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Abstract: Road extraction is a typical task in the semantic segmentation of remote sensing images,
and one of the most efficient techniques for solving this task in recent years is the vision transformer
technique. However, roads typically exhibit features such as uneven scales and low signal-to-noise
ratios, which can be understood as the asymmetry between the road and the background category
and the asymmetry in the transverse and longitudinal shape of the road. Existing vision transformer
models, due to their fixed sliding window mechanism, cannot adapt to the uneven scale issue of roads.
Additionally, self-attention, based on fully connected mechanisms for long sequences, may suffer
from attention deviation due to excessive noise, making it unsuitable for low signal-to-noise ratio
scenarios in road segmentation, resulting in incomplete and fragmented road segmentation results.
In this paper, we propose a road extraction based on deformable self-attention computation, termed
DOCswin-Trans (Deformable and Overlapped Cross-Window Transformer), to solve these problems.
On the one hand, we develop a DOC-Transformer block to address the scale imbalance issue, which
can utilize the overlapped window strategy to preserve the overall contextual semantic information
of roads as much as possible. On the other hand, we propose a deformable window strategy to
adaptively resample input vectors, which can direct attention automatically to the foreground areas
relevant to roads and thereby address the low signal-to-noise ratio problem. We evaluate the proposed
method on two popular road extraction datasets (i.e., DeepGlobe and Massachusetts datasets). The
experimental results demonstrate that the proposed method outperforms baseline methods. On
the DeepGlobe dataset, the proposed method achieves an IoU improvement ranging from 0.63% to
5.01% compared to baseline methods. On the Massachusetts dataset, our method achieves an IoU
improvement ranging from 0.50% to 6.24% compared to baseline methods.

Keywords: road segmentation; remote sensing image; CSwin transformer; deformable attention
transformer

1. Introduction

Road extraction based on high-resolution remote sensing images is an important task
in the remote sensing image processing community, and ensuring the connectivity and
integrity of the extracted roads is of great importance for many applications, such as urban
construction, transportation planning, road network updating, and route navigation [1–3].
However, the connectivity and integrity of the extracted roads can hardly be ensured
due to the following asymmetry questions regarding roads in high-resolution remote
sensing images. The first is the uneven problem of length and width scale caused by the
asymmetrical shape of the road in transverse and longitudinal planes. In particular, roads
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are densely distributed in narrow and elongated patterns, with lengths extending to several
kilometers and widths rarely exceeding several tens of meters, contrasting sharply with
other land cover categories that often appear as dense blocks. This extreme discrepancy
in the length-to-width ratio leads to a highly imbalanced scale of road features. The
second challenge stems from the low signal-to-noise ratio (SNR) of roads, resulting in an
asymmetry in the number of samples representing two categories. Roads, as foreground
elements, occupy a small proportion of the entire image. For instance, in the DeepGlobe
dataset, roads account for only 5%. Meanwhile, the background contains diverse and
complex land cover categories, serving as noise that can interfere with model recognition
and decision-making. Factors such as roadside vegetation and shadows, vehicles on the
road surface, and occlusions like tunnels all pose challenges to the continuity of road
features. The aforementioned issues lead to sub-optimal performance in connectivity and
integrity for existing methods, both of which are crucial visual metrics for evaluating road
extraction results.

The developmental history of road extraction tasks based on high-resolution remote
sensing imagery can be roughly divided into two stages based on their principles:

(1) Model-driven handcrafted feature methods. The core of these methods lies in
designing road feature representations based on manual priors, including threshold seg-
mentation methods [4–7] for pixel selection and clustering methods [8–11]. In general,
traditional algorithms directly consider the underlying features of roads, such as shape,
color, edges, texture, and grayscale. However, heavy reliance on these priors may lead to
limited precision and robustness, leading to their inferior performance in complex scenarios.

(2) Data-driven learning feature methods. The essence of these methods lies in con-
structing extensive annotated datasets and using deep learning to automatically learn
features from the labeled data. Representative works mainly build upon classical CNN
backbone networks, incorporating strategies to integrate multi-scale semantic informa-
tion and enlarge receptive fields to address issues such as fitting road scales or improv-
ing the connectivity of segmentation results. For instance, Deep ResUnet [12] combines
the advantages of the U-shaped feature fusion pattern from the Unet with residual con-
nections from the Resnet to form a deep convolution neural network architecture. The
D-Linknet [13], based on the original Linknet [14], adds extra dilated convolution layers to
increase the receptive field, facilitating the extraction and fusion of semantic information
at different levels and obtaining detailed road information. However, stacking layers in
CNN models to enlarge receptive fields may lead to issues such as model complexity and
over-fitting, hindering models from capturing global context, which is indispensable for
tasks like road extraction. To address these challenges, recent transformer [15] architectures
have enabled long-range modeling to capture global contextual information, making them
more suitable for tasks with significant horizontal and vertical scale variations like road
extraction. Classic works employing a. vision transformer as the backbone network for
feature extraction include ViT [16], PVT [17], and Swin Transformer [18], among others.
Subsequently, transformer-based models tailored for semantic segmentation tasks have
emerged, including SETR [19], TransUNet [20], SegFormer [21], and CAS-Net [22], gradu-
ally confirming the feasibility of using transformer structures instead of CNNs to construct
feature extraction modules for segmentation tasks. These versatile models demonstrate
that transformer structures perform well in tasks such as image classification, segmentation,
and detection. However, the development of transformer network designs more tailored to
the characteristics of road features is still ongoing.

To address the obstacles encountered in road extraction tasks when using a vision
transformer, this paper utilizes the shape and distribution characteristics of road features
in remote sensing images as prior knowledge to guide the construction of the model. The
motivation can be mainly divided into two parts:

(1) Due to the uneven scale issue of road features, this paper adopts the CSwin trans-
former [23] as the basis for the model architecture because the cross-shaped window
partitioning of the CSwin transformer intuitively matches the shape of road features. How-
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ever, this window partitioning method mechanically hinders the interaction of information
between adjacent regions. Therefore, this paper introduces an overlapped window strategy
to increase the shared information between neighboring windows, enhancing the model’s
perception of contextual information. This approach can retain the overall and continuous
semantic information of roads to some extent, thereby improving the completeness of road
segmentation results.

(2) Due to the low SNR of road features, the mechanism of self-attention involves
fully connected operations on long sequences, allocating attention to all positions, thus
making the model more sensitive to noise. Excessive background noise can interfere
with the model’s attention, preventing it from capturing the specific locations of target
features. This paper adopts the deformable receptive field strategy, wherein the model’s
attention to patches can adaptively change with each input image, concentrating limited
computational resources on foreground feature-relevant areas while reducing the intrusion
of noise information.

Figure 1 provides a schematic illustration of how three classical transformer models
and our method extract information from images. Taking a long vertical road as an example,
in Figure 1a, no window partitioning is performed because, due to the complexity of the
computations, the entire image cannot be input directly, and only very small patches can
be cropped. In Figure 1b, square windows with symmetrical length and width clearly do
not match the road morphology, with patches around the same coordinates on the road
being separated into different windows under the square partitioning scheme. In Figure 1c,
although the cross-shaped windows generally conform to the road morphology, they still
cannot perform flexible and effective interaction calculations due to the fixed window range,
and the windows cover a large amount of background area. In Figure 1d, which represents
our method, the three patches are encompassed under the same deformable strip-shaped
window, and the selected attention areas are concentrated on road information.

overlap window sizewindow size

window sizeno window

(a) ViT (b) Swin Transformer

(c) CSwin Transformer (d) ours

Figure 1. Comparison of the window schematics of our method with other classical transformer
models. (a) ViT directly computes attention across the entire image. (b) The Swin transformer
uses square-shaped window partitioning attention. (c) The CSwin transformer adopts cross-shaped
window attention in both horizontal and vertical directions. (d) Ours incorporates overlap and
deformable strategies into the cross-shaped windows.
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The innovations of the proposed module can be summarized as follows:

- We propose an overlapped window, which uses key and value patches larger than
the query patch during attention computation. It can facilitate information exchange
between adjacent windows in both horizontal and vertical directions, completing road
details effectively.

- The proposed deformable window introduces adaptive offset to flexibly resample key
and value elements in attention computation, which can reduce attention allocation
biases caused by excessive noise in the background. The purpose is to overcome the
problem of the asymmetrical number of samples of road and background categories
as much as possible.

- Our proposed network can achieve significant performance enhancement compared
with state-of-the-art deep-learning-based road extraction methods on two popular
datasets (i.e., DeepGlobe and Massachusetts datasets).

2. Related Works
2.1. Road Extraction Method

In addition to the Deep ResUnet and D-Linknet methods mentioned earlier, many
other CNN-based road extraction methods have also addressed multi-scale issues and
dense prediction tasks through improvements such as feature fusion and refinement.
For instance, CADUNet [24] builds upon DenseUNet [25] by incorporating global
attention modules and core attention modules, thereby improving road connectivity.
Mosinskal et al. [26], aiming to ensure road topological connectivity, propose a topo-
logical loss as a replacement for the cross-entropy loss function. They continue to input
road segmentation prediction results into the training model for iterative optimization
to extract detailed features. The ATP-QDCNNRE [27] designed by Khan et al. utilizes
quantum mechanical concepts and dilated convolutions to enhance the model’s ability
to capture long-range dependencies and employs automatic hyperparameter tuning to
achieve road extraction. Ref. [28] proposed a fine-tuning network based on U-Net to
preserve precise road geometry features, thereby improving edge detection effective-
ness. Additionally, they applied the BRISQUE preprocessing technique to the dataset
to enhance performance. Meanwhile, Tao et al. [29] analyzed these networks and found
that blindly fusing multi-scale and multi-level features and expanding receptive fields
could introduce irrelevant contextual information. Therefore, SIIS-Net is designed
with a Spatial Information Inference Structure (SIIS) to better model context infor-
mation along road-specific directions. Currently, DCS-TransUperNet [30] attempts to
apply transformers to road extraction tasks. DCS-TransUperNet designs a dual-resolution
branch encoder to extract coarse-grained and fine-grained features. Then, it uses Feature
Fusion Modules (FFM) to merge the feature maps’ output with the dual branches, thereby
enhancing the feature representation with global dependencies. As it focuses solely on the
improvement of vision transformer performance through multi-scale feature information,
this paper aims to incorporate effective road context extraction methods into the vision
transformer framework to enhance model performance.

2.2. Vision Transformer

The initial application of transformer technology to the visual domain was the ViT,
which converted the entire image into a token sequence for self-attention computation.
However, ViT only outputs fixed-resolution feature maps throughout the process, which is
not conducive to fine-grained boundary segmentation tasks and incurs high computational
complexity. Subsequent works, such as PVT [17], attempted to leverage various forms
of feature pyramids to obtain multi-scale features and long-range information, which
proved beneficial for tasks such as detection and segmentation. To address the issue of
high computational costs associated with global attention computation in ViT, several local
vision transformers emerged. These models, akin to convolution layers’ local inductive
bias in processing image information, partition patches into different local windows for
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subsequent self-attention computation. For instance, SWin Transformer utilizes block-
based non-overlapping windows and introduces shift windows to enhance interaction
between local windows. CSwin employs horizontal and vertical cross-shaped windows
for self-attention and proposes a locally enhanced position encoding module. Moreover,
some works aimed to judiciously integrate the strengths of both the convolution layer and
transformer. For example, CvT [31] utilizes strided convolutions to reduce the token size
and simplify self-attention computation. CvT inserts convolution layers between layers of
the multi-level transformer network to supplement local image features. Drawing from
these experiences, our approach tailors a sparse window attention method suitable for road
extraction tasks and properly employs convolution modules in deformable self-attention to
predict offsets, enabling more accurate acquisition of image information.

2.3. Deformable CNN and Attention

Due to previous methods like ViT, which directly partition the image into a token
sequence based on fixed sizes and positions, this approach may disrupt the overall semantic
information of the image and treat the foreground and background with equal attention,
which is not conducive to dense recognition tasks. The main concept of Deformable
CNN [32] is to concentrate receptive fields on the regions or targets of interest by resampling
the spatial positions of input pixels. Some works have already incorporated the idea of
deformability into different modules of transformer networks in various ways to enhance
the attention paid to key areas. For instance, Deformable-DETR [33], aimed at object
detection, employs a sparse spatial sampling attention module, which selects only a small
group of important sampling points around reference points for calculation. PS-ViT [34]
introduces an iterative progressive sampling module before the ViT backbone, which
iteratively updates the attended foreground regions and then performs adaptive sampling.
DePatch [35] is a plug-and-play module that flexibly segments samples in a deformable
manner during the patch segmentation stage, reducing the disruption of fixed segmentation
on semantic information. DAT [36] can be regarded as a spatial adaptive method, where
the deformable self-attention module designed is added to the backbone network, forming
a powerful and effective pyramid backbone network.

3. Method

This section introduces a new multi-stage transformer segmentation network tailored
for road features called DOCswin-Trans (Deformable and Overlapped Cross-Window
Transformer), which follows an encoder-decoder structure, as illustrated in Figure 2. In the
following, the encoder and decoder will be introduced.

Dercoder
(Uperhead)

CSwin Transformer
block

CSwinD-CSwin

CSwin Transformer
block

Stage ①

Stage ②

Stage ③

CSwin Transformer
block

Stage ④

LN

Deformable&Overlapped 
  CSwin-Attention

MLP

LN

C/2

C/2W

...

sw N

N

sw

...

H

Patch Embedding 

Patch Merging 

Window Deforming

H-Attentiom

V-Attention

Connact

LN

CSwin-Attention

MLP

LN

...

...

...

...

overlap-sw sw

overlap-sw sw

Figure 2. The overall structure of the developed method.
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3.1. Encoder

The encoder consists of four stages and is illustrated in Figure 2. In order to maintain
the stability of the model in the early stage and to avoid the new module disrupting the
extraction of background information from the model, the CSWin-Transformer Block and
DOC-Transformer Block are used interchangeably in the third stage only, and the basic
CSWin-Attention is still used in the rest of the stages for feature extraction, which can
balance and supplement the complete road and background features in time. This section
will detail these two blocks, respectively.

3.1.1. Cswin-Transformer Block

As shown in Figure 2, the CSWin-Transformer Block consists of multi-layer perceptron
(MLP) and cross-shaped window self-attention (CSWin-Attention). Additionally, layer
normalization (LN) and residual connections are incorporated to ensure training stability.
Its mathematical representation is as follows:

X̂l = CSWin − Attention(LN(Xl−1)) (1)

Xl = MLP(LN(X̂l)) + X̂l (2)

The core part leveraged to extract features in the CSWin-Transformer block is the
CSWin-Attention, which can leverage sparse attention to reduce the computational com-
plexity of self-attention for long sequence inputs. More importantly, for the segmentation
of the roads, this window partitioning method ensures that each patch participates in the
calculation range extending in both horizontal and vertical directions. This aligns with the
strip-like distribution characteristics of road features, allowing for more reasonable and
effective feature extraction within a suitable range.

The self-attention layer operates by transforming the input X into three new matri-
ces (Q, K, V) through linear transformations (WQ, WK, WV) applied to query, key, and
value. Subsequently, it calculates scores using scaled dot-product attention, indicating
the relevance.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (3)

MultiHead(Q, K, V) = Concat(head1, ..., headh)Wo (4)

The multi-head attention layer enhances the self-attention layer by adding the ability
to focus on different positions, thereby providing a more comprehensive mapping rep-
resentation of the input sequence. This helps the model capture richer information. In
multi-head attention, multiple sets (denoted as) of Q, K, and V matrices are defined to
focus on different positions and perform calculations. Output results are obtained for each
set of Q, K, and V, and after concatenation and linear transformation of the output results
from each set, the final result is obtained.

CSWin-Attention divides the input feature into two parts along the channel dimension
C. One part performs the horizontal strip self-attention computation, and the other part
performs the vertical strip self-attention computation, which ensures the completeness of
the feature extraction in the horizontal and vertical scales. Finally, the results of the two
groups are concatenated along the channel dimension C to obtain the feature vector.

CSWin − Attention(X) = Concat(H − Attention, V − attention)Wo (5)

where
{

H − Attention(XH), XH = X[1 : C/2]
V − Attention(XV), XV = X[C/2 : C]

(6)
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The following formulas all use horizontal (H) stripe self-attention computation as an
example, with vertical (V) stripe self-attention being similar. In the H direction, the input
vector is divided into several equally wide stripe window segments. Then, multi-head
self-attention computation is performed only within the window range for the patches
contained inside. Different widths of window segmentation are set in each stage, with
the stripe width increasing with the stage. This helps the model capture road features
of different scales, adapting to road entities of different thicknesses. Here, N = H/sw2
represents the number of stripe windows, and Fi

H denotes the feature vectors generated
after self-attention computation for the ith horizontal stripe window. The results obtained
from each stripe window are concatenated sequentially to obtain the complete feature map.

XH −→ [X1
H , X2

H , ..., XN
H ], (7)

Fi
H = Attention(Xi

HWQ, Xi
HWK, Xi

HWV) (8)

H − Attention(XH) = Concat[F1
H , F2

H , ...FN
H ] (9)

Compared to the square windows utilized in other vision transformer methods, the
horizontal and vertical stripe windows designed in CSwin are aligned with the distribution
of road shapes. However, there are opportunities for improvement in the detailed and
accurate extraction of road features. Therefore, in the next section, the DOC-Transformer
block with overlapped and deformable strategies will be proposed to improve the CSWin-
Transformer block in these aspects.

3.1.2. DOC-Transformer Block

The proposed DOC-Transformer block structure is similar to the CSWin-Transformer
block. Compared with the CSWin-Attention, our developed DOC-Transformer block has
two efficient modifications. The first is the overlapped windows, which use windows with
overlapping edges to generate K and V. The second is the deformable windows, which are
realized by resampling the feature vectors using an offset prediction network. These two
windows are detailed in the following.

Overlapped Window: Overlapped attention is used in both MOA [37] and HaloNet [38],
verifying that local attention using K and V slightly larger than Q improves the performance at
the same time while saving computation costs. The implementation of overlapping windows
involves partitioning the input features into two types of strip windows with different sizes,
denoted as XH1 and XH2 . Here, XH2 strip width is slightly wider than XH1 . As demonstrated
in the horizontal window of Figure 3, the center of XH1 and XH2 are aligned, and the effect of
the overlapping region is formed in the upper and lower sides of the window, where XH2 is
overlapped with respect to XH1 . The overlap operation can obtain the boundary information
of the neighboring windows and better preserve the local continuity of the input features,
it enhances self-attention to better focus on the positional information of roads within the
inputs and then addresses the challenge of the road’s low SNR. In order to ensure that
the overlap degree is reasonable and does not confuse the extraction of the features, it
is stipulated that Q is mapped from XH1 without overlap, while K and V are mapped
from ˜XH2 .

XH −→ XH1 = [X1
H1

, X2
H1

, ..., XN1
H1
], XH1 = [X1

H2
, X2

H2
, ..., XN2

H2
] (10)

Q = XH1WQ, K = ˜XH2WK, V = ˜XH2WV (11)

where N1 = H/sw1, N2 = H/sw2 are the number of windows, ˜XH2 is the result of XH2

after the resampling operation, and the specific process of offset acquisition and resampling
will be described in detail in the next section.
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Figure 3. Detail structure of the deformable window.

Deformable Window: The module structure in Figure 3 shows the details of the
deformable window in the red circle in the right legend in Figure 2. Its core components
consist of offset generation and vector resampling. In this paper, it is assumed that relying
on the self-learning ability of the offset prediction network, the feature information con-
tained in Q can be integrated through this network to find the most suitable and optimal
sampling region, and the whole process can be described as: the grid reference point
predicts the offset based on Q, and then the focus area, which is the road-related region, is
screened out by resampling in the window with a larger background. Firstly, the standard
reference grid coordinates Re f ∈ RHG×WG×2, with equal intervals, are generated in the
strip window of size sw × H (the reference grid points are sparsely plotted in the figure
for the convenience of demonstrating the process), which can be expressed as a series of
2D coordinates, and then all the 2D coordinates are normalized to the range of [−1,+1],
where (−1,−1) represents the top-left corner of the grid, and (+1,+1) represents the
bottom-right corner, facilitating subsequent resampling operations. Subsequently, Q is
input into the offset prediction network composed of two convolutional layers and the
activation function to obtain the offset O f f ∈ RHG×WG×2, and then added to the standard
reference grid coordinates to obtain the new offset coordinates Pos ∈ RHG×WG×2. Finally,
using Pos as the coordinate index to resample XH2 by bilinear interpolation, which can be
interpreted as the use of each point of the 4 nearest cell values of the neighborhood to be
computed, and finally, obtain the reconstructed vector ˜XH2 .

O f f = o f f set − network(Q) (12)

Pos = Re f + O f f (13)

˜XH2 = Re − sample(XH2 , Pos) (14)

- Offset network:The middle part of Figure 3 shows the offset prediction network.
Its specific implementation includes a nonlinear activation function GELU and two
convolution structures, in which 5 × 5 convolution is used to extract global and
local features, and the role of the 1 × 1 convolution kernel is to adjust the output
dimensionality to 2 dimensions as the offset in the two directions of (x, y).

- Re-sample: The purpose of re-sample is to reconstruct the feature vector based on the
offset coordinates, and since the probability will be out of the integer coordinate points,
we employ bilinear interpolation. This involves linear interpolation separately in the
horizontal and vertical directions, based on the values of the four-neighboring pixels.
This operation involves the distance from each point as a weight in the calculation,
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which ensures a reasonable correlation of the predicted vector values in terms of
spatial location.

3.2. Decoder

The decoder adopts the Uperhead architecture shown in Figure 4, which is composed
of a pyramid pooling module and a multi-scale feature pyramid. Feature maps of different
dimensions generated from the four stages are simultaneously inputted into the decoder.
The multi-level feature maps are upsampled and fused in the decoder to generate the
final prediction.

2C,W/8,H/8

4C,W/16,H/16

8C,W/32,H/32

Feature Maps

up-sampleing

PPM

up-sampleing

up-sampleing

Fused Feature Map

C,W/4,H/4

Figure 4. Detail structure of the decoder architecture.

4. Results
4.1. Datasets

The high-resolution remote sensing road extraction datasets used in this study are
two classic open-source datasets: the DeepGlobe dataset [39] and the Massachusetts road
dataset [40].

The DeepGlobe dataset consists of remote sensing images with a resolution of
0.5 m, containing various types of roads in urban and rural scenes. It comprises a total of
8570 images of size 1024 × 1024 pixels, with only 6226 images annotated for road segmen-
tation. Following the common practice, we randomly split the dataset into training and
validation sets in an 8:2 ratio and then cropped them in a non-overlapping way to a size of
512 × 512 pixels. In total, 19,924 images were used for training, while 4980 images were
used for validation.

The Massachusetts road dataset consists of 1-meter resolution remote sensing images
from Massachusetts, USA. Unlike the full road coverage in the DeepGlobe dataset, the label-
ing approach here involves expanding road centerlines downloaded from OpenStreetMap
to approximate real road masks with a width of 7 pixels. The dataset comprises 1171 images
of size 1500 × 1500. To obtain more data samples and enhance sample diversity from the
limited original images, we cropped them into 512 × 512 image blocks using a sliding
window approach with a stride of 256. Due to the presence of irregular areas of white space
with no features in some original images, we filtered out ineligible blank images, resulting
in 14,420 training images and 1008 testing images.

4.2. Evaluation Metrics

Evaluation metrics are used to judge the performance of a model, and we utilized
classic pixel-level evaluation metrics, including IoU, F1-score, precision, and recall. IoU is
the ratio of the intersection and union of the road class pixels in the predicted and GT, recall
can reflect the completeness of the road extraction by the model, and precision is used to
characterize the correctness of the road extraction result, usually recall and precision will be
constrained by each other, and the F1-score can be used as a comprehensive consideration
of the above two.



Symmetry 2024, 16, 468 10 of 18

For the strong class imbalance issue in this task, the calculation details are as follows:
aggregate and accumulate TP, FP, and FN from all images in the test set, as shown in
Equation (15), where there are a total of m images and i denotes the ith image. These values
are then used to compute precision and recall to avoid significant biases caused by too few
positive samples. Finally, the F1-score is calculated using Equation (18).

TP =
m

∑
1

TP(i), FP =
m

∑
1

FP(i), FN =
m

∑
1

FN(i) (15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1 − score = 2 × Precision × Recall
Precision + Recall

(18)

IoU =
TP

TP + FP + FN
(19)

4.3. Experimental Details

The experiments were conducted on NVIDIA RTX A6000 (NVIDIA, Santa Clara, CA,
USA), and the model was trained using the AdamW optimizer with an initial learning
rate of 0.0001 and momentum parameters of 0.9 and 0.999. The learning rate strategy is
“poly”, and the warm-up mechanism was used to warm up the model and decay the model
according to the polynomials in later iterations. The batch size was 8, and the total epochs
was 100.

4.4. Result on Deepglobe Dataset

To evaluate the performance of our road extraction model on the DeepGlobe dataset,
we selected several high-performing segmentation networks as references, including the
classic model of road extraction D-Linknet and the CNN-based semantic segmentation
network Deeplabv3+, as well as the transformer-based backbone networks Swin and Cswin
(using Uperhead as the decoder). Comparison with the multiple types of networks above
ensures the comprehensiveness of the experimental control. Table 1 demonstrates a series of
evaluation metrics to determine the accuracy of different models on the DeepGlobe dataset.
Our method (referred to as “Ours”) has a 0.63% to 5.01% improvement on IoU compared to
other methods, and 0.47% to 3.68% on F1. The improvement of recall is more obvious when
compared with Cswin, which can indicate that our model improves the capture rate of
positive samples of roads in the case of an extreme sample imbalance between foreground
and background.

Table 1. Quantitative analysis results of different models on the DeepGlobe dataset.

Method Precision Recall F1 IoU mPrecision mRecall mF1 mIoU

D-Linknet 77.53 73.30 75.36 60.46 88.21 86.21 87.18 79.24
Deeplabv3+ 79.84 71.17 75.26 60.33 89.32 85.21 87.14 79.20
Swin + Uperhead 82.42 74.30 78.15 64.14 90.68 86.82 88.64 81.21
Cswin + Uperhead 82.06 75.37 78.57 64.71 90.52 87.34 88.86 81.50
Ours + Uperhead 82.24 76.08 79.04 65.34 90.62 87.69 89.10 81.83

Scenario Analysis To validate the performance ability of the model in different scenes,
we divide the validation set images into multiple scenes after observing the overall situation
of the DeepGlobe dataset: rural areas, town areas, and urban concentrated areas. In Figure 5,
these 5 sets of images come from three scenarios that are both representative and diverse.
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Image label Dlink Deeplabv3+ Swin CswinOurs

a

b

c

d

e

Figure 5. Visual analysis of road segmentation results of different models on the DeepGlobe dataset.
(a,b) are the roads in rural areas and the background of (a) is a large area of wilderness, and the
background of (b) is a forested area. (c,d) are the roads in town areas, and the main body of (c) is
a small path next to the building, the main body of (d) is a main traffic artery, and (e) is the roads
in concentrated urban areas. The area highlighted in red boxes shows regions with noticeable road
discontinuities.

In rural areas (Figure 5a,b), the road structure is relatively single, and the background
mainly consists of wasteland, cultivated land, and woodland. The difficulty of recognition
in (a) arises from the similarity in texture between the road and the wasteland, which
leads to the omission of detection. A short road in the upper part of the image in (a) is
ignored by the other models, and there is a break in the extraction of road intersections
by Dlink, Deeplabv3+, and Cswin. (b) reveals occlusion issues, and the extraction results
of DOCswin-Trans(ours) are the most complete. Comparing DOCswin-Trans with Cswin,
it is evident that DOCswin-Trans supplements the obscured parts caused by vegetation,
ensuring road connectivity.

In town areas (Figure 5c,d), road structures are more complex, leading to issues like
“the same thing different spectrum” and “the same spectrum foreign matter”, which may
lead to challenges in identification due to spectral similarities between roads and objects,
like buildings or parking lots. Roads in building gaps in (c) were more difficult to extract,
while DOCswin-Trans also failed to identify all roads, but there was some improvement
over the other methods.

In concentrated urban areas (Figure 5e), roads are intertwined and complex, and the
interference is exacerbated due to the high density of buildings, making it difficult even
for human eyes to judge. This increases the difficulty of continuous road extraction. The
results of other models are highly fragmented, while DOCswin-Trans extracts the main
roads and ensures overall connectivity, but there are still some false detections present.

Table 2 shows the evaluation measures mIoU and mF1 in each scenario, and the line
chart is drawn as shown in Figure 6. Firstly, it can be visualized that the recognition
difficulty in town areas is higher than that in rural areas, while the accuracy in concentrated
urban areas is the lowest, which is consistent with the above analysis of the recognition
difficulty. Additionally, it is notable that DOCswin-Trans shows a larger improvement in
densely urban areas. The comparison images in (e) also indicate that the enhancements
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made by our method may be more applicable to concentrated urban areas. The proposed
modules manage to capture road details even in highly complex backgrounds.

Table 2. Scenario analysis results of different models on the DeepGlobe dataset.

Method Rural Area Town Area Urban Concentrated Area
mIoU mF1 mIoU mF1 mIoU mF1

D-Linknet 80.01 87.62 78.78 86.91 77.23 86.18
Deeplabv3+ 79.61 87.31 78.99 87.06 76.95 85.94
Swin+Uperhead 81.87 89.01 80.75 88.36 79.68 87.93
CSWin+Uperhead 82.06 89.15 81.08 88.61 79.98 88.14
Ours+Uperhead 82.24 89.28 81.34 88.8 80.69 88.64

Figure 6. Line chart of scene analysis results on the DeepGlobe dataset.

4.5. Result on Massachusetts Road Dataset

The image scenes in the Massachusetts road dataset also include rural and urban areas,
but the overall differences are smaller compared to the DeepGlobe dataset. Additionally,
the ground truth (GT) annotations are derived from OpenStreetMap and rasterized to a
uniform road width of 7 pixels, which may not align with the actual road widths in the
original images. Consequently, improvements in accuracy metrics may be subject to some
disturbance, but ensuring consistency across models still allows for experimental compar-
isons. The evaluation metric results for road extraction methods on the Massachusetts road
dataset are presented in Table 3. Our method shows improvements of 0.50% to 6.24% in
IoU compared to other methods, and enhancements of 0.39% to 5.05% in F1-score.

Table 3. Quantitative analysis results of different models on the Massachusetts roads dataset.

Method Precision Recall F1 IoU mPrecision mRecall mF1 mIoU

D-Linknet 79.86 62.52 70.14 54.01 88.93 80.83 84.35 75.59
Deeplabv3+ 79.53 64.96 71.51 55.65 88.82 82.03 85.06 76.45
Swin + Uperhead 81.3 67.21 73.59 58.21 89.77 83.19 86.14 77.82
CSWin + Uperhead 79.15 70.91 74.80 59.75 88.79 84.95 86.76 78.60
Ours + Uperhead 80.37 70.64 75.19 60.25 89.40 84.85 86.97 78.88

The comparison of prediction results for each model is shown in Figure 7. In Figure 7a,
a segment of the road in the top-left corner is entirely obscured by vegetation, yet the
road morphology is preserved, and its continuation can be inferred along the extension of
surrounding roads.

DOCswin-Trans supplements the occluded portions by leveraging its ability to capture
contextual information along both horizontal and vertical scales. It even correctly identifies
road areas not labeled in the ground truth. The vertical road on the right side in Figure 7b
and the circular road in Figure 7c are only partially detected by D-Linknet, Deeplabv3+,
and Swin, while they are completely ignored by CSwin.
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Image label Dlink Deeplabv3+ Swin CswinOurs

a

b

c

Figure 7. Visual analysis of road segmentation results of different models on the Massachusetts roads
dataset. (a–c) represent road segmentation results of subareas with different networks, respectively.
The area highlighted in red boxes shows regions with noticeable road discontinuities.

4.6. Parameter Experiment

Model performance is closely related to parameter settings. To evaluate the impact of
the number of modules on the model, we designed the following two sets of experiments
conducted on the DeepGlobe Dataset. The training configuration remains consistent with
the experimental details in Section 4.3 of the experiment.

(1) Model variant: The CSwin transformer builds some variants with different param-
eter settings such as the number of blocks, the attention head numbers, and the channel
dimension, etc. The detailed parameters for each variant are provided in Table 4. In this
experiment, different variants of the CSwin transformer were applied as the base encoder
to test their performance on the road extraction task.From Table 5, it can be seen that the
performance of the model increases with the number of parameters and the depth of the
architecture. However, blindly pursuing larger hidden layers, attention head numbers,
and other parameters does not guarantee a significant improvement in accuracy. This also
depends on factors such as the size of the training dataset and hyperparameter settings.
In practical applications, different variants of the model can be chosen based on the task
complexity, requirements for model accuracy, and deployment considerations.

Table 4. Detailed configurations of different variants of the CSwin transformer.

Method Hidden Size Block
Number

Head
Number Window Size Param

CSWin-tiny 64 1, 2, 21, 1 2, 4, 8, 16 1, 2, 7, 7 23 M
CSWin-small 64 2, 4, 32, 2 2, 4, 8, 16 1, 2, 7, 7 35 M
CSWin-base 96 2, 4, 32, 2 4, 8, 16, 32 1, 2, 7, 7 78 M

Table 5. Quantitative analysis results of different model variants on the DeepGlobe dataset.

Method Precision Recall F1 IoU mPrecision mRecall mF1 mIoU

CSWin-tiny 80.61 75.07 77.74 63.59 89.79 87.16 88.42 80.91
CSWin-small 80.97 76.43 78.63 64.79 89.99 87.84 88.88 81.54
CSWin-base 82.06 75.37 78.57 64.71 90.52 87.34 88.86 81.50

Ours-tiny 80.43 75.71 78.00 63.93 89.71 87.47 88.55 81.08
Ours-small 81.37 76.82 79.03 65.33 90.20 88.04 89.09 81.82
Ours-base 82.24 76.08 79.04 65.34 90.62 87.69 89.10 81.83

(2) DOC-Number: To balance the model’s attention between foreground and back-
ground, we replaced some of the Cswin-Transformer blocks with DOC-Transformer blocks
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only in the third stage of the model. To assess the impact of the replaced module count
(DOC-Number) on the model’s performance, we designed the following 5 sets of compara-
tive experiments. There are a total of 32 blocks in the third stage, and DOC-Transformer
Blocks are inserted at regular intervals among them. The results are shown in Table 6.
It can be observed that as the DOC-Number increases, the accuracy exhibits a trend of
initially increasing and then decreasing. Additionally, the results are optimal when the
parameter setting is 8, and they are worst when the parameter setting is 32. This indi-
cates that when fewer modules are replaced (DOC-Number = 0 or 4), there is still room
for improvement in the model’s attention to road features, suggesting that the model’s
performance has not been maximally enhanced. However, when too many modules are
replaced (DOC-Number = 16 or 32), the accuracy tends to slightly decrease. This could
be due to the model relying too heavily on deformable attention mechanisms, leading to
insufficient attention to background features and resulting in misjudgments. Moreover, the
increased number of replaced modules introduces redundancy in parameters, affecting the
model’s inference speed. Table 6 also provides statistics on the inference time of each model.
Considering both the improvement in accuracy and the impact of parameter quantity
on model performance, we have selected parameter setting 8 as the final design for the
model architecture.

Table 6. Experiment results of DOC-Number setting on the DeepGlobe dataset.

Method DOC-
Number Precision Recall F1 IoU Inference

Ours-base

0 82.06 75.37 78.57 64.71 0.255
4 81.61 76.45 78.94 65.21 0.328
8 82.24 76.08 79.04 65.34 0.373

16 81.57 75.71 78.53 64.65 0.515
32 81.46 70.0 75.29 60.38 0.736

4.7. Ablation Study

In order to better understand the performance of the two modified modules in the
road extraction task, we designed two ablation experiments to evaluate the effectiveness
of each component. The experiments were conducted on the DeepGlobe dataset, and the
training configurations remained consistent with the experiments described earlier.

As shown in Table 7, retaining only the deformable window resulted in a 0.34%
improvement in IoU compared to CSWin. This experiment illustrates that after the feature
vectors undergo offset resampling in the deformable attention module, certain complex
and redundant background feature information can be ignored. This process retains more
representative information related to road features, aiding the self-attention mechanism
in recognizing the heterogeneity of road information and addressing the issue of low
signal-to-noise ratio in road data.

Table 7. Quantitative analysis of the ablation experiments on the deformable window and overlapped
window modules.

Method Deformable
Window

Overlapped
Window Precision Recall F1 IoU

CSWin-base × × 82.06 75.37 78.57 64.71
Ours-base ✓ × 81.58 76.25 78.82 65.05
Ours-base × ✓ 80.80 76.88 78.79 65.00
Ours-base ✓ ✓ 82.24 76.08 79.04 65.34

Retaining only the overlapped window setting resulted in a 0.29% improvement in
IoU compared to CSWin, and there was a significant increase in recall. This suggests that
this strategy enhances the model’s recall rate for road-positive samples, thereby improving
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its ability to capture positive sample features. This ablation experiment demonstrates that
overlapping windows enhance the model’s ability to supplement information between
adjacent windows. By providing closely related contextual information, it improves the
completeness of the identification of road-class pixels and alleviates the issue of uneven
horizontal and vertical scales in road data.

4.8. Heat Map Visualization

To intuitively observe and understand how the model attends to different parts of
the inputs to enhance interpretability and accuracy, we utilized Grad-CAM to generate
activation maps. This allowed us to observe how different models concentrate their at-
tention on the road foreground and other background elements. Grad-CAM computes
the gradients of the feature maps with respect to the classification output and multiplies
them by the weight matrices calculated by the model. The resulting activation maps can
demonstrate the contribution of each pixel position to the output probability. Then, we
designate warmer-colored regions as areas where the model pays higher attention.

As shown in Figure 8, it can be observed that Swin and Cswin models exhibit high
sensitivity not only to road areas but also to building regions. This might be due to the
interference from the problem of different objects sharing similar spectra. Additionally,
the highlighted areas in Swin appear more scattered, possibly because the block-wise
windowing approach does not adapt well to the distribution characteristics of roads,
resulting in a lack of continuous activation areas around roads. The performance of Cswin
is slightly better than Swin, as it forms highlighted areas around roads, but the activation
level in background areas remains relatively high, without focusing on foreground parts.
The proposed model, on the other hand, to some extent shifts attention to road-related areas.
The darkening of colors around roads indicates increased attention, while the tendency
towards blue in background areas suggests that attention is suppressed there.

Image label Dlink Deeplablv3+ Swin CswinOurs

a

b

c

d

e

Swin CswinOursImage

Image label Dlink Deeplabv3+ Swin CswinOurs

Label

a

b

c

Figure 8. Heat map visualization of different models on DeepGlobe Dataset.
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5. Discussion
5.1. Conclusions

This paper proposes a transformer-based semantic segmentation network called
DOCswin-Trans for road extraction tasks in high-resolution remote sensing images, which
mainly focuses on the prior knowledge of roads. Our work aims to design rational modules
to overcome the asymmetry in scale and sample quantity of roads as much as possible. We
use horizontal and vertical bar windows in the transformer framework to more reasonably
partition the regions for multi-head self-attention computation and use the overlapped
window strategy to obtain continuous contextual information about the road, solving the
problem of road scale imbalance. We add the deformable self-attention module to let the
model focus its attention more on the patches containing road information, which can
be used to balance the gap between the foreground and the background in terms of the
amount of information of the samples, i.e., to solve the problem of the road’s low SNR.

We conducted experiments to validate the proposed model on two road datasets and
compared it with several baseline methods. Both qualitative and quantitative analyses
were performed using accuracy evaluation metrics and prediction maps. We designed abla-
tion experiments specifically targeting the overlapped window strategy and deformable
window strategy integrated into the model to validate their effectiveness. Additionally,
visualization through heatmaps confirmed that our method improved the model’s percep-
tion of road-related pixels. Since road image data may vary due to geographical factors, we
also designed scene analysis experiments to assess each model’s performance in different
scenarios. Our findings indicate that DOCswin-Trans demonstrated the most significant
optimization effect in dense urban areas, with performance improvements also observed
in rural and town areas. Through these experiments, we demonstrated that the modules
designed in this method enhance the model’s ability to extract road features.

5.2. Future Directions

The approach presented in this paper does not address the optimization of model
computational complexity. However, the computational complexity of the model is crucial
for its deployability in real-world applications, especially in scenarios such as traffic safety
and emergency response, where real-time road extraction is essential. Future work aims
to develop lighter-weight transformer-based models to accelerate inference speed. Fur-
thermore, the current model heavily relies on annotated samples, leading to challenges in
generalizing to unknown domains. In future work, strategies such as generative learning
and self-training will be explored to tackle domain adaptation tasks, enabling the trained
model to be applied to a wider range of road data.
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