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Abstract: Presently, active detectors are widely used to detect mines, providing high accuracy.
However, the principle of the operation of active detectors can lead to the explosion of hidden
mines. The novelty of this work is the development of the morphology of a neural network for the
classification of mines made of different materials (metallic, semi-metallic, plastic) with high accuracy
(99.23%), based on a vector of input features with the following components: the value of the output
voltage of the FLC-100 magnetic field sensor, which measures magnetic field anomalies in the vicinity
of mines with an accuracy of 10−10–10−4 Tesla; six different soil types, depending on the humidity;
and the height at which the magnetic field sensor is located above the mine. Due to the fact that
mines, when made of different materials (metallic, semi-metallic, plastic), have different magnetic
properties, the neural network method of mine classification, based on the sensor data regarding
anomalies of the magnetic field in the vicinity of mines, allows the classification of mines made of
different materials. The accuracy of mine classification was assessed with two-layer and three-layer
neural networks on various metrics (confusion matrix, ROC curves, accuracy–loss curves), using
ADAM, RMSprop, and SGD optimisers, and analyses and comparisons were then carried out. The
impact of asymmetry in the neuron number and the types of activation functions in the first and
second hidden layers on the values of the accuracy and loss metrics was studied. In particular, it
was established that the asymmetry of the number of neurons in the first and second hidden layers
relative to the plane of symmetry between the hidden layers has a significant effect on the accuracy of
the model (decrease in accuracy by 25%), while the loss function, when the symmetry of the neurons
number in the hidden layers is violated, increases to a maximum of 50%.

Keywords: symmetric and asymmetric neural networks; Adam’s optimisation algorithm; data
preprocessing; mine classification metrics; data visualisation

1. Introduction

The detection of mines remains a constant and growing problem that affects millions
of people worldwide due to the significant danger that mines can pose to human life.
In 2016, an average of 23 individuals worldwide encountered mine-related fatalities or
injuries each day. Landmines still afflict approximately 61 countries and territories, posing
a constant threat of lethal consequences [1]. Mine detection and clearance are critical tasks
for ensuring safety in conflict-affected areas.

Classical methods of mine detection and identification no longer provide the required
level of reliability and effectiveness in addressing these issues. The use of active detectors,
which emit electrical signals upon mine detection, can sometimes unintentionally trigger
the mine’s detonation mechanism, thus leading to explosions. To mitigate this risk, an
effective strategy involves using passive detectors that rely on measuring anomalies in the
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magnetic field at the mine’s location. Addressing this problem requires the implementation
of modern automated processing techniques, such as neural networks.

This paper proposes a method for the detection and classification of mines (metallic,
semi-metallic, and plastic) using a deep multilayer perceptron with high accuracy (>99%)
based on data obtained from magnetic field sensors, with sensitivity levels ranging from
10−10 to 10−4 Tesla in terms of the magnetic field anomalies within the vicinity of mines.

There are several reasons why neural network-based mine detection technology using
data regarding magnetic field anomalies at mine locations is relevant; these include the
following:

1. The safety of military and civilian personnel: Mine detection is critical for preventing
injuries and fatalities during warfare or conflicts and for clearing hazardous areas of
explosive devices after the cessation of hostilities.

2. Speed and accuracy: Using magnetic field sensors allows for the rapid and efficient
detection of underground mines, thus enabling quick response and reducing risks for
operators. Additionally, neural networks can classify these signals and differentiate
them from noise or other objects.

3. Risk reduction: Employing automated systems based on neural networks helps to
reduce the risk of human errors and enhances the reliability of mine detection and
classification.

One way to improve the robustness of a neural network to noise and distortions
in object recognition and pattern detection is by using symmetry in the neural network.
Therefore, developing a neural network architecture which considers symmetry for precise
mine classification, based on a passive mine detection method and using magnetic field
sensor data, is a relevant task.

In this context, the aim of this work is to investigate the impact of neural network
morphology and symmetry regarding the number of neurons and types of activation
functions in the first and second hidden layers on the mine detection metric, and to find
the most optimal architecture and optimiser for mine classification tasks using data from
magnetic anomaly sensors.

The novelty of this work lies in developing neural network morphology for the
classification of mines of different materials (metallic, semi-metallic, plastic) with high
accuracy (>99%) based on the input feature vector, including the output voltage value of
the FLC-100 magnetic field sensor, six different types of soil depending on moisture levels,
and the height at which the magnetic field sensor is located above the mine.

The results of the study demonstrate that the asymmetry in the number of neurons
in the first and second hidden layers relative to the symmetry plane between these layers
has a significant impact on the model’s accuracy (reduction in accuracy by 25%), while the
loss function when the symmetry in the number of neurons in hidden layers is violated
increases up to 50%. In particular, the influence of using different types of activation
functions in hidden layers and in the output layer on mine detection accuracy has been
investigated.

2. Related Work

Classical means of detecting and recognising explosive devices include the following
groups: equipment with penetrating radiation, vapour and explosive detectors (gas analy-
sers, chemical analysis equipment), magneto-mechanical means, and search equipment [2].
Equipment with penetrating radiation can use X-rays and ionising radiation. In this di-
rection, nuclear-physical methods are being developed based on neutron sources and the
detection of gamma radiation following the neutron interacting with the search object [2].
Methods of detecting explosive devices based on their release of chemical compounds
are being developed in the field of robotics [3]. The search equipment includes the metal
detectors. These methods are now being developed in the direction of creating controlled
metal detectors. These methods reduce the risk to humans and increase the accuracy of
mine detection, as metal detectors are part of robotics [4].
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Mine detectors fall into two categories as follows: active and passive. Active detectors
transmit a signal to the target, using the reflected signal to identify the mine. While these
detectors boast high accuracy, there is a potential risk of triggering the mine’s detonation
mechanism. On the other hand, passive mine detectors identify anomalies in the mag-
netic field, specifically those generated by mines. Although these detectors exhibit lower
detection accuracy, they are considered safer [5].

Numerous studies explore the application of machine learning algorithms to classify
detected mines based on magnetic field anomalies. One such study involves the use of a
specially tuned convolutional neural network (CNN), named an auto-encoder for buried
mine classification, achieving a notable accuracy rate of 93% and an AUC of 98% [6]. In
another investigation [7], the k-NN algorithm was employed for mine detection using data
from a sensor network comprising 32 magnetic sensors, yielding a classification accuracy
of 91.66%. Additionally, the researchers in [8] devised a neural network approach for
mine classification using magnetic field sensor data, employing the Adam’s optimization
algorithm to attain an accuracy of 99.23%. However, the study in [8] did not explore the
impact of neural network morphology symmetry on mine recognition metrics.

There are several different ways to introduce symmetry into the morphology of a
neural network. One way is to use symmetric convolutional neural network architectures
with symmetric kernels. This type of neural network architecture enables the detection of
patterns in symmetrical images.

Another way to introduce symmetry into the morphology of a neural network is to use
symmetric activation functions that preserve the symmetric properties of even distorted
images.

The use of symmetry in the morphology of a neural network is an effective way to
improve its ability in order to recognise patterns and detect patterns in image databases [9,10].

The authors of [11] proposed a new type of symmetric neural network morphology
called “symmetric convolution”, which has layers consisting of filters that are symmetric
in their properties. This allows the network to detect features of symmetrical objects.
Experiments have shown that a symmetric convolutional network can achieve an accuracy
of 99.6% in face recognition, which is 2% more than a conventional convolutional network
for the dataset specified in paper [11].

The paper [12] presents the structure of a convolutional neural network with diago-
nalised pooling (DiagPooling), which is symmetrical with respect to the main diagonal
of the diagonalised pooling matrix. This symmetrical diagonalised pooling increases the
model’s performance when compared to CNNs that use classical pooling by 4%.

The symmetry of neural network weights was studied in [13]. It was shown that
weights located at the same distance from the centre of the network can be equal or
inversely proportional. The symmetry of weights in neural networks, in which some
neuronal weights can be interchangeable or symmetrical with respect to a certain point or
axis, is vital. This approach can be used to improve the performance of information storage.

The purpose of this paper is to study the effect of asymmetry on the number of neurons
and activation functions relative to the symmetry plane between the first and second hidden
layers on the mine recognition metric.

3. Materials and Methods

This article employed data from the [5] study to categorise mines based on magnetic
field anomaly characteristics, with the parameter values outlined in Table 1. Addition-
ally, an examination was conducted regarding the correlation between the magnetic field
anomaly and both the soil type and distance from the magnetic sensor to the mine. The
overall pattern of the magnetic field anomaly for each type of mine was also described. To
measure the magnetic anomaly near a buried mine, the FLC100 ferroelectric sensor [14]
was utilised in [5], and the FLC100 ferroelectric sensor [15] was employed in [5].
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Table 1. Data parameters [5].

The Parameters

Input Data, “Independent Variables” Output Data,
“Dependent Variable”

Voltage (V) High (H) Soil Type (S) Mine Type (M)

Definition

The value of the output
voltage of the FLC sensor

due to the action of the
magnetic anomaly.

The distance of the
sensor above the ground.

6 different types of soil
depending on the state

of moisture.

Types of mines
commonly found on land;
5 different classes of min.

Limit
values/Class

[0 V, 10.6 V] [0 cm, 20 cm]

Dry and sandy Null

Dry and purulent Anti-tank

Dry and chalky Anti-personnel

Wet and sandy Booby trapped
Anti-personnel

Humid and humus M14 Anti-personnel
Wet and chalky

Prior to the classification process, addressing the challenge of generating new values
within the sample is essential. The sample, comprising 45 instances (representing the
magnetic field anomaly at depths of 26 cm–34 cm with the soil type “Dry and Humus”
for each of the five mines), requires augmentation. This augmentation is crucial to impart
generalizing properties to the neural network during the training phase. That is, the size

of the training set N satisfied the ratio of N = O
(

Nwij
ε

)
, where N—size of the training set;

Nwij —the total number of free parameters of the neural network (the number of synaptic
connections, including offsets); ε—is the permissible error of the neural network during

classification; and O
(

Nwij
ε

)
—denotes the order of the value in parentheses. One approach

to solving this subtask is to generate pseudo-random values [15] using a normal distribution
function [16].

p(V) =
1√

2πσ2
e−

(V−µ)2

2σ2 (1)

V∗i = rand(Vi, σ3) (2)

where
Vi—the value of the magnetic field anomaly at the height Hi and soil type Si;
Vi

*— the new value of the magnetic field anomaly at the height of Hi and soil type Si;
σ3—mean square deviation of the Earth’s magnetic field anomaly;
rand(Vi, σ3)—a pseudo-random value generation function based on a normal distri-

bution function. The function takes two parameters as follows: µ—arithmetic mean, and
σ—mean square deviation [16]. In this case, the value of µ and σ take the values of Vi and
σ3, accordingly.

Thus, new values will be generated closer to the value in the training sample as an
arithmetic mean, and based on the standard deviation of the Earth’s magnetic field anomaly.
The standard deviation is calculated as follows:

σ3 = avg(σi) (3)

i ∈ {1; 15}

where
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σ3—standard deviation of the Earth’s magnetic field anomaly;
σi—standard deviation of the Earth’s magnetic field anomaly at altitude Hi;
i—takes values from 1 to 15, since according to the study [14]; this is the distance at

which the intensity of the magnetic anomaly of the mine is not recorded.
The data preprocessing process consists of the following steps: normalising the mag-

netic field anomaly data, applying the coding to the soil type, converting the mine class
labels to a numerical value, and then coding them.

The normalisation of the magnetic field anomaly is calculated using the mean value
and standard deviation (4) [17].

V’ =
V −V

σv
(4)

V’—normalised value of the magnetic field anomaly;
V—initial value of the magnetic field anomaly;
V—average value of the magnetic field anomaly;
σv—standard deviation of the magnetic field anomaly value.
The coding was applied to the soil type because the data were recorded as categorical.

The soil type takes on the six following values: “Dry and Sandy, Dry and Humus, Dry and
Limy, Humid and Sandy, Humid and Humus, Humid and Limy”. According to research [5]
(show Table 2), the type of soil affects the classification of mines, meaning it is necessary to
pre-process the data for use in the neural network. We chose the one-hot-encoding type of
encoding. One-hot-encoding transforms a variable into a vector of binary variables of size
n, where n is the number of unique values of the variable. The algorithm transforms the
soil value into a vector of six values. The position corresponding to the soil type will be 1,
and all other positions will be 0 [18].

Table 2. Dependence of the magnetic field anomaly in the vicinity of mines on the type of soil [5].

Soil Type Null, V Anti-Tank, V Anti-Personnel, V Booby Trapped
Anti-Personnel, V M14 Anti-Personnel, V

Dry and sandy 3.560 10.400 3.830 5.590 3.200

Dry and purulent 3.500 7.500 3.920 5.590 4.420

Dry and chalky 3.720 10.400 6.890 2.406 4.990

Wet and sandy 3.780 10.400 6.220 4.490 5.230

Humid and humus 3.350 10.400 5.050 2.770 4.200

Wet and chalky 3.610 10.400 5.960 4.400 4.550

The main task considered in the article is multi-class classification. To solve the
problem, machine learning algorithms, such as artificial neural networks and their subtypes,
support vector machine, Bayesian method, decision trees, etc., are used [19].

Let X—a set of object descriptions, X = {V,H,S}, where V—value of the magnetic field
anomaly in the vicinity of the mine in volts; H—height of the sensor above the ground where
the mine is located; S—soil type; Y = {0,1,2,3,4}—a set of numbers (or names) of classes
corresponding to mine types as follows: “no mine”, “anti-tank mine”, “anti-personnel
mine”, “booby trap”, and “M14”, respectively (show Table 3). The task of classification is to
find the mapping operator Y*: X→ Y for any objects that are not included in the training
set, with a minimum norm in Euclidean space.

min‖y*− y‖ (5)

where y—target classifier, and y*—neural network classifier [13].
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Table 3. Dependence of the magnetic field anomaly in the vicinity of mines on the distance from the
sensor to the ground [5].

Height (cm) Mine Type 1
Voltage, V

Mine Type 2
Voltage, V

Mine Type 3
Voltage, V

Mine Type 4
Voltage, V

Mine Type 5
Voltage, V

0.00 3.6 10.4 4.1 5.9 6.2

1.82 3.4 10.4 4.0 5.5 4.7

3.64 3.4 10.4 3.8 5.0 3.6

5.45 2.8 10.4 3.9 4.4 3.5

7.27 2.9 9.5 3.6 4.3 3.1

9.09 2.7 8.3 3.4 4.25 2.9

10.91 2.9 7.0 3.4 4.2 2.8

12.73 2.6 6.4 3.45 4.05 2.7

14.55 2.5 6.2 3.5 3.9 2.65

16.36 2.6 4.8 3.8 3.2 2.5

18.18 2.6 4.6 3.2 3.2 2.5

20.00 2.4 4.5 3.2 3.1 2.5

The mapping operator is known only in terms of the objects of the finite training
sample:

Xm = {(x1, y1), . . ., ( xm, ym)}, (6)

where Xm is a set of training set elements of dimension m. You need to build an algorithm
that can determine the affiliation of an arbitrary object x ∈ X to class y ∈ Y [20,21].

In order to analyse the impact of the number of hidden layers and the number of
neurons in them regarding the accuracy of mine classification, neural networks with one
and two hidden layers with ADAM, RMSprop SGD optimisers are proposed. The size of
the input layer is 3, the size of the first hidden layer is 7 and has the activation function
relu, and the output layer has a size of 5 and the activation function softmax. The optimiser
is Adam, the loss function is categorical cross entropy, and the accuracy metric is accuracy
(Figure 1). The output of this neural network will be described by the relation (7).

yi = fso f tmax

(
∑7

j=1 wij frelu

(
∑3

k=1 wjkxk

))
(7)

i ∈ {1; 5}

where yi—element of the output vector of probabilities of the object belonging to each
class of mines; fsoftmax—softmax activation function; wij—the element of the weight matrix
between the first and second tacked layer; wjk—element of the weighting matrix between
the input layer and the first hidden layer; and xk—element of the input vector of mine
characteristics [12].

The size of the input layer is 3, the size of the first hidden layer is 7 and has the relu
activation function, the second hidden layer has the same characteristics as the first, and
the output layer has a size of 5 and the softmax activation function. The optimiser is Adam,
the loss function is categorical cross entropy, and the accuracy metric is accuracy (Figure 2).
The output of this neural network will be described by the relation (8).

yi = fso f tmax

(
∑7

l=1 wli frelu

(
∑7

j=1 wij frelu

(
∑3

k=1 wjkxk

)))
(8)

i ∈ {1; 5}



Symmetry 2024, 16, 485 7 of 14

where yi—element of the output vector of probabilities of the object belonging to each
class of mines; fsoftmax—softmax activation function; frelu—relu activation function; wli—
an element of the weighting matrix between the second hidden layer and the original
layer; wij—element of the weighting matrix between the first and second hidden layer;
wjk—element of the weighting matrix between the input layer and the first hidden layer;
and xk—element of the input vector of mine characteristics [12].
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Thus, the main flow chart that describes the algorithm for classifying mines from
different materials using the FLC-100 magnetic field sensor, depending on the types of soil
and the height at which the sensor is located, is shown in Figure 3.



Symmetry 2024, 16, 485 8 of 14
Symmetry 2024, 16, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 3. Main flow chart. 

4. Results 

The initial training sample consists of 45 samples, which were taken from the study 

mentioned above. The sample size is insufficient for the further training of the neural net-

works; therefore, it was expanded to 9000 samples using the normal partition function, as 

described in the problem statement. The initial data are processed as described in the pre-

vious section. Thus, the processed data are then transferred to the neural network training. 

The results of neural networks are described using the following diagrams. 

4.1. Confusion Matrix of the Neural Network Classification Results of the Test Sample 

1. Heatmap showing the confusion matrix of the neural network classification results 

of the test sample. In the diagram, the X-axis is responsible for the samples that have been 

classified, and the Y-axis for the real values (Figure 4). For the convenience of displaying 

large numbers, the entry “e+02” is used, which means that it is necessary to multiply this 

number by 102. According to the indicators on the heatmap diagram, there are signifi-

cantly fewer incorrectly predicted classes. The number of correctly classified classes for 

each class is more than 180, and the number of incorrectly classified classes is less than 10 

in total [22]. 

  

(a) (b) 

Figure 4. Confusion matrix. (a)—neural network with one hidden layer, (b)—neural network with 

two hidden layers. 

4.2. ROC Curve for Each Type of Mine 

2. ROC curve, which evaluates the quality of the classification of each class separately. 

The x-axis shows the growth of true positive classified objects, and the y-axis shows the 

growth of false positive objects (Figure 5) [23–25]. 

Figure 3. Main flow chart.

4. Results

The initial training sample consists of 45 samples, which were taken from the study
mentioned above. The sample size is insufficient for the further training of the neural
networks; therefore, it was expanded to 9000 samples using the normal partition function,
as described in the problem statement. The initial data are processed as described in the
previous section. Thus, the processed data are then transferred to the neural network
training.

The results of neural networks are described using the following diagrams.

4.1. Confusion Matrix of the Neural Network Classification Results of the Test Sample

1. Heatmap showing the confusion matrix of the neural network classification results
of the test sample. In the diagram, the X-axis is responsible for the samples that have been
classified, and the Y-axis for the real values (Figure 4). For the convenience of displaying
large numbers, the entry “e+02” is used, which means that it is necessary to multiply this
number by 102. According to the indicators on the heatmap diagram, there are significantly
fewer incorrectly predicted classes. The number of correctly classified classes for each class
is more than 180, and the number of incorrectly classified classes is less than 10 in total [22].
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4.2. ROC Curve for Each Type of Mine

2. ROC curve, which evaluates the quality of the classification of each class separately.
The x-axis shows the growth of true positive classified objects, and the y-axis shows the
growth of false positive objects (Figure 5) [23–25].
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4.3. Accuracy-Loss Curves

3. Accuracy and loss curves, which display the accuracy metric and the result of the
loss function after each epoch. The y-axis shows the accuracy and loss values, and the
x-axis shows the sequence of training epochs (Figure 6) [26].
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Figure 6. Accuracy–loss curves. (a)—neural network with one hidden layer, (b)—neural network
with two hidden layers.

This section provides a detailed analysis of the graphs described above. According
to the heatmap, there are significantly fewer incorrectly predicted classes as follows: the
number of correctly classified classes for each class is more than 180, and the number of
incorrectly classified classes is less than 10.

The training process of the neural network with two hidden layers is faster, as can be
seen in Figure 5. Thus, it will be possible to train the model faster, and its accuracy will
increase faster than the neural network with one hidden layer.

The ROC curve values are higher than in a similar study of a neural network with one
hidden layer. The graphs in Figure 5 have a larger area under them, regardless of the class
of the mine.

An AUC of more than 0.99 was achieved, which demonstrates high efficiency when
classifying each class of mine. The neural network model clearly distinguishes one type of
mine from another.

The loss rate for the neural network was found to be lower when compared to the
results of another study, where it reached a maximum value of 0.1. This means that the
neural network is trained efficiently.
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4.4. Dependence of Accuracy and Loss on the Type of Activation Function in the Output Layer

The symmetry in the structure of a neural network consists of the same number of
neurons and the same activation functions relative to the symmetry plane between the first
and second hidden layer. This section describes the results when this symmetry is broken.
The following studies were conducted: recording the results when changing the number
of neurons in the first and second hidden layers from 3 to 49, and changing the activation
functions in the first and second hidden layers. Additionally, the results of the model’s
performance when changing the activation function in the output layer were investigated.
In Figure 7, the orange line corresponds to the accuracy indicator, and the blue line to the
loss function. The y-axis represents the accuracy and loss metrics, and the x-axis represents
the number of neurons in the first hidden layer (Figure 7a) and in the second hidden layer
(Figure 7b).
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According to these results, the asymmetry between the first and second hidden layer
does not have a significant impact on the model’s accuracy (≤2%), while the loss function
when the symmetry is broken increases to a maximum of 75%. The type of activation
function in the output layer of the neural network has a significant impact. In particular,
when replacing the relu function in the output layer with the softmax, softplus, sigmoid,
and exponential functions, the accuracy metric increases from 21% to 98%, whereas the loss
function is the largest (more than 6) for the activation functions relu, selu, elu, and tanh,
and the smallest for the activation functions softplus, softmax, sigmoid, and exponential.

5. Discussion

The accuracy and loss indicators can be explained via the damping and explosion
of gradients (Figures 8 and 9). In Figure 8, in the case of the relu function, there is no
gradient decay and explosion since the derivative of the relu function is a constant for
positive argument values. In all other activation functions, there is a decay and explosion
of gradients since the derivative of these functions in the domain of definition is a variable
value. Figure 8 shows the opposite effect.

The results of the study of the accuracy and loss function in the classification of mines
using a neural network with two hidden layers show (Figure 8) that the asymmetry of the
types of neuron activation functions between the first and second hidden layers leads to a
slight effect on the classification accuracy (2%), while the loss function, when decreasing the
symmetry of function types between the first and second hidden layers, increases to 75%.
Decreasing the symmetry with respect to the number of neurons in the first and second
hidden layers (Figure 9) leads to a decrease in the accuracy of mine classification and a
significant increase in the loss function. In particular, if there are twenty neurons in the
second hidden layer and four neurons in the first, then the accuracy of mine classification
decreases by 25%, and the loss function increases by 50%. The decrease in the accuracy of
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mine classification due to the asymmetry of the number of neurons in the first and second
hidden layers is explained by the decrease in the number of synaptic weights, which leads
to a decrease in the performance of information storage in the neural network learning
algorithm.
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Experiments were conducted using neural networks with one and two hidden lay-
ers. The performance of the networks was evaluated using the accuracy and AUC-score
metrics. The Adam, RMSprop, and SGD optimisers were chosen in order to select the best
one. The optimisers were evaluated using the accuracy metric. The results are shown in
Tables 4 and 5.



Symmetry 2024, 16, 485 12 of 14

Table 4. The results of mine classification accuracy with neural networks using the accuracy metric
relative to optimisers.

Optimisers 1-Layer NN 2-Layer NN

Adam 0.9790 0.9923
RMSprop 0.9790 0.9856

SGD 0.9695 0.9812

Table 5. The results of mine classification accuracy with neural networks using the accuracy and
AUC score metrics.

Metrics 1-Layer NN 2-Layer NN

Accuracy 0.9790 0.9923
AUC score 0.9870 0.9953

In particular, the results from Tables 4 and 5 were compared with the results from
paper [14], where the metaheuristic method of nearest neighbours was used. The algorithm
developed in our work has shown a higher classification accuracy, depending on the dataset,
from 1% to 5%.

6. Conclusions

The morphology of neural networks with one and two hidden layers was developed
for the classification of mines (“no mine”, “anti-tank mine”, “anti-personnel mine”, “booby
trap”, “M14”), depending on the type of soil (“Dry and Sandy”, “Dry and Humus”, “Dry
and Limy”, “Humid and Sandy”, “Humid and Humus”, “Humid and Limy”) and the
height of the sensor above the ground where the mine is located, with an accuracy of 97.9%
and 99.2%, respectively.

It was established that the asymmetry of the neuron number in the first and second
hidden layers relative to the plane of symmetry between these layers has a significant
impact on the model accuracy (25% reduction in accuracy), while the loss function, when
the symmetry of the number of neurons in the hidden layers is violated, increases to a
maximum of 50%.

It is shown that when replacing the relu function in the output layer with the softmax,
softplus, sigmoid, and exponential functions, the accuracy metric increases from 21% to
98%. On the other hand, the loss function is the largest (more than 6) for the activation
functions relu, selu, elu, and tanh, and the smallest for the activation functions softplus,
softmax, sigmoid, and exponential. The accuracy and loss indicators can be explained
using the decay and explosion of gradients.

7. Patents

Utility model patent. The method of diagonalised convolutional layer data merging
in a neural network/R. M. Peleshchak, V. V. Lytvyn, I. R. Peleshchak; Lviv Polytechnic
National University.—C—2384.
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7. SGürkan, M.; Karapinar, S.; Doğan. Classification of explosives materials detected by magnetic anomaly method. In Proceedings
of the 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 8–10 April 2017;
pp. 347–350. [CrossRef]

8. Peleshchak, R.; Lytvyn, V.; Peleshchak, I.; Voloshyn, S. Neural Network Technology of Mine Recognition Based on Data from
Magnetic Field Sensors. In Proceedings of the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS), Dortmund, Germany, 7–9 September 2023; pp. 546–549.
[CrossRef]

9. Ilina, O.; Ziyadinov, V.; Klenov, N.; Tereshonok, M. A survey on symmetrical neural network architectures and applications.
Symmetry 2022, 14, 1391. [CrossRef]

10. Nguyen, T.N.; Guo, Y.; Qin, S.; Frew, K.S.; Xu, R.; Agar, J.C. Symmetry-aware recursive image similarity exploration for materials
microscopy. Npj Comput. Mater. 2021, 7, 166. [CrossRef]

11. Wang, J.; Zhang, Y.; Zhang, Z.; Wang, X. Symmetry-Based Convolutional Neural Networks for Image Recognition. Pattern
Recognit. 2022, 124, 108058.

12. Peleshchak, R.; Lytvyn, V.; Mediakov, O.; Peleshchak, I. Morphology of Convolutional Neural Network with Diagonalized
Pooling. In Modelling and Development of Intelligent Systems. MDIS 2022. In Communications in Computer and Information Science;
Simian, D., Stoica, L.F., Eds.; Springer: Cham, Switzerland, 2023; Volume 1761. [CrossRef]

13. Hu, S.X.; Zagoruyko, S.; Komodakis, N. Exploring weight symmetry in deep neural networks. Comput. Vis. Image Underst. 2019,
187, 102786. [CrossRef]

14. Yılmaz, C.; Sönmez, Y.; Kahraman, H.T.; Soyler, S.; Güvenç, U. Developing of decision support system for land mine classi-fication
by metaheuristic classifier. In Proceedings of the International Symposium Innovations Intelligent System and Applications
(INISTA), Sinaia, Romania, 2–5 August 2016; pp. 1–5.

15. NumPy Community. NumPy User Guide. 2020. Available online: https://numpy.org/doc/stable/user/ (accessed on 11 March
2024).

16. Glasserman, P.; Yao, D.D. Some guidelines and guarantees for common random numbers. Manag. Sci. 1992, 38, 884–908.
[CrossRef]

17. Ali, P.J.M.; Faraj, R.H.; Koya, E.; Ali, P.J.M.; Faraj, R.H. Data Normalization and Standardization. A Technical Report. Mach. Learn.
Tech. Rep. 2014, 1, 1–6. [CrossRef]

18. Potdar, K.; Pardawala, T.S.; Pai, C.D. A Comparative Study of Categorical Variable Encoding Techniques for Neural Network
Classifiers. Int. J. Comput. Appl. 2017, 175, 7–9. [CrossRef]

19. Stenvatten, D. A Comparative Study for Classification Algorithms on Imbalanced Datasets: An Investigation into the Performance
of RF, GBDT and MLP. Bachelor’s thesis, Högskolan i Skövde, Skövde, Sweden, 2020.

20. Peleshchak, R.; Lytvyn, V.; Peleshchak, I.; Khudyy, A.; Rybchak, Z.; Mushasta, S. Text Tonality Clas-sification Using a Hybrid
Convolutional Neural Network with Parallel and Sequential Connections between Layers. CEUR Workshop Proc. 2022, 3171,
904–915.

21. Pol, A.A. Machine Learning Anomaly Detection Applications to Compact Muon Solenoid Data Quality Monitoring. Ph.D. Thesis,
Université Paris-Saclay, Gif-sur-Yvette, France, 2020.

22. Markoulidakis, I.; Rallis, I.; Georgoulas, I.; Kopsiaftis, G.; Doulamis, A.; Doulamis, N. Multiclass Confusion Matrix Reduction
Method and Its Application on Net Promoter Score Classification Problem. Technologies 2021, 9, 81. [CrossRef]
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