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Abstract: The study of multi-time-delay dynamical systems has highlighted many challenges, es-
pecially regarding the solution and analysis of multi-time-delay equations. The symmetry and
conserved quantity are two important and effective essential properties for understanding complex
dynamical behavior. In this study, a multi-time-delay non-conservative mechanical system is in-
vestigated. Firstly, the multi-time-delay Hamilton principle is proposed. Then, multi-time-delay
non-conservative dynamical equations are deduced. Secondly, depending on the infinitesimal group
transformations, the invariance of the multi-time-delay Hamilton action is studied, and Noether
symmetry, Noether quasi-symmetry, and generalized Noether quasi-symmetry are discussed. Finally,
Noether-type conserved quantities for a multi-time-delay Lagrangian system and a multi-time-delay
non-conservative mechanical system are obtained. Two examples in terms of a multi-time-delay
non-conservative mechanical system and a multi-time-delay Lagrangian system are given.

Keywords: multi-time-delay; non-conservative system; symmetry; Noether theorem

1. Introduction

Time-delay dynamical systems are widely present in real-world and engineering
scenarios. As the demand for greater precision in complex dynamical systems increases, the
influence of time-delay has received widespread attention [1–3]. Previously, the scientific
phenomenon of time-delay has been utilized in applied mathematics, physics, mechanics,
computer science, engineering, biology, etc. [4–10].

The time-delay differential equation [11] is the typical mathematical model used to
describe a time-delay dynamical system. Challengingly, classical differential equation
theory is no longer applicable, and the solution space for a time-delay equation is infinite
in its dimension. Studying the dynamical characteristics of systems through variational
problems is one of the most important research fields for modeling time-delay dynam-
ical systems. In the 1960s, El’sgol’c [12] first proposed time-delay variational problems
and the corresponding characterization of extrema. In 1968, Hughes deduced the suffi-
ciency theorem for a minimum of a time-delay variational problem as well as a maximum
principle for a time-delay control problem [13]. The conjugate-point conditions, suffi-
cient conditions, and application with respect to optimal problems with delay arguments
were presented [14–17]. In addition, symmetries and conserved quantities are an effective
method by which to understand the behavior and basic properties of complex dynamical
systems. The famous Noether theorem [18], Lie symmetry [19], and Mei symmetry [20]
have previously had a profound influence on and application in optimal control and con-
strained mechanical systems [21–26]. Frederico and Torres [27] preliminarily introduced the
classical Noether’s theory to the time-delay calculus of variations. Indeed, Noether’s theory
has been applied to various problems involving time-delay, such as non-smooth extremals
of variational problems [28], isoperimetric variational problems [29], high-order variational
problems [30], non-conservative systems [31], nonholonomic systems [32], Hamiltonian
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systems [33], Birkhoffian systems [34], generalized Herglotz variational problems [35–37],
and dynamical systems in fractional [38,39] and time-scale frameworks [6,40].

However, most of the research mentioned above was limited by taking into account a
single, constant time-delay parameter. Many studies relating to controller design, stability
studies, neural models, and fractional problems have addressed multi-time-delay [41–45].
Benharrat and Torres [46] studied variation problems of the optimal control problem via the
penalty method by considering multi-time-delay. The variational principles on mechanical
systems and the corresponding symmetry theory are still poorly studied in terms of taking
into account multi-time-delay. In this paper, we present the Noether symmetry of a non-
conservative mechanical system (NCMS) considering multi-time-delay and its conserved
quantity, not only considering the multiple different time-delays acting on the system
but also cases involving generalized coordinates and generalized velocities with different
time-delays.

2. Multi-Time-Delay Non-Conservative Dynamical Equations

We study an NCMS considering multi-time-delay, the configuration of which is de-
scribed by qs(s = 1, 2, · · · , n), which are known as the generalized coordinates. The Hamil-
ton principle of an NCMS [21] is∫ t2

t1

(
δL + Q

′′
s δqs

)
dt = 0. (1)

Consider that the multi-time-delay exists in the system and the multi-time-delay
Lagrangian is

L = L
(
t, qs(t), qs(t − τ1),

.
qs(t),

.
qs(t − τ2)

)
= L

(
t, qs, qsτ1 ,

.
qs,

.
qsτ2

)
(2)

and the multi-time-delay generalized non-conservative force is Q
′′
s = Q

′′
s

(
t, qs, qsτ1 ,

.
qs,

.
qsτ2

)
,

subject to the following boundary conditions:

qs(t) = δs1(t), t ∈ [t1 − τ1, t1 − τ2], (3)

qs(t) = δs2(t), t ∈ [t1 − τ2, t1], (4)

qs(t) = qs2 , t = t2, (5)

where the time-delays are considered to be different between the generalized coordinates
and the generalized velocities, τ1 and τ2 are assumed to be constant positive time-delays
with t1 < τ1 < τ2 < t2, and the functions δs1(t) and δs2(t) are assumed to be piecewise
smooth.

Then, principle (1) can be expressed as

∫ t2

t1

(
∂L
∂qs

δqs +
∂L

∂qsτ1

δqsτ1 +
∂L
∂

.
qs

δ
.
qs +

∂L
∂

.
qsτ2

δ
.
qsτ2

+ Q
′′
s δqs

)
dt = 0. (6)

Performing a linear substitution of the variables t = θ + τ1, t = θ + τ2 for the time-
delay terms of Equation (6), and noting conditions (3) and (4), we have

∫ t2
t1

(
∂L

∂qsτ1

(t)δqsτ1

)
dt =

∫ t1
t1−τ1

(
∂L

∂qsτ1

(θ + τ1)δqs

)
dθ +

∫ t2−τ1
t1

(
∂L

∂qsτ1

(θ + τ1)δqs

)
dθ

=
∫ t2−τ1

t1

(
∂L

∂qsτ1

(θ + τ1)δqs

)
dθ

(7)

and
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∫ t2
t1

(
∂L

∂
.
qsτ2

(t)δ
.
qsτ2

)
dt =

∫ t1
t1−τ2

(
∂L

∂
.
qsτ2

(θ + τ2)δ
.
qs

)
dθ +

∫ t2−τ2
t1

(
∂L

∂
.
qsτ2

(θ + τ2)δ
.
qs

)
dθ

=
∫ t2−τ2

t1

(
∂L

∂
.
qsτ2

(θ + τ2)δ
.
qs

)
dθ.

(8)

After the linear substitution of the variables, Equation (6) can be expressed as

∫ t2−τ1
t1

(
∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1) + Q
′′
s (t)

)
δqsdt +

∫ t2
t2−τ1

(
∂L
∂qs

(t) + Q
′′
s (t)

)
δqsdt

+
∫ t2

t1

(
∂L
∂

.
qs
(t)δ

.
qs

)
dt +

∫ t2−τ2
t1

(
∂L

∂
.
qsτ2

(t + τ2)δ
.
qs

)
dt.

(9)

Taking into account conditions (3)–(5), we have

∫ t2−τ1
t1

(
∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1) + Q
′′
s (t)

)
δqsdt

= −
[

δqs
∫ t2−τ1

t

(
∂L
∂qs

(θ) +
∂L

∂qsτ1

(θ + τ1) + Q
′′
s (θ)

)
dθ

]∣∣∣∣t2−τ1

t1

+
∫ t2−τ1

t1
δ

.
qs

[∫ t2−τ1
t

(
∂L
∂qs

(θ) +
∂L

∂qsτ1

(θ + τ1) + Q
′′
s (θ)

)
dθ

]
dt

=
∫ t2−τ1

t1
δ

.
qs

[∫ t2−τ1
t

(
∂L
∂qs

(θ) +
∂L

∂qsτ1

(θ + τ1) + Q
′′
s (θ)

)
dθ

]
dt

(10)

and ∫ t2

t2−τ1

(
∂L
∂qs

(t) + Q
′′
s (t)

)
δqsdt = −

∫ t2

t2−τ1

δ
.
qs

[∫ t

t2−τ1

(
∂L
∂qs

(θ) + Q
′′
s (θ)

)
dθ

]
dt. (11)

Thus, Equation (9) can be rewritten as

∫ t2−τ1
t1

δ
.
qs

[
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2) +
∫ t2−τ1

t

(
∂L
∂qs

(θ) +
∂L

∂qsτ1

(θ + τ1) + Q
′′
s (θ)

)
dθ

]
dt

+
∫ t2−τ2

t2−τ1
δ

.
qs

[
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2) +
∫ t2−τ1

t

(
∂L
∂qs

(θ) + Q
′′
s (θ)

)
dθ

]
dt

+
∫ t2

t2−τ2
δ

.
qs

[
∂L
∂

.
qs
(t) +

∫ t2−τ1
t

(
∂L
∂qs

(θ) + Q
′′
s (θ)

)
dθ

]
dt = 0.

(12)

In fact, the integral interval [t1, t2] should be arbitrary, and the generalized coordinates
δ

.
qs(s = 1, 2, · · · , n) are independent of one another. Thus, we have

∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2) +
∫ t2−τ1

t

(
∂L
∂qs

(θ) +
∂L

∂qsτ1

(θ + τ1) + Q
′′
s (θ)

)
dθ = 0, t ∈ [t1, t2 − τ1],

∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2) +
∫ t2−τ1

t

(
∂L
∂qs

(θ) + Q
′′
s (θ)

)
dθ = 0, t ∈ (t2 − τ1, t2 − τ2],

∂L
∂

.
qs
(t) +

∫ t2−τ1
t

(
∂L
∂qs

(θ) + Q
′′
s (θ)

)
dθ = 0, t ∈ (t2 − τ2, t2].

(13)

Taking the derivative of both sides of Equation (13) for time t, we have
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d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
− ∂L

∂qs
(t)− ∂L

∂qsτ1

(t + τ1) = Q
′′
s (t), t ∈ [t1, t2 − τ1],

d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
− ∂L

∂qs
(t) = Q

′′
s (t), t ∈ (t2 − τ1, t2 − τ2],

d
dt

(
∂L
∂

.
qs
(t)

)
− ∂L

∂qs
(t) = Q

′′
s (t), t ∈ (t2 − τ2, t2], (s = 1, 2, · · · , n).

(14)

Equation (14) presents the dynamical equations for the multi-time-delay NCMS.
If Q

′′
s (t) = 0, then Equation (14) becomes

d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
− ∂L

∂qs
(t)− ∂L

∂qsτ1

(t + τ1) = 0, t ∈ [t1, t2 − τ1],

d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
− ∂L

∂qs
(t) = 0, t ∈ (t2 − τ1, t2 − τ2],

d
dt

(
∂L
∂

.
qs
(t)

)
− ∂L

∂qs
(t) = 0, t ∈ (t2 − τ2, t2], (s = 1, 2, · · · , n).

(15)

Equation (15) presents the dynamical equations for multi-time-delay Lagrangian systems.

Remark 1. If τ1 = τ2 ̸= 0, Equation (14) reduces to the dynamical equations for the NCMS with
the same time-delay [31] between the generalized coordinate and the generalized velocity.

Remark 2. If τ1 = τ2 = 0, then Equation (15) reduces to classical Lagrange equations.

3. Variations in Multi-Time-Delay Hamilton Action

The multi-time-delay Hamilton action is given by

S(γ) =
∫ t2

t1

L
(

t, qs, qsτ1 ,
.
qs,

.
qsτ2

)
dt. (16)

We assume that Equation (16) undergoes the following infinitesimal transformation

t∗ = t + ∆t, q∗s (t
∗) = qs(t) + ∆qs (17)

and the corresponding expansion with infinitesimal parameters εσ(σ = 1, 2, · · · , r) and
infinitesimal generators ξσ

0 , ξσ
s

t∗ = t + εσξσ
0
(
t, qs,

.
qs
)
, q∗s (t

∗) = qs(t) + εσξσ
s
(
t, qs,

.
qs
)

(18)

and becomes

S(γ∗) =
∫ t∗2

t∗1
L∗
(

t∗, q∗s (t
∗), q∗s (t

∗ − τ1),
.
q∗s (t

∗),
.
q∗s (t

∗ − τ2)
)

dt∗. (19)

Considering the main linear part of the difference S(γ∗) − S(γ) with respect to ε,
we have

∆S =
∫ t2

t1

(
∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +
∂L

∂qsτ1

(t)∆qsτ1

+
∂L
∂

.
qs
(t)∆

.
qs +

∂L
∂

.
qsτ2

(t)∆
.
qsτ2

+ L(t)
d
dt

(∆t)

)
dt.

(20)

Taking note of the following relations,

∆
.
qs =

d
dt

∆qs −
.
qs

d
dt

∆t, δqs = ∆qs −
.
qs∆t, (21)
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Equation (20) becomes

∆S =
∫ t2

t1

(
d
dt

(L(t)∆t) +
∂L
∂qs

(t)δqs +
∂L

∂qsτ1

(t)δqsτ1

+
∂L
∂

.
qs
(t)

d
dt

(δqs) +
∂L

∂
.
qsτ2

(t)
d
dt

(δqsτ2)

)
dt.

(22)

Using the linear substitution of variables for the time-delay terms in Equations (20)
and (22), Equations (20) and (22) can be rewritten as

∆S =
∫ t2−τ1

t1

(
∂L
∂t

(t)∆t +
(

∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)

)
∆qs

+

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs + L(t)

d
dt

(∆t)

)
dt

+
∫ t2−τ2

t2−τ1

(
∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs + L(t)

d
dt

(∆t)

)
dt

+
∫ t2

t2−τ2

(
∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +
∂L
∂

.
qs
(t)∆

.
qs + L(t)

d
dt

(∆t)

)
dt

+
∫ t1−τ2

t1−τ1

(
∂L

∂qsτ1

(t + τ1)
.
qs∆t

)
dt +

∫ t1
t1−τ2

(
∂L

∂qsτ1

(t + τ1)
.
qs∆t +

∂L
∂

.
qsτ2

(t + τ2)
..
qs∆t

)
dt

(23)

and

∆S =
∫ t2−τ1

t1
εσ

{
d
dt

(
L(t)ξσ

0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
))

+

[
∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)−
d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)](
ξσ

s − .
qs(t)ξ

σ
0
)}

dt

+
∫ t2−τ2

t2−τ1
εσ

{
d
dt

(
L(t)ξσ

0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
))

+

[
∂L
∂qs

(t)− d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)](
ξσ

s − .
qs(t)ξ

σ
0
)}

dt

+
∫ t2

t2−τ2
εσ

{
d
dt

(
L(t)ξσ

0 +
∂L
∂

.
qs
(t)
(
ξσ

s − .
qs(t)ξ

σ
0
))

+

[
∂L
∂qs

(t)− d
dt

(
∂L
∂

.
qs
(t)

)](
ξσ

s − .
qs(t)ξ

σ
0
)}

dt.

(24)

Thus, two basic formulas, Equations (23) and (24), for the variation in the multi-time-
delay Hamilton Equation (16) are obtained.

4. Multi-Time-Delay Noether Symmetry

Based on classical Noether-type symmetries [21], three kinds of Noether-type symme-
tries with multi-time-delay are introduced.

First, we introduce the multi-time-delay Noether symmetry.

Definition 1. Undergoing the transformations in (17), if the multi-time-delay Hamilton action
(16) is invariant, namely,

∆S = 0 (25)

the following formulas hold:
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∂L
∂qsτ1

(t + τ1)
.
qs∆t = 0, t ∈ [t1 − τ1, t1 − τ2),

∂L
∂qsτ1

(t + τ1)
.
qs∆t +

∂L
∂

.
qsτ2

(t + τ2)
..
qs∆t = 0, t ∈ [t1 − τ2, t1),

∂L
∂t

(t)∆t +
(

∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)

)
∆qs +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs

+L(t)
d
dt

(∆t) = 0, t ∈ [t1, t2 − τ1],

∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs + L(t)

d
dt

(∆t) = 0, t ∈ (t2 − τ1, t2 − τ2],

∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +
∂L
∂

.
qs
(t)∆

.
qs + L(t)

d
dt

(∆t) = 0, t ∈ (t2 − τ2, t2].

(26)

This is called the multi-time-delay Noether symmetry.
Second, we introduce the multi-time-delay Noether quasi-symmetry.

Definition 2. Supposing that L1 is another multi-time-delay Lagrangian, the transformations in
(17), which are accurate to an infinitesimal of the first order, satisfy the relation

∫ t2
t1

L
(

t, qs, qsτ1 ,
.
qs,

.
qsτ2

)
dt

=
∫ t∗2

t∗1
L1

(
t∗, q∗s (t∗), q∗s (t∗ − τ1),

.
q∗s (t

∗),
.
q∗s (t

∗ − τ2)
)

dt∗
(27)

namely,

∆S = −
∫ t2

t1

(
d
dt

(∆G)

)
dt (28)

where G = G
(

t, qs, qsτ1 ,
.
qs,

.
qsτ2

)
, and the following formulas hold:

∂L
∂qsτ1

(t + τ1)
.
qs∆t = 0, t ∈ [t1 − τ1, t1 − τ2),

∂L
∂qsτ1

(t + τ1)
.
qs∆t +

∂L
∂

.
qsτ2

(t + τ2)
..
qs∆t = 0, t ∈ [t1 − τ2, t1),

∂L
∂t

(t)∆t +
(

∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)

)
∆qs +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs

+L(t)
d
dt

(∆t) = − d
dt

(∆G), t ∈ [t1, t2 − τ1],

∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs

+L(t)
d
dt

(∆t) = − d
dt

(∆G), t ∈ (t2 − τ1, t2 − τ2],
∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +
∂L
∂

.
qs
(t)∆

.
qs + L(t)

d
dt

(∆t) = − d
dt

(∆G), t ∈ (t2 − τ2, t2].

(29)

This is called the multi-time-delay Noether quasi-symmetry.
The Lagrangian L1 thus determined has the same dynamical equations as the La-

grangian L.
Third, we introduce the generalized multi-time-delay Noether quasi-symmetry.
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Definition 3. If a multi-time-delay mechanical system is under the action of non-potential
force Q

′′
s and the transformations in (17), which are accurate to an infinitesimal of first order, satisfy

the relation∫ t2
t1

L
(

t, qs, qsτ1 ,
.
qs,

.
qsτ2

)
dt

=
∫ t∗2

t∗1
L1

(
t∗, q∗s (t∗), q∗s (t∗ − τ1),

.
q∗s (t

∗),
.
q∗s (t

∗ − τ2)
)

dt∗ +
∫ t2

t1
Q

′′
s (t)δqsdt,

(30)

namely,

∆S = −
∫ t2

t1

(
d
dt

(∆G) + Q
′′
s δqs

)
dt (31)

the following formulas hold:

∂L
∂qsτ1

(t + τ1)
.
qs∆t = 0, t ∈ [t1 − τ1, t1 − τ2),

∂L
∂qsτ1

(t + τ1)
.
qs∆t +

∂L
∂

.
qsτ2

(t + τ2)
..
qs∆t = 0, t ∈ [t1 − τ2, t1),

∂L
∂t

(t)∆t +
(

∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)

)
∆qs +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs

+L(t)
d
dt

(∆t) + Q
′′
s (t)

(
∆qs −

.
qs∆t

)
= − d

dt
(∆G), t ∈ [t1, t2 − τ1],

∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)
∆

.
qs + L(t)

d
dt

(∆t)

+Q
′′
s (t)

(
∆qs −

.
qs∆t

)
= − d

dt
(∆G), t ∈ (t2 − τ1, t2 − τ2],

∂L
∂t

(t)∆t +
∂L
∂qs

(t)∆qs +
∂L
∂

.
qs
(t)∆

.
qs + L(t)

d
dt

(∆t) + Q
′′
s (t)

(
∆qs −

.
qs∆t

)
= − d

dt
(∆G), t ∈ (t2 − τ2, t2].

(32)

This is called the generalized multi-time-delay Noether quasi-symmetry.

Remark 3. Since ∆t = εσξσ
0 and ∆qs = εσξσ

s , Equations (29) and (32) can be expressed as

∂L
∂qsτ1

(t + τ1)
.
qsξσ

0 = 0, t ∈ [t1 − τ1, t1 − τ2),

∂L
∂qsτ1

(t + τ1)
.
qsξσ

0 +
∂L

∂
.
qsτ2

(t + τ2)
..
qsξσ

0 = 0, t ∈ [t1 − τ2, t1),

∂L
∂t

(t)ξσ
0 +

(
∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)

)
ξσ

s +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)( .
ξ

σ

s −
.
qs(t)

.
ξ

σ

0

)
+L(t)

.
ξ

σ

0 = −
.

G
σ
, t ∈ [t1, t2 − τ1],

∂L
∂t

(t)ξσ
0 +

∂L
∂qs

(t)ξσ
s +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)( .
ξ

σ

s −
.
qs(t)

.
ξ

σ

0

)
+L(t)

.
ξ

σ

0 = −
.

G
σ
, t ∈ (t2 − τ1, t2 − τ2],

∂L
∂t

(t)ξσ
0 +

∂L
∂qs

(t)ξσ
s +

∂L
∂

.
qs
(t)
( .

ξ
σ

s −
.
qs(t)

.
ξ

σ

0

)
+ L(t)

.
ξ

σ

0 = −
.

G
σ
, t ∈ (t2 − τ2, t2],

(33)

and
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∂L
∂qsτ1

(t + τ1)
.
qsξσ

0 = 0, t ∈ [t1 − τ1, t1 − τ2),

∂L
∂qsτ1

(t + τ1)
.
qsξσ

0 +
∂L

∂
.
qsτ2

(t + τ2)
..
qsξσ

0 = 0, t ∈ [t1 − τ2, t1),

∂L
∂t

(t)ξσ
0 +

(
∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)

)
ξσ

s +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)( .
ξ

σ

s −
.
qs(t)

.
ξ

σ

0

)
+L(t)

.
ξ

σ

0 + Q
′′
s (t)

(
ξσ

s − .
qs(t)ξ

σ
0
)
= −

.
G

σ
, t ∈ [t1, t2 − τ1],

∂L
∂t

(t)ξσ
0 +

∂L
∂qs

(t)ξσ
s +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)( .
ξ

σ

s −
.
qs(t)

.
ξ

σ

0

)
+ L(t)

.
ξ

σ

0

+Q
′′
s (t)

(
ξσ

s − .
qs(t)ξ

σ
0
)
= −

.
G

σ
, t ∈ (t2 − τ1, t2 − τ2],

∂L
∂t

(t)ξσ
0 +

∂L
∂qs

(t)ξσ
s +

∂L
∂

.
qs
(t)
( .

ξ
σ

s −
.
qs(t)

.
ξ

σ

0

)
+ L(t)

.
ξ

σ

0

+Q
′′
s (t)

(
ξσ

s − .
qs(t)ξ

σ
0
)
= −

.
G

σ
, t ∈ (t2 − τ2, t2], (σ = 1, 2, · · · , r),

(34)

respectively.

Equations (26), (29), and (32) can each be used as the criterion equation for the three
symmetries above, respectively. Indeed, Equations (33) and (34) are often referred to as the
Noether identity when r = 1.

Remark 4. In the intervals [t1 − τ1, t1 − τ2) and [t1 − τ2, t1), when τ1 = τ2, the first two
formulas of Equations (33) and (34) are not obtained in Ref. [31] because of the calculation problems
with respect to the non-isochronous variation.

5. Multi-Time-Delay Noether Theorem

The intrinsic connection between symmetry and conserved quantity can be revealed
by the multi-time-delay Noether theorems below.

Theorem 1. The multi-time-delay Lagrangian system (15) exists with the multi-time-delay
conserved quantities if the transformations in (18) correspond to the multi-time-delay Noether
symmetries, which are

Iσ = L(t)ξσ
0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
)
= cσ, t ∈ [t1, t2 − τ1],

Iσ = L(t)ξσ
0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
)
= cσ, t ∈ (t2 − τ1, t2 − τ2],

Iσ = L(t)ξσ
0 +

∂L
∂

.
qs
(t)
(
ξσ

s − .
qs(t)ξ

σ
0
)
= cσ, t ∈ (t2 − τ2, t2].

(35)

Proof. Due to the Noether symmetric transformations, Equation (25) holds. Using Equation (24),
we have
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d
dt

(
L(t)ξσ

0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
))

+

[
∂L
∂qs

(t) +
∂L

∂qsτ1

(t + τ1)−
d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)](
ξσ

s − .
qs(t)ξ

σ
0
)
= 0, t ∈ [t1, t2 − τ1],

d
dt

(
L(t)ξσ

0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
))

+

[
∂L
∂qs

(t)− d
dt

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)](
ξσ

s − .
qs(t)ξ

σ
0
)
= 0, t ∈ (t2 − τ1, t2 − τ2],

d
dt

(
L(t)ξσ

0 +
∂L
∂

.
qs
(t)
(
ξσ

s − .
qs(t)ξ

σ
0
))

+

[
∂L
∂qs

(t)− d
dt

(
∂L
∂

.
qs
(t)

)](
ξσ

s − .
qs(t)ξ

σ
0
)
= 0,

t ∈ (t2 − τ2, t2],

(36)

noting that the integral interval [t1, t2] is arbitrary, and the parameters εσ are independent
of each other.

For the multi-time-delay Lagrangian system, we have Equation (15), and Equation (36)
becomes

d
dt

(
L(t)ξσ

0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
))

= 0, t ∈ [t1, t2 − τ1],

d
dt

(
L(t)ξσ

0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
))

= 0, t ∈ (t2 − τ1, t2 − τ2],

d
dt

(
L(t)ξσ

0 +
∂L
∂

.
qs
(t)
(
ξσ

s − .
qs(t)ξ

σ
0
))

= 0, t ∈ (t2 − τ2, t2].

(37)

Integrating Equation (37), the theorem is proven. □

Theorem 2. The multi-time-delay Lagrangian system (15) exists with the multi-time-delay
conserved quantities if the transformations in (18) correspond to the multi-time-delay Noether
quasi-symmetries, which are

Iσ = L(t)ξσ
0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
)
+ Gσ = cσ, t ∈ [t1, t2 − τ1],

Iσ = L(t)ξσ
0 +

(
∂L
∂

.
qs
(t) +

∂L
∂

.
qsτ2

(t + τ2)

)(
ξσ

s − .
qs(t)ξ

σ
0
)
+ Gσ = cσ, t ∈ (t2 − τ1, t2 − τ2],

Iσ = L(t)ξσ
0 +

∂L
∂

.
qs
(t)
(
ξσ

s − .
qs(t)ξ

σ
0
)
+ Gσ = cσ, t ∈ (t2 − τ2, t2].

(38)

Proof. Due to the Noether quasi-symmetric transformations, Equation (28) holds. By
substituting Equation (24) into Equation (28) and using Equation (15), we obtain Theorem
2 in a similar manner to Theorem 1. □

Theorem 3. The multi-time-delay NCMS (14) exists with the multi-time-delay conserved quantities
in (38) if the transformations in (18) correspond to the generalized multi-time-delay Noether
quasi-symmetry.

Proof. Due to the generalized Noether quasi-symmetric transformations, Equation (31)
holds. By substituting Equation (24) into Equation (31) and using Equation (14), we obtain
Theorem 3 in a similar manner to Theorem 1. □
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Remark 5. Theorems 1–3 reveal that, although there are differences among criterion Equations (26),
(29), and (32) of different symmetries, the conserved quantities have the same form of expression
when t ∈ [t1, t2 − τ1] and t ∈ (t2 − τ1, t2 − τ2].

Remark 6. The variable that affects the form of expression of the conserved quantities (38) for
a multi-time-delay NCMS is the delay τ2 of generalized velocities, but this is not related to the
delay τ1 of generalized coordinates only if the generators ξ0 and ξs are the same in three intervals.

6. Examples

Example 1. A multi-time-delay NCMS is considered. The multi-time-delay Lagrangian is

L =
1
2

m
.
q2
(t)− kq(t − τ1) (39)

and the multi-time-delay generalized non-potential force is

Q′′ = −c
.
q(t − τ2), (40)

where τ1 and τ2 are constant time-delays, and m, k, and c are constant physical quantities. The
system satisfies boundary conditions (3)–(5). We will now study the conserved quantity by applying
the generalized Noether quasi-symmetry.

From the dynamical Equation (14) of the multi-time-delay NCMS, we obtain

m
..
q + k + c

.
qτ2

= 0, t ∈ [t1, t2 − τ1],
m

..
q + c

.
qτ2

= 0, t ∈ (t2 − τ1, t2 − τ2],
m

..
q + c

.
qτ2

= 0, t ∈ (t2 − τ2, t2],
(41)

and Equation (34) gives

−kξ1 + m
( .

ξ1 −
.
q

.
ξ0

) .
q +

(
1
2

m
.
q2 − kqτ1

)
.
ξ0 − c

(
ξ1 −

.
qξ0
) .
qτ2

= −
.

G, t ∈ [t1, t2 − τ1],

m
( .

ξ1 −
.
q

.
ξ0

) .
q +

(
1
2

m
.
q2 − kqτ1

)
.
ξ0 − c

(
ξ1 −

.
qξ0
) .
qτ2

= −
.

G, t ∈ (t2 − τ1, t2 − τ2],

m
( .

ξ1 −
.
q

.
ξ0

) .
q +

(
1
2

m
.
q2 − kqτ1

)
.
ξ0 − c

(
ξ1 −

.
qξ0
) .
qτ2

= −
.

G, t ∈ (t2 − τ2, t2],

(42)

where
.
q(t − τ1) ≜

.
qτ1

, and
.
q(t − τ2) ≜

.
qτ2

.
Equation (42) presents the following solutions:

ξ0 = 0, ξ1 = 1, G = kt + cqτ2 , t ∈ [t1, t2 − τ1],
ξ0 = 0, ξ1 = 1, G = cqτ2 , t ∈ (t2 − τ1, t2 − τ2],
ξ0 = 0, ξ1 = 1, G = cqτ2 , t ∈ (t2 − τ2, t2].

(43)

Evidently, ξ0 = 0 satisfies Equation (34) in the intervals [t1 − τ1, t1 − τ2) and [t1 − τ2, t1).
The results generated from (43) correspond to generalized Noether quasi-symmetry. Ap-
plying Theorem 3, we obtain

I = m
.
q + cqτ2 + kt = const., t ∈ [t1, t2 − τ1],

I = m
.
q + cqτ2 = const., t ∈ (t2 − τ1, t2 − τ2],

I = m
.
q + cqτ2 = const., t ∈ (t2 − τ2, t2].

(44)

Therefore, Equation (44) presents Noether conserved quantities for the multi-time-
delay NCMS (41).
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Example 2. The Lagrangian L of a two-degrees-of-freedom multi-time-delay oscillator system is

L =
m
2

2

∑
s=1

[ .
qs(t) +

.
qs(t − τ2)

]2 − k
2

2

∑
s=1

[qs(t) + qs(t − τ1)]
2 (45)

where τ1 and τ2 are constant time-delays, and m and k are constant physical quantities.

The dynamical equations of the two-degrees-of-freedom multi-time-delay system are

m
[ ..
qs(t − τ2) + 2

..
qs(t) +

..
qs(t + τ2)

]
+ k[qs(t − τ1) + 2qs(t) + qs(t + τ1)] = 0, (s = 1, 2) (46)

for t ∈ [t1, t2 − τ1], and

m
[ ..
qs(t − τ2) + 2

..
qs(t) +

..
qs(t + τ2)

]
+ k[qs(t − τ1) + qs(t)] = 0, (s = 1, 2) (47)

for t ∈ (t2 − τ1, t2 − τ2], and

m
[ ..
qs(t − τ2) +

..
qs(t)

]
+ k[qs(t − τ1) + qs(t)] = 0, (s = 1, 2) (48)

for t ∈ (t2 − τ2, t2].
When t ∈ [t1, t2 − τ1], Equation (33) gives

m
2
∑

s=1

[ .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

]( .
ξs −

.
qs(t)

.
ξ0

)
−k

2
∑

s=1
[qs(t − τ1) + 2qs(t) + qs(t + τ1)]ξs + L

.
ξ0 = −

.
G.

(49)

Equation (49) has the following solution:

ξ0 = 0, ξ1 =
.
q1(t − τ2) + 2

.
q1(t) +

.
q1(t + τ2), ξ2 =

.
q2(t − τ2) + 2

.
q2(t) +

.
q2(t + τ2),

G = −m
2

2
∑

s=1

[ .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

]2
+k

2
∑

s=1

∫ t2−τ1
t1

( .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

)
(qs(t − τ1) + 2qs(t) + qs(t + τ1))dt.

(50)

From Theorem 2, we obtain

I =
m
2

2
∑

s=1

[ .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

]2
+k

2
∑

s=1

∫ t2−τ1
t1

( .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

)
(qs(t − τ1) + 2qs(t) + qs(t + τ1))dt = const..

(51)

When t ∈ (t2 − τ1, t2 − τ2], we have

m
2

∑
s=1

[ .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

]( .
ξs −

.
qs(t)

.
ξ0

)
− k

2

∑
s=1

[qs(t − τ1) + qs(t)]ξs + L
.
ξ0 = −

.
G. (52)

Equation (52) has the following solution:

ξ0 = 0, ξ1 =
.
q1(t − τ2) + 2

.
q1(t) +

.
q1(t + τ2), ξ2 =

.
q2(t − τ2) + 2

.
q2(t) +

.
q2(t + τ2),

G = −m
2

2
∑

s=1

[ .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

]2
+k

2
∑

s=1

∫ t2−τ2
t2−τ1

( .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

)
(qs(t − τ1) + 2qs(t) + qs(t + τ1))dt.

(53)

From Theorem 2, we have
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I =
m
2

2
∑

s=1

[ .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

]2
+k

2
∑

s=1

∫ t2−τ2
t2−τ1

( .
qs(t − τ2) + 2

.
qs(t) +

.
qs(t + τ2)

)
(qs(t − τ1) + 2qs(t) + qs(t + τ1))dt = const.

(54)

When t ∈ (t2 − τ2, t2], we have

m
2

∑
s=1

[ .
qs(t − τ2) +

.
qs(t)

]( .
ξs −

.
qs(t)

.
ξ0

)
− k

2

∑
s=1

[qs(t − τ1) + qs(t)]ξs + L
.
ξ0 = −

.
G. (55)

Equation (55) has the following solution:

ξ0 = 0, ξ1 =
.
q1(t − τ2) +

.
q1(t), ξ2 =

.
q2(t − τ2) +

.
q2(t),

G = −m
2

2
∑

s=1

[ .
qs(t − τ2) +

.
qs(t)

]2
+ k

2
∑

s=1

∫ t2
t2−τ2

( .
qs(t − τ2) +

.
qs(t)

)
(qs(t − τ1) + qs(t))dt.

(56)

From Theorem 2, we have

I =
m
2

2

∑
s=1

[ .
qs(t − τ2) +

.
qs(t)

]2
+ k

2

∑
s=1

∫ t2

t2−τ2

( .
qs(t − τ2) +

.
qs(t)

)
(qs(t − τ1) + qs(t))dt = const. (57)

Evidently, ξ0 = 0 satisfies Equation (34) in the intervals [t1 − τ1, t1 − τ2) and [t1 − τ2, t1).
Equations (51), (54), and (57) are Noether conserved quantities of the system (46)–(48).

Compared to the classical case, there is an obvious conserved quantity in the oscillator
system without time-delay parameters, namely,

I =
1
2

m
[ .
q2

1(t) +
.
q2

2(t)
]
+

1
2

k
[
q2

1(t) + q2
2(t)

]
. (58)

7. Conclusions

In this study, the Noether symmetry of a multi-time-delay NCMS and its conserved
quantity were investigated. The variational principle (1) and multi-time-delay Equation (14)
of the system were obtained. Dynamical Equation (15) of the multi-time-delay Lagrangian
systems is a special case of Equation (14). Three kinds of Noether symmetric transforma-
tions and corresponding criterion Equations (26), (29), and (32) were established. Thus, the
Noether theorems of the multi-time-delay Lagrangian system and the multi-time-delay
NCMS were established. The results show that the delay τ2 of generalized velocities affects
the form of the conserved quantities in (38) for a multi-time-delay NCMS, but this is not
related to the delay τ1 of generalized coordinates only if the generators ξ0 and ξs are the
same in three intervals.

Compared with some previous studies on time-delay mechanical systems [31–40], this
paper not only takes into account the more realistic description of different time-delays
between the generalized coordinates and the generalized velocities, but also achieves the
more general Noether-type conserved quantities.

The time-delays discussed in this paper are only constants. As a more general case,
time-varying time-delay can be further discussed and the two time-delays described in
this paper can be expanded to n time-delays, which will make the research on practical
problems related to objective mechanics more accurate. Further studies could include
Hamiltonian systems, Birkhoffian systems, nonholonomic systems, and the corresponding
complex dynamical models with a consideration of multi-time-delay. Since the solution
space for a time-delay equation is infinite in its dimensions, it is worth looking forward to
the effective numerical methods and structure-preserving numerical methods for studying
multi-time-delay equations.

Author Contributions: X.J.: conceptualization (equal); methodology (lead); validation (equal);
writing—original draft (equal); and writing—review and editing (equal). Z.Y.: conceptualization



Symmetry 2024, 16, 475 13 of 14

(equal); methodology (equal); validation (equal); writing—original draft (equal); and writing—review
and editing (equal). X.Z.: conceptualization (equal); formal analysis (lead); funding acquisition (lead);
project administration (lead); supervision (lead); validation (equal); writing—original draft (equal);
and writing—review and editing (equal). All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 12002228).

Data Availability Statement: Data sharing is not applicable to this article as no new data were created
or analyzed in this study.

Conflicts of Interest: The authors have no conflicts of interest to disclose.

References
1. Hu, H.Y.; Wang, Z.H. Review on nonlinear dynamic systems involving time delays. Adv. Mech. 1999, 29, 501–512.
2. Richard, J. Time-delay systems: An overview of some recent advances and open problems. Automatica 2003, 39, 1667–1694.

[CrossRef]
3. Xu, J.; Pei, L.J. Advances in dynamics for delayed systems. Adv. Mech. 2006, 36, 17–30.
4. Hu, H.Y.; Wang, Z.H. Singular perturbation methods for nonlinear dynamic systems with time delays. Chaos Solitons Fractals

2009, 40, 13–27. [CrossRef]
5. Naumkin, I.; Weder, R. Time delay for the Dirac equation. Lett. Math. Phys. 2016, 106, 1345–1378. [CrossRef]
6. Zhai, X.H.; Zhang, Y. Noether theorem for non-conservative systems with time delay on time scales. Commun. Nonlinear Sci.

Numer. Simul. 2017, 52, 32–43. [CrossRef]
7. Sweilam, N.; AL-Mekhlafi, S.; Shatta, S.; Baleanu, D. Numerical study for a novel variable-order multiple time delay awareness

programs mathematical model. Appl. Numer. Math. 2020, 158, 212–235. [CrossRef]
8. Rihan, F.A.; Velmurugan, G. Dynamics of fractional-order delay differential model for tumor-immune system. Chaos Solitons

Fractals 2020, 132, 109592. [CrossRef]
9. Allen, B.C.; Stubbs, K.J.; Dixon, W.E. Robust cadence tracking for switched FES-cycling using a time-varying estimate of the

electromechanical delay. Automatica 2022, 144, 110466. [CrossRef]
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