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Abstract: In this research article, we propose a new matrix iterative method with a convergence
order of five for computing the sign of a complex matrix by examining the different patterns and
symmetry of existing methods. Analysis of the convergence of the method was explored on a global
scale, and attraction basins were demonstrated. In addition to this, the asymptotic stability of the
scheme was explored.Then, an algorithm for determing thegeneralized eigenvalues for the case of
regular matrix pencils was investigated using the matrix sign computation. We performed a series of
numerical experiments using numerous matrices to confirm the usefulness and superiority of the
proposed method.
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1. Introduction

Over the past several years, the efficient computing of matrix functions has emerged
as a prominent area of research. Symmetry plays a significant role in the study of matrix
functions, particularly in understanding their properties, behavior, and computational
methods. Symmetry principles are widely used in physics and engineering to analyze and
solve problems involving matrix functions. For instance, in quantum mechanics, symmetric
matrices often arise in the context of Hamiltonians, and efficient computation of matrix
functions is crucial for simulating quantum systems and predicting their behavior. In order
to compute matrix functions, various iterative schemes have been suggested, which include
methods for the evaluation of matrix sign function. The scalar sign function defined for
z ∈ C such that Re(z) ̸= 0 which is given as,

sign(z) =

{
1, Re(z) > 0,
−1, Re(z) < 0.

(1)

is extended to form the matrix sign function. Roberts [1] introduced the Cauchy integral
representation of the matrix sign function in 1980, given by

sign(A) =
2
π

A
∫ ∞

0
(t2 I + A2)−1dt, (2)

which can be applied in model reduction and in solving algebraic Riccati and Lyapunov
equations. Recall the definition of matrix sign function sign(A) via the Jordan canonical
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form [2], in which if A = PJP−1 is the Jordan decomposition of A such that J = diag(J1, J2),
then

sign(A) = P
[
−Ip 0

0 In−p

]
P−1, (3)

where A ∈ Cn×n has no eigenvalue on the imaginary axis, P is a nonsingular matrix, and p
and n − p are sizes of Jordan blocks J1, J2 corresponding to eigenvalues lying in left half
plane (C−) and right half plane (C+), respectively.

In the pursuit of evaluating sign(A) as a solution of

W2 − I = 0, (4)

Roberts applied Newton’s method (NM) resulting into the following iterative formula:

Wl+1 =
1
2
(Wl + W−1

l ), l = 0, 1, 2, . . . , (5)

with the initial matrix W0 = A and convergence of order two.
Another alternative is accelerated Newton’s method (ANM) that can be achieved via

norm scaling parameter in (5) given by,
W0 = A,

µl =

√
∥W−1

l ∥
∥Wl∥

,

Wl+1 = 1
2 (µlWl + µ−1

l W−1
l ).

(6)

In order to improve the convergence, acceleration and scaling of iteration (5), Kenney
and Laub [3,4] suggested a family of matrix iterations by employing the Padé approximant
to the function

H(x) = (1 − x)−1/2, (7)

where x = 1 − z2 and taking into the consideration

sign(z) =
z

(1 − x)1/2 . (8)

Let (r, s)-Padé approximant to H(x) with r + s ≥ 1 is denoted as Pr,s(x)
Qr,s(x) , then

wl+1 =
wl Pr,s(1 − w2

l )

Qr,s(1 − w2
l )

= ψ2r+1,2s, (9)

converges to ±1 if r ≥ s− 1 and it has convergence rate equal to r + s+ 1. So, the (r, s)-Padé
approximant iteration (PAr,s) for computing sign(A) is

Wl+1 = Wl [Pr,s(1 − W2
l )][Qr,s(1 − W2

l )]
−1. (10)

These iterations were later investigated by Gomilko et al. [5]. Other popular iterative
approaches for sign(A), such as the Newton-Schulz method (NSM) [6]

Wl+1 =
1
2

Wl(3I − W2
l ), (11)

and Halley’s method (HM) [2]

Wl+1 = [I + 3W2
l ][Wl(3I + W2

l )]
−1. (12)

are either members of the Padé family (10) or its reciprocal family.
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A recent fifth order iterative method [7] (represented as Lotfi’s Method (LM)) for
sign(A) can be investigated and is given by

Wl+1 = [Wl(18I − 20W2
l − 30W4

l )][5I + 15W2
l − 45W4

l − 7W6
l ]

−1. (13)

For more recent literature on matrix sign function, one can go through references [8–10].
Motivated by constructing efficient iterative methods like the methods discussed above

and to overcome on some of the drawbacks of the existing iterative methods, here we aim
to propose a globally convergent iterative method for approximation of sign(A). Matrix
sign function has several application in scientific computing (see e.g., [11,12]). Another
applications of matrix sign function include solving various matrix equations [13], solving
stochastic differential equations [14] and many more.

In this article, we present a fifth order iterative scheme for evaluation of sign(A).
The outline for the rest of the article is defined here: In Section 2, the construction of new
iterative scheme for evaluating matrix sign function has been concluded. In Section 3, basins
of attraction guarantees the global convergence of developed method. Also, convergence
analysis for the fifth rate of convergence is discussed along with stability analysis. Then
the proposed method is extended to determine the generalized eigenvalues of a regular
matrix pencil in Section 4. Computational complexity is examined in Section 5. Numerical
examples are provided to evaluate the performance and to demonstrate the numerical
precision of suggested method in Section 6. The final conclusion is presented in Section 7.

2. A Novel Iterative Method

In this section, we have developed an iterative method for evaluation of sign(A).
The primary goal is to develop the scheme by examining the factorization patterns and
symmetry of existing schemes rather than using a non-linear equation solver [13]. We aim
to design an iterative formula that does not conflict with the Padé family members (9) or
its reciprocals.

If we assume the eigenvalues to converge to 1 or −1, and we aim to get a higher
convergence order five, then the iterative formula will satisfy the equation

wl+1 − 1
wl+1 + 1

=
(wl − 1)5

(wl + 1)5 . (14)

If we solve Equation (14) for wl+1, then we get

wl+1 =
wl(5 + 10w2

l + w4
l )

1 + 10w2
l + 5w4

l
. (15)

Nevertheless, the formula mentioned above is not a novel one, as it is a member of
Padé family (9). So, we make some modifications in (14) so that the formula becomes better
in terms of converegnce as follows:

wl+1 − 1
wl+1 + 1

=
(wl − 1)5(−4 + wl)

(wl + 1)5(−4 − wl)
, (16)

provided that
∥∥∥−4+wl
−4−wl

∥∥∥ < 1. Solving (16) for wl+1, we get

wl+1 =
wl(21 + 50w2

l + 9w4
l )

4 + 45w2
l + 30w4

l + w6
l

, (17)

which contains a polynomial of degree 5 in the numerator and a polynomial of degree
6 in the denominator. From (9), it is clear that Padé family has a unique member with a
polynomial of degree 2r + 1 in numerator and a polynomial of degree 2s in denominator
for each r, s ≥ 0. So 2r + 1 = 5 and 2s = 6 will result into r = 2 and s = 3, i.e., PA2,3 and
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will have order 2 + 3 + 1 = 6 which is different from the order 5 that we are achieving. So,
the above formula (17) is not a part of the family (9) or reciprocals of (9) and therefore our
proposed method (PM) is as follows:

Wl+1 = [Wl(21I + 50W2
l + 9W4

l )][4I + 45W2
l + 30W4

l + W6
l ]

−1, (18)

where W0 is the appropriate initial guess which we discuss in Section 3.

Remark 1. Convergence can be slow if ∥Wl∥ >> 1 for some l. In that situation, it is advisable to
introduce the scaling parameter µl [15] given as,

µl =



√
∥W−1

l ∥
∥Wl∥

(norm scaling),√
ρ(W−1

l )

ρ(Wl)
(spectral scaling),√

|det(Wl)|−1/n (determinant scaling).

(19)

to speed up the convergence [16] of the scheme.

Hence, we also present the accelerated proposed method (APM) which is accelerated
version of (18) given by

W0 = A,
µl = Scaling parameter computed by (19),
Wl+1 = [µlWl(21I + 50µ2

l W2
l + 9µ4

l W4
l )][4I + 45µ2

l Z2
l + 30µ4

l W4
l + µ6

l W6
l ]

−1,

(20)

where liml→∞ µl = 1 and liml→∞ Wl = S = sign(A).

3. Convergence and Stability Analysis

In this section, we discuss the convergence analysis to ensure that the sequence
generated from (18) converges to sign(A) for a matrix A ∈ Cn×n. We draw the basins of
attraction to confirm the global convergence of the proposed scheme and compared with
the existing schemes for solving w2 − 1 = 0 [17].

We consider a region R = [−2, 2]× [−2, 2] ∈ C. The region has grid size of 256 × 256
and has two simple roots −1 and 1. The convergence was determined by the stopping
criteria ∥ f (wl)∥ ≤ 10−2. The exact location of roots is shown by two white dots within
the basins. The dark blue color (left side of basins) represent the convergence region
corresponding to the root w = −1 and the light blue color (right side of basins) represent
the convergence region corresponding to the root w = 1.

Figure 1 illustrates the basins for NM (5), NSM (11), HM (12), PAr,s (10), and the pro-
posed method PM (18). It is evident from Figure 1b,d that methods NSM and PA3,1 exhibit
local convergence, while the other methods exhibit the global convergence. Moreover,
Figure 1e,f illustarte broader and lighter basins of attraction because of higher convergence
order of PA2,2 and PM as compared to the basins of NM and HM as shown in Figure 1a,c.
One can notice the symmetry in convergence region of each method. The convergence
regions are symmetric about imaginary axis.

After achieving global convergence of the proposed method, it is important to ex-
amine certain critical factors related to matrix iterations, including convergence rate and
numerical stability.
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Figure 1. Attraction basins of various methods for equation w2 − 1 = 0.

3.1. Convergence Analysis

Theorem 1. Suppose that the initial matrix W0 = A ∈ Cn×n has no eigenvalue on the imaginary
axis, then the sequence of matrices {Wl}∞

l=0 generated from (18) converges to sign(A) = S.
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Proof. Let W = PJP−1 be Jordan decomposition of matrix W ∈ Cn×n and consider

R(W) = PR(J)P−1. (21)

where R is the rational function linked to (18). Consequently, this will lead to the mapping
of an eigenvalue λ of Wl to an eigenvalue R(λ) of Wl+1. Also, R will satisfy the properties
given as follows:

1. sign(R(w)) = sign(w) ∀ w ∈ C.
2. wl+1 = R(wl) with w0 = w converges to sign(w), where Re(w) ̸= 0.

To achieve this objective, consider A = PΛP−1 as the Jordan decomposition of A that
can be modified as [2]

P−1 AP = Λ =

[
C 0
0 N

]
, (22)

where P is a non singular matrix while Jordan blocks C and N are associated to the
eigenvalues in C− and C+ respectively. Let the principal diagonals of blocks C and N have
values λ1, λ2, . . . , λp and λp+1, λp+2, . . . , λn respectively. Then

sign(A) = P
[
−Ip 0

0 In−p

]
P−1. (23)

Therefore,

sign(Λ) = sign(P−1 AP) = P−1sign(A)P

=



sign(λ1)
. . .

sign(λp)
sign(λp+1)

. . .
sign(λn)


(24)

Now, define a sequence Dl = P−1Wl P with D0 = P−1 AP. Then from (18), we get

Dl+1 = [Dl(21I + 50D2
l + 9D4

l )][4I + 45D2
l + 30D4

l + D6
l ]
−1. (25)

Mathematical induction states that all Dl’s for l = 1, 2, 3... will be diagonal if D0 is
diagonal. When D0 is not diagonal, the proof may be considered in the similar methodology
as stated at the end of the proof.

Now, (25) can be written for scalar case f (w) = w2 − 1 = 0 as follows:

di
l+1 =

di
l(21 + 50di

l
2
+ 9di

l
4
)

4 + 45di
l
2
+ 30di

l
4
+ di

l
6 , (26)

where di
l = (Dl)i,i and 1 ≤ i ≤ n. Furthermore, sign(λi) = si, with si = ±1 and therefore

from (26),
di

l+1 − si

di
l+1 + si

=

(
−si + di

l
si + di

l

)5(
4si − di

l
4si + di

l

)
. (27)
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The factor 4si−di
l

4si+di
l

is bounded for 1 ≤ i ≤ n and does not affect the convergence.

Furthermore, by selecting the right initial matrix W0 = A and
∣∣∣∣ di

0−si
di

0+si

∣∣∣∣ < 1, we get

lim
l→∞

∣∣∣∣∣di
l+1 − si

di
l+1 + si

∣∣∣∣∣ = 0, (28)

implying that liml→∞(di
l) = si = sign(λi) and hence liml→∞(Dl) = sign(Λ).

In the case when D0 is not a diagonal matrix, it is essential that we investigate the
relation between the eigenvalues of Wi’s which was briefly explained at the starting of
the proof.

λi
l+1 = [λi

l(21I + 50λi
l
2
+ 9λi

l
4
)][4I + 45λi

l
2
+ 30λi

l
4
+ λi

l
6
]−1. (29)

In a comparable approach, it is clear from (29) that λi’s will converge to si = ±1, i.e.,

lim
l→∞

∣∣∣∣∣λi
l+1 − si

λi
l+1 + si

∣∣∣∣∣ = 0. (30)

As a result, it is easy to conclude that

lim
l→∞

Wl = P( lim
l→∞

Dl)P−1 = Psign(Λ)P−1 = sign(A), (31)

which finishes the proof.

Theorem 2. Considering the assumptions of Theorem 1, the matrix sequence {Wl}∞
l=0 generated

from (18) has convergence rate five to sign(A) = S.

Proof. Since, Wl depends on matrix A ∀ l ≥ 0 and the matrix A commutes with S, so Wl
also commutes with S ∀ l ≥ 0. Taking into consideration the substitution

Bl = 4I + 45W2
l + 30W4

l + W6
l , (32)

we get,

Wl+1 − S = [Wl(21I + 50W2
l + 9W4

l )]B
−1
l − S

= [21Wl + 50W3
l + 9W5

l − SBl ]B−1
l

= [21Wl + 50W3
l + 9W5

l − 4S − 45SW2
l − 30SW4

l − SW6
l ]B

−1
l

= [−4S5 + 21S4Wl − 45S3W2
l + 50S2W3

l − 30SW4
l + 9W5

l − SW6
l ]B

−1
l

= (Wl − S)5(4I − SWl)B−1
l

(33)

Apply any type of matrix norm to the both sides of (33),

∥Wl+1 − S∥ ≤
(
∥4I − SWl∥

∥∥∥B−1
l

∥∥∥)∥Wl − S∥5. (34)

This completes the proof.

3.2. Stability Issues

Theorem 3. Considering the assumptions of Theorem 1, the sequence of matrix iterations {Wl}∞
l=0

generated from (18) is stable asymptotically.

Proof. The iterate obtained from (18) is a function of A because of W0 = A, and hence
commutes with A. Let ∆l be the perturbation generated at lth iterate in (18). Then
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W̃l = Wl + ∆l . (35)

Based on the results of the error analysis of order one, we may consider that (∆l)
j ≈ 0,

j ≥ 2. As long as ∆l is small enough, this usual adjustment will work. Also suppose that
Wl ≈ sign(A) = S for larger l, then we get

W̃l+1 = [W̃l(21I + 50W̃2
l + 9W̃4

l )][4I + 45W̃2
l + 30W̃4

l + W̃6
l ]

−1

= [(Wl + ∆l)(21I + 50(Wl + ∆l)
2 + 9(Wl + ∆l)

4)][4I + 45(Wl + ∆l)
2

+ 30(Wl + ∆l)
4 + (Wl + ∆l)

6]−1

≈ [80S + 148∆l + 68S∆lS][80I + 108S∆l + 108∆lS]−1

≈
[

S +
37
20

∆l +
17
20

S∆lS
][

I − 27
20

S∆l −
27
20

∆lS
]

≈ S +
1
2

∆l −
1
2

S∆lS.

(36)

Here, the identity [18] given by

(B + C)−1 = B−1 − B−1CB−1 + O(C2). (37)

has been applied, where B is any nonsingular matrix and C is any matrix. Also, considering
∆l+1 = W̃l+1 − Wl+1, we get

∆l+1 ≈ 1
2

∆l −
1
2

S∆lS. (38)

At this point, it is possible to deduce that ∆l+1 is bounded, i.e.,

∥∆l+1∥ ≤ 1
2
∥∆0 − S∆0S∥, (39)

which completes the proof.

4. Extension to Determine Generalized Eigenvalues of a Matrix Pencil

Let A, B ∈ Cn×n. Then λ ∈ C is said to be a generalized eigenvalue of a matrix pencil
A − λB if there exists a non-zero vector x ∈ Cn such that

Ax = λBx. (40)

Here x will be a generalized eigenvector corresponding to λ and (40) is referred
as a generalized eigenvalue problem. This can be determined by finding the zeros of
characteristic polynomial det(A − λB).

Complex problem solving in physics was the first scenario for the appearance of the
characteristic polynomial and the eigenproblem. For a recent coverage of the topic one can
see [19]. When more generality is needed, generalized eigenvalue problem is taking the
place of the classical approach [20].

Problem (40) arises in several fields of numerical linear algebra. However, the dimen-
sions of matrices A and B are typically quite enormous, hence further complicating the
situation. There are a lot of different approaches that claim to be able to solve (40) including
the necessary eigenvectors in a smaller subspace or series of matrix pencils [21–23] or using
matrix decomposition [24–26]. Our interest is in employing the matrix sign function which
involves evaluating certain matrix sign computations based on the given matrix pencil to
compute the required decomposition and hence to solve the problem (40).

To solve the problem (40) for the case of regular matrix pencils using matrix sign
function, we consider rank revealing QR (RRQR) decomposition [27] after computing sign
of two matrices depending on the given matrix pencil.
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Theorem 4. Let A, B ∈ Cn×n such that A − λB be a regular matrix pencil and let U1 and U2 are
defined as

U1 =
I − S1

2
, U2 =

I − S2

2
, (41)

where S1 and S2 are sign functions given by

S1 = sign((A − B)−1(A + B)),

S2 = sign((A + B)(A − B)−1).
(42)

If U1Π1 = Q1R1 and U2Π2 = Q2R2 are RRQR decompositions of U1 and U2 such that
Q∗

2 AQ1 and Q∗
2 BQ1 are upper triangular, then

λi =
αii
βii

, (43)

where λi’s are eigenvalues of A − λB, αii and βii are the diagonal entries of Q∗
2 AQ1 and Q∗

2 BQ1
respectively for i = 1, 2, . . . , n. Moreover, if B is non-invertible, then βii = 0 for some i which
implies that some eigenvalues of A − λB will be infinity.

Let τ denotes tolerance value and max be the maximum iterations. Then, in accordance
with the proposed method (18) and Theorem 4, we propose Algorithm 1 to find out the
eigenvalues of a regular matrix pencil A − λB.

Algorithm 1 Evaluating generalized eigenvalues of A − λB

Require: A, B, max, τ
Ensure: S1, S2, λ′

is
1: Initialize W0 = (A − B)−1(A + B).
2: while l ≤ max and ∥W2

l − I∥∗ > τ do
3: Apply method (18).
4: return W∞ = sign((A − B)−1(A + B)) = S1.
5: end while
6: Construct RRQR decomposition of U1 = I−S1

2 as follows:
U1Π1 = Q1R1.

7: Initialize W0 = (A + B)(A − B)−1.
8: Repeat step 2–5 to return W∞ = sign((A + B)(A − B)−1) = S2.
9: Construct RRQR decomposition of U2 = I−S2

2 as follows:
U2Π2 = Q2R2.

10: Compute two matrices Q∗
2 AQ1 =

[
αij
]

and Q∗
2 BQ1 =

[
βij
]
, where 1 ≤ i, j ≤ n.

11: if αij = βij = 0 ∀ i > j then
12: for i=1:n do
13: λi =

αii
βii

.
14: end for
15: end if

5. Computational Complexity

The computational efficiency index (CEI) [28] of an iterative method can be defined
as follows:

CEI = p
1
C . (44)

Here p denotes convergence order and C denotes computational cost per iteration.
The approximate cost of matrix multiplications in current programming packages

is 2.373 [29]. For a matrix of size n, we therefore consider that the cost of one matrix-
matrix multiplication is n

2373
1000 and cost of one matrix inverse is 2n3

3 . Additionally, we do
not take into account the cost per iteration of norm computation (in ANM (6)), addition
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and subtraction. Then, CEI’s for the methods NM (5), ANM (6), HM (12) and PM (18) to
compute sign(A) are given in Table 1.

Table 1. CEI’s for various methods along with their convergence orders.

Method Convergence Order CEI

NM 2 2
1

n2373/1000+ 2n3
3

ANM
√

3 + 1 (
√

3 + 1)
1

n2373/1000+ 2n3
3

HM 3 3
1

3n2373/1000+ 2n3
3

PM 5 5
1

5n2373/1000+ 2n3
3

Figure 2 presents a comparison of the efficiencies of several approaches, demonstrating
the greater efficiency index of the suggested method.
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Figure 2. Comparative analysis of efficiency indices for different methods.

6. Numerical Aspects

In this section, we have examined a variety of examples to evaluate our proposed
method by comparing it with various existing techniques. For this study, we have assumed
the following stopping criteria:

∥W2
l − I∥∗ ≤ τ, (45)

where τ stands for the tolerance value and ∥.∥∗ will be suitable matrix norm. Also, l∞ and
l2 norms are considered for real and complex input matrices, respectively [14].

For the sake of comparison, we only consider the methods that exhibit global conver-
gence and we do not include any methods that have local convergence. The methods that
are being compared will be NM (5), ANM (6), HM (12), PA2,2 ((10) for r = s = 2), LM (13),
PM (18) and APM (20) with spectral scaling (19). All simulations are done in Mathematica
using system specifications “Windows 11 Home Intel(R) Core(TM) i7-1255U CPU running
at 1.70 GHz processor having 16.0 RAM (64-bit operating system)”.

Example 1. Here, we perform the eigenvalue clustering of a random real 500× 500 matrix given as

SeedRandom[100]; A = RandomReal[{-5,5},{500,500}];

The outcomes are shown in Figure 3 using the stopping criteria (45) with l∞ norm and
τ = 10−4. We can see that eigenvalues of W0 are scattered at the initial stage as shown
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in Figure 3a, while proceeding for the next iterations Wi in Figure 3b–g for i = 1, 2, . . . , 6
respectively using PM (18), the eigenvalues are converging towards 1 or −1. Then in
Figure 3h, all eigenvalues converge to 1 or −1 (based on the stopping criteria) implying
that the sequence of matrices {Wl}∞

l=0 converges to sign(A). The result of Theorem 1 is
therefore confirmed.
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Figure 3. Eigenvalue clustering of 500 × 500 matrix at every iterate in Example 1.

Example 2. In this example, convergence of many different methods for computing sign(A) has
been compared, where A is a random 1000 × 1000 complex square matrix given as follows:

SeedRandom[101];
A = RandomComplex[{-1 - 1.5 I, 1 + 1.5 I}, {1000, 1000}]
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The comparison is shown in Figure 4 with τ = 10−4 and l2 norm which illustrates the
results with regard to the number of iterations and the absolute error and demonstrates the
consistent behavior of both PM and APM.
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Figure 4. Convergence history of different methods for Example 2.

Example 3. This example presents a comparison on convergence of many different methods for
computing sign(A), where A is a random 2000 × 2000 real square matrix given as

SeedRandom[111];
A = RandomReal[{-25, 25}, {2000, 2000}];

The comparison is presented in Figure 5 with τ = 10−4 and l∞ norm which illustrates
the results with respect to the number of iterations and the absolute error and demonstrates
the consistent behavior of both PM and APM for evaluating sign(A).
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Figure 5. Convergence history of different methods for Example 3.
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Example 4. Here, we examine the convergence of various methods with regard to the iteration
number and the timings of CPU for evaluating the sign function of ten random matrices:

SeedRandom[121]; number = 10; tolerance = 10^(-5);
Table[A[j] = RandomComplex[{-3 - 2 I, 3 + 2 I}, {50j, 50j}];, {j, number}];

The comparative analysis based on iteration number and CPU timings for matrices
of various sizes, are presented in Table 2 and Table 3 respectively using τ = 10−5 and
l2-norm. The implementation of new methods (PM) and (APM) result in an improvement
in the average iteration number and the amount of time spent by CPU. The outcomes
demonstrate that the suggested method (PM) is significantly better as compared to other
fifth order methods like PA2,2 and LM.

Table 2. Comparative analysis for the iteration number in Example 4.

Matrix N M AN M HM LM PA2,2 PM APM

A50×50 12 11 8 6 6 5 4
A100×100 15 13 9 7 7 6 5
A150×150 15 15 10 8 7 6 5
A200×200 15 15 9 8 7 6 5
A250×250 15 17 10 8 7 6 5
A300×300 14 15 9 7 6 6 5
A350×350 15 16 10 8 7 6 5
A400×400 17 19 11 10 7 7 5
A450×450 14 15 9 7 6 6 5
A500×500 18 21 12 9 8 7 6

Mean 15 15.7 9.7 7.8 6.8 6.1 5

Table 3. Comparative analysis for the CPU-time (in seconds) in Example 4.

Matrix N M AN M HM LM PA2,2 PM APM

A50×50 0.03 0.02 0.01 0.01 0.02 0.01 0.01
A100×100 0.07 0.15 0.05 0.05 0.09 0.05 0.10
A150×150 0.16 0.23 0.12 0.15 0.21 0.10 0.24
A200×200 0.29 0.40 0.19 0.26 0.34 0.18 0.40
A250×250 0.47 0.67 0.32 0.39 0.53 0.25 0.60
A300×300 0.58 0.87 0.44 0.55 0.63 0.44 1.02
A350×350 0.82 1.29 0.70 0.88 1.21 0.63 1.44
A400×400 1.20 2.04 1.46 1.78 1.62 0.99 1.70
A450×450 1.31 2.06 1.08 1.40 1.87 1.16 2.29
A500×500 2.06 3.58 1.91 2.32 3.07 1.60 3.32

Mean 0.70 1.13 0.63 0.78 0.96 0.54 1.11

Now, in Examples 5 and 6, we aim to evaluate generalized eigenvalues of matrix
pencils using matrix sign function for which we use Algorithm 1 for different methods by
replacing (18) with existing methods in Step 3.

Example 5. Let A − λB be a matrix pencil, where matrices A and B are given by [30]

A =



99
100

1
100 0 . . . 0

0 98
100

. . . 0
...

. . . . . . . . .
...

0 . . . 0 1
100

1
100

0 . . . 0 0 0
100


100×100

, B =


0

. . .
0

I20


100×100

,

where I20 is the identity matrix of size 20.



Symmetry 2024, 16, 481 14 of 16

The eigenvalues of given pencil A − λB are λi =
i−1
100 for i = 1, 2, . . . 20 and remain-

ing eigenvalues are infinite. We verify these eigenvalues using proposed method and
Algorithm 1. We compute the matrices Q∗

2 AQ1 = [αij]100×100 and Q∗
2 BQ1 = [βij]100×100

and then calculate λ′
is from Algorithm 1. The outcomes are presented in Table 4 for

i = 1, 2, . . . 20.

Table 4. Eigenvalues (λi’s) of matrix pencil A − λB in Example 5.

i 1 2 3 4 5 6 7 8 9 10

αii 0.189762 0.18 −0.17 0.16 0.15 −0.14 0.13 −0.12 −0.11 0.1
βii 0.99875 1 −1 1 1 −1 1 −1 −1 1
λi 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.1

i 11 12 13 14 15 16 17 18 19 20

αii −0.09 0.08 −0.07 0.05 −0.03 0.02 0.01 0 −0.06 0.04
βii −1 1 −1 1 −1 1 1 −1 −1 1
λi 0.09 0.08 0.07 0.05 0.03 0.02 0.01 0 0.06 0.04

Moreover, βii = 0 for 21 ≤ i ≤ 100 which implies that λi = ∞ for 21 ≤ i ≤ 100. Hence
this example verifies the results given in Theorem 4.

Example 6 (Bounded finline dielectric waveguide problem). The generalized eigenvalue
problem (40) arises in the finite element analysis for finding the propagating modes of a rectangular
waveguide. We consider three cases for the pairs of matrices A and B as BFW62A, BFW62B;
BFW398A, BFW398B and BFW782A, BFW782B from the Matrix Market [31].

Table 5 shows the outcomes depending on the iteration numbers l1 and l2 for comput-
ing S1 = sign((A − B)−1(A + B)) and S2 = sign((A + B)(A − B)−1) with corresponding
absolute errors ϵl1 = ∥W2

l1
− I∥∞ and ϵl2 = ∥W2

l2
− I∥∞ using stopping criterion (45) with

τ = 10−10. Also, total computational time in seconds taken for computing S1 and S2 has
been compared in Figure 6. The outcomes demonstrate that the suggested method is better
with respect to errors and timings.

Table 5. Comparison of results obtained from various methods in Example 6.

Matrices Method l1 ϵl1 l2 ϵl2

BFW62A, BFW62B NM 2 5.79607 × 10−11 2 5.79607 × 10−11

HM 2 4.44089 × 10−16 2 4.44089 × 10−16

PA2,2 1 1.65201 × 10−13 1 1.64757 × 10−13

LM 1 9.80327 × 10−13 1 9.81437 × 10−13

PM 1 9.90319 × 10−14 1 1.00364 × 10−13

BFW398A, BFW398B NM 2 6.18883 × 10−12 2 6.18883 × 10−12

HM 2 4.44089 × 10−16 2 4.44089 × 10−16

PA2,2 1 1.50990 × 10−14 1 1.50990 × 10−14

LM 1 9.08162 × 10−14 1 9.23706 × 10−14

PM 1 1.11022 × 10−14 1 1.11022 × 10−14

BFW782A, BFW782B NM 2 5.82201 × 10−13 2 5.82201 × 10−13

HM 2 4.44089 × 10−16 2 4.44089 × 10−16

PA2,2 1 6.43929 × 10−15 1 3.99680 × 10−15

LM 1 7.99361 × 10−15 1 7.99361 × 10−15

PM 1 5.32907 × 10−16 1 5.32907 × 10−16
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Figure 6. Comparison of CPU time for various methods to compute S1 and S2 in Example 6.

7. Conclusions

This paper has discussed an iterative approach for evaluation of sign of a matrix. Our
proposed iterative method attains a convergence order of five, showcasing its efficiency in
evaluation of the sign of complex matrices. Through comprehensive convergence analysis
discussed globally and the demonstration of asymptotic stability, we have established the
robustness and reliability of the proposed approach. Then an algorithm has been designed
for determining the generalized eigenvalues of a regular matrix pencil utilizing matrix
sign computation. Furthermore, extensive numerical experiments performed on matrices
of different sizes have validated the effectiveness and superiority of our method over
existing techniques.
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