ2n, i = 1, · · · , 2n, and
Q(t) = ∑Λ∈τ QΛ(t), g(t) = ∑Λ∈τ gΛ(t), and h(x, t) = ∑Λ∈τ hΛ(x, t) are all analytic almost
periodic functions on Dρ0 ; they have the same frequencies ω = (ω1, ω2, · · · ) and spatial structure
(τ, [·]). Moreover, h(x, t) is analytic with respect to x on Ba0(0), h(0, t) = 0, and Dxh(0, t, ε) = 0.
Here, Ba0(0) is a ball centered on 0 with radius a0; ε ∈ (0, ε0) is a sufficiently small parameter.
Suppose the following:
(1) There exists z0 > 0 such that |∥Q∥|z0,ρ0 < ∞;
(2) (Non-resonant conditions) λ = (λ1, · · · , λ2n) and ω = (ω1, ω2, · · · ) satisfy

|⟨k, ω⟩
√
−1 − λi| ≥

α0

∆4(|k|)∆4([k])
, (6)

|⟨k, ω⟩
√
−1 − λi + λj| ≥

α0

∆4(|k|)∆4([k])
(7)

for 1 ≤ i, j ≤ 2n, i ̸= j, and k ∈ ZN \ {0}, where α0 > 0 is a small constant, and ∆ is an
approximation function.
(3) (Non-degeneracy conditions) Denote the solution of the equation ẋ = Ax + εg(t) by x. Let
Q̂(t) = Q(t) + ε−1Dxh(x(t), t). Assume A + εQ̂ := A+ has eigenvalues λ+

1 , λ+
2 , · · · , λ+

2n that
satisfy |λ+

i − λ+
j | ≥ 2δε > 0 and |λ+

i | ≥ 2δε > 0, where i ̸= j and i, j = 1, 2, · · · , 2n.
(4) ∥Dxxh(x, t, ε)∥ ≤ K0, x ∈ Ba0(0).

Then, there exists a positive Lebesgue measure, non-empty Cantor set E∗ ⊂ (0, ε0), such that
for ε ∈ E∗, there is an almost periodic symplectic transformation x = ψ(t)y + φ(t) that transforms
(1) into

ẏ = By + h∞(y, t), (8)

where ψ(t) and φ(t) are almost periodic with the same frequencies and spatial structure as Q(t), B
is a real constant matrix, and h∞(y, t) = O(y2) as y → 0. Moreover, meas((0, ε0) \ E∗) = o(ε0)
as ε0 → 0.

As an example, we will apply Theorem 1 in Section 4 to an almost-periodic Hill’s equation:

ẍ + εa(t)x = 0. (9)

Under some appropriate assumptions, we have that, for most small ε, Equation (9) is
reducible. Furthermore, the zero equilibrium point of (9) is Lyapunov stable.
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The basic framework of this paper is as follows. In Section 2, we recall some definitions
and notations, present some results in the form of lemmas that will be useful in the proof
of Theorem 1. The proof of Theorem 1 is presented in Section 3. In Section 4, we analyze
the almost periodic Hill’s equation, Equation (9).

2. Some Preliminaries

Firstly, we present some definitions.

Definition 1. We say a function f is quasi-periodic with the basic frequencies ω = (ω1, ω2, · · · , ωs)
if f (t) = F(θ1, θ2, · · · , θs) where F is 2π-periodic in θj = ωjt for j = 1, 2, · · · , s. Moreover, if
F(θ) (θ = (θ1, θ2, · · · , θs)) is analytic on Dρ = {θ ∈ Cs : |ℑθj| ≤ ρ, j = 1, 2, · · · , s}, then f (t) is
analytic quasi-periodic on Dρ.

If f (t) is analytic quasi-periodic, it can be expanded as a Fourier series

f (t) = ∑
k∈Zs

fke⟨k,ω⟩
√
−1t

with Fourier coefficients

fk =
1

(2π)s

∫
Tr

F(θ)e−⟨k,θ⟩
√
−1dθ.

The norm is denoted as || f ||ρ:
|| f ||ρ = ∑

k∈Zs
| fk|e|k|ρ.

Assume R(t) = (rij(t))1≤i,j≤m is an m × m matrix. If all rij(t) (i, j = 1, 2, · · · , m) are
analytic quasi-periodic on Dρ with frequencies ω = (ω1, ω2, · · · , ωs), then matrix R(t) is
said to be analytic quasi-periodic on Dρ with frequencies ω.

The norm of R(t) is defined as

||R||ρ = max
1≤i≤m

m

∑
j=1

||rij||ρ.

Obviously,

||R1R2||ρ ≤ ||R1||ρ||R2||ρ.

If R is a constant matrix, to simplify, we record ||R||ρ as ||R||. The average of R(t) is
R = (rij)1≤i,j≤m, where

rij = lim
T→∞

1
2T

∫ T

−T
rij(t)dt,

The details can be found in [16].

Definition 2. A function f is said to be an almost periodic function if f (t) = ∑∞
m=1 fm(t), where

fm(t) are all quasi-periodic for m = 1, 2, · · · .

In [13], we see that “spatial structure” and “approximation function” are very powerful
tools to study almost periodic systems. We provide the definitions and notions from [17,18].

Definition 3 ([17]). If τ is a set of some subsets of N, where N is the set of natural numbers, then
(τ, [·]) is said to be a finite spatial structure if τ meets the following conditions:
1. ∅ ∈ τ;
2. If Λr, Λs ∈ τ, then Λr ∪ Λs ∈ τ;
3.

⋃
Λ∈τ = N, where [·] is a weight function defined on τ, satisfying [∅] = 0 and [Λr ∪ Λs] ≤

[Λr] + [Λs].
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Let l ∈ ZN. Write the support set of l as

suppl = {(s1, s2, · · · , sn)|lj ̸= 0, j = s1, s2, · · · , sn, lj = 0, as j = otherwise}.

Write the weight value as [l] = in fsuppl⊂Λ,Λ∈τ [Λ]. Denote

|l| =
∞

∑
s=1

|ls|.

Definition 4 ([18]). ∆ is called an approximation function, if
1. ∆ : [0, ∞) → [1, ∞) is increasing, and ∆(0) = 1 is satisfied;
2. log ∆(t)

t is decreasing on [0, ∞);

3.
∫ ∞

0
log ∆(t)

t2 dt < ∞.

Remark 1. If ∆ is an approximation function, from Definition 4, it follows that ∆4 is also an
approximation function.

Definition 5. Let R(t) = ∑Λ∈τ RΛ(t). If RΛ(t) are quasi-periodic matrix functions with basic
frequencies ω = {ωs|s ∈ Λ}, then R(t) is said to be an almost periodic matrix function with
spatial structure (τ, [·]) and basic frequencies ω.

We also write the average of R(t) as R, where

R = lim
T→∞

1
2T

∫ T

−T
R(t)dt.

Let R(t) = ∑Λ∈τ RΛ(t). For µ > 0 and ϱ > 0,

|∥R∥|µ,ϱ = ∑
Λ∈τ

eµ[Λ]∥RΛ∥ϱ

is the weighted norms with finite spatial structure (τ, [·]). From [13], we can select the
weighted function

[Λ] = 1 + ∑
s∈Λ

logq(1 + |s|), q > 2.

Also, we will present some lemmas in this section, which are useful for the proof of
our main result.

Lemma 1 ([8]). Let g : Bσ(0) ⊂ Rn → Rn be a C2 function with g(0) = 0, Dxg(0) = 0,
||Dxxg(x)|| ≤ M, and x ∈ Bσ(0). Then, ||g(x)|| ≤ M

2 ||x||2 and ||Dxg(x)|| ≤ M||x||.

Lemma 2 ([8]). Suppose that B0 is an m × m matrix with the eigenvalues µ0
1, · · · , µ0

m, which
satisfy |µ0

i | > ν, |µ0
i − µ0

j | > ν, i ̸= j, 1 ≤ i, and j ≤ m. Let S0 be a nonsingular matrix with

S−1
0 B0S0 = diag(µ0

1, · · · , µ0
m), β0 = max{||S0||, ||S−1

0 ||}, and ϱ is a value such that

0 < ϱ <
ν

(3m − 1)β2
0

.

If B1 verifies ||B1 − B0|| ≤ ϱ, then the following results hold:
(1) B1 has m different nonzero eigenvalues µ1

1, · · · , µ1
m.

(2) There is a nonsingular matrix S1 such that S−1
1 B1S1 = diag(µ1

1, · · · , µ1
m), which satisfies

||S1||, ||S−1
1 || ≤ β1, where β1 = 2β0.
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Lemma 3. Consider the differential equation

Ẋ = AX + εg(t), X ∈ R2m, (10)

where A is a 2m × 2m constant matrix, which can be diagonalized and where the eigenvalues
λ1, λ2, · · · , λ2m of A satisfy |λi| ≥ ξ, and ξ is a positive constant. Also, g(t) = ∑Λ∈τ gΛ(t) is an
analytic almost periodic function on Dρ, of which its frequencies are ω = (ω1, ω2, · · · ) and spatial
structure is (τ, [·]). If

|⟨k, ω⟩
√
−1 − λi| ≥

α

∆4(|k|)∆4([k])

for all k ∈ ZN \ {0}, α > 0. Set 0 < ρ1 < ρ and 0 < z1 < z. Then, for Equation (10), there is a
unique analytic almost periodic solution X(t) that has the same frequencies and spatial structure as
g(t) and satisfies

|∥X∥|z−z1,ρ−ρ1 ≤ ε
cΓ(ρ1)Γ(z1)

α
|∥g∥|z,ρ,

where Γ(ρ) = supt≥0{∆4(t)e−ρt}.

Proof. Make the change of variable X = BY, and let h(t) = B−1g. Equation (10) becomes

Ẏ = DY + εh(t), Y ∈ R2m, (11)

where D = B−1 AB = diag(λ1, · · · , λ2m).
Let Y = ∑Λ∈τ yΛ, h = ∑Λ∈τ hΛ, and

yΛ = (ỹij
Λ), ỹij

Λ = ∑
suppk⊂Λ

ỹij
Λke

√
−1⟨k,ω⟩t,

hΛ = (h̃ij
Λ), h̃ij

Λ = ∑
suppk⊂Λ

h̃ij
Λke

√
−1⟨k,ω⟩t.

By (11), we have

ỹij
Λk = ε

h̃ij
Λk

⟨k, ω⟩
√
−1 − λi

.

So,

||ỹij
Λ||ρ−ρ1 ≤ ε ∑

suppk⊂Λ

∆4(|k|)∆4([k])
α

|h̃ij
Λk|e

(ρ−ρ1)|k|

≤ ε
Γ(ρ1)∆4([Λ])

α
||h̃ij

Λ||ρ.

Thus,

||yΛ||ρ−ρ1 ≤ ε
Γ(ρ1)∆4([Λ])

α
||hΛ||ρ.

From Definition 5, we have

|∥Y∥|z−z1,ρ−ρ1 = ∑
Λ∈τ

||ỹΛ||ρ−ρ1 e(z−z1)[Λ]

≤ ε ∑
Λ∈τ

Γ(ρ1)∆4([Λ])

α
||hΛ||ρez[Λ]−z1[Λ]

≤ ε
Γ(ρ1)Γ(z1)

α
|∥hΛ∥|z,ρ.

Thus, from
|∥h∥|z,ρ ≤ ||B−1|||∥g∥|z,ρ,
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|∥X∥|z−z1,ρ−ρ1 ≤ ||B|||∥y∥|z−z1,ρ−ρ1 ,

we have

|∥X∥|z−z1,ρ−ρ1 ≤ ε
cΓ(ρ1)Γ(z1)

α
|∥g∥|z,ρ.

The following lemma is very useful in proving Theorem 1, in order to perform a step
of the inductive procedure.

Lemma 4. Consider the equation

Ṗ(t) = AP(t)− P(t)A + M(t), (12)

where A is a 2m × 2m Hamiltonian matrix with eigenvalues λ1, λ2, · · · , λ2m. Suppose |λi| ≥ σ
and |λi − λj| ≥ σ for i ̸= j, and i, j = 1, · · · , 2m. Furthermore, M(t) = ∑Λ∈τ MΛ(t) is analytic
almost periodic on Dρ with frequencies ω = (ω1, ω2, · · · ) and has finite spatial structure (τ, [·]).
Then, M = 0, and

|⟨k, ω⟩
√
−1 − λi + λj| ≥

α

∆4(|k|)∆4([k])

for all k ∈ ZN \ {0}. Set 0 < ρ1 < ρ and 0 < z1 < z. Then equation (12) has a unique analytic
almost periodic Hamiltonian solution P(t) with P = 0, where P(t) has the same frequencies and
spatial structure as M(t), and satisfies

|∥P∥|z−z1,ρ−ρ1 ≤ c
Γ(z)Γ(ρ)

α
|∥M∥|z,ρ.

Proof. Choose the matrix S such that S−1 AS = D = diag(λ1, · · · , λ2n), make the change
of variable P(t) = SW(t)S−1, and define R(t) = S−1M(t)S. Equation (12) becomes

Ẇ(t) = DW(t)− W(t)D + R(t). (13)

Let W = ∑Λ∈τ WΛ and R = ∑Λ∈τ RΛ, where

RΛ = (rij
Λ), rij

Λ = ∑
suppk⊂Λ

rij
Λke

√
−1⟨k,ω⟩t,

WΛ = (wij
Λ), wij

Λ = ∑
suppk⊂Λ

wij
Λke

√
−1⟨k,ω⟩t.

Substitute these into (13). We have wij
Λ0 = 0 and

wij
Λk =

rij
Λk

⟨k, ω⟩
√
−1 − λi + λj

, k ̸= 0.

Since M(t) and R(t) are analytic on Dρ, we have

||wij
Λ||ρ−ρ1 ≤ ∑

suppk⊂Λ

∆4(|k|)∆4([k])
α

|rij
Λk|e

(ρ−ρ1)|k|

≤ Γ(ρ1)∆4([Λ])

α
||rij

Λ||ρ.

Thus,

||WΛ||ρ−ρ1 ≤ Γ(ρ1)∆4([Λ])

α
||RΛ||ρ.
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By Definition 5, we have

|∥W∥|z−z1,ρ−ρ1 = ∑
Λ∈τ

||WΛ||ρ−ρ1 e(z−z1)[Λ]

≤ ∑
Λ∈τ

Γ(ρ1)∆4([Λ])

α
||RΛ||ρez[Λ]−z1[Λ]

≤ Γ(ρ1)Γ(z1)

α
|∥R∥|z,ρ.

Since,
|∥P∥|z−z1,ρ−ρ1 ≤ ||S|||∥W∥|z−z1,ρ−ρ1 ||S

−1||,

|∥R∥|z,ρ ≤ ||S−1|||∥M∥|z,ρ||S||.

Hence,

|∥P∥|z−z1,ρ−ρ1 ≤ c
Γ(z1)Γ(ρ1)

α
|∥M∥|z,ρ.

From now on, the symbol c is used to denote different constants.
Now, we verify that P = ∑Λ∈τ PΛ is Hamiltonian. Since A and M = ∑Λ∈τ MΛ are

Hamiltonian, we have
A = JAJ , M = JMJ

where AJ and MJ are symmetric. Let PJ = J−1P. If PJ is symmetric, then P is Hamiltonian.
Now, we demonstrate that PJ is symmetric. Substitute P = JPI into Equation (12). We have

ṖJ = AJ JPJ − PJ JAJ + MJ , (14)

Transposing Equation (14), we obtain

ṖJ
T
= AJ JPT

J − PT
J JAJ + MJ .

Obviously, JPJ and JPT
J are all solutions of (12). Furthermore, JPJ = JPT

J = 0. From
the uniqueness of solution of (12) with P = 0, it follows that JPJ = JPT

J ; hence, P is
Hamiltonian.

Lemma 5. Consider the following Hamiltonian system:

ẋ = (A + εQ(t))x + εg(t) + h(x, t), x ∈ R2n, (15)

where A is a 2n × 2n matrix that can be diagonalized with the eigenvalues λ1, λ2, · · · , λ2n, and
|λi| ≥ σ, σ > 0 is a constant. Assume that Q(t) = ∑Λ∈τ QΛ(t), g(t) = ∑Λ∈τ gΛ(t), and
h(x, t) = ∑Λ∈τ hΛ(x, t) are analytic almost periodic on Dρ. Their frequencies are ω = (ω1, ω2, · · · ),
and they have the spatial structure (τ, [·]). Suppose that h(x, t) is analytic about x on Ba(0), where
||Dxxh(x)|| ≤ M, ∀x ∈ Ba(0). Furthermore,

|⟨k, ω⟩
√
−1 − λi| ≥

α

∆4(|k|)∆4([k])

holds for all k ∈ ZN \ {0}, and the constant α > 0. Let 0 < ρ1 < ρ and 0 < z1 < z. Then, there
exists a symplectic transformation x = y + x that transforms (15) into

ẏ = (A + εQ̂(t))y + ε2 ĝ(t) + ĥ(y, t),

satisfing

|∥Q̂∥|z−z1,ρ−ρ1 ≤ |∥Q∥|z,ρ + M
cΓ(ρ1)Γ(z1)

α
|∥g∥|z,ρ
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and

|∥ĝ∥|z−z1,ρ−ρ1 ≤ cΓ(ρ1)Γ(z1)

α
|∥Q∥|z,ρ |∥g∥|z,ρ + Mc

(
Γ(ρ1)Γ(z1)

α

)2

|∥g∥|2z,ρ,

where a1 = a0 − |∥x∥|z−z1,ρ−ρ1 , y ∈ Ba1(0).

Proof. The solution of Equation ẋ = Ax + εg(t) is denoted by x. From Lemma 3,
it follows that

|∥x∥|z−z1,ρ−ρ1 ≤ ε
cΓ(ρ1)Γ(z1)

α
|∥g∥|z,ρ.

By the symplectic transformation x = y + x, Equation (15) is transformed into

ẏ = (A + εQ̂(t))y + ε2 ĝ(t) + ĥ(y, t),

where
Q̂ = Q(t) +

1
ε

Dxh(x, t),

ĝ =
1
ε2 h(x, t) +

1
ε

Q(t)x

and
ĥ = h(x + y, t)− h(x, t)− Dxh(x, t)y.

From Lemmas 1 and 3, it follows that

|∥Q̂∥|z−z1,ρ−ρ1 ≤ |∥Q∥|z,ρ +
M
ε
|∥x∥|z−z1,ρ−ρ1

≤ |∥Q∥|z,ρ + M
cΓ(ρ1)Γ(z1)

α
|∥g∥|z,ρ

and

|∥ĝ∥|z−z1,ρ−ρ1 ≤ 1
ε2

M
2
|∥x∥|2z−z1,ρ−ρ1

+
1
ε
∥Q∥|z−z1,ρ−ρ1 |∥x∥|z−z1,ρ−ρ1

≤ cΓ(ρ1)Γ(z1)

α
|∥Q∥|z,ρ |∥g∥|z,ρ + Mc

(
Γ(ρ1)Γ(z1)

α

)2

|∥g∥|2z,ρ.

The results are obtained.

3. Proof of Theorem 1
3.1. The First KAM Step

In the first step, we will change A in the Equation (1) from the case with multiple
eigenvalues into the case with different eigenvalues, and the ε of εQ(t) and εg(t) become ε2.

First of all, for Equation (1), by the symplectic transformation x = x0 + y, where x0 is
the solution of

ẋ0 = Ax0 + εg(t).

Hamiltonian system (1) is changed into

ẏ = (A + εQ̂(t))y + ε2 ĝ(t) + ĥ(y, t). (16)

Here,

Q̂ = Q(t) +
1
ε

Dxh(x0, t),

ĝ =
1
ε2 h(x0, t) +

1
ε

Q(t)x0(t),

ĥ = h(x0 + y, t)− h(x0, t)− Dxh(x0, t)y.
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By the assumptions of Theorem 1 and Lemma 3, we have

|∥x0∥|z0−z1,ρ0−ρ1
≤ ε

cΓ(ρ1)Γ(z1)

α0
|∥g∥|z,ρ, (17)

where 0 < z1 < 1
2 z0 and 0 < ρ1 < 1

2 ρ0. Define the average of Q̂ by Q̂. Equation (16) is
changed into

ẏ = (A1 + εQ̃(t))y + ε2 g̃(t) + h̃(y, t), (18)

where
A1 = A + εQ̂, Q̂ − Q̂ = Q̃, ĝ = g̃, ĥ = h̃.

From the assumptions of Theorem 1, we see that the eigenvalues of A1 are λ+
1 , λ+

2 , · · · , λ+
2n,

which satisfy |λ+
i − λ+

j | ≥ 2δε > 0 and |λ+
i | ≥ 2δε > 0, i, j = 1, · · · , 2n, i ̸= j.

Introduce the transformation y = eεP0(t)x1. By this symplectic transformation, system
(18) is changed into

ẋ1 = (e−εP0(t)(A1 + εQ̃ − εṖ0)eεP0(t)

+e−εP0(t)(εṖ0eεP0(t) − d
dt
(eεP0(t)))x1

+e−εP0(t)ε2 g̃(t) + e−εP0(t) h̃(eεP0(t)x1, t), (19)

where x1 ∈ Ba1(0).
Expand eεP0 and e−εP0 into

eεP0 = I + εP0 + B, e−εP0 = I − εP0 + B̃,

where

B =
(εP0)

2

2!
+

(εP0)
3

3!
+ · · · , B̃ =

(εP0)
2

2!
− (εP0)

3

3!
+ · · · .

System (19) is rewritten as follows:

ẋ1 = ((I − εP0 + B̃)(A1 + εQ̃ − εṖ0)(I + εP0 + B)

+e−εP0(t)(εṖ0eεP0(t) − d
dt
(eεP0(t))))x1

+e−εP0(t)ε2 g̃(t) + e−εP0(t) h̃(eεP0(t)x1, t)

= (A1 + εQ̃ − εṖ0 + εA1P0 − εP0 A1 + Q(1))x1

+e−εP0(t)ε2 g̃(t) + e−εP0(t) h̃(eεP0(t)x1, t), (20)

where

Q(1) = −ε2P0(Q̃ − Ṗ0) + ε2(Q̃ − Ṗ0)P0 − ε2P0(A1 + εQ̃ − εṖ0)P0

−εP0(A1 + εQ̃ − εṖ0)B + (A1 + εQ̃ − εṖ0)B

+B̃(A1 + εQ̃ − εṖ0)eεP0 + e−εP0

(
εṖ0eεP0 − d

dt
eεP0

)
.

We would like to have
Q̃ − Ṗ0 + A1P0 − P0 A1 = 0,

which is equivalent to

Ṗ0 = A1P0 − P0 A1 + Q̂ − Q̂. (21)
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According to Lemma 4, if

|⟨k, ω⟩
√
−1 − λ+

i + λ+
j | ≥

α1

∆4(|k|)∆4([k])

for all k ∈ ZN \ {0}, where α1 = α
4 , then Equation (21) has a unique analytic almost periodic

solution P(t), its frequencies are ω, and it has a spatial structure (τ, [·]), which satisfies

|∥P0∥|z0−2z1,ρ0−2ρ1
≤ c

Γ(z1)Γ(ρ1)

α1
|∥Q̂∥|z0−z1,ρ0−ρ1

. (22)

System (20) becomes

ẋ1 = (A1 + ε2Q1(t))x1 + ε2g1(t) + h1(x1, t), (23)

where
ε2Q1 = Q(1), g1(t) = e−εP0 g̃, h1(x1, t) = e−εP0 h̃(eεP0 x1, t).

Since Q̃ − Ṗ0 = P0 A1 − A1P0,

ε2Q1 = Q(1) = −ε2P0(P0 A1 − A1P0) + ε2(P0 A1 − A1P0)P0

−ε2P0(A1 + εP0 A1 − εA1P0)P0

−εP0(A1 + εP0 A1 − εA1P0)B + (A1 + εP0 A1 − εA1P0)B

+B̃(A1 + εP0 A1 − εA1P0)eεP0 + e−εP0

(
εṖ0eεP0 − d

dt
eεP0

)
.

Thus, the symplectic transformation is T0x1 = x0 + eεPx1 = ϕ0(t) + ψ0(t)x1. If

|∥P0∥|z0−2z1,ρ0−2ρ1
≤ 1

2
,

then by (17) and (22), we have

|∥ϕ0∥|z0−2z1,ρ0−2ρ1
≤ ε

cΓ(ρ1)Γ(z)1

α0
|∥g∥|z,ρ.

|∥ψ0 − I∥|z0−2z1,ρ0−2ρ1
≤ ε

cΓ(z1)Γ(ρ1)

α1
|∥Q̂∥|z0−z1,ρ0−ρ1

.

Hence, under the symplectic transformation x = T0x1, system (1) becomes Hamilto-
nian system (23).

3.2. The mth KAM Step

The first step has been completed. That is, A1 has 2n different eigenvalues, and ε2Q1(t)
and ε2g1(t) are smaller perturbations. In the mth step, consider the Hamiltonian system

ẋm = (Am + ε2m
Qm(t))xm + ε2m

gm(t) + hm(xm, t), m ≥ 1, (24)

where xm ∈ Bam(0), Qm, gm, hm are analytic almost periodic on Dρm , with frequencies ω
and the same spatial structure (τ, [·]). Am has 2n different eigenvalues λm

1 , · · · , λm
2n with

|λm
i | ≥ δε, |λm

i − λm
j | ≥ δε, i ̸= j, 1 ≤ i, j ≤ 2n,

where we denote λ1
i = λ+

i , i = 1, · · · , 2n.
By the symplectic transformation xm = xm + y, where xm is solution of ẋm = Amxm +

ε2m
g(t) on Dρm−ρm+1

, Hamiltonian system (24) becomes

ẏ = (Am + ε2m
Q̂m(t))y + ε2m+1

ĝ(t) + ĥ(y, t), (25)
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where
Q̂m = Qm(t) +

1
ε2m Dxhm(xm, t),

ĝm =
1

ε2m+1 hm(xm, t) +
1

ε2m Qm(t)xm(t),

ĥm = hm(xm + y, t)− hm(xm, t)− Dxhm(xm, t)y.

By Lemma 3, if

|⟨k, ω⟩
√
−1 − λm

i | ≥
αm

∆4(|k|)∆4([k])
, k ∈ ZN,

we have

|∥xm∥|zm−zm+1,ρm−ρm+1
≤ ε2m cΓ(ρm+1)Γ(zm+1)

αm
|∥gm∥|zm ,ρm . (26)

Define the average of Q̂m by Q̂m. Equation (25) is changed into

ẏ = (Am+1 + ε2m
Q̃m(t))y + ε2m+1

g̃m(t) + h̃m(y, t), (27)

where
Am+1 = Am + ε2m

Q̂m, Q̂m − Q̂m = Q̃m, ĝm = g̃m, ĥm = h̃m.

Denote the eigenvalues of Am+1 by λm+1
1 , λm+1

2 , · · · , λm+1
2n .

In making the change of variables y = eε2m
Pm(t)xm+1, where Pm(t) is to be determined

later, by the symplectic transformation, Hamiltonian system (27) becomes the new system

ẋm+1 = (e−ε2m
Pm(t)(Am+1 + ε2m

Q̃m − ε2m
Ṗm)eε2m

Pm(t)

+e−ε2m
Pm(t)(ε2m

Ṗmeε2m
Pm(t) − d

dt
(eε2m

Pm(t))))xm+1

+e−ε2m
Pm(t)ε2m+1

g̃m(t)

+e−ε2m
Pm(t) h̃m(eε2m

Pm(t)xm+1, t), (28)

where xm+1 ∈ Bam+1(0).

Expand eε2m
Pm and e−ε2m

Pm into

eε2m
Pm = I + ε2m

Pm + Bm, e−ε2m
Pm = I − ε2m

Pm + B̃m,

where

Bm =
(ε2m

Pm)2

2!
+

(ε2m
Pm)3

3!
+ · · · , B̃m =

(ε2m
Pm)2

2!
− (ε2m

Pm)3

3!
+ · · · .

Then, system (28) can be rewritten as follows:

ẋm+1 = ((I − ε2m
Pm + B̃m)(Am+1 + ε2m

Q̃ − ε2m
Ṗm)(I + ε2m

Pm + Bm)

+e−ε2m
Pm(t)(ε2m

Ṗmeε2m
Pm(t) − d

dt
(eε2m

Pm(t))))xm+1

+e−ε2m
Pm(t)ε2m+1

g̃m(t) + e−ε2m
Pm(t) h̃m(eε2m

Pm(t)xm+1, t)

= (Am+1 + ε2m
Q̃m − ε2m

Ṗm + ε2m
Am+1Pm − ε2m

Pm Am+1 + Q(1)
m )xm+1

+e−ε2m
Pm(t)ε2m+1

g̃m(t) + e−ε2m
Pm(t) h̃m(eε2m

Pm(t)xm+1, t), (29)
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where

Q(1)
m = −ε2m+1

Pm(Q̃m − Ṗm) + ε2m+1
(Q̃m − Ṗm)Pm

−ε2m+1
Pm(Am+1 + ε2m

Q̃m − εṖm)Pm

−ε2m
Pm(Am+1 + ε2m

Q̃m − ε2m
Ṗm)Bm

+(Am+1 + ε2m
Q̃m − ε2m

Ṗm)Bm

+B̃m(Am+1 + ε2m
Q̃m − ε2m

Ṗm)eε2m
Pm

+e−ε2m
Pm

(
ε2m

Ṗmeε2m
Pm − d

dt
eε2m

Pm

)
.

We would like to have

Q̃m − Ṗm + Am+1Pm − Pm Am+1 = 0,

which is equivalent to

Ṗm = Am+1Pm − Pm Am+1 + Q̂m − Q̂m. (30)

By Lemma 4, if

|λm+1
i | ≥ δε, |λm+1

i − λm+1
j | ≥ δε, i ̸= j, 1 ≤ i, j ≤ 2n

and
|⟨k, ω⟩

√
−1 − λm+1

i + λm+1
j | ≥ αm+1

∆4(|k|)∆4([k])

for k ∈ ZN \ {0}, then Equation (30) has a unique almost periodic Hamiltonian solution
Pm(t). Furthermore,

|∥Pm∥|zm−2zm+1,ρm−2ρm+1
≤ c

Γ(zm+1)Γ(ρm+1)

αm+1
|∥Q̂m∥|zm−zm+1,ρm−ρm+1

. (31)

System (29) becomes

ẋm+1 = (Am+1 + ε2m+1
Qm+1(t))xm+1 + ε2m+1

gm+1(t) + hm+1(xm+1, t), (32)

where
ε2m+1

Q1 = Q(1)
m , gm+1(t) = e−ε2m

Pm g̃m,

hm+1(xm+1, t) = e−ε2m
Pm h̃m(eε2m

Pm xm+1, t).

Since Q̃m − Ṗm = Pm Am+1 − Am+1Pm,

ε2m+1
Qm+1 = Q(1)

m = −ε2m+1
Pm(Pm Am+1 − Am+1Pm)

+ε2m+1
(Pm Am+1 − Am+1Pm)Pm

−ε2m+1
Pm(Am+1 + ε2m

Pm Am+1 − ε2m
Am+1Pm)Pm

−ε2m
Pm(Am+1 + ε2m

Pm Am+1 − ε2m
Am+1Pm)Bm

+(Am+1 + ε2m
Pm Am+1 − ε2m

Am+1Pm)Bm

+B̃m(Am+1 + ε2m
Pm Am+1 − ε2m

Am+1Pm)eε2m
Pm

+e−ε2m
Pm

(
ε2m

Ṗmeε2m
Pm − d

dt
eε2m

Pm

)
. (33)
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Hence, the symplectic changes of variables are

Tmxm+1 = xm + eε2m
Pm xm+1 = ϕm(t) + ψm(t)xm+1.

If |∥Pm∥|zm−2zm+1,ρm−2ρm+1
≤ 1

2 , by (26) and (31), we have

|∥ϕm∥|zm−2zm+1,ρm−2ρm+1
≤ ε2m cΓ(ρm+1)Γ(zm+1)

αm
|∥gm∥|zm ,ρm .

|∥ψm − I∥|zm−2zm+1,ρm−2ρm+1
≤ ε2m cΓ(zm+1)Γ(ρm+1)

αm+1
|∥Q̂m∥|zm−zm+1,ρm−ρm+1

.

Under the symplectic transformation xm = Tmxm+1, system (24) becomes system (32).

3.3. Iteration

In this section, we prove the convergence of the iteration as m → ∞.
From the arbitrariness of z and ρ, we set zm, ρm as follows:

zm = z −
m

∑
ν=1

2zν, ρm = ρ −
m

∑
ν=1

2ρν,

where zν ↓ 0 and ρν ↓ 0 satisfy

∞

∑
ν=1

zν =
1
4

z,
∞

∑
ν=1

ρν =
1
4

ρ.

Moreover, we choose

αm =
α0

(m + 1)2 , am+1 =
am − |∥xm∥|zm+1,ρm+1

eε2m |∥Pm∥|zm+1,ρm+1

.

If |∥ε2m
Pm∥|zm+1,ρm+1 ≤ 1

2 , we have

am+1 ≥
am − |∥xm∥|zm+1,ρm+1

1 + 2ε2m |∥Pm∥|zm+1,ρm+1

. (34)

If ε is small enough, from [8], it follows that

a∞ = lim
m→∞

am ≥ σ > 0.

By Lemma 5, we have

|∥Q̂m∥|zm−zm+1,ρm−ρm+1
≤ |∥Qm∥|zm ,ρm + Km

cΓ(ρm+1)Γ(zm+1)

αm
|∥gm∥|zm ,ρm . (35)

Thus, by (31) and (35), we have

|∥Pm∥|zm−2zm+1,ρm−2ρm+1

≤
cΓ(ρm+1)Γ(zm+1)

αm+1

(
|∥Qm∥|zm ,ρm + Km

cΓ(ρm+1)Γ(zm+1)

αm
|∥gm∥|zm ,ρm

)
.



Symmetry 2024, 16, 656 14 of 19

From Km being convergent (see below), it follows that there exists c0 > 1 such that
Km ≤ c0. Thus, we have

|∥Pm∥|zm−2zm+1,ρm−2ρm+1

≤ c0c
(

Γ(ρm+1)Γ(zm+1)

αm+1

)2(
|∥Qm∥|zm ,ρm + |∥gm∥|zm ,ρm

)
≤ c

(
Γ(ρm+1)Γ(zm+1)

αm+1

)2(
|∥Qm∥|zm ,ρm + |∥gm∥|zm ,ρm

)
. (36)

We first estimate |∥gm+1∥|zm+1,ρm+1 . By Lemma 5, we have

|∥gm+1∥|zm+1,ρm+1

≤
cΓ(ρm+1)Γ(zm+1)

αm
|∥Qm∥|zm ,ρm |∥gm∥|zm ,ρm

+c
(

Γ(ρm+1)Γ(zm+1)

αm

)2

|∥gm∥|2zm ,ρm

≤ c
(

Γ(ρm+1)Γ(zm+1)

αm

)2(
|∥Qm∥|zm ,ρm |∥gm∥|zm ,ρm + |∥gm∥|2zm ,ρm

)
.

(37)

Now, we estimate |∥Qm+1∥|zm+1,ρm+1 . If |∥ε2m
Pm∥|zm+1,ρm+1 ≤ 1

2 , it follows that

|∥e±ε2m
Pm∥|zm−2zm+1,ρm−2ρm+1

≤ 1 + |∥ε2m
Pm∥|zm−2zm+1,ρm−2ρm+1

+
|∥ε2m

Pm∥|2zm−2zm+1,ρm−2ρm+1

2!
+ · · ·

≤ 2.

Moreover, if |∥ε2m
Pm∥|zm−zm+1,ρm−ρm+1

≤ 1
2 , by

|∥ d
dt
(ε2m

Pm)
n∥|zm−2zm+1,ρm−2ρm+1

≤ n|∥ε2m
Ṗm∥|zm−2zm+1,ρm−2ρm+1

(|∥ε2m
Pm∥|zm−2zm+1,ρm−2ρm+1

)n−1

for n ∈ Z+, we have

|∥ε2m
Ṗmeε2m

Pm − d
dt

eε2m
Pm∥|zm−2zm+1,ρm−2ρm+1

≤ 4|∥ε2m
Ṗm∥|zm−2zm+1,ρm−2ρm+1

|∥ε2m
Pm∥|zm−2zm+1,ρm−2ρm+1

.

So,

|∥e−ε2m
Pm(ε2m

Ṗmeε2m
Pm − d

dt
eε2m

Pm)∥|zm+1,ρm+1

≤ cε2m+1
(|∥Pm∥|2zm+1,ρm+1

+ |∥Pm∥|zm+1,ρm+1 |∥Qm∥|zm ,ρm

+∥Pm∥|zm+1,ρm+1 Km
cΓ(ρm+1)Γ(zm+1)

αm
|∥gm∥|zm ,ρm). (38)
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From the representations of Bm and B̃m, we have

|∥Bm∥|zm−2zm+1,ρm−2ρm+1
, |∥B̃m∥|zm−2zm+1,ρm−2ρm+1

≤ 2|∥ε2m
Pm∥|zm−2zm+1,ρm−2ρm+1

. (39)

Then from (33) and (38), it follows that

|∥Qm+1∥|zm−2zm+1,ρm−2ρm+1

≤
cΓ(ρm+1)Γ(zm+1)

αm
(|∥Pm∥|2zm+1,ρm+1

+|∥Pm∥|zm+1,ρm+1 |∥Qm∥|zm ,ρm + |∥Pm∥|zm+1,ρm+1 |∥gm∥|zm ,ρm).

Then by (36), we have

|∥Qm+1∥|zm+1,ρm+1

≤ c
(

Γ(ρm+1)Γ(zm+1)

αm+1

)5

(|∥Qm∥|2zm ,ρm + |∥gm∥|2zm ,ρm

+|∥Qm∥|zm ,ρm |∥gm∥|zm ,ρm).

Set
Cm =

[
(m + 2)2−m+2

(m + 1)2−m+1
m2−m · · · 2−2

]5

and
Φm(z) = Πm+1

ν=1 [Γ(zν)]
5−ν

, Φm(ρ) = Πm+1
ν=1 [Γ(ρν)]

5−ν
.

From [18], Cm, Φm(z), and Φm(ρ) are all convergent as m → ∞.
Let

C1 = max{ c
α5

0
, 1}, γ = max{|∥Q∥|z0,ρ0 , |∥g∥|z0,ρ0}

and
M = max{1, sup

m
(C1CmΦm(z)Φm(ρ)}γ.

Then, we have

|∥Qm+1∥|zm+1,ρm+1 < M2m+2
, |∥gm+1∥|zm+1,ρm+1 < M2m+2

.

If 0 < εM2 < 1, then
lim

m→∞
ε2m

Qm = 0, lim
m→∞

ε2m
gm = 0.

Moreover, by (35), we obtain

||Am+1 − Am|| ≤ ε2m ||Q̂m||

≤ ε2m
(|∥Qm∥|zm ,ρm +

cKmΓ(ρm+1)Γ(zm+1)

αm
|∥Qm∥|zm ,ρm)

≤ (εM2)2m
.

Thus, limm→∞ ||Am+1 − Am|| = 0. That is, Am is convergent when m → ∞. Let

Am → B (m → ∞).
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Furthermore, if (εM2)2m
< δε

(6n−1)β2
m

, we have

||Am+1 − Am|| ≤
δε

(6n − 1)β2
m

, for any m ≥ 1,

where βm = max{||Sm||, ||S−1
m ||}, and Sm is the nonsingular matrix in Lemma 2 satisfing

S−1
m AmSm = diag(λm

1 , · · · , λm
2n).

Therefore, from Lemma 2, it follows that the eigenvalues λm+1
1 , · · · , λm+1

2n of Am+1 are
different. Moreover,

|λm+1
i − λm+1

j | ≥ εδ, 1 ≤ i, j ≤ 2n, i ̸= j,

and
|λm+1

j | ≥ εδ, j = 1, · · · , 2n.

Next we present the proof of the above inequalities:

∣∣λm+1
i − λm+1

j

∣∣ ≥
∣∣λ1

i − λ1
j
∣∣− m

∑
l=1

(
|λl+1

i − λl
i |+ |λl+1

j − λl
j|
)

≥
∣∣λ1

i − λ1
j
∣∣− 2

m

∑
l=1

||Al+1 − Al ||

≥
∣∣λ1

i − λ1
j
∣∣− 2

m

∑
l=1

(εM2)2l

≥ 2δε − 2
m

∑
l=1

(εM2)2l

≥ 2δε − 4(εM2)2.

Thus, if ε < δ
4M4 , we have

|λm+1
i − λm+1

j | ≥ εδ, 1 ≤ i, j ≤ 2n, i ̸= j.

Similarly, we obtain
|λm+1

i | ≥ εδ, i = 1, · · · , 2n.

Then,
lim

m→∞
|∥ϕm∥|zm+1,ρm+1 = 0, lim

m→∞
|∥ψm − I∥|zm+1,ρm+1 = 0.

Let Tm = T0 ◦ T1 ◦ · · · ◦ Tm−1. Thus, Tm is convergent on D z0
2 , ρ0

2
. Assume that Tm → T

as m → ∞. By (32), we have

|∥Dxm+1xm+1 hm+1∥|zm+1,ρm+1 ≤
(1 + 2|∥ε2m∥|zm+1,ρm+1)

2

1 − 2|∥ε2m Pm∥|zm+1,ρm+1

Km. (40)

If |∥ε2m
Pm∥|zm+1,ρm+1 ≤ 1

4 , by (40), we have Km ≤ ( 9
2 )

mK0. Since, 1
1−x ≤ 1+ 2x, if 0 ≤ x ≤ 1

2 ,

Km+1 ≤ (1 + 4ε2m |∥Pm∥|zm+1,ρm+1)
3Km. (41)

Since Km ≤ ( 9
2 )

mK0, then by (41), we obtain the convergence of Km. Let Km → K∞ (m → ∞).
Hence,

lim
m→∞

hm(xm, t) = h∞(y, t) = O(y2),

as y → 0.
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Thus, under the transformation

x = Ty = ψ(t)y + φ(t),

Hamiltonian system (1) is changed into system (8).

3.4. Measure Estimate

Firstly, we prove that the following non-resonant conditions

|⟨k, ω⟩
√
−1 − λm

i | ≥
αm

∆4(|k|)∆4([k])
(42)

and
|⟨k, ω⟩

√
−1 − λm+1

i + λm+1
j | ≥ αm+1

∆4(|k|)∆4([k])
(43)

hold for most small ε ∈ (0, ε0), where k ∈ ZN \ {0}.
By Theorem B in [13], there exist ε0 and non-empty set E∗ ⊂ (0, ε0) such that for

ε ∈ E∗, we have
|⟨k, ω⟩

√
−1 − λm+1

i + λm+1
j | ≥ αm

2∆4(|k|)∆4([k])
,

lim
ε0→0

meas(E∗)

ε0
= 1.

Obviously, (43) holds.
In the same way as above, we can obtain

|⟨k, ω⟩
√
−1 − λm

i | ≥
αm

∆4(|k|)∆4([k])
,

lim
ε0→0

meas(E∗)

ε0
= 1.

That is, (42) holds.
Thus, there exists a non-empty Cantor subset E∗ ⊂ (0, ε0) such that for ε ∈ E∗, there

exists an almost periodic symplectic transformation

x = ψ(t, ε)y + φ(t, ε)

that changes (1) into
ẏ = By + h∞(y, t).

where E∗ has a positive Lebesgue measure, and ψ(t) and φ(t) have the same basic frequen-
cies and spatial structure as Q(t). The matrix B is a real constant, and h∞(y, t) = O(y2) as
y → 0. Moreover, meas((0, ε0) \ E∗) = o(ε0) as ε0 → 0. Therefore, we have completed the
proof of Theorem 1.

4. Application

Now, we apply Theorem 1 to the almost periodic Hill’s equation

ẍ + εa(t)x = 0, (44)

where a(t) is an analytic almost periodic function on Dρ with frequencies ω = (ω1, ω2, · · · )
and has spatial structure (τ, [·]). Denote the average of a(t) by ā.

Let ẋ = y, Equation (44) equivalently becomes of the form

ẋ = y, ẏ = −εa(t)x. (45)
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In order to apply Theorem 1, we rewrite (45) as follows:

Ż = (A + εQ(t))Z, (46)

where

Z =

(
x
y

)
, A =

(
0 1
0 0

)
, Q =

(
0 0

−a(t) 0

)
and g(t) ≡ 0, and h(x, t) ≡ 0. It is easy to see that A has multiple eigenvalues λ1 = λ2 = 0
and that A + εQ has two different eigenvalues µ1 = i

√
āε and µ2 = −i

√
āε, where i =

√
−1.

Obviously,
|µi| =

√
ā
√

ε ≥ 2δε, i = 1, 2,

and
|µ1 − µ2| = 2

√
ā
√

ε ≥ 2δε

hold, where δ = 1
2

√
ā. Thus, by Theorem 1, we have the result as follows.

Theorem 2. Assume that a(t) = ∑Λ∈τ aΛ(t) is analytic almost periodic on Dρ with frequencies
ω = (ω1, ω2, · · · ) and has spatial structure (τ, [·]). If ā > 0 and

|⟨k, ω⟩
√
−1| ≥ α0

∆4(|k|)∆4([k])
(47)

holds for all k ∈ ZN \ {0}, where the constant α0 > 0, and ∆ is an approximation function.
Then, there exist small enough ε0 > 0 and the non-empty Cantor subset Eε0 ⊂ (0, ε0) such

that for ε ∈ Eε0 , there exists an almost periodic symplectic transformation that changes (46) into a

constant coefficient linear system. In addition,
meas(Eε0 )

ε0
→ 1 as ε0 → 0.

From Theorem 2, we see that, for most small ε > 0, Equation (44) is changed into
a constant coefficient system. Hence, similar to Xue [12], by an analytic almost periodic
transformation, Equation (44) is transformed into

ẍ∞ + bx∞ = 0, (48)

where b = āε + O(ε2), which depends on ā and ε only. Obviously, Equation (48) is elliptic,
so the equilibrium is Lyapunov stable for most small enough ε.

5. Conclusions

In this paper, we considered the reducibility of almost-periodic nonlinear Hamiltonian
systems and proved that, for most small enough ε, system (1) was reduced to a Hamiltonian
system with an equilibrium. The result was proved by using some non-resonant conditions,
non-degeneracy conditions and the KAM iterations. Application to the almost periodic
Hill’s equation was also presented.
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