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Abstract: We address the estimation of regression parameters for the ill-conditioned predictive
linear model in this study. Traditional least squares methods often encounter challenges in yielding
reliable results when there is multicollinearity. Therefore, we employ a better shrinkage method,
average least squares-centered penalized regression (ALPR), as it offers a more efficient approach for
handling multicollinearity than ridge regression. Additionally, we integrate ALPR with the principal
component (PC) dimension reduction method for enhanced performance. We compared the proposed
PCALPR estimation technique with existing ones for ill-conditioned problems through comprehensive
simulations and real-life data analyses using the mean squared error. This integration results in
superior model performance compared to other methods, highlighting the potential of combining
dimensionality reduction techniques with penalized regression for enhanced model predictions.

Keywords: linear model; penalized regression; multicollinearity; principal component; ridge regression

1. Introduction

Regression is a widely employed statistical methodology across various fields with
different variants, including parametric, semi-, and non-parametric approaches. Linear
models remain attractive due to their interpretability and the availability of tools to handle
diverse data types and validate theoretical assumptions. In practice, the model predicts a
response variable as a linear function of one or more predictors, for example, modelling
the influence of smoking and biking habits (predictors) on the likelihood of heart disease
(response). It finds application across diverse domains, including the sciences, social
sciences, and the arts.

While utilizing numerous explanatory variables provides a more accurate view of
the response variable, it introduces the challenge of redundant information stemming
from correlations among predictors. The issue of collinearity among predictors poses a
significant problem in linear regression, impacting least squares estimates, standard errors,
computational accuracy, fitted values, and predictions [1-4]. Various diagnostic methods,
such as the condition number, correlation analysis, eigenvalues, condition index, and the
variance inflation factor, are commonly employed to identify collinearity.

Additionally, several proposed methods exist in addressing the collinearity problem,
ranging from component-based methods like partial least squares regression (PLS) and
principal component regression (PCR) to techniques involving penalizing solutions using
the L2 norm [5,6]. The widely recognized ridge regression [7] is one such method. Different
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modifications to ridge regression have led to several others. These include the Liu estima-
tor, the modified ridge-type estimator, the Kibria—Lukman estimator, the two-parameter
estimator, the Stein estimator, and others [8-13]. Generally, a unanimous agreement on the
optimal method is lacking, as each approach proves effective under distinct circumstances.

Recently, Wang et al. [14] developed a novel method to address multicollinearity in
linear models called average least squares method (LSM)-centered penalized regression
(ALPR). This method utilizes the weighted average of ordinary least squares estimators as
the central point for shrinkage. Wang et al.’s [14] investigation demonstrated that ALPR
outperformed ridge estimation (RE) in accuracy when the signs of the regression coefficients
were consistent. Thus, ALPR is a promising method to effectively mitigate multicollinearity,
especially when the signs of the regression coefficients are consistent.

Recent studies have enhanced model predictions by integrating principal components
regression with some L2 norms such as ridge regression and the Stein estimator [15,16]. The
PCR estimation technique stands out as a potent solution for addressing dimensionality
challenges in estimation problems [17]. Known for its transparency and ease of implemen-
tation, PCR involves two pivotal steps, where the initial step applies principal component
analysis (PCA) to the predictor matrix. The subsequent step entails regressing the response
variable on the first principal components, which capture the most variability.

In a groundbreaking contribution, Baye and Parker [15] introduced the r-k class
estimator, ingeniously combining PCR with ridge regression, resulting in a remarkable
performance boost compared to using each estimator individually. This pioneering work
has ignited further research, inspiring researchers to explore new avenues [18-22]. This
paper extends the principles of PCR to the realm of average least squares method (LSM)-
centered penalized regression (ALPR), giving rise to a novel method named principal
component average least squares method (LSM)-centered penalized regression (PC_ALPR).
The approach shares the initial step of principal component regression while diverging in
the second step, where average least squares method (LSM)-centered penalized regression
is used instead of the classical least squares method (LSM) to regress the response variable
on the principal components.

Thus, in this study, we propose a new method to account for multicollinearity in
the linear regression model by integrating principal component regression with average
least squares method-centered penalized regression. This article is structured as follows:
Section 2 provides a detailed review of existing methods, while Section 3 introduces
a new estimator. In Section 4, we rigorously assess the new estimator’s performance
through a Monte Carlo simulation study. Additionally, Section 5 showcases the practical
relevance of the proposed estimator, featuring a compelling numerical example. Finally,
Section 5 summarizes this research’s key findings, emphasizing the contributions of the new
estimator and discussing its implications for future advancements in estimation techniques.

2. A Brief Overview of Existing Methods

Regression analysis models the connection between a response variable and one or
more predictors. In this section, we will delve into the linear model, offering brief overviews
of estimation methods, both with and without consideration of multicollinearity.

2.1. Least Squares Method

The linear model is a fundamental concept in statistical modelling, offering a versatile
framework for understanding the relationship between a response variable and one or
more predictors through a linear equation. This equation, often represented as

y=XB+e 1)

captures the linear association between the response variable and predictors. In this
formulation, y is the (n x 1) vector of the response variable, X is the (n x (p + 1)) matrix
of predictors, and f is (p + 1 x 1) vector of the coefficients that quantify the impact of each
predictor on the response. The linear model assumes a linear and additive relationship
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between the predictors and the response variable. ¢ is an (n x 1) vector of the disturbance
terms, such that ¢ ~ N(0, 02I).

The least squares method (LSM) stands as a cornerstone in statistical modelling,
offering a powerful approach to estimating the parameters of the linear model defined in
Equation (1). The primary goal of the LSM is to find the coefficients that minimize the sum
of the squared differences between the observed and predicted values of the dependent
variable. The vector of estimates, f3, is given by

A -1
Brsm = (X'X) X'y, (2)
The variance-covariance matrix of the LSM is defined as follows:
Cov(B) = 62(X'X) ", (3)

where the mean squared error is 6% = %j}l)e The scalar mean squared error (SMSE) of
(3) is as follows:

SMSE(B) = 67} 7, el 4)
]

where ¢; is the eigenvalues of matrix X'X.

The issue of collinearity arises when there are linear or nearly linear relationships
among predictors. When exact linear relationships exist, meaning one predictor is an exact
linear combination of others, the matrix X'X becomes singular, preventing a unique {3
estimate. When near-linear dependence exists among predictors, XX is nearly singular,
leading to an ill-conditioned estimation equation for regression parameters. Consequently,
the parameter estimates, B, become unstable. The variances in the regression coefficients
become inflated, resulting in larger confidence intervals. In summary, the presence of
collinearity, whether exact or near-linear, jeopardizes the stability of parameter estimates,
leading to increased uncertainty in understanding the relationships between predictors
and the response variable.

Various methods are available for detecting collinearity in linear regression models,
providing insights into the interdependence among predictors. Key techniques include
the following:

i Variance inflation factor (VIF): The VIF measures how much the variance of an
estimated regression coefficient becomes inflated due to collinearity. A widely
accepted rule of thumb suggests collinearity concerns when VIF values exceed 10.

ii. Condition number: The condition number assesses the sensitivity of the regres-
sion coefficients to small changes in the data. A condition number of 15 raises
concerns about multicollinearity, while a number exceeding 30 indicates severe
multicollinearity [3].

iii. Correlation matrix: Analyzing the correlation matrix of predictors helps to identify
high correlations between variables. A high correlation coefficient, particularly
close to 1, suggests the potential presence of collinearity.

iv. Eigenvalues: Investigating the eigenvalues of the predictor matrix X'X provides
insights into multicollinearity. Small eigenvalues, especially near zero, indicate a
higher risk of multicollinearity.

In addition to the methods for detecting collinearity in linear regression, several
approaches have been proposed to address this issue effectively. These methods span
a spectrum of techniques, from component-based strategies like partial least squares re-
gression (PLS) and principal component regression (PCR) to regularization techniques
involving penalizing solutions using the L2 norm. The upcoming section will offer a concise
overview of a few methods developed to address collinearity. Specifically, the focus will
be on techniques such as principal component regression (PCR) and the regularization
methods utilizing the L2 norm.
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2.2. Principal Component Regression

Principal component analysis (PCA) is a widely used dimension reduction technique
to transform the original variables into a new set of uncorrelated variables, called principal
components, while retaining as much of the original variability as possible [17]. The first
principal component captures the maximum amount of variance in the data. Subsequent
principal components capture the remaining variance while being orthogonal to each
other. By retaining only the most significant principal components, PCA reduces the
dimensionality of the dataset while preserving most of the original information. It is
applicable in various fields, including image and signal processing, finance, and genetics.
The model structure for principal component regression is obtained by transforming model
(1) as follows:

y=XFFB +¢=Ta+te, (5)

where « = F'B, F = [f;,...,fp] is a p x p orthogonal matrix with FX'XF = T'T = E and
E = diag (ei, eeey ep) is a p x p diagonal matrix of eigenvalues of X'X. The score matrix
T=XF= [ti, s, tp] has dimensions n x m, where n represents the number of observations
and m represents the number of principal components. The PCR estimator of {3 is obtained
by excluding one or more of the principal components, t;, applying least squares method
(LSM) regression to the resulting model, and then transforming the coefficients back to
the original parameter space. Principal components whose eigenvalues are less than one
should be excluded. These components contribute less to the overall variability of the data
and can be considered less influential for prediction. However, according to Cliff [23], all
components with eigenvalues greater than one should be kept for statistical inference, as
they explain more variability in the data. Thus, the PCR estimator of {3 is defined as follows:

1

Bpcr = (T'T)  Ty. (6)

2.3. Regularization Techniques

L2 norms regularization, ridge regression, is used in linear regression to address multi-
collinearity by penalizing the regression coefficients [7]. It involves adding a regularization
term to the objective function of the least squares method (LSM). The objective function
of ridge regression (RR) combines the LSM loss function with the L2 regularization term
as follows:

Minimize ||y — XB|3 + k|| 813 @)

where y is the vector of the response variable, X is the matrix of predictors, ||. ||§ denotes the
L2 norm, f3 is the vector of regression coefficients, and k is the regularization parameter. The
regularization term penalizes regression coefficients, effectively shrinking them towards
zero. Thus, there is a reduction in the variance of the parameter estimates and improved
model stability, especially when there is collinearity among the predictors. The objective
function in Equation (7) is expanded as follows:

Minimize y'y — 2p'X'y + B'X'XB + kB'B (8)
Differentiate Equation (8) with respect to 3 and equate to zero. Consequently,
Brr = (X'X+KI)'X'y. (9)
According to Hoerl et al. [24], the regularization parameter, k, is defined as follows:

~2
I 4
k= ST e (10)
=1
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The variance—covariance matrix of the ridge regression is defined as follows:
Cov(Brg) = 6 (X'X+KI) ' X'X(X'X+kI) ' (11)
The bias of the estimator is obtained as follows:
Bias (Brr) = —k(X'X+kI) B (12)

Hence, the matrix mean squared error (MMSE) is given as
MMSE (Bgg) = 62 (XX +KI) " X'X(XX+KI) ' +12(X'X +KI) BB/ (XX +KkI) " (13)
The scalar mean squared error (SMSE) of (13) is as follows:
&2
]

e 4
SMSE (Bgg) = GZZ‘P —— +1<ZZ,P Tk)z (14)
]

where ¢; is the eigenvalues of matrix X'X, and & = Ff3.

2.4. Average Least Squares Method (LSM)-Centered Penalized Regression [ALPR]

Wang et al. [14] introduced an enhanced estimator that refines the approach of ridge
regression by penalizing the regression coefficients towards a predetermined constant, g,
diverging from the traditional ridge regression method that shrinks its coefficients towards
zero. This modification offers a more flexible penalization framework by allowing the
shrinkage target to be adjusted away from zero. The objective function of ALPR combines
the LSM loss function with the L2 regularization term, which is penalized to a specific
constant, ¢, as follows:

Minimize |y — XB|5 +k||B — ¢/ (15)

The objective function in Equation (15) is expanded as follows:
Minimize y'y — 28'X'y + B'X'Xp + kp'p — 2k¢p + k¢? (16)
Differentiate Equation (16) with respect to 3 and equate to zero. Consequently,
Be = (XX+10) ! (X'y +ke) 17)

Define the distance from to 3 to ¢ as g = 3 — ¢. Consequently, the objective function
can be expressed as the minimization of ||y — Xf ||% + k||g||§, akin to the formulation of
ridge regression. Let o« = Fg. Thus, the scalar mean squared error (SMSE) is as follows:

SMSE(f,) = 6°Y " | j’r 7 Z]P
e

Consequently, as &]2 increases, the SMSE([ASG) also increases. Equation (18), being
independent of F, roughly indicates that a smaller g, i.e., the closer {3 is to ¢, resulting
in a smaller SMSE(BG), implying better estimation. While least squares method (LSM)
estimators may suffer from instability when there is significant multicollinearity among
explanatory variables, their average values demonstrate reduced susceptibility to multi-
collinearity effects. As an alternative to the conventional shrinkage center of zero used
in ridge regression (RR), employing the average value of 3 ¢ as a shrinkage center offers
a more appropriate solution. This innovative approach, termed Average OLS Penalized
Regression (AOPR), relies on a p-dimensional vector, d, where all elements are set to
1, to define g, as the average of the Bg. Consequently, the shrinkage center for ALPR,
G is established as ¢;; = ¢)d. To ensure a stable estimation of ¢,; that maximizes

a

\N

(18)
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explanatory power for the observed, ¢, can be estimated through a specific procedure
designed to enhance its stability and explanatory capacity. This meticulous procedure
ensures that AOPR provides robust and effective regression results, particularly in sce-
narios with high multicollinearity among predictor variables. Thus, ¢, is estimated by

minimizing ||y — Xgy[|5-Hence, ¢y = d(d’X'Xd) 'd'X'XBrom. Let ¢y replace the constant
¢ in Equation (17); then, we have

Barpr = (XX +KI) ™ (x’y +kd (d'X'Xd) ”d’x’xBLSM)
= (XX 4 K1) (XX + kd (dX'Xd) ' dX'X) Brow (19)
— QB guwhere(X'X +kI) ! (x’x +kd (d'X'Xd) _1d’X’X)
The covariance matrix of A pg is as follows:
Cov(Barpr) = 6*Q(X'X) o (20)

Following Wang et al. [14], leth = Fd (d’X/Xd) “Ld'X'XF and tj = b]2 + Zf: (W% e

z]e

hlz]b]z) ijh;-b, where 7; is the ith row vector of h. Consequently, the SMSE of o1 pg is

as follows: 2kh
€ + j
SMSE (Barpr) = 6°Y ] P (21)
2’ Z’ e —|—k
ejfrzfé e]h 5
— i e]t]—ﬁh]-j>0
where 95" Gz hij !
g0 —& e]hj h 0
k> P ejtj — 6°hj; <
0, ejtj — O'h <Oandh >1
Setl: = e 02702eh
J ) max |0, —— L ,et—a2h--<o
{ i N

Wang et al. [14] proposed that setting k = l,in serves as the optimal choice for the
shrinkage parameter in ALPR. For further insights, we advise consulting the works of
Wang et al. [14,25]. These references provide an in-depth exploration and analysis of the
optimal shrinkage parameter selection in ALPR.

2.5. Principal Component Average LSM-Centered Penalized Regression

In this section, we introduce a novel hybrid estimation approach that integrates princi-
pal component regression (PCR) with average LSM-centered penalized regression (ALPR)
to create the principal component average LSM-centered penalized regression method. We
aim to capitalize on the strengths of PCR and ALPR to enhance the modelling process and
boost predictive accuracy by combining these two techniques. The methodology comprises
the following steps:

i Standardization of predictor variables to ensure comparability, with a mean of zero
and unit variance.

ii. Perform principal component analysis (PCA) on the predictor variables.

iii. Selection of principal components corresponding to eigenvalues exceeding 1, as
they explain more variance than an individual predictor variable [23,26].

iv. Regression of the response variable on the chosen principal components to derive
fitted values.

v. Replace the original response variable with the fitted values obtained from the
PCR model.

vi. Utilization of average LSM-centered penalized regression to regress the trans-

formed response variable (fitted values from step iv) along with the original pre-
dictor variables.
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vii.  Evaluation of the combined approach’s performance using appropriate metrics such
as the scalar mean squared error (SMSE) and predicted mean squared error.

Mathematically, Baye and Parker [15] integrated the principal component with the
ridge estimator to form principal component ridge regression (PCRR). PCRR according to
Chang and Yang [19] is defined as follows:

Bpcrr = (T'T+ K1) 'T'y. (22)

The scalar mean squared error (SMSE) is as follows:

22

A e; " ‘X]'
SMSE (Bpcrr) = 6%) ;| ——+K°y —L— (23)

L CRN Li- (e +K)°
where r < p. Thus, the proposed estimator is defined as follows:
A _ 1 A
6PCALPR = (T + kI) 1 (T,y + kd (d/Td) d/TISPCR) . (24)
The scalar mean squared error (SMSE) is as follows:
A o e]+2kh]]

SMSE(BpcaLpr) = & Zj 1 2] - k (25)

3. Simulation

This section will examine a simulation study that evaluates the performance of the
proposed estimator in comparison to existing estimators, across various levels of mul-
ticollinearity. The simulation study is conducted using RStudio, a popular integrated
development environment for R programming. We follow a specific data generation
mechanism to account for the number of correlated variables. We generate the number
of n € {30,50,100,200} observations with p € {3,7} explanatory variables using the
following scheme:

1
Xjj = {(1 —¥?) Wi + YWipr1y, i=12,...,nj=12,...,m (26)

where wj; represents independent standard normal pseudo-random numbers; m € {2,3,...,p}
is the number of correlated variables. The variables are standardized, and thus, X’y shows
the correlation. Furthermore, we consider moderate and strong collinearity levels using
v? € {08, 0.9, 0.99, and 0.999}. We generate the model observations following Equa-
tion (1) with e ~ N(0,¢%I), 0> € {25,100]. The response variable is a linear function of
the predictors generated in (26) with coefficients 31, 3,,. .., Bp. respectively. The model as-
sumes a zero intercept, and the values of 3 are chosen such that Z]p: ]2 = 1. We repeat the
whole data generation process 1000 times and evaluate the estimator’s performance using
the mean squared error (MSE) and prediction mean squared error (PMSE), respectively,
given by

MSE = o m o (B — ) (81 )
PMSE = o 5% (59— ) (5~ v.)

where Bil) is any of the existing estimators or the proposed estimator. Further, §. = X{3-.
The simulation results are available in Tables 1-4. The results from the simulation
study offer a comprehensive view of how different regression estimators perform under
varying conditions of multicollinearity and noise levels. The comparison includes the
traditional least squares method (LSM), ridge regression (RR), principal components ridge
regression (PCRR), average least squares method-centered penalized regression (ALPR),

(27)
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and the novel principal component average least squares method-centered penalized
regression (PCALPR). Under moderate to strong multicollinearity scenarios (p = 0.8 to
p =0.99), the PCALPR estimator consistently outperformed the other estimators in terms
of mean squared error (MSE). This indicates a superior capability in accurately estimating
the regression coefficients, which directly contributes to better model prediction accuracy.
However, as the multicollinearity level is severe, i.e., when p = 0.999, other estimators
compete favorably.

Table 1. Estimated MSE values for p = 3 with 0 =5.

Sample Size (n)

Estimators 40 50 100 200
MSE PMSE MSE PMSE MSE PMSE MSE PMSE
p=028
,’,ZLSM 4.5703 1.8058 3.7860 1.5066 1.4439 0.7212 0.7814 0.3768
2 RR 0.7274 1.3422 0.6345 1.5999 0.5705 1.5833 0.5235 1.1366
;PCRR 0.6994 1.3336 0.6102 1.5923 0.5629 1.5807 0.5176 1.1345
,’,: ALPR 0.3408 0.6067 0.2077 0.4857 0.0990 0.2578 0.0612 0.1213
&PCALPR 0.3091 0.5961 0.1835 0.4785 0.0913 0.2550 0.0548 0.1190
p=09
‘,’ZLSM 8.2602 1.8084 6.9663 1.5057 2.6458 0.7200 1.4272 0.3756
QRR 0.6386 1.3292 0.5172 1.5299 0.4680 1.4253 0.4303 1.0351
;PCRR 0.5867 1.3208 0.4749 1.5230 0.4565 1.4232 0.4218 1.0335
QALPR 0.3194 0.6107 0.1921 0.4846 0.0935 0.2558 0.0572 0.1191
;PCALPR 0.2661 0.6019 0.1501 0.4779 0.0820 0.2537 0.0486 0.1175
p =0.99
&LSM 75.5686 1.8135 65.0997 1.5068 24.5618 0.7180 13.2297 0.3742
,’,\‘RR 0.7584 0.7546 0.5639 0.7169 0.2559 0.5629 0.2045 0.3998
QPCRR 0.2983 0.7466 0.1953 0.7106 0.1708 0.5613 0.1492 0.3987
W ALPR 0.7064 0.6182 0.5047 0.4852 0.1625 0.2534 0.0993 0.1169
,’,:PCALPR 0.2460 0.6103 0.1365 0.4789 0.0774 0.2518 0.0440 0.1158
p =0.999
&LSM 7474641 1.8152 646.6567 1.5075 243.8220 0.7174 131.3629 0.3739
QRR 4.8993 0.6013 3.8973 0.4959 0.9154 0.2828 0.5841 0.1504
QPCRR 0.3800 0.5934 0.2714 0.4897 0.0951 0.2812 0.0574 0.1493
2 ALPR 4.9065 0.6208 3.8943 0.4858 0.9060 0.2528 0.5716 0.1165
,’,\‘PCALPR 0.3869 0.6129 0.2688 0.4796 0.0859 0.2512 0.0448 0.1154

Least squares method (LSM), ridge regression (RR), principal components ridge regression (PCRR), average
least squares method-centered penalized regression (ALPR), and principal component average least squares
method-centered penalized regression (PCALPR).
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Table 2. Estimated MSE values for p = 3 with o = 10.
Sample Size (n)
Estimators 40 50 100 200
MSE PMSE MSE PMSE MSE PMSE MSE PMSE
p=028
:’\‘LSM 18.2811 7.2231 15.1442 6.0263 5.7757 2.8849 3.1255 1.5073
2 RR 0.9168 1.7485 0.8824 2.2964 0.8793 2.4704 0.8848 1.9435
:,;PCRR 0.9085 1.7460 0.8752 2.2942 0.8776 2.4698 0.8838 1.9431
;ALPR 1.2426 2.3914 0.7333 1.9121 0.3638 1.0202 0.2172 0.4750
;PCALPR 1.2280 2.3798 0.7269 1.9115 0.3619 1.0188 0.2160 0.4744
p=09
&LSM 33.0407 7.2338 27.8653 6.0229 10.5832 2.8800 5.7089 1.5024
;RR 0.8673 1.9343 0.8025 2.5496 0.8090 2.5199 0.8207 2.0128
;PCRR 0.8513 1.9317 0.7895 2.5475 0.8061 2.5194 0.8189 2.0124
QALPR 1.0717 2.4100 0.6032 1.9110 0.3275 1.0150 0.1932 0.4697
;PCALPR 1.0541 2.4058 0.5907 1.9096 0.3245 1.0142 0.1914 0.4692
p=0.99
&LSM 302.2745 7.2540 260.3987 6.0271 98.2470 2.8721 52.9188 1.4969
,/,:RR 0.7899 1.6973 0.5868 1.8439 0.4718 1.4856 0.4570 1.1875
&PCRR 0.6424 1.6947 0.4689 1.8418 0.4475 1.4852 0.4415 1.1872
';\‘ALPR 1.0686 2.4428 0.6042 1.9164 0.3278 1.0074 0.1882 0.4634
,’,:PCALPR 0.9207 2.4403 0.4866 1.9144 0.3035 1.0069 0.1727 0.4631
p =0.999
&LSM 2989.8565 7.2607 2586.6267 6.0300 975.2882 2.8697 525.4517 1.4957
QRR 22111 1.9215 1.6236 1.7000 0.5257 0.9417 0.3502 0.5326
QPCRR 0.7559 1.9189 0.4611 1.6980 0.2885 0.9412 0.1977 0.5322
2 ALPR 2.4064 2.4533 1.6764 1.9192 0.5447 1.0052 0.3241 0.4620
;PCALPR 0.9509 2.4507 0.5142 1.9172 0.3076 1.0047 0.1716 0.4617

Least squares method (LSM), ridge regression (RR), principal components ridge regression (PCRR), average
least squares method-centered penalized regression (ALPR), and principal component average least squares
method-centered penalized regression (PCALPR).

A key observation is a significant deterioration in the performance of the LSM as the
level of multicollinearity increases, illustrating the well-known vulnerability of ordinary
least squares to collinear predictors. This highlights the necessity for alternative estimation
techniques in practical applications where predictors are often correlated to some degree.



Symmetry 2024, 16, 469 10 of 20
Table 3. Estimated MSE values for p =7 with 0 = 5.
Sample Size (n)
Estimators 40 50 100 200
MSE PMSE MSE PMSE MSE PMSE MSE PMSE
p=028
,’,ZLSM 12.6808 4.3744 10.7662 3.5549 4.4001 1.7374 2.2289 0.8519
2 RR 0.6043 1.8219 0.4060 2.2655 0.4646 1.9878 0.4255 1.6291
;PCRR 0.5461 1.7997 0.3676 2.2523 0.4552 1.9848 0.4251 1.6289
;ALPR 0.3046 0.6823 0.1782 0.5488 0.1295 0.2865 0.0945 0.1418
;PCALPR 0.2470 0.6617 0.1389 0.5351 0.1204 0.2832 0.0940 0.1415
p=09
‘I’ZLSM 23.7578 4.3742 20.3056 3.5557 8.2658 1.7357 4.1958 0.8514
QRR 0.4969 1.5066 0.3179 1.5530 0.3256 1.4605 0.2910 1.1853
;PCRR 0.3880 1.4847 0.2416 1.5389 0.3057 1.4568 0.2851 1.1842
QALPR 0.3215 0.6669 0.2057 0.5421 0.1314 0.2741 0.0954 0.1314
;PCALPR 0.2129 0.6455 0.1290 0.5278 0.1119 0.2704 0.0896 0.1302
p=0.99
&LSM 225.0419 4.3745 193.0962 3.5566 78.3624 1.7332 39.8799 0.8509
QRR 1.2630 0.6365 0.8995 0.5504 0.3213 0.3226 0.1876 0.1881
QPCRR 0.2164 0.6143 0.1456 0.5357 0.1131 0.3184 0.0971 0.1864
;\‘ALPR 1.2697 0.6510 0.8987 0.5358 0.3157 0.2611 0.1772 0.1207
,’,:PCALPR 0.2230 0.6288 0.1448 0.5211 0.1076 0.2569 0.0868 0.1190
p =0.999
&LSM 2238.3432 4.3747 1921.0150 3.5567 779.3005 1.7325 396.8711 0.8507
&RR 11.0217 0.6332 7.9128 0.5306 2.2126 0.2557 1.0266 0.1174
,’,:PCRR 0.5764 0.6109 0.3699 0.5159 0.1201 0.2515 0.0890 0.1156
,’,;ALPR 11.0260 0.6488 7.9135 0.5355 2.2142 0.2594 1.0271 0.1195
&PCALPR 0.5804 0.6265 0.3707 0.5207 0.1219 0.2551 0.0896 0.1177

Least squares method (LSM), ridge regression (RR), principal components ridge regression (PCRR), average
least squares method-centered penalized regression (ALPR), and principal component average least squares
method-centered penalized regression (PCALPR).

Both RR and PCRR showed improvements over LSM, affirming the value of penal-
ization and dimensionality reduction techniques in mitigating multicollinearity effects.
However, the standout performance of ALPR and PCALPR underscores the effectiveness
of centering the penalization around a more robust estimate than ordinary least squares,
particularly under high multicollinearity.
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Table 4. Estimated MSE values for p = 7 with o = 10.
Sample Size (n)

Estimator 40 50 100 200

MSE PMSE MSE PMSE MSE PMSE MSE PMSE
p=028
&LSM 50.7230 17.4975 43.0649 14.2195 17.6005 6.9495 8.9158 3.4075
,’,\‘RR 0.8421 2.8085 0.7031 4.6999 0.7958 3.6363 0.7993 3.3193
&PCRR 0.8246 2.8017 0.6928 4.6963 0.7936 3.6356 0.7996 3.3194
W ALPR 0.7998 2.5640 0.3560 2.0835 0.2830 1.0606 0.1727 0.4980
;PCALPR 0.7840 2.5634 0.3457 2.0812 0.2806 1.0584 0.1730 0.4982
p=09
,’,ZLSM 95.0311 17.4970 81.2224 14.2229 33.0632 6.9429 16.7833 3.4056
QRR 0.7358 2.9038 0.5560 4.1669 0.6570 3.4652 0.6588 3.1903
;PCRR 0.7021 2.8969 0.5345 4.1629 0.6519 3.4642 0.6577 3.1901
x ALPR 0.6698 2.5407 0.3233 2.0830 0.2506 1.0437 0.1565 0.4854
;PCALPR 0.6367 2.5360 0.3019 2.0795 0.2456 1.0423 0.1555 0.4852
p=0.99
&LSM 900.1675 17.4981 772.3847 14.2263 313.449 6.9330 159.519 3.4034
QRR 0.7594 1.9251 0.4901 1.9288 0.3045 1.2156 0.2312 0.8725
QPCRR 0.4267 1.9179 0.2653 1.9243 0.2464 1.2145 0.2071 0.8720
;\‘ALPR 0.8714 2.5147 0.5060 2.0838 0.2797 1.0247 0.1674 0.4726
,’,ZPCALPR 0.5387 2.5075 0.2813 2.0794 0.2216 1.0235 0.1434 0.4721
p =0.999

&LSM 8953.3728 17.4987 7684.06 14.2270 3117.2021 6.9300 1587.4843 3.4030
QRR 3.9256 2.2907 2.6138 2.0008 0.8013 0.9544 0.3970 0.4443
&PCRR 0.5970 2.2834 0.3382 1.9962 0.2127 0.9532 0.1388 0.4438
&ALPR 3.9659 2.5099 2.6223 2.0854 0.8124 1.0212 0.4014 0.4709
x PCALPR 0.6373 2.5026 0.3468 2.0809 0.2239 1.0200 0.1432 0.4704

Least squares method (LSM), ridge regression (RR), principal components ridge regression (PCRR), average
least squares method-centered penalized regression (ALPR), and principal component average least squares
method-centered penalized regression (PCALPR).

PCALPR’s edge over ALPR in almost all scenarios suggests that the integration of
principal component analysis not only helps in addressing multicollinearity by reducing
the dimensionality of the predictor space but also enhances the penalization strategy by
focusing on the most informative components of the predictors.

When examining the impact of different noise levels (62 = 25 vs. 62 = 100), it is evident
that all estimators perform worse as noise increases, as expected. However, the relative
performance rankings remain roughly consistent, with PCALPR maintaining its superiority.
This resilience to increased noise levels further supports the robustness of the proposed
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method. The mean squared error and prediction mean squared error decrease as the sample
size increases, as demonstrated in Figures 1-4.

4-
ESTIMATOR
3-
== ALPR
Ll == LSM
(9]
=2, == PCALPR
== PCRR
1-
——————
\;
B —— ]
0-
50 100 150 200
N
Figure 1. Estimated PMSE by sample size when p =0.8,p =3, and ¢ =5.
8-
5 ESTIMATOR
== ALPR
L == LSM
m -
=4 == PCALPR
== PCRR
-
_—
—————— —————
0-
50 100 150 200

Figure 2. Estimated MSE by sample size when p = 0.9, p =3, and ¢ = 5.
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Figure 3. Estimated MSE by sample size when p = 0.99, p =3, and ¢ = 5.
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Figure 4. Estimated PMSE by sample size when p =0.99,p =3, and ¢ = 5.

The findings from this study suggest that PCALPR is a highly promising approach
for handling multicollinearity in linear regression models, particularly in situations where
predictors have high multicollinearity and when the model is subjected to significant
noise. The method not only leverages the strengths of penalized regression techniques to
reduce the bias introduced by multicollinearity but also capitalizes on the dimensionality
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reduction capability of principal component analysis to focus the model estimation on the
most relevant information contained within the predictor variables.

4. Data Analysis

We evaluated the efficacy of the proposed and existing estimators by analyzing two
real-life datasets.

4.1. Asphalt Binder Data

This dataset has been adopted in previous studies to analyze the impact of various
chemical compositions on surface free energy [27,28]. The model formulation is as follows:

yi=PBo+Pixa+- -+ Puxipte, i=1,...,23 (28)

where y; denotes surface free energy; x;; through x;1, correspond to saturates, aromatics,
resins, asphaltenes, wax, carbon, hydrogen, oxygen, nitrogen, sulfur, nickel, and vanadium,
respectively. We standardized the predictor variables to achieve a mean of zero and a
variance of 1. We conducted the Ramsey RESET test to assess the linearity of the regression
model. The test statistic yielded a value of RESET = 3.8065, p-value = 0.08283, with one
degree of freedom in the numerator (dfl) and nine degrees of freedom in the denominator
(df2). The p-value of 0.08283 suggests there is no significant evidence to reject the null
hypothesis of linearity at the conventional significance level of 0.05. Furthermore, the
Breusch—Pagan test for heteroscedasticity (BP test) resulted in a statistic of BP = 9.9723, with
12 degrees of freedom and a p-value of 0.6184. This p-value indicates no evidence against
the null hypothesis of homoscedasticity (constant variance) in the residuals. Therefore,
there is no significant heteroscedasticity detected in the model. Considering both tests,
while the Ramsey RESET test suggests strong evidence for linearity, the Breusch-Pagan test
does not find evidence of heteroscedasticity.

The correlation plot (Figure 5) shows the presence of strong correlations among some
predictor variables, such as between saturates, aromatics, resins, asphaltenes, etc. High
correlation among predictors is a hallmark of multicollinearity, which complicates the
estimation of regression coefficients because it becomes challenging to isolate the individual
effect of each predictor on the response variable.

0.54
0.23 046

0.3 2 -0.3 01 005 046 0.23

-0.51 -018 -0.44

-0.17 -0.05 |

011 055 -0.04
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Figure 5. Correlation heatmap for Asphalt Binder dataset.
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The VIF plot presented in Figure 6 quantitatively shows the degree of multicollinearity.
A VIF value greater than 10 is often considered an indicator of severe multicollinearity,
suggesting that the predictor variables are highly linearly related. This condition exacer-
bates the difficulty in obtaining reliable estimates of the regression coefficients because it
inflates the variances in the coefficient estimates, making them less precise. In addition, the
condition number is 52.37, revealing the presence of severe multicollinearity.

x3° Features
x4 - - %1
x2- B x10
X1 7 . *11
x10- . x1Z
E x9- . .
"v.'_':u . x3
£ x1 - . i
i . =5
x8 - . 6
x5 - ] =7
x12- B <
= ‘ S
I:II 1I:IIEI EL'IIEI
VIF

Figure 6. Variance inflation plot for Asphalt Binder dataset.

Table 5 provides the regression estimates for different models: the least squares method
(LSM), ridge regression (RR), principal component ridge regression (PCRR), average LSM-
centered penalized regression (ALPR), and principal component average LSM-centered
penalized regression (PCALPR). Each method adjusts the coefficients ((3) differently based
on their approach to handling multicollinearity. The intercept and coefficients vary across
models, reflecting how each method compensates for the high correlation among predictors.
For instance, ALPR and PCALPR provide coefficients that are significantly different from
those of LSM, indicating a distinct approach to stabilizing the regression estimates in the
presence of multicollinearity.

The standardized mean squared error (SMSE) is a measure of the accuracy of the
estimator. Lower values indicate a better fit and more reliable estimates. From Table 5, it is
evident that ALPR and PCALPR outperform the other methods, with PCALPR showing
the lowest SMSE. This suggests that PCALPR, by incorporating both principal component
analysis and average LSM-centered penalized regression, offers a more robust method
for dealing with multicollinearity, providing more accurate and stable estimates of the
regression coefficients. The coefficients estimated by ALPR and PCALPR indicate that these
methods can identify and adjust for the influence of multicollinearity, leading to potentially
more meaningful and interpretable results. For example, the positive coefficients for x,, X3,
and xy in the ALPR and PCALPR models may suggest a strong positive relationship with
the surface free energy, which was not as clearly indicated or was over-adjusted in the LSM
and RR models.



Symmetry 2024, 16, 469 16 of 20

Table 5. Regression estimates for the Asphalt binder data.

Coefficients XSsM XRR XpPCRR XALPR XpCALPR
Intercept 18.4213 18.2982 18.2982 17.7759 17.7771
Xi1 —0.9374 —0.9222 —0.9689 0.7659 0.6152
X 1.0047 0.8501 0.1988 3.9515 3.4056
Xi3 0.5034 0.3194 0.9184 4.1772 4.7278
Xig —0.3170 —0.6309 —0.9350 1.6927 1.6568
X5 —1.4497 —1.4092 —0.6252 —0.7086 —0.0231
X6 0.6610 0.6166 0.5210 0.8970 0.9224
Xi7 0.9434 0.9178 0.3774 1.2513 0.7737
X8 1.1531 0.9678 0.5222 0.7573 0.6310
X9 —0.2055 0.0241 0.6825 0.9123 1.1603
Xi10 —1.2356 —1.0465 —0.5421 0.4754 0.6927
Xi11 1.0707 0.9054 —0.0403 1.1342 0.5469
Xi12 —0.6526 —0.5802 0.0206 —0.1788 0.2577
SMSE 131.4192 16.5916 16.2259 13.1748 11.4092

4.2. Gasoline Mileage Data

The second dataset employed in this study was obtained from Montgomery et al. [3],
comprising observations on gasoline mileage and eleven (11) predictors. We excluded
variables three and eleven due to missing data in variable three and the structural form of
variable eleven. Thus, we retained only nine of the features. Table 6 provides a comprehen-
sive description of each variable utilized in the regression model:

Table 6. Variable description.

Variable Name Description
X Displacement (cubic inches)
Xip Horsepower (foot-pounds)
Xig Compression ratio
X5 Rear axle ratio
Xig Carburetor (barrels)
X7 Number of transmission speeds
Xig Overall length (inches)
X9 Width (inches)
Xi10 Weight (pounds)
y Miles per gallon

We standardized the predictor variables to achieve a mean of zero and a variance of 1.
We conducted the Ramsey RESET test to assess the linearity of the regression model. The
test statistic yielded a value of RESET = 3.7076, p-value = 0.07472, with 1 degree of freedom
in the numerator (df1) and 14 degrees of freedom in the denominator (df2). The p-value of
0.07472 suggests there is no significant evidence to reject the null hypothesis of linearity
at the conventional significance level of 0.05. Furthermore, the Breusch—-Pagan test for
heteroscedasticity (BP test) resulted in a statistic of BP = 3.6087, with nine degrees of freedom
and a p-value of 0.9352. This p-value indicates no evidence against the null hypothesis of
homoscedasticity (constant variance) in the residuals. Therefore, there is no significant
heteroscedasticity detected in the model. Considering both tests, while the Ramsey RESET
test suggests strong evidence for linearity, the Breusch-Pagan test does not find evidence
of heteroscedasticity. The correlation plot presented in Figure 7 helps to identify the
strength and direction of linear relationships between predictor variables. High correlation
coefficients between pairs of predictors suggest a strong linear relationship, potentially
indicating multicollinearity. Multicollinearity complicates the interpretation of individual
predictors’ effects on the response variable due to shared variance among predictors. The
VIF quantifies how much the variance of an estimated regression coefficient increases if
the predictors are correlated. If no factors are correlated, the VIF equals 1. Generally, a
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VIF above 5-10 indicates significant multicollinearity requiring attention. In the context of
Gasoline Mileage data, the presence of multicollinearity (as indicated by the VIF plot in
Figure 8) suggests that some of the predictors share a significant amount of information,
which could distort the regression coefficients if not properly addressed. In addition, the
condition number is 26.80, revealing the presence of moderate multicollinearity.
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Figure 7. Correlation heatmap for Gasoline Mileage dataset.
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Figure 8. Variance inflation plot for Gasoline Mileage dataset.

The regression estimates across different methods presented in Table 7 (least squares
method (LSM), ridge regression (RR), principal component ridge regression (PCRR), aver-
age LSM-centered penalized regression (ALPR), and principal component average LSM-
centered penalized regression (PCALPR)) show how each predictor variable is estimated to
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impact the mileage, adjusting for the presence of other variables in the model. Each method
handles multicollinearity differently, leading to variations in coefficient estimates. Each
coefficient represents the change in the mileage associated with a one-unit change in the pre-
dictor variable, holding all other predictors constant. The variation in coefficient estimates
across different methods reflects each method’s approach to managing multicollinearity
and optimizing the model for prediction accuracy. Differences in coefficient estimates across
methods highlight the impact of multicollinearity and the effectiveness of each method in
addressing it. For example, penalized methods like RR, ALPR, and PCALPR may shrink
some coefficients towards zero more than others, reflecting their relative importance in
the presence of multicollinearity. The SMSE values across different estimation methods
in Table 7 provide insight into each model’s prediction accuracy. Lower SMSE values
indicate better model performance in terms of accurately predicting the softening point
from the given predictors. The variation in SMSE values reflects the trade-off between bias
and variance introduced by each regression method, with penalized methods typically
offering a more balanced approach to minimize prediction error. The principal component
average LSM-centered penalized regression (PCALPR) outperforms the others in terms of
the SMSE criterion, making it the most accurate model for predicting gasoline mileage from
the given predictors in the presence of multicollinearity. This suggests that the combination
of principal component regression (PCR) with average LSM-centered penalized regression
(ALPR) to reduce dimensionality and multicollinearity provides a robust estimation.

Table 7. Regression estimates for the Gasoline Mileage data.

Coefficients XLSM XRR XpPCRR XALPR XpCALPR
Intercept 20.6208 19.3242 0.0000 13.9381 —0.3106
Xi1 —6.0835 —2.9430 —0.9192 —1.2406 —1.1774
X 2.5176 —0.6611 —0.8649 —0.8659 —0.9807
Xig 0.9377 0.6267 0.4281 0.5940 0.1501
X5 0.9549 0.5652 0.6963 0.6008 0.2435
X6 0.6851 0.2456 —0.5545 —0.3273 —0.6128
Xi7 —1.4518 0.0294 0.7797 0.6480 0.1987
X;g 4.1051 0.9788 —0.8500 —0.2911 —0.9909
X9 0.6992 —0.5416 —0.8113 —0.6839 —1.0333
Xi10 —7.1948 —2.1462 —0.9077 —1.0316 —1.0077
SMSE 782.956 117.959 70.568 199.089 27.276

5. Conclusions

This work focused on estimating the regression parameters for a predictive linear
model when there is multicollinearity among the regressors. We utilized the optimal
shrinkage method, ALPR, developed by Wang et al. [14] and combined it with the principal
component (PC) technique. We determined the property of the proposed PCALPR and com-
pared using the mean squared error (MSE) with other estimators such as the least squared
method, PC regression, ridge regression, and ALPR using numerical analysis. Comprehen-
sive numerical evaluations demonstrated that our suggested estimator dominates others
via the MSE across various degrees of multicollinearity. We observed that the prediction
accuracy of the new estimator closely matches that of the ALPR. The effectiveness of the
PCALPR in severe multicollinear predictive modelling was demonstrated through data
analysis, showing improved prediction accuracy.
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