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Abstract: This pioneering investigation introduces two innovative estimators crafted to evaluate the
finite population distribution function of a study variable, employing auxiliary variables within the
framework of stratified random sampling and post-stratification while emphasizing symmetry in the
sampling process. The derivation of mathematical expressions for bias and the mean square error up
to the first degree of approximation fortifies the credibility of the proposed estimators. Drawing from
three distinct datasets, including real-world data capturing student behaviors and exam performances
from 500 students, this research highlights the superior efficiency of the proposed estimators compared
to existing methods across both sampling schemes. Employing the proposed estimator, we effectively
forecast students’ exam scores based on their study hours, backed by empirical evidence showcasing its
precision in terms of mean square error and percentage relative efficiency. This study not only introduces
inventive solutions to enduring challenges in survey sampling but also provides practical insights into
enhancing predictive accuracy in educational assessments.

Keywords: cumulative distribution function; stratified sampling; post-stratification; percentage
relative efficiency; symmetry

MSC: 62D05; 94A20

1. Introduction

In the pursuit of estimating population parameters, auxiliary variables are crucial tools.
These variables, which are different but intricately linked to the variable of interest, offer a
dependable method for improving the consistency and validity of statistical estimations.
Based on survey sampling theory, the importance of auxiliary variables becomes clear,
especially in guaranteeing symmetry in the sampling process. Given the impracticality or
difficulty of collecting comprehensive data from the entire population in survey research,
researchers use sampling—an intentional selection of a smaller subset—to collect data,
aiming for symmetry in representation. The goal is to extrapolate findings from this sample
to the entire population, using auxiliary variables that promote symmetry in the estimate.
Using auxiliary variables in the sample and estimating process appears to be a powerful
method for boosting estimation accuracy while maintaining symmetry in the representation
of population features. Previous research has clarified a variety of population parameters,
including mean, median, total, distribution function, etc., each of which requires supportive
variable data in addition to the variable of interest, adding to the symmetrical representation
of population traits. In stratified sampling, a distribution function estimator is useful for
estimating the cumulative distribution function (CDF) within each stratum. These estimates
are then combined to generate a comprehensive estimate for the entire population, ensuring
symmetry throughout the estimating process.
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Over the years, numerous scholars have delved into different facets of estimators in strat-
ified random sampling (St RS), enriching our understanding and refining the methodologies
in this critical domain. The author of [1] addressed the credibility of the approximate formula
for computing variance, while [2] discussed estimation methods and the dual property of ratio
estimation. Eventually, ref. [3] focused on techniques in post-stratification, and later, ref. [4]
demonstrated methods to improve ratio and regression estimators. Further, ref. [5] explored
the characteristics of estimators for finite population distribution functions. Later, ref. [6]
proposed a Bayesian model-based theory for post-stratification, and [7] presented calibration
estimators using auxiliary data. Further, refs. [8,9] also contributed with their estimators for
distribution functions in post-stratification.

Later, ref. [10] extended estimators with readily accessible supporting variables. An
efficient ratio estimator for stratified sampling was introduced by [11]. Further, ref. [12]
presented a family of estimators for the population mean, which was validated empirically.
Later, ref. [13] proposed superior exponential ratio estimators. Further, ref. [14] derived
a diligent ratio and product estimator, which outperformed others. Thereafter, ref. [15]
devised exponential ratio estimators based on supporting variables. Additionally, ref. [16]
suggested reliable ratio and difference estimators for population distributions. Researchers
have made significant advancements in sampling estimation. Later, ref. [17] improved ex-
ponential estimators for post-stratification. Ref. [18] introduced superior estimators for SRS
and stratified sampling with two supporting variables. Following that, ref. [19] enhanced
the difference cum exponential estimator. Thereafter, ref. [20] proposed efficient estimators.
Ref. [21] suggested a ratio estimator for post-stratification. Subsequently, ref. [22] improved
the generalized population mean estimator, while [23] developed estimators for the finite
population mean in SRS. Later, ref. [24] presented a two-parameter ratio product ratio
estimator. Afterward, ref. [25] suggested an innovative family of exponential estimators
using supporting attributes and actual data sets.

In recent times, several authors have focused on distribution function estimators using
supporting variables. Ref. [26] proposed finite population distribution function estimators,
which have outperformed others in simple random sampling (SRS) and stratified sampling.
Following that, ref. [27] introduced imputation methods for calculating the population
mean in two-occasion successive sampling. Eventually, ref. [28] recommended exponential-
type estimators for finite population mean, demonstrating superiority with four data sets.
Thereafter, ref. [29] devised estimators for the population mean and efficiently combined
and separate estimators in stratified sampling. Additionally, ref. [30] proposed a ratio
estimator with the highest effectiveness via empirical and simulation studies. Afterward,
ref. [31] developed an estimator for estimating the population distribution function and
proved its efficiency by using a simulation study. Further, ref. [32] discussed the efficiency
of the ratio estimator in stratified sampling and proved its efficiency by utilizing empirical
studies. Later, ref. [33] suggested robust-type estimators for population variance, out-
performing existing methods in simple and St RS. A hybrid estimator for the population
mean was proposed by [34], showing superior efficiency through empirical and simulated
experiments. Later, ref. [35] proposed a log-type estimator in stratified ranked set sampling.
A new approach to the mean estimators in ranked set sampling was introduced by [36].

The literature on the estimation of CDFs is notably sparse, highlighting a significant
gap in research. In response, this article is committed to advancing this field by introducing
innovative CDF estimators. Our focus lies in proposing two distinctive classes of estimators
that harness auxiliary variable information to accurately estimate the CDF of a specific
variable under examination. By leveraging auxiliary variables, our proposed estimators
aim to fill this gap and provide enhanced methods for estimating CDFs, thus contribut-
ing to the broader advancement of statistical estimation techniques. The paper has been
systematically organized to enhance clarity and coherence in presenting the research on
stratified and post-stratified sampling methods. Beginning with an introduction that sets
the stage for the study, Section 2 elucidates key terms and concepts essential for under-
standing the subsequent discussion. The literature review delves into existing estimators in
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both stratified and post-stratified sampling, laying the groundwork for the methodology
section, where novel estimators for each method are proposed. The theoretical framework
provides a theoretical underpinning for both sampling techniques, while Section 6 details
the implementation and outcomes of empirical investigations conducted for each method.
Section 7 brings together the findings from both empirical studies, facilitating a compre-
hensive analysis of the proposed estimators and their implications. Finally, Section 8 offers
a concise summary of the study’s key findings and their significance for future research
and practical applications. This organization ensures a logical flow of ideas and a clear
delineation of the contributions made in the domains of both stratified and post-stratified
sampling methodologies.

2. Background and Notations
2.1. Notations in Stratified Random Sampling

To evaluate the finite population distribution function, regarding a finite population,
Ω = 1, 2, 3, . . . N of N distinct units is distributed to k homogeneous strata, Nh is the size
of hth stratum such that ∑k

h=1 Nh = N. A sample size nh

(
∑k

h=1 nh = n
)

is taken from the

hth stratum by utilizing SRS without replacement.
Let Fst(y) = F(y) = ∑k

h=1 WhFh(y) and Fst(x) = F(x) = ∑k
h=1 WhFh(x) be the pop-

ulation distribution function of the variables Y (study variable) and X (auxiliary vari-
able) under St RS, respectively. Let F̂st(y) = F̂(y) = ∑k

h=1 Wh F̂h(y) and F̂st(x) = F̂(x) =
∑k

h=1 Wh F̂h(x) be the sample distribution functions of the variables Y and X, respectively.
where h = 1, 2, 3 . . . k and i = 1, 2, 3 . . . Nh and n = sample size.

• Wh = Nh
N denotes the stratum weight of hth stratum.

• Fh(y) = ∑Nh
i=1 ∆(Yih ≤ y)/Nh and F̂h(y) = ∑nh

i=1 ∆(Yih ≤ y)/nh represents population
and sample distribution functions of Y for the hth stratum and ∆(Yih ≤ y) is the
indicator variable of Y.

• Fh(x) = ∑Nh
i=1 ∆(Xih ≤ x)/Nh and F̂h(x) = ∑nh

i=1 ∆(Xih ≤ x)/nh represents the popu-
lation and sample distribution functions of X for the hth stratum and ∆(Xih ≤ x) is the
indicator variable of X.

Here, we consider error terms for finding bias and MSE of the estimators.

Let ey = F̂st(y)−F(y)
F(y) , F̂st(y) = F(y) + eyF(y) = F(y)

(
1 + ey

)
and ex = F̂st(x)−F(x)

F(x) , F̂st(x) = F(x) + exF(x) = F(x)(1 + ex)

E
(
ey
)
= E(ex) = 0

E
(

e2
y

)
= ∑k

h=1 w2
hλhC2

yh = V0st(say)

E
(

e2
x

)
= ∑k

h=1 w2
hλhC2

xh = V1st(say),

E
(
exey

)
= ∑k

h=1 w2
hλhRxyhCxhCyh = V01st(say)

where

Cyh =
Syh

F(y)
, Cxh =

Sxh
F(x)

, λh =
1

nh
− 1

Nh
and Rxyh =

Sxyh

SyhSxh
.

S2
yh =

Nh

∑
i=1

(∆(Yih ≤ y)− F(y))2/(N − 1),

S2
xh =

Nh

∑
i=1

(∆(Xih ≤ x)− F(x))2/(N − 1),

Sxyh =
Nh

∑
i=1

(∆(Yih ≤ y))(∆(Xih ≤ x))/(N − 1).
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2.2. Notations in Post-Stratification

Post-stratification in survey sampling addresses missing crucial attributes by dividing
the population into subgroups based on known auxiliary variables. Survey weights are
adjusted to account for variations in the distribution of these variables, mitigating biases
from nonresponse and small sample sizes. By using CDF estimators, researchers achieve
more precise distribution estimates within specific subgroups, enhancing the understanding
of the study variable’s characteristics.

In post-stratification, the traditional unbiased estimator of the population distribution
function is referred to as

F̂ps(y) =
K

∑
h=1

Wh F̂h(y)

where F̂ps(y) is the post-stratified empirical distribution function at y
K is the number of post-strata.
F̂h(y) is the distribution function of y for the hth stratum.
Variance of F̂ps(y) is formulated as

Var(F̂ps(y)) =
[

1
n
− 1

N

] K

∑
h=1

WhS2
yh −

1
n2

K

∑
h=1

(1−Wh)S2
yh

Consider the error terms below to obtain the bias and MSE of our proposed estimator,

e0 =
∑K

h=1 WhFh(y)e0h

F(y)
, e1 =

∑K
h=1 WhFh(x)e1h

F(x)
and e2 =

∑K
h=1 WhFh(x)e2h

F(x)

where

e0h =
F̂ps(y)−Fh(y)

Fh(y)
, e1h =

F̂ps(x)−Fh(x)
Fh(x) and e2h =

F̂ps(x)−Fh(x)
Fh(x)

E(e0h) = E(e1h) = E(e2h) = 0
E
(
e2

0h
)
=
[

1
nWh

− 1
Nh

]
C2

yh, E
(
e2

1h
)
=
[

1
nWh

− 1
Nh

]
C2

xh, E
(
e2

2h
)
=
[

1
nWh

− 1
Nh

]
C2

xh

E(e0he1h) =
[

1
nWh

− 1
Nh

]
RxyhCxhCyh, E(e0he1h) =

[
1

nWh
− 1

Nh

]
RxyhCxhCyh

E(e0he1h) =
[

1
nWh

− 1
Nh

]
RxxhCxhCxh.

Now, we will find the expected values of error terms:

E(e0) = E

(
∑K

h=1 WhFh(y)e0h

F(y)

)
=

1
F(y)

(
K

∑
h=1

WhFh(y)E(e 0h)

)
= 0

Similarly,

E(e0) = E(e1) = E(e2) = 0

E
(
e2

0
)
= E

(
∑K

h=1 Wh Fh(y)e0h
F(y)

)2
= 1

F2(y)

K
∑

h=1
W2

h F2
h (y)E

(
e2

0h
)

= 1
F2(y)

K
∑

h=1
W2

h F2
h (y)

[
1

nWh
− 1

Nh

]
C2

yh

E
(
e2

0
)
= 1

F2(y)

[
1
n − 1

N

] K
∑

h=1
WhS2

yh =V0ps(say)

Similarly,

E
(
e2

1
)
= 1

F2(x)

[
1
n − 1

N

] K
∑

h=1
WhS2

xh = V1ps(say)

E(e2
2) =

1
X2

[
1
n − 1

N

] K
∑

h=1
WhS2

xh = V2ps(say)
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and

E(e0e1) =
1

F(x)F(y)

[
1
n − 1

N

] K
∑

h=1
WhRxyhCyhCxh = V01ps(say)

E(e0e2) =
1

F(y)X

[
1
n − 1

N

] K
∑

h=1
WhRyxhCyhCxh = V02ps(say)

E(e1e2) =
1

F(x)X

[
1
n − 1

N

] K
∑

h=1
WhRxxhCxhCxh = V12ps(say)

3. Literature Review
3.1. Pre-Existing Estimators under Stratified Random Sampling

Several authors have suggested estimators for calculating the finite population mean
in stratified sampling. We adopted them in the cumulative distribution function estimators
under stratified sampling to evaluate the population cumulative distribution function of
the study variable by utilizing the knowledge of information of supporting variable. Until
the first degree of approximation, we obtained bias and MSE equations for the following
pre-existing estimators, which were given by prominent authors.

1. The usual unbiased estimator of F(y) is given as

F̂SRSst(y) =
1
n

n

∑
i=1

∆(Yi ≤ y)

The MSE of F̂SRSst(y) is

MSE
(

F̂SRSst(y)
)
= F2(y)∑k

h=1 w2
hλhC2

yh = F2(y)V0st (1)

2. The classical ratio estimator of F(y), according to [1], is given by

F̂Re(y) = F̂st(y)
[

F(x)
F̂st(x)

]
And its bias and MSE become

Bias
(

F̂Re(y)
)
= F(y)(V1st − V01st)

MSE
(

F̂Re(y)
)
= F2(y)(V0st + V1st − 2V01st)

(2)

3. The product estimator of F(y) was proposed by [2]

F̂Pe(y) = F̂st(y)
[

F̂st(x)
F(x)

]
Its bias and MSE become approximately constant until the first order:

Bias
(

F̂Pe(y)
)
= F(y)V01st

MSE
(

F̂Pe(y)
)
= F2(y)(V0st + V1st + 2V01st)

(3)

4. A difference-type estimator was proposed by [4]:

F̂De(y) = m1 F̂st(y) + m2
[
F(x)− F̂st(x)

]
where m1 and m2 are unknown fixed values.

Bias
(

F̂ De(y)
)
= F(y)(m1 − 1)

MSE
(

F̂De(y)
)
= F2(y)− 2m1F2(y) + m2

1F2(y)+m2
1F2(y)V0st − 2m1m2F(x)F(y)V01st + m2

2F2(x)V1st

After minimizing MSE
(

F̂De(y)
)
, we get optimum values as:

m1 = V1st
V1stV0st−(V01st)

2+V0st
and m2 = F(y)V01st

F(x)(V1stV0st−(V01st)
2+V0st)
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Now, MSE
(

F̂De(y)
)
. Can we rewrite it as

MSEmin(F̂De(y)) =
F2(y)

(
V0stV1st − (V01st)

2
)

V1stV0st − (V01st)
2 + V0st

(4)

5. A generalized ratio type exponential estimator was adopted by [13]:

F̂REe(y) = F̂st(y)exp

(
ast
(

F(x)− F̂st(x)
)

ast
(

F(x) + F̂st(x)
)
+ 2bst

)

Here, ast and bst are fixed values, and bias and MSE will be

Bias
(

F̂REe(y)
)
= F(y)

(
3
8 ∑k

h=1 V1st − 1
2 V01st

)
MSE

(
F̂REe(y)

)
= F2(y)

(
V0st +

1
4 V1st − V01st

) (5)

6. Ref. [34] proposed a general class of estimators:

F̂tk (y) =
[
t1 F̂st(x) + t2

(
F(x)− F̂st(x)

)][ astF(x) + bst

cst F̂st(x) + dst

]α[
exp
(

F(x)− F̂st(x)
F(x) + F̂st(x)

)]β

Here, t1, t2,α,β are suitable fixed values, and ast, bst, cst, dst are either functions of the
known parameters of x or fixed values. The bias and MSE are

Bias
(

F̂tk (y)
)
= F(y)[(t1 φst − 1)

+

{
φst

((
β
2 + αηst

)
t2r +

(
β
2 + αηst

)
t1
2 +

(
β
2 + αηst

)2 t1
2

)
V1st −

(
β
2 + αηst

)
t1V01st

}]

where φst =
[

ast F(x)+bst
cst F(x)+dst

]α
, ηst =

cst F(x)
cst F(x)+dst

and r = F(x)
F(y) .

MSE
(

F̂tk (y)
)
= F2(y)

[
(t 1 φst − 1)2

+φst
2
{

t2
1V0st −

(
t2r + t1

(
β
2 + αηst

))2
V1st − 2

(
t1t2r + t2

1

(
β
2 + αηst

))
V01st

}
+2φst((t 1 φst − 1)

{((
β
2 + αηst

)
t2r +

(
β
2 + αηst

)
t1
2 +

(
β
2 + αηst

)2 t1
2

)
V1st

−
(

β
2 + αηst

)
t1 V01st

}
]

We can rewrite the above equation as

MSE
(

F̂tk (y)
)
= F2(y)

[
1 − γ1t1 + γ2t2

1 − 2γ3t2 + γ4t2
2 + 2γ5t1t2

]
(6)

Such that

γ1 =φst

[
2 + (V1st − 2V01st)

(
β

2
+ αηst

)
+

(
β

2
+ αηst

)2
V1st

]

γ2 =φst

[
1 + V0st + (V1st − 4V01st)

(
β

2
+ αηst

)
+ 2
(

β

2
+ αηst

)2
V1st

]

γ3 =rφstV1st

(
β

2
+ αηst

)
γ4 =φst

2r2V1st

γ5 =rφst
2V1st

[
2
(

β

2
+ αηst

)
V1st − V01st

]
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We determine the optimal values by computing the derivatives of the MSE with respect
to t1 and t2.

t1 = γ1γ4−2γ3γ5
2γ2γ4−2γ2

5
and t2 = 2γ2γ3−γ1γ5

2γ2γ4−2γ2
5

.

3.2. Existing Estimators in Post-Stratification

We have transformed the following stratified estimators into post-stratified estimators
as follows:

1. The usual unbiased estimator of F(y) is given as

F̂(ps)(y) =
1
n

n

∑
i=1

∆(Yi ≤ y)

The variance of F̂SRSps(y) is

ar(F̂(ps)(y)) =
[

1
n − 1

N

] K
∑

h=1
WhS2

yh −
1

n2

K
∑

h=1
(1−Wh)S2

yh

= V0psF2(y)− 1
n2

K
∑

h=1
(1−Wh)S2

yh

(7)

2. The classical ratio estimator of F(y), according to [1], is given by

F̂Re(ps)(y) = F̂ps(y)

[
F(x)

F̂ps(x)

]

and its bias and MSE become

Bias
(

F̂Re(ps)(y)
)
= F(y)

(
V1ps − V01ps

)
MSE

(
F̂Re(ps)(y)

)
= F2(y)

(
V0ps + V1ps − 2V01ps

) (8)

3. The product estimator of F(y) was proposed by [2]:

F̂Pe(ps)(y) = F̂ps(y)

[
F̂ps(x)
F(x)

]

Its bias and MSE become approximately constant until the first order:

Bias
(

F̂Pe(ps)(y)
)
= F(y)V01ps

MSE
(

F̂Pe(ps)(y)
)
= F2(y)

(
V0ps + V1ps + 2V01ps

) (9)

4. A difference-type estimator was proposed by [4]:

F̂De(ps)(y) = m1 F̂ps(y) + m2
[
F(x)− F̂ps(x)

]
where m1 and m2 are unknown fixed values.

Bias
(

F̂ De(ps)(y)
)
= F(y)(m1 − 1)

MSE
(

F̂De(ps)(y)
)
= F2(y)− 2m1F2(y) + m2

1F2(y)+m2
1F2(y)V0ps − 2m1m2F(x)F(y)V01ps + m2

2F2(x)V1ps

After minimizing MSE
(

F̂De(ps)(y)
)

, we obtain optimum values as

m1 =
V1ps

V0psV1ps+V0ps−V2
01ps

and m2 =
F(y)V01ps

F(x)
(

V0psV1ps+V0ps−V2
01ps

)
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Now, MSE(F̂De(ps)(y)). We can we rewrite it as

MSEmin(F̂De(ps)(y)) =

(
V0psV1ps − V2

01ps

)
V0psV1ps + V0ps − V2

01ps
(10)

5. A generalized ratio-type exponential estimator was adopted by [13]:

F̂REe(ps)(y) = F̂ps(y)exp

(
aps
(

F(x)− F̂ps(x)
)

aps
(

F(x) + F̂ps(x)
)
+ 2bps

)

Here, aps and bps are fixed values, and bias and MSE will be

ias(F̂REe(ps)(y)) = F(y)
(

3
8 V1ps − 1

2 V01ps

)
MSE

(
F̂REe(ps)(y)

)
= F2(y)

(
V0ps +

1
4 V1ps − V01ps

) (11)

6. Ref. [34] proposed a general class of estimators given by

F̂tk(ps)(y) =
[
t1ps F̂ps(x) + t2ps

(
F(x)− F̂ps(x)

)][ apsF(x) + bps

cps F̂ps(x) + dps

]α[
exp

(
F(x)− F̂ps(x)
F(x) + F̂ps(x)

)]β

Here, t1ps, t2ps, α, β are suitable fixed values, and aps, bps, cps, dps are either fixed values
or functions of the known parameters of x. Bias and MSE are

Bias
(

F̂tk(ps)(y)
)

= F(y)
[(

t1ps φps − 1
)

+
{

φps

((
β
2 + αηps

)
t2psr +

(
β
2 + αηps

)
t1ps

2

+
(

β
2 + αηps

)2 t1ps
2

)
V1ps −

(
β
2 + αηps

)
t1psV01ps

}
]

where φps =

[
aps F(x)+bps

cps F̂ps(x)+dps

]α

, ηps =
cps F(x)

cps F(x)+dps
and r = F(x)

F(y) .

MSE
(

F̂tk(ps)(y)
)

= F2(y)
[
(t 1ps φps − 1

)2
+φ2

ps

{
t2
1psV0ps −

(
t2psr + t1ps

(
β
2 + αηps

))2
V1ps

−2
(

t1pst2psr + t2
1ps

(
β
2 + αηps

))
V01ps

}
+ 2φps

(
(t 1ps φps

−1)
{(

β
2 + αηps

)
t2psr +

(
β
2 + αηps

)
t1ps

2 +
(

β
2 + αηps

)2 t1ps
2

)
V1ps

−
(

β
2 + αηps

)
t1ps V01ps

}
]

We can rewrite the above equation as

MSE
(

F̂tk(ps)(y)
)
= F2(y)

[
1 − γ1pst1ps + γ2pst2

1ps − 2γ3pst2ps + γ4pst2
2ps + 2γ5pst1pst2ps

]
(12)
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Such that

γ1ps =φps

[
2 +

(
V1ps − 2V01ps

)( β

2
+ αηps

)
+

(
β

2
+ αηps

)2
V1ps

]

γ2ps =φps

[
1 + V0ps +

(
V1ps − 4V01ps

)( β

2
+ αηps

)
+ 2
(

β

2
+ αηps

)2
V1ps

]

γ3ps =rφpsV1ps

(
β

2
+ αηps

)
γ4ps =φ2

psr
2V1ps

γ5ps =rφ2
psV1ps

[
2
(

β

2
+ αηps

)
V1ps − V01ps

]
We obtain the optimal values of t1ps and t2ps by differentiating MSE

(
F̂tk(ps)(y)

)
with

respect to t1ps and t2ps.

t1ps =
γ1psγ4ps−2γ3psγ5ps

2γ2psγ4ps−2γ2
5ps

and t2ps =
2γ2psγ3ps−γ1psγ5ps

2γ2psγ4ps−2γ2
5ps

.

4. Proposed Estimators
4.1. Proposed Estimator in Stratified Random Sampling

Inspired by [34], we have proposed a compound of difference, ratio, product, and
exponential type of estimator to evaluate the population cumulative distribution function
of the study variable as

F̂stp(y) =
[
n1 F̂st(y) + n2

(
F(x)− F̂st(x)

)][ astF(x) + bst

cst F̂st(x) + dst

]α[ astF(x) + bst

cst F̂st(x) + dst

]−γ

exp
[

F(x)− F̂st(x)
F(x) + F̂st(x)

]β

(13)

where n1, n2, α, β, γ are suitable constants and ast, bst, cst, dst denote the functions or con-
stants of known parameters of auxiliary variable x.

We have considered six estimators from the literature. By substituting suitable values
of n1, n2, ast, bst, cst, dst, α, γ, and β in our proposed estimator, i.e., (13), we obtained the
above-mentioned estimators and represented them in Table 1 as follows:

Table 1. Several recognized estimators from the proposed class.

S. No n1 n2 ast bst cst dst α γ β Converge Estimator

1. 1 0 0 0 0 0 0 0 0 F̂SRSst (y)

2. 1 0 1 0 1 0 1 0 0 F̂Re(y)

3. 1 0 1 0 1 0 -1 0 0 F̂Pe(y)

4. 1 0 1 0 1 0 0 1 0 F̂Pe(y)

5. n1 n2 - - - - 0 0 0 F̂De(y)

6. 1 0 - - - - 0 0 1 F̂REe(y)

7. n1 n2 ast bst cst dst α 0 β F̂tk (y)

Bias and MSE of Proposed Estimator F̂stp(y)

By converting Equation (13) as e′si (i = x, y), we have

F̂stp(y) =
[
n1F(y) + n1F(y)ey − n2F(x)ex

][
φst(1 + ηstex)

−α
][

φst1(1 + ηstex)
γ][1 − β

2
ex +

(2 + β)β

8
e2

x

]

where φst =
(

ast F(x)+bst
cst F(x)+dst

)α
, φst1 =

(
ast F(x)+bst
cst F(x)+dst

)−γ
, ηst =

cst F(x)
cst F(x)+dst

and r = F(x)
F(y)
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F̂stp(y)− F(y) = φst φst1F(y)
[
n1 + n1ey − 1

]
+φst φst1ex

{
n1ηst

(
ηst

α(α+1)
2 − α + γ + γ(γ+1)

2 ηst − β
2ηst

)
− rn2

}
+φst φst1e2

x

{
n1ηst

(
−α2γ − αγ(γ+1)

2 ηst +
α(α+1)

2
γ(γ+1)

2 η3
st +

αγ(γ+1)
2 η2

st +
αβ
2

− β
2

α(α+1)
2 ηst − βγ

2 − β
2

γ(γ+1)
2 ηst

)
+n2ηst

(
rα − γ(γ+1)

2 ηst − rγ − r γ(γ+1)
2 ηst − r β

2γηst

)}
+φst φst1exey

{
n1ηst

(
−α + α(α+1)

2 ηst + γ + γ(γ+1)
2 ηst − β

2ηst

)}
(14)

By considering expectations on each side of (14), we acquire the proposed estimator’s bias:

Bias
(

F̂stp(y)
)
= φst φst1F(y)[n1 − 1]

+φst φst1V1st

{
n1ηst

(
−α2γ − αγ(γ+1)

2 ηst +
α(α+1)

2
γ(γ+1)

2 η3
st +

αγ(γ+1)
2 η2

st +
αβ
2

− β
2

α(α+1)
2 ηst − βγ

2 − β
2

γ(γ+1)
2 ηst

)
+n2ηst

(
rα − γ(γ+1)

2 ηst − rγ − r γ(γ+1)
2 ηst − r β

2γηst

)}
+φst φst1V01st

{
n1ηst

(
−α + α(α+1)

2 ηst + γ + γ(γ+1)
2 ηst − β

2ηst

)}
Squaring on both sides of (14) and eliminating higher powers of e′si , we acquire[

F̂stp(y)− F(y)
]2

= φ2
st φ2

st1F2(y)
[
(n1 − 1)2 + n2

1e2
y

]
+φst

2 φst1
2e2

x

{
n1ηst

(
α(α+1)

2 − α + γ + γ(γ+1)
2 ηst − β

2ηst

)
− rn2

}2

+φst
2 φst1

2(exey
)2
{

n1ηst

(
−α + α(α+1)

2 ηst + γ + γ(γ+1)
2 ηst − β

2ηst

)}2

(15)

MSE is obtained by considering expectations on both sides of (15):

MSE
(

F̂stp(y)
)
= φ2

st φ2
st1F2(y){1

+n2
1

(
1 + V0st + η2

stV1st

(
(η st

α(α+1)
2 − α

)
+
(

γ + γ(γ+1)
2 ηst − β

2ηst

))2

+2V01st

((
ηst

α(α+1)
2 − α

)
+
(

γ + γ(γ+1)
2 ηst − β

2ηst

))2
)
− 2n1 + n2

2r2

−2rn1n2ηst

(
ηst

α(α+1)
2 − α + γ + γ(γ+1)

2 ηst − β
2ηst

)}
MSE

(
F̂stp(y)

)
= φ2

st φ2
st1F2(y)

[
1 + l1n2

1 − 2n1 + n2
2r2 − 2n1n2l2

]
(16)

where

l1 = 1 + V0st + η2
stV1st

((
ηst

α(α+1)
2 − α

)
+
(

γ + γ(γ+1)
2 ηst − β

2ηst

))2

+2V01st

((
ηst

α(α+1)
2 − α

)
+
(

γ + γ(γ+1)
2 ηst − β

2ηst

))2

l2 = rηst

(
ηst

α(α+1)
2 − α + γ + γ(γ+1)

2 ηst − β
2ηst

)
We obtained optimum values by differentiating (16) separately with respect to n1 and

n2 to equate them with zero. We obtain
n1 = r2

r2l1−l2
2

and n2 = l2
r2l1+l2

2
.
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4.2. Proposed Estimator in Post-Stratification

We have proposed a post-stratified estimator by taking the combination of different
types of estimators. The proposed post-stratified estimator is

F̂psp(y) = F̂ps(y) +
[
t3
(

F(x)− F̂ps(x)
)
+ t4χ

(
X − xps

)]
exp

[
F(x)− F̂ps(x)
F(x) + F̂ps(x)

]ψ

(17)

Here, F̂psp(y) denotes the post-stratified proposed estimator of the distribution func-
tion of y. Here, t3, t4, χ and ψ are suitable constants.

Expressing Equation (17) in terms of e′si , we have

F̂psp(y) = F(y)(1 + e0) +
[
t3(F(x)− F(x)(1 + e1 ) + t4χ

(
X − X(1 + e2

)]
exp
[

F(x)−F(x)(1+e1)
F(x)+F(x)(1+e1)

]
F̂psp(y) = F(y) + F(y)e0 − t3F(x)e1 − t4χXe2 + t3F(X)

ψ
2 e2

1 + Xt4χψ e1e2
2

where F(y) = ∑K
h=1 WhFh(y), F(x) = ∑K

h=1 WhFh(x), F̂ps(y) = ∑K
h=1 Wh F̂h(y),

F̂ps(x) = ∑K
h=1 Wh F̂h(x), F̂h(y) = Fh(y)(1 + e0h) and F̂h(x) = Fh(x)(1 + e1h).

Bias and MSE of Proposed Estimator F̂psp(y)

F̂psp(y)− F(y) = F(y)e0 − t3F(x)e1 − t4χXe2 + t3F(x)
ψ

2
e2

1 + Xt4χψ
e1e2

2
(18)

Therefore, the bias of the proposed post-stratified estimator is obtained by applying
expectation on both sides of (18):

Bias
(

F̂psp(y)
)
= t3F(x)

ψ

2
V1ps + Xt4χψ

V12ps

2

Squaring on both sides of (18) and eliminating higher powers of e′si , we acquire[
F̂psp(y)− F(y)

]2
= F2(y)e2

0 + F2(x)t2
3e2

1 + X2t2
4χ2e2

2 − 2F(x)F(y)t3e0e1
+2F(x)t3t4Xχe1e2 − 2F(y)t4Xχe0e2

(19)

By considering expectations on each side of (19), the MSE of our proposed post-
stratified estimator will be

MSE
(

F̂psp(y)
)
= F2(y)V0ps + F2(x)t2

3V1ps + X2t2
4χ2V2ps − 2F(x)F(y)t3V01ps

+2F(x)t3t4XχV12ps − 2F(y)t4XχV02ps
(20)

We obtain values for t3 and t4 by applying the differentiation of Equation (20) sepa-
rately with respect to t3 and t4 and equate them with zero. We obtain

t3 =
F(y)

[
V01psV2ps − V12psV02ps

]
F(x)

[
V1psV2ps − V2

12ps

]
and

t4 =
F(y)

[
V1psV02ps − V01psV12ps

]
Xχ
[
V1psV2ps − V2

12ps

]
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After substituting t3 and t4 in (20), we have

MSE
(

F̂psp(y)
)

= F2(y)
{

V0ps +

[
V1psw2

1+V2psw2
2−2V01psw1w3+2V12psw1w2−2V02psw2w3

w2
3

]}
= F2(y)

(
V0ps +R

)
(say)

(21)

where R =

[
V1psw2

1+V2psw2
2−2V01psw1w3+2V12psw1w2−2V02psw2w3

w2
3

]
w1 = V01psV2ps − V12psV02ps
w2 = V1psV02ps − V01psV12ps
w3 = V1psV2ps − V2

12ps.

5. Theoretical Framework
5.1. Efficiency Comparison of Existing Estimators and Proposed Estimator under St RS

By comparing Equation (16) with Equations (1)–(6), we discover the following conditions.

MSE
(

F̂stp(y)
)
< MSE

(
F̂SRSst(y)

)
φ2

st φ2
st1
[
1 + l1n2

1 − 2n1 + n2
2r2 − 2n1n2l2

]
< V0st

(22)

SE
(

F̂stp(y)
)
< MSE

(
F̂SRSst(y)

)
φ2

st φ2
st1
[
1 + l1n2

1 − 2n1 + n2
2r2 − 2n1n2l2

]
< V0st

(23)
MSEF̂stp(y) < MSE

(
F̂Pe(y)

)
φ2

st φ2
st1
[
1 + l1n2

1 − 2n1 + n2
2r2 − 2n1n2l2

]
< (V0st + V1st + 2V01st)

(24)
MSEF̂stp(y) < MSE

(
F̂De(y)

)
φ2

st φ2
st1
[
1 + l1n2

1 − 2n1 + n2
2r2 − 2n1n2l2

]
<

(V0stV1st−(V01st)
2)

V1stV0st−(V01st)
2+V0st

(25)
MSEF̂stp(y) < MSE

(
F̂REe(y)

)
φ2

st φ2
st1
[
1 + l1n2

1 − 2n1 + n2
2r2 − 2n1n2l2

]
<
(

V0st +
1
4 V1st − V01st

)
(26)

MSEF̂stp(y) < MSE
(

F̂tk (y)
)

φ2
st φ2

st1
[
1 + l1n2

1 − 2n1 + n2
2r2 − 2n1n2l2

]
<
[
1 − γ1t1 + γ2t2

1 − 2γ3t2 + γ4t2
2 + 2γ5t1t2

] (27)

5.2. Theoretical Conditions under Post-Stratification

The following conditions are derived when comparing the MSE of the proposed
estimator with the MSEs of other considered existing estimators.

From Equations (21) and (7), we have

MSE
(

F̂psp(y)
)
− Var

(
F̂(ps)(y)

)
< 0

F2(y)(V0ps+R)
V0ps F2(y)− 1

n2 ∑K
h=1(1−Wh

)
S2

yh

< 1
(28)

From Equations (21) and (8),

MSE
(

F̂psp(y)
)
− MSE

(
F̂Re(ps)(y)

)
< 0

(V0ps+R)

∑k
h=1 w2

hλh

(
C2

yh+C2
xh−2RxyhCxhCyh

) < 1
(29)
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From Equations (21) and (9),

MSE
(

F̂psp(y)
)
− MSE

(
F̂Pe(ps)(y)

)
< 0

(V0ps+R)

∑k
h=1 w2

hλh

(
C2

yh+C2
xh+2RxyhCxhCyh

) < 1
(30)

From Equations (21) and (10),

SE
(

F̂psp(y)
)
− MSEmin

(
F̂De(ps)(y)

)
< 0

(V0ps+R)(
V0psV1ps−V2

01ps

)
V0psV1ps+V0ps−V2

01ps

< 1 (31)

From Equations (21) and (11),

SE
(

F̂psp(y)
)
− MSE

(
F̂Ree(ps)(y)

)
< 0

(V0ps+R)
(V0ps+

1
4 V1ps−V01ps)

< 1
(32)

From Equations (21) and (12),

MSE
(

F̂psp(y)
)
− MSE

(
F̂tk(ps)(y)

)
< 0

(V0ps+R)[
1−γ1pst1ps+γ2pst2

1ps−2γ3pst2ps+γ4pst2
2ps+2γ5pst1pst2ps

] < 1
(33)

6. Empirical Studies
6.1. Empirical Study in Stratified Random Sampling

Data Set-I: We have used the data from [35] to evaluate the suggested estimator’s
relative effectiveness. The data consist of six strata. A sample of 180 observations is taken
from a total of 923 observations. Table 2 presents estimations of the data as follows:

Table 2. Summary statistics for the Data Set-I.

h Nh nh Wh λh Fh(y) Fh(x) Cyh Cxh Rxyh Syxh F(y) F(x)

1 127 31 0.1375 0.0244 0.3543 0.3779 0.197955 0.21084 4.0597 0.0103 0.0487 0.0520

2 117 21 0.1267 0.039 0.4188 0.4872 0.575675 0.669312 10.8358 0.0356 0.0531 0.0617

3 103 29 0.1115 0.0248 0.4272 0.466 0.275157 0.300381 5.7725 0.0143 0.0476 0.0520

4 170 38 0.1841 0.0204 0.5765 0.6118 0.19553 0.20751 1.8412 0.0220 0.1061 0.1126

5 205 22 0.2221 0.0406 0.6146 0.6537 0.663306 0.705382 4.8587 0.0963 0.1365 0.1452

6 201 39 0.2177 0.0207 0.5025 0.3532 0.154403 0.108518 1.4113 0.0119 0.1094 0.0769

The functions of auxiliary variables are

k

∑
h=1

WhShx = 0.486847,
k

∑
h=1

WhChx = 6.2793,
k

∑
h=1

WhRhxy =0.852239.

By using the above functions of known auxiliary variables, we have calculated the
MSE and percentage relative efficiency (PRE) of the estimators in both Tables 3 and 4.
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Table 3. A comparison of the MSEs and PREs of considered pre-existing estimators and our
proposed estimator.

S. No Estimator MSE PRE

1. F̂SRSst (y) 0.0488 100

2. F̂Re(y) 0.0928 52.58

3. F̂Pe(y) 0.0972 50.21

4. F̂De(y) 0.0414 117.87

5. F̂REe(y) 0.0593 82.30

6. F̂tk (y) 0.0223 218.83

7. F̂stp(y) 0.0056 871.42

Table 4. MSEs of our proposed estimator.

ast bst cst dst α γ β Estimator MSE PRE

0.8522 0.4868 0.8522 0.4868 0 −1 0 F̂stp1(y) 0.0092 530.43

6.2793 1 6.2793 1 −1 0 0 F̂stp2(y) 0.0085 574.12

6.2793 1 6.2793 1 0 −1 0 F̂stp3(y) 0.0085 574.12

1 0.4868 1 0.4868 1 0 1 F̂stp4(y) 0.0055 887.27

0.8522 0.4868 0.8522 0.4868 1 0 1 F̂stp5(y) 0.0053 920.75

1 6.2793 1 6.2793 −1 −1 −1 F̂stp6(y) 0.0052 938.46

0.8522 0.4868 0.8522 0.4868 0 1 1 F̂stp7(y) 0.0052 938.46

1 6.2793 1 6.2793 0 0 −1 F̂stp8(y) 0.0052 938.46

0.4868 0.8522 0.4868 0.8522 −1 1 −1 F̂stp9(y) 0.0052 938.46

1 0.4868 1 0.4868 0 −1 0 F̂stp10(y) 0.0044 1109.09

0.8522 1 0.8522 1 1 −1 0 F̂stp11(y) 0.0042 1161.90

0.4868 1 0.4868 1 1 −2 0 F̂stp12(y) 0.0039 1251.28

0.4868 6.2793 0.4868 6.2793 1 0 1 F̂stp13(y) 0.0010 4800.00

1 0.8522 1 0.8522 1 0 1 F̂stp14(y) 0.00088 5545.45

0.4868 6.2793 0.4868 6.2793 0 −1 1 F̂stp15(y) 0.00086 5674.42

By using the data in Table 2, we calculated MSE and PRE values for the pre-existing
estimator and our proposed stratified estimator, and they are shown in Table 3 with suitable
values for α = 1, β = 1, γ = 0, and ast = cst = 1, bst = dst = 0.4868.

Additionally, by substituting different values in relevant variables in our suggested
estimator, we obtained the following types of estimators, ratio, product, etc. The MSE and
PRE values of some estimators of the proposed class of estimators are presented in Table 4.

Data Set-II
In this numerical investigation, we utilized the data [37] detailing student behaviors

and exam performances. The dataset encompasses information for 500 students, ensuring
a diverse range of study patterns and their exam performances. Here, we maintained
symmetry in our sampling process by dividing the data into six strata, as presented in
Table 5. We selected a sample of 120 by using the Neyman allocation method. We focused
on exam scores as the study variable, reflecting the student’s score in an exam, while study
hours served as an auxiliary variable, indicating the number of hours a student dedicated
to exam preparation. We aim to predict students’ exam scores based on their study hours,
thereby emphasizing the symmetry of representation across different strata in our analysis.
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Table 5. Data statistics for Data Set-II.

h Nh nh Wh λh Fh(y) Fh(x) Syh Sxh Syxh F(y) F(x)

1 91 23 0.182 0.032 0.110 0.143 0.139 0.157 0.0103 0.0487 0.0520

2 82 19 0.164 0.040 0.110 0.146 0.132 0.151 0.0356 0.0531 0.0617

3 89 22 0.178 0.034 0.124 0.101 0.145 0.132 0.0143 0.0476 0.0520

4 89 21 0.178 0.036 0.112 0.112 0.139 0.139 0.0220 0.1061 0.1126

5 72 18 0.144 0.042 0.083 0.139 0.097 0.139 0.0963 0.1365 0.1452

6 77 18 0.154 0.043 0.117 0.117 0.132 0.132 0.0119 0.1094 0.0769

The functions of auxiliary variables are

k

∑
h=1

W2
h Shx = 0.023,

k

∑
h=1

W2
h Chx = 1.126.

Based on the data in Table 6, it is evident that the MSE of our proposed estimator is
lower compared to all other existing estimators. Additionally, the PRE of our proposed
estimator is notably high in comparison. This suggests that our proposed estimator demon-
strates superior precision when compared to other estimators.

Table 6. MSE and PRE values of the estimators.

S. No Estimator MSE PRE

1. F̂SRSst (y) 0.000110 100.000000

2. F̂Re(y) 0.000073 151.118987

3. F̂Pe(y) 0.000341 32.373953

4. F̂De(y) 0.000249 44.335351

5. F̂REe(y) 0.000068 163.389178

6. F̂tk (y) 0.000085 129.674930

7. F̂stp(y) 0.000057 194.876102

The line graphs illustrating the PRE results for Data Set I and Data Set II, obtained
from Tables 3 and 6, are displayed in Figures 1 and 2, respectively.
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6.2. Empirical Validation under Post-Stratification

Data Set-III: Source [38].
In Data Set, Y represents the apple production amount in 1999, and X represents the

number of apple trees in 1999. The data statistics are available in Table 7. We consider Y as
the study variable and X as the auxiliary variable.

Table 7. Data statistics for Data Set-III.

h 1 2 3 4 5 6

Nh 106 106 94 171 204 173

nh 9 17 38 67 7 2

Wh 0.1241 0.1241 0.1101 0.2002 0.2389 0.2026

λh 0.1017 0.0494 0.0157 0.0091 0.138 0.4942

Fh(y) 0.5872 0.5189 0.3298 0.3684 0.4657 0.7052

Fh(x) 0.5472 0.566 0.3404 0.3801 0.4657 0.7225

Xh 24376 27422 72410 74365 26442 9844

Syh 0.495 0.502 0.4727 0.4838 0.5 0.4573

Sxh 0.5001 0.4979 0.4764 0.4868 0.4965 0.4490

Sxh 49189 5746 160757 285603 45403 18794

Rxyh 0.7722 0.8330 0.7854 0.7755 0.6750 0.7319

Ryxh −0.4470 −0.4370 −0.2957 −0.1848 −0.3929 −0.5598

Rxxh −0.4523 −0.4816 −0.3087 −0.1936 −0.4129 −0.6102

Utilizing the statistical data provided in Table 7, we computed the MSE and PRE
values, which are summarized in Table 8. This table allows us to assess the effectiveness of
the proposed estimators compared to others.

Table 8. MSE and PRE values of the estimators.

S. No Estimator
Data Set-II Data Set-III

MSE PRE MSE PRE

1. F̂(ps)(y) 0.037 100.000 0.759 100.000

2. F̂Re(ps)(y) 0.018 205.556 0.383 198.018

3. F̂Pe(ps)(y) 0.126 29.365 2.615 29.013

4. F̂De(ps)(y) 0.016 231.250 0.341 222.647
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Table 8. Cont.

S. No Estimator
Data Set-II Data Set-III

MSE PRE MSE PRE

5. F̂REe(ps)(y) 0.019 194.737 0.386 196.642

6. F̂tk(ps)(y) 0.018 205.556 0.370 204.822

7. F̂psp(y) 0.016 231.250 0.331 229.412
In both Data Sets II and III, we can observe the efficiency of the proposed post-stratified estimator compared to
other considered estimators in terms of MSE and PRE.

The line graphs depicting the PRE results for Data Set II and Data Set III, derived from
Table 8, are showcased in Figures 3 and 4, correspondingly.
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7. Results and Discussion

In this study, we have proposed two novel estimators to estimate the CDF of a study
variable by employing the auxiliary variables’ information under stratified random sam-
pling and in post-stratification.

The first estimator is proposed under St RS, which contains a combination of estimators
presented in Equation (13). By taking suitable constants in place of n1, n2, α, β, γ and
functions of auxiliary variable x or constants in places of ast, bst, cst, dst, we obtain efficient
results for our proposed estimators. Because the proposed estimator contains a class of
estimators, it has several existing estimators in it. Because we used suitable values in the
functions or constants, we have different estimators, which are represented in Table 1.
Here, two data sets were used to prove the efficiency of the proposed estimator. The
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derived conditions are available in Equations (22)–(27). Data Set-I is taken from [35], and
the numerical study is presented in Section 6. From Table 3, we can observe the results; the
proposed estimator F̂stp(y) Outperform other estimators in terms of MSE and PRE. Data
Set-II is extracted from the website https://doi.org/10.34740/KAGGLE/DSV/7623777
(accessed on 29 February 2024). Table 5 presents all the values needed for the calculation of
MSEs. From Table 6, among the estimators, F̂stp(y) stands out with its remarkably low MSE
of 0.000057 and a high PRE of 194.876102, underscoring its superior predictive accuracy
and demonstrating greater symmetry than usual unbiased [1,2,4,13,34] estimators.

The second estimator we proposed in this study is under post-stratification with
constants t3, t4, χ and ψ. We derived the equations of bias and MSE up to the first degree of
approximation, and can find the theoretical conditions in Section 5 from Equations (28)–(33).
To prove the efficiency of the proposed estimator in post-stratification, we have utilized two
data sets. We have taken the information of Y, X, and X from the Data Set-II and III. We can
observe from Table 8, that the MSE value of the proposed estimator is low and the relative
efficiency values are high compared with the considered estimators, which is the same as we
can observe from the figures. From Table 8, the comparative analysis of various estimators
applied to Data Set-II and Data Set-III reveals distinct performance characteristics. Notably,
the estimator F̂psp(y) consistently exhibits superior predictive accuracy, as evidenced by
its low MSE value and consistently high PRE across both datasets. Conversely, F̂Pe(ps)(y)
demonstrates poor performance, with significantly higher MSE values and lower PRE,
suggesting limited predictive capability. Among the estimators, F̂Re(ps)(y), F̂De(ps)(y) , and
F̂REe(ps)(y) present moderate performance, displaying relatively lower MSE and higher
PRE compared to F̂Pe(ps)(y) but not reaching the levels of F̂psp(y).

From Figures 1 and 3, a striking trend emerges as the plotted trend line gracefully
ascends, embodying our recommended estimator’s trajectory. In contrast, Figure 2 reveals
a consistent decline in MSE values, notably showcasing the diminishing errors of both [34]
and our proposed estimator, labeled as 6 and 7, respectively. Figure 4 accentuates the
nearly identical MSE values of the second and fourth estimators, hinting at commendable
performance, albeit not surpassing the prowess demonstrated by our proposed estima-
tor. Examining Figure 3, a clear victor emerges as the proposed estimator outshines its
counterparts in both Dataset-II and Dataset-III, closely trailed by [4], in both datasets.
Conversely, ref. [2] presents a lackluster performance across both datasets, marking it as
the weakest contender. Figure 4 mirrors this pattern, with our proposed method boasting
the lowest MSE followed closely by estimator [4] across both datasets. Notably, ref. [2]
and the classical estimator struggle to keep pace, recording notably higher MSE values
in Dataset-I and Dataset-II, respectively. Hence, the evidence from Figures 3 and 4 un-
equivocally supports the superiority of our proposed estimator over its counterparts, a
conclusion further reinforced by the insights gleaned from Figures 1 and 2. Table 3 serves
as a comprehensive showcase of MSE and PRE metrics for existing estimators juxtaposed
with our proposed solution, listed as serial No. 7. Notably, our proposed estimator garners
the lowest MSE and the highest PRE, setting a benchmark closely followed by [34]. Table 4
corroborates this finding, further establishing the pre-eminence of our proposed estimator.
Additionally, Table 6 unveils the performance metrics for Dataset-II, highlighting once
more the supremacy of our proposed method, trailed by the estimator [13]. This consistent
dominance across datasets underscores the inconsistency plaguing existing estimators, a
testament to the robustness and reliability of our proposed solution.

8. Conclusions

This study introduces two unique estimators that are precisely built to assess the
limited population distribution function within the realms of stratified random sampling
and post-stratification, ensuring symmetry in the sampling process. The study illustrates
the outstanding efficiency of these estimators in comparison to conventional approaches
across both sampling schemes by exploiting three unique datasets, including real-world
data encompassing student behavior and exam results. Through complete empirical val-

https://doi.org/10.34740/KAGGLE/DSV/7623777
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idation, the estimators routinely beat their counterparts in terms of both mean square
error and percentage relative efficiency, demonstrating their ability to perform in practical
settings. Furthermore, the study provides important insights into the predictive accuracy
of educational assessments, as demonstrated by the successful prediction of students’ exam
scores based on study hours using the proposed estimator. This study not only introduces
novel approaches to long-standing survey sample challenges but also reveals avenues for
improving prediction accuracy in educational assessments. The convergence of theoretical
derivations and empirical validations emphasizes the proposed estimators’ resilience and
versatility, ensuring symmetry in their potential use across a diverse range of sampling
settings. The study of Figures 1–4 demonstrates the estimators’ higher efficiency, establish-
ing their place as pioneering contributions to the field of survey sampling. Additionally,
fundamental ideas such as non-response analysis and calibration approaches are proposed
to improve the resilience of estimators across different data sets and settings. In conclusion,
the findings reflect a substantial advancement in the field of survey sampling, with major
implications for future research efforts. As research into potential expansions and modifica-
tions of the estimators continues, there is a concerted attempt to improve their effectiveness
and usability in practical contexts, maintaining the trend of innovation and advancement
in survey sampling procedures.
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