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Abstract: The processing and comprehension of numerical information in natural language repre-
sent pivotal focal points of scholarly inquiry. Across diverse applications spanning text analysis to
information retrieval, the adept management and understanding of the numerical content within
natural language are indispensable in achieving task success. Specialized encoding and embedding
techniques tailored to numerical data offer an avenue toward improved performance in tasks in-
volving masked prediction and numerical reasoning, inherently characterized by numerical values.
Consequently, treating numbers in text merely as words is inadequate; their numerical semantics
must be underscored. Recent years have witnessed the emergence of a range of specific encoding
methodologies designed explicitly for numerical content, demonstrating promising outcomes. We
observe similarities between the Transformer architecture and CPU architecture, with symmetry play-
ing a crucial role. In light of this observation and drawing inspiration from computer system theory,
we introduce a floating-point representation and devise a corresponding embedding module. The
numerical representations correspond one-to-one with their semantic vector values, rendering both
symmetric regarding intermediate transformation methods. Our proposed methodology facilitates
the more comprehensive encoding and embedding of numerical information within a predefined
precision range, thereby ensuring a distinctive encoding representation for each numerical entity.
Rigorous testing on multiple encoder-only models and datasets yielded results that stand out in
terms of competitiveness. In comparison to the default embedding methods employed by models,
our approach achieved an improvement of approximately 3.8% in Top-1 accuracy and a reduction
in perplexity of approximately 0.43. These outcomes affirm the efficacy of our proposed method.
Furthermore, the enrichment of numerical semantics through a more comprehensive embedding
contributes to the augmentation of the model’s capacity for semantic understanding.

Keywords: floating-point embedding; large language model; numerical semantics

1. Introduction

The advent of the Transformer [1] has ushered in a revolutionary era in natural lan-
guage processing research. This breakthrough has given rise to a series of pre-trained
language models, including GPT [2] and BERT [3], which have demonstrated remarkable
achievements in natural language processing. These models, trained on extensive unla-
beled corpora, acquire knowledge of language rules, extract common-sense information
embedded in text, and attain a generalized language representation, significantly elevating
their performance across various downstream tasks [4–6].

The relationship between word embeddings and large language models (LLMs) is
close. In the field of natural language processing (NLP), LLMs utilize word embeddings
to construct their internal representations, thereby exhibiting remarkable performance in
tasks such as text understanding and generation. This embedding technique enables LLMs
to capture language semantics and contexts more effectively, offering more precise and
flexible solutions for various NLP applications. Word embeddings provide a method of
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representing words within a vector space, enabling the capture of semantic relationships
through both distance and direction. Their computation revolves around maximizing
the likelihood of conditional probability distributions for each word in the lexicon. Re-
cent advancements have introduced a novel class of word embeddings, drawing from
concepts in information geometry, which have demonstrated the capacity to bolster the
performance of various intrinsic and extrinsic NLP tasks [7]. However, the complexity
of natural language, with its nuanced relationships, presents challenges. For instance,
discerning contradictions within pairs of sentences may not be possible with conventional
word embedding algorithms. Addressing this requires specialized neural networks tailored
to learning embeddings attuned to contradictions [8]. Moreover, real-world linguistic
environments, such as online forums and social media platforms, often introduce noisy
text, which can undermine model performance. To mitigate this, the notion of bridge
words has emerged—artificially introduced words intended to strengthen the similarity
between standard words and their noisy variants [9]. Consequently, there is merit in ex-
ploring the fusion of traditional linguistic features with neural encodings. In tasks like
predicting lexical complexity, leveraging Transformer models in conjunction with various
traditional linguistic features has proven effective in enhancing the performance of deep
learning systems [10]. Similarly, accommodating syntactic and morphological peculiarities
is crucial, especially for languages like Welsh, a minority language, which necessitates
adaptations to existing word embedding methods for optimal results [11]. Hence, the im-
perative lies in crafting specific word embedding methodologies tailored to the nuances of
particular texts or tasks, recognizing the intricate interplay between linguistic structure and
neural representations.

Notably, natural language text is replete with numerical elements. Despite the signifi-
cant strides made in natural language understanding by LLMs, they encounter challenges
in maintaining optimal performance when confronted with tasks involving numbers. This
challenge primarily stems from the tokenization methods employed by these models,
where numbers and words are treated uniformly. For instance, BERT utilizes a subword
tokenization approach [12], potentially leading to the segmentation of a word into multiple
parts. Take the number 87,600 as an example: it might be tokenized as 87 –600, disrupting
the semantic coherence of the number itself. It is crucial to note that different tokenizers
may yield distinct segmentations.

Certainly, language models default to interpreting numbers as entities akin to words.
However, from the human perspective, numbers are perceived as integral, complete enti-
ties, and the human cognition of numbers involves a nuanced understanding. Numbers
transcend the status of mere words within a text; they should be comprehended as mathe-
matical entities and, furthermore, as symbols amenable to computation. The discussion
here revolves around mathematical entities, focusing on their mathematical significance
and computability. For instance, based on the current date and certain conditions, we
can infer a new date that fits the context. However, for entities like phone numbers and
license plates, inference is less applicable as they are more often considered identifiers
rather than being viewed as mathematical entities. Therefore, it is imperative for language
models to move beyond treating numbers as mere words. When numbers are acknowl-
edged as mathematical entities, the model should discern and incorporate their inherent
numerical semantics.

Recent studies have found that Chain of Thought (CoT) prompting [13–15] can signifi-
cantly enhance the performance of LLMs, particularly in handling complex tasks involving
mathematics or reasoning. However, the Chain of Thought method does not involve
the special treatment of numbers; it simply improves the reasoning process. Fortunately,
endeavors have been undertaken to augment the numerical understanding and fundamen-
tal arithmetic capabilities of such language models. The intrinsic numerical information
embedded in numbers has been duly acknowledged, leading to the development of method-
ologies to encode and embed it as specific numerical representations fed into the model.
One notably effective approach involves exponent embeddings through scientific nota-
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tion, which folds numbers into evenly spaced bins on a logarithmic scale. Additionally,
certain methodologies adopt binary-like encodings to represent the relative magnitudes of
numbers within a specified real-number range.

Building upon a comprehensive review of prior research in this domain, we have
assimilated insights from both theoretical understanding and experimental validation,
resulting in a novel perspective. The Transformer architecture, upon closer examination,
reveals parallels with conventional computer systems when viewed from a specific angle.
Drawing an analogy between Transformer blocks and CPUs, the attention mechanism can
be conceptualized as akin to addressing through both position and content. In this analogy,
the feedforward network sub-layer and layer normalization layer mirror the functionalities
of the arithmetic logic unit (ALU) in a CPU, conducting computations on the content
addressed within the system.

In light of the identified parallels and symmetry between the Transformer architecture
and CPU architecture, a natural question emerges: can we leverage traditional methods
of handling numbers in computer systems to enhance the embedding process of Trans-
former architecture models? Within computer science, numerical representations within a
certain precision range exhibit near-symmetry. Drawing inspiration from computer system
theory [16–18], we applied the encoding method for floating-point numbers found in com-
puter systems (specifically, the IEEE 754 standard) [19–21] to the Transformer architecture
model. Subsequently, we devised a corresponding floating-point embedding module with
the objective of enriching the model’s understanding of numbers and effectively embedding
their numerical features.

Our findings indicate that this floating-point embedding approach yields significant
improvements, augmenting the model’s comprehension of the numerical information
within the text. We are the first to incorporate the floating-point representation method
from computer systems into a deep-learning-based language model. We have designed a
corresponding embedding module to process numerals in natural language text, thereby
enhancing the model’s understanding of the numerical information within the text. This
work introduces a novel perspective and method for the exploration of numerical em-
beddings, opening avenues for future research in this domain. By extending the appli-
cation of computer system principles, this approach contributes to the advancement of
contemporary models.

In summary, our contributions can be outlined as follows.

• Identification of Transformer–CPU Connection: We establish a connection between the
Transformer architecture and traditional computer systems by applying the floating-
point representation method from computer systems to embed numerical information
in the model. This involves the design of a corresponding embedding module to
facilitate seamless integration.

• Validation of Floating-Point Embedding Efficacy: Through empirical testing on various
encoder-only architectures, we demonstrate the effectiveness of the floating-point
embedding approach. The results underscore its positive impact in enhancing the
model’s understanding of numbers and, consequently, improving task performance.

2. Related Work

In this section, our primary emphasis is on reviewing the diverse methods of numerical
embedding, their application to encoders, and the extension of their use to decoder-only
models. However, we refrain from delving into the discussion of numerical decoders.

Spithourakis et al. (2018) [22] and Wallace et al. (2019) [23] made attempts to amalga-
mate multiple numerical embeddings into a unified representation encapsulating the entire
numerical value. Their approach involved training a language model to predict masked
words and numbers, employing either recurrent neural networks (RNN) or convolutional
neural networks (CNN) for pooling.

Sundararaman et al. (2020) [24] introduced a distinctive approach to numerical en-
coding termed Deterministic Independent Corpus Embeddings (DICE). This methodology
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aims to preserve the relative magnitudes of two numbers and their embeddings, utilizing
cosine and Euclidean distances for encoding. Operating as a deterministic encoding, DICE
can also serve as an auxiliary loss function.

Zhang et al. (2020) [25] adopted a unique approach by transforming all numbers in a
dataset into scientific notation. They subsequently pre-trained a BERT model from scratch
using this modified dataset, resulting in the creation of a new model named NumBERT.
NumBERT retains the fundamental characteristics of the original BERT model but employs
scientific notation for numerical representations.

Berg-Kirkpatrick et al. (2020) [26] conducted extensive research focused on predicting
contextual numbers in text. The primary task involved predicting missing values and
detecting incorrect numbers within sentences. Various numerical encoders were applied to
the given numbers, and a set of output distributions was introduced to better align with
the natural distribution of numbers in textual data.

Jiang et al. (2020) [27] introduced an innovative numerical embedding method that
combines self-organizing maps or Gaussian mixture models, with the aim of improving the
handling of out-of-vocabulary numbers. These numerical embeddings, trained through the
skip-gram method, exhibit versatility and can be easily employed, enabling the training of
multiple numerical encoders alongside word vectors. The experimental results illustrate
the superior performance of such numerical embeddings in tasks related to numerical
prediction and embedding.

Thawani et al. (2021) [28] provided a comprehensive summary of recent research
on computational capabilities in natural language processing. The research underscores
that the default subword tokenization using lookup embeddings to represent words is
suboptimal for numbers. Additionally, Thawani et al. (2021) [29] further investigated and
compared the impact of various numerical embedding methods on the reading and writing
abilities of encoder-only models. The results indicate that, using BERT as an example,
the introduction of numerical embeddings significantly enhances the encoder model’s
understanding of the numbers in the text.

Gorishniy et al. (2022) [30] conducted an investigation into numerical embedding
methods specifically tailored to tabular data in table-based deep learning. Two approaches,
one based on scalar value segmentation linear encoding and the other utilizing periodic
activation, were explored. Both methods demonstrated significant performance improve-
ments over traditional embeddings relying on conventional blocks like linear layers and
ReLU activation. The findings underscore the benefits of embedding numerical features,
emphasizing the significance of numerical feature embedding as a critical design aspect for
various backbone networks.

Jin et al. (2022) [31] addressed a notable oversight in decoder-only models of the GPT
series, which overlooked the numerical nature of digits. They introduced a novel numerical
embedding method and devised a new model named NumGPT. Essentially, numbers
were represented in exponential form, and a prototype-based numerical embedding was
employed to encode the mantissa, with a single embedding to encode the exponent of
the numbers. The results indicate that NumGPT, designed in this manner, surpasses
conventional GPT models and GPT models combined with the DICE method in terms of
computational capabilities.

3. Method

Our approach is grounded in the assumption proposed by Thawani et al. (2021) [29]
that large language models (LLMs) benefit from numerical embeddings derived through
specialized encoding based on the magnitudes of numbers. Additionally, we hypothesize
the similarity and correlation between the architectures of LLMs and central processing
units (CPUs) in computer systems. This similarity and correlation mainly manifest in
the structure and functionality of the relevant neural network layers within the architec-
tures of LLMs, as well as in the related functions and components of CPU architectures.
The primary structure in LLMs is the Transformer block, each comprising a self-attention
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sub-layer and a feedforward neural network (FFN) sub-layer. The operation of the self-
attention sub-layer is analogous to the CPU retrieving relevant data through instruction
addressing. The FFN sub-layer consists of multilayer perceptrons and layer normaliza-
tion layers, resembling the arithmetic logic unit (ALU) in a CPU, further processing the
retrieved relevant data and producing the final output. Comparing the structure and
functionality of the Transformer architecture to those of the CPU architecture, it can be
observed that the Transformer model resembles a “novel” simplified computer system.
A natural idea arises as to enabling Transformer models to encode and process numbers
like computer systems. Consequently, we introduce floating-point representation from
computer systems as a novel encoding method, followed by designing the correspond-
ing embedding module. We emphasize the necessity of distinguishing between words
and numbers in the text, applying specific encoding to generate embeddings, and then
integrating them into the language model. In this section, we first introduce the floating-
point representation and subsequently provide detailed insights into the corresponding
embedding module.

we constructed our own model architecture. As illustrated in Figure 1, the backbone
network remains an encoder model, as it is replaceable. The design of both the backbone
network and the output draws mainly from the architecture of the BERT model [3], as our
training task shares similarities with BERT model pre-training. Each input example contains
only one number. This number is individually passed through our designed numerical
embedding module to obtain its unique embedding representation. Other textual inputs
still utilize the default embeddings of the encoder model.

Figure 1. The architecture of our approach consists of an encoder-only model and a dedicated
numerical embedding module designed for numerical values. Tokens other than numerical ones
are embedded using the model’s default embedding method. For the numerical token, a separate
numerical embedding module is employed for embedding. The resulting embedded vectors are then
input into the model to perform further calculations and generate an output. Each input example
contains only a single numerical value. Finally, the model output is obtained through a multilayer
perceptron (MLP) [32].
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3.1. Floating-Point Representation (IEEE 754 Standard)

In computer systems, to represent very large and very small numbers without using an
excessive number of zeros, floating-point numbers generally adopt the concept of scientific
notation and can be expressed as

n = rE × M. (1)

In (1), r is the base (typically 2), E is the exponent, and M is the mantissa.
In the IEEE 754 standard, a universal floating-point storage format is proposed based

on the concept of scientific notation, outlining specifications for both single-precision
(32-bit) and double-precision (64-bit) formats. Taking 32-bit floating-point numbers as an
example, as shown in Figure 2, the 32 bits are subdivided into a sign bit (1 bit), exponent
(8 bits), and mantissa (23 bits), with each bit expressed in binary form.

Figure 2. In the IEEE 754 standard, the representation of a 32-bit floating-point number is de-
fined. Here, S represents the sign bit, T represents the exponent, and M represents the mantissa.
Using −28.5 as an example, its corresponding 32-bit floating-point representation is 1 10000011
11001000000000000000000.

The sign bit denotes the sign of the number, where 0 represents positive and 1 repre-
sents negative. The exponent is presented in a biased form, signifying that the exponent
equals the true value plus a bias. Typically, the bias is set to 2n−1, and, in the IEEE
754 standard, it is specifically set to 2n−1 − 1. For 32-bit floating-point numbers, the bias
is established at 127. To ensure the unique representation of each number, normalization
is applied to the numbers. Similar to scientific notation, the mantissa is in the form 1.M,
where 0 ≤ M < 1, and M represents the 23-bit mantissa in the IEEE 754 single-precision
floating-point format.

Given that the first bit of the normalized mantissa is always 1, it does not need to be
stored. Only the fractional part of M after the decimal point needs to be stored, and this
M is represented using the two’s complement notation. Therefore, under this standard, a
floating-point number can be represented as

n = 1.M × rT . (2)

When the mantissa M consists entirely of zeros and the true value of the exponent
is −126 (i.e., the biased exponent is 00000001B), the smallest absolute value that can be
represented is 1.0B × 2−126. On the other hand, when the mantissa M consists entirely of
ones, and the true value of the exponent is 127 (i.e., the biased exponent is 11111110B), the
largest absolute value that can be represented is 1.111 . . .B × 2127.

It is important to note that when both the exponent and the mantissa are all zeros, it
represents the value 0. Conversely, when the exponent is all ones and the mantissa is all
zeros, it represents either positive or negative infinity. When the exponent is all ones, but
the mantissa is not all zeros, it signifies NaN (Not a Number).

In summary, the floating-point representation described can uniquely express a real
number within a specific precision range as a binary sequence. This sequence not only
captures the relative size relationships between numbers but also incorporates information
about the absolute magnitude of the numbers. In essence, this encoding sequence compre-
hensively preserves numerical information and is decodable. This stands in contrast to
previous approaches that utilized discretization encoding methods. Even when exponent
methods were employed for encoding embeddings, they often mapped to an interval in a
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discretized manner, akin to dividing into buckets. As a result, while achieving effective
numerical embeddings, these methods frequently sacrificed information about the absolute
magnitude of the numbers. The adoption of the floating-point representation effectively
addresses this limitation.

3.2. Floating-Point Embedding Module

Gorishniy et al.’s (2022) [30] research suggests that, with a designed numerical encod-
ing, the introduction of a simple differentiable embedding module can further enhance
the performance. The results demonstrate that, for tabular data, stacking two sets of lin-
ear layers and ReLU layers consecutively (referred to as the LRLR structure) has already
yielded commendable results, albeit at a non-negligible cost [30]. We posit that the scale of
the embedding module should be dependent on the parameter size of the chosen backbone
network and the size of the dataset. Given that the parameter size of large language models
(LLMs) typically exceeds 100 million, an embedding module with parameters exceeding
1 million is deemed reasonable.

Consequently, as shown in Figure 3, our floating-point embedding module consists
of three consecutive sets of linear layers and ReLU layers (referred to as the LRLRLR
structure). As we utilize 32-bit floating-point representation, the input dimension of the
bottom-most linear layer is 32, while all remaining input and output dimensions align with
the embedding vector dimension of the encoder model. Using BERT-base as an example,
the input and output dimensions of all subsequent linear layers are set to 768. The bias of
all linear layers is uniformly set to 0.

Our floating-point embedding module can be represented as follows:

x1 = ReLU(Linear(x, W1)),

x2 = Linear(ReLU(Linear(x1, W2)), W3),

x3 = x1 + x2,

embedding f loating−point = ReLU(x3).

(3)

In (3), the input variable x has already undergone the standard conversion into a
32-bit floating-point representation. The ultimate output is an embedding vector, and
the dimension of this vector is contingent on the embedding dimension employed by the
model. This embedding vector serves as the numerical embedding representation input
into the model.

Our belief is rooted in the notion that a floating-point representation can more compre-
hensively capture the numerical information of a number, ensuring that each representation
for a number is unique. A simple representation can be adequately fitted with a straight-
forward function. However, as more information is included, a more complex function
becomes necessary, rendering the embedding process correspondingly intricate. Conse-
quently, the use of a relatively complex and deeper embedding module is justified in
our approach.

Additionally, we introduce residual connections, facilitating the direct transfer of
information across layers for more effective embeddings [33]. The incorporation of residual
connections serves to expedite the convergence and enhance the training efficiency.

4. Experiments

To address our research question, we applied our floating-point embedding module for
fine-tuning on four encoder-only pre-trained masked language models (BERT-base-uncased,
BERT-large-uncased, Roberta-base, Roberta-large [34]). Simultaneously, we conducted
comparisons with default tokenization methods and exponent embedding methods. Our
focus was on investigating whether our floating-point embedding module could enhance
the models’ understanding of numbers across multiple architectures, providing a more
comprehensive representation of numerical information and richer contextual semantics.
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Figure 3. The network structure of the floating-point embedding module involves the input, which
has already undergone standard conversion into a 32-bit floating-point representation, and the final
output, which is an embedding vector.

The training and evaluation were performed on two datasets, Numerac y–600K [35]
and Wiki-Concert [29]. Both datasets currently serve as baseline datasets for numerical
understanding tasks. For both datasets, we conducted training on 100k samples, tested on
10k samples, and used an additional 10k samples as a validation set for hyperparameter
tuning. The division of the datasets followed directly from the partitioning provided by
the dataset constructors. To assess the model’s understanding of numbers, we adhered to
the pre-training paradigm during fine-tuning [3], ensuring task consistency. For each input
sentence, we randomly masked 15% of non-numerical tokens and utilized negative log-
likelihood loss to optimize the classifier. We measured the perplexity and Top-k accuracy,
masking one (non-numerical) word at a time.

4.1. Datasets

Wiki-Concert consists of a carefully curated set of sentences where the numbers are
manually annotated and sentences with multiple number annotations are filtered out. The
dataset comprises over 900,000 sentences and annotated tuples.

Numeracy–600K is a large benchmark dataset that consists of two subsets. In financial
documents, the in-depth analysis of both text and numerical information is required. This
section primarily focuses on the financial market commentary dataset, with fields including
“id” ,“unique_story_index”, “offset”, “length”, and “magnitude”. The second part is mainly
collected from news data and constitutes a dataset of article headlines. Fields for this part
include “id”, “title”, “publish_date”, “offset”, “length”, and “magnitude”. We utilized the
first part for our experiments.

4.2. Baseline

Def. Default embeddings typically involve encoding numbers in encoder-only lan-
guage models using common methods, such as subword tokenization, followed by lookup
embeddings. This process treats numbers like words to derive embedding vectors for
numerical representations.
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Exp. Exponential embedding is an encoding method derived from scientific notation.
We adopted the implementation approach outlined by Thawani et al. (2021) [29] . This
method involves dividing the exponent part into n intervals on a logarithmic scale, which
are then converted into corresponding lookup embeddings. This implementation can be
extended to any number of intervals.

4.3. Implementation Details

We retrained the classification head and the corresponding numerical embedding
module of an encoder-only language model while keeping the parameters of the language
model itself frozen. The parameters of the language model were obtained from Hugging
Face. The classification head of the encoder-only language model predicts the probability of
masked words using the [CLS] token [3], which refers to a special token used in Transformer-
based models in the model’s output. The input and output dimensions of the network
inside the classification head depend on the embedding vector dimension of the model
and the number of words in the vocabulary. The encoding process of the floating-point
representation was implemented using the ‘struct’ module. In the vocabulary of our
encoder-only models, we introduced the token [NUM] to identify the unique numerical
values in the substitute text. This inclusion is crucial as our methodology involves the
individual encoding and embedding of numerical entities. Since each sample in the dataset
contains only one numerical value, the model is designed to handle sentences with single
numbers, and a special token [NUM] is introduced into the vocabulary to indicate the
presence of a number in the sentence, enabling the model to accurately recognize and
process numerical values. If a sentence contains multiple numbers, such a model design
may encounter ambiguity in interpretation because it is unclear how to correctly handle
multiple numbers. Therefore, to ensure the performance of the model and the accuracy of
results, the design restricts each sentence to contain only one number. In future research, we
will attempt to overcome this limitation. Thus, before applying our approach to instances
with multiple number annotations, it is necessary to validate our method on tasks involving
sentences with single numbers. As the model is designed to process sentences containing
only a single number, it can only handle sentences with a single number. If a sentence
contains multiple numbers, the model may encounter ambiguity in interpretation, as it is
unclear how to properly handle multiple numbers. Therefore, to ensure the performance
and accuracy of the model’s results, our design restricts each sentence to contain only
one number.

To assess the model’s semantic understanding of numbers, we chose not to use the
loss to predict the next sentence. Our training resources consisted of a single GeForce RTX
4090 GPU with 24 GB of VRAM. It takes less than 30 min on average to train a model for
15 epochs on 10k training samples. We set the batch size to 512, which is the maximum
batch size that our GPU can accommodate for large models. We trained all models for
15 epochs on a training set containing 100k sentences. Smaller models converged well
in 10 epochs, but, for large models, training for additional epochs further improved the
convergence.

5. Results and Discussion

Table 1 displays the comparative results on the Numeracy–600K and Wiki-Concert
datasets, showcasing a comparison between our method and the default embedding meth-
ods and exponential embedding methods. Table 2 presents the results of ablation experi-
ments conducted for our floating-point embedding method. We conducted tests assessing
the perplexity and prediction accuracy (Top-1, Top-5, Top-20, Top-100) on four models.
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Table 1. Results on masked word prediction over two datasets, four models, and three embedding
methods. PPL = perplexity. Def = default embeddings. Exp = exponent embeddings. Float = floating-
point embeddings. The highlighted results represents the best results from each experiment group for
each model. The downward arrow indicates that smaller results are preferable.

Model (Parameters) Embedding Wiki-Concert Numeracy–600K
PPL ↓ Top-1 Top-5 Top-20 Top-100 PPL ↓ Top-1 Top-5 Top-20 Top-100

BERT-base-uncased (110 M)
def 2.993 66.977 84.693 91.415 95.829 3.651 66.004 79.604 86.807 92.534
exp 2.954 67.417 84.978 91.438 96.105 3.527 66.763 80.301 87.244 92.815
float 2.898 67.884 85.272 91.662 96.072 3.442 67.352 80.644 87.418 93.035

BERT-large-uncased (340 M)
def 2.62 70.184 87.027 92.85 96.357 3.28 68.323 81.563 88.166 93.504
exp 2.605 70.311 87.038 92.857 96.337 3.079 69.6 82.552 88.962 93.939
float 2.592 70.465 87.072 92.901 96.346 3.0 70.422 82.914 89.312 94.137

Roberta-base (125 M)
def 3.753 60.824 79.965 89.253 94.786 2.416 73.468 86.812 92.835 97.065
exp 3.268 64.146 82.554 90.641 95.457 2.127 76.937 89.008 94.131 97.621
float 3.326 64.06 82.283 90.496 95.337 2.098 77.276 89.245 94.236 97.659

Roberta-large (360 M)
def 2.828 67.142 85.742 92.399 96.391 1.73 83.057 92.596 96.081 98.362
exp 2.62 69.544 86.651 93.053 96.723 1.691 83.802 93.046 96.277 98.456
float 2.598 69.791 86.788 93.058 96.756 1.676 83.839 93.132 96.385 98.482

Our experiments consistently confirmed that the introduction of an additional em-
bedding module for numbers significantly improved the model’s semantic understanding
of numerical information. In the majority of cases, our method demonstrated the best
performance. On the Wiki-Concert dataset, our method did not surpass the exponential
embedding method when applied to the Roberta-base model. However, it still achieved
competitive results, enhancing the accuracy by approximately 3.2% and reducing the
perplexity by about 0.42 compared to the default embedding method. We attribute this
outcome to both methods drawing inspiration from the representation in scientific notation,
leading to effective embeddings for numbers.

There were notable variations in the performance of the BERT and Roberta models on
the two datasets, with BERT performing better on the Wiki-Concert dataset, while Roberta
exhibited superior performance on the Numeracy–600K dataset. Moreover, the introduction
of an additional numerical embedding module produced varied effects for both models.
This phenomenon can be attributed to the distinct characteristics and distributions of the
two datasets. Despite their similar sizes, if a dataset aligns more with the assumptions
or is easier for a model to learn, the performance improvement on that dataset may be
more pronounced. Roberta, as an improvement over BERT, undergoes more training steps
and utilizes a larger pre-training dataset, generally making it more robust. It is worth
noting that the Wiki-Concert dataset is primarily manually curated from Wikipedia, while
Numeracy–600K consists of financial market commentary, leaning more towards raw
data. This observation indirectly supports the idea that Roberta, with its enhanced ability
to handle raw data, exhibits better generalization capabilities and adapts well to the
characteristics of the data.

In conclusion, we observed an intriguing phenomenon: as the model size increased, i.e.,
when the number of parameters significantly rose, the incremental improvement brought
about by the additional numerical embedding module became smaller. This suggests
that with larger models, during the pre-training process, the model might have already
learned some implicit numerical features and semantics, even when treating numbers as
default embeddings similar to words. The era of diverse large models, exemplified by
ChatGPT, is currently underway. Due to computational limitations, we did not conduct
experiments on models such as LLAMA and ChatGLM. We speculate that the additional
numerical embedding module might provide only marginal benefits for these types of
models. Therefore, we posit that to further enhance the mathematical reasoning capabilities
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of large models, it may be necessary to introduce additional auxiliary modules specifically
designed for reasoning tasks.

Table 2. Ablation experiment results on the floating-point embedding method using BERT-base-uncased
as the backbone network for two datasets. Our approach excludes bias in the linear layer while
incorporating residual connections. Additionally, we compare the results when introducing bias and
removing residual connections from our method. PPL = perplexity. Float = floating-point embeddings.
The highlighted results represents the best results from each experiment group for each model. The
downward arrow indicates that smaller results are preferable.

Model Embedding WikiConvert Numeracy–600K
PPL ↓ Top-1 Top-5 PPL ↓ Top-1 Top-5

BERT-base-uncased
float (w/bias) 3.125 66.003 83.996 3.572 66.592 79.941

float (w/o residual) 2.931 67.621 84.968 3.47 67.242 80.489
float (ours) 2.898 67.884 85.272 3.442 67.352 80.644

6. Conclusions

Our study delves deeper into the impact of incorporating a numerical embedding
module into LLMs for the task of masked word prediction. The experimental results
unequivocally demonstrate that our introduced floating-point representation and the corre-
sponding floating-point embedding module significantly enhance the model’s semantic un-
derstanding of numbers. We evaluate the performance primarily using the perplexity and
Top-k accuracy.

We assert that our work provides additional evidence supporting the idea that thought-
fully designed numerical encoding methods and their corresponding embedding modules
can elevate a model’s semantic understanding capabilities. For relatively complex encoding
methods, further research is warranted into optimizing the network architecture design of
the embedding module. We aim to refine the network structure of the embedding module
in future work. Our goal is to further validate that when the model processes sentences
containing multiple numbers, applying our method leads to better understanding. This
necessitates overcoming the current limitation of only being able to introduce a single
special token [NUM] to mark numbers in the sentence. Additionally, our objective is to
apply our method to network models with reasoning architectures, thereby enhancing the
model’s numerical reasoning abilities. Furthermore, we plan to validate our hypotheses by
conducting experiments with our method on contemporary large-scale models.
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