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Abstract: Biological systems, characterized by their complex interplay of symmetry and asymmetry,
operate through intricate networks of interacting molecules, weaving the elaborate tapestry of life.
The exploration of these networks, aptly termed the “molecular terrain”, is pivotal for unlocking
the mysteries of biological processes and spearheading the development of innovative therapeutic
strategies. This review embarks on a comprehensive survey of the analytical methods employed in
biological network analysis, focusing on elucidating the roles of symmetry and asymmetry within
these networks. By highlighting their strengths, limitations, and potential applications, we delve into
methods for network reconstruction, topological analysis with an emphasis on symmetry detection,
and the examination of network dynamics, which together reveal the nuanced balance between
stable, symmetrical configurations and the dynamic, asymmetrical shifts that underpin biological
functionality. This review equips researchers with a multifaceted toolbox designed to navigate and
decipher biological networks’ intricate, balanced landscape, thereby advancing our understanding
and manipulation of complex biological systems. Through this detailed exploration, we aim to
foster significant advancements in biological network analysis, paving the way for novel therapeutic
interventions and a deeper comprehension of the molecular underpinnings of life.

Keywords: biological networks; network analysis; systems biology; molecular interactions; drug
discovery; network medicine

1. Introduction

Biological networks embody a complex interplay of molecular entities, intricately
woven to form life’s very fabric and underpin living organisms’ functioning [1,2]. These
networks, aptly termed the “molecular terrain”, are a testament to the delicate balance
between symmetry and asymmetry, encompassing diverse biomolecules such as proteins,
metabolites, and genes. The molecules interact meticulously, not only to govern various
biological processes [3], including signal transduction, gene regulation, and metabolic
pathways [4], but also to maintain the equilibrium between symmetrical order and asym-
metrical flexibility that is critical for life. Exploring symmetry and asymmetry within these
networks offers a deeper understanding of how biological complexity and functionality
arise from seemingly simple rules and patterns. Understanding these networks’ structure,
dynamics, and inherent symmetry/asymmetry has thus become a cornerstone of modern
biological research, offering invaluable insights into disease mechanisms, drug discovery,
and organismal development [5]. Analytical methods play a pivotal role in unraveling the
intricate relationships and the balance between symmetry and asymmetry within these
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networks. The methods provide critical insights into network structure, dynamics, and
functionality [6], enabling researchers to decipher the complex code of biological networks
and how their symmetrical and asymmetrical properties drive biological function and
adaptation. Figure 1 depicts an example of the significance of investigating biological
networks. In Figure 1, images depicting “Decipher the language of life”, “Developing
personalized medicine”, and “Unravel the roots of disease” are sourced from [7], while
images illustrating “Synthetic biology solutions” and “Design novel therapies” are sourced
from [8]. In this research paper, we embark on a comprehensive exploration of the an-
alytical methods employed in the analysis of biological networks. Our survey aims to
provide a holistic view of the diverse tools and techniques available for studying molecular
interactions at a network level. By examining the strengths, limitations, and applications
of different analytical approaches [9], we seek to enhance the understanding of biological
networks and facilitate advancements in molecular biology research.
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Figure 1. Applications of biological networks.

The study of biological networks is driven by a fundamental desire to understand the
underlying mechanisms of life. By unraveling the intricate web of interactions within these
networks, we aim to understand the following.

Deciphering the language of life involves understanding biological networks as a code
woven from molecular interactions [10]. This understanding enables us to unravel how
cells function, communicate, and adapt to changing environments [11].

Unraveling the roots of disease is crucial, as many diseases stem from disruptions
in the normal functioning of biological networks [12]. Through the study of these net-
works, we can pinpoint key players in disease processes, opening avenues for potential
therapeutic interventions.

Designing novel therapies is facilitated by comprehending how drugs interact with
biological networks. This knowledge empowers us to create more targeted and effective
treatments with reduced side effects [13].

Developing personalized medicine is essential, considering that individual varia-
tions in network structure can impact disease susceptibility and treatment response [14].
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By grasping these variations, we can pave the way for tailored medical approaches for
individual patients.

Engineering synthetic biology solutions becomes achievable by leveraging the princi-
ples of biological networks [15]. This approach allows us to craft synthetic systems with
specific functionalities, potentially driving advancements in fields like bioengineering and
bioremediation [16].

This review aims to provide a comprehensive overview of the analytical methods
employed for navigating and deciphering the complexities of the molecular terrain. We
delve into the diverse tools and techniques used for biological network analysis with the
following objectives:

• To provide a holistic view of the various approaches available for studying molecular
interactions at a network level.

• To examine the strengths, limitations, and applications of these diverse analytical tools.
• To enhance our understanding of the intricate dance of molecules within the

cellular landscape.
• To facilitate advancements in research by equipping researchers with the necessary

knowledge and tools to explore the fascinating world of biological networks.

By reaching these goals, we aim to enhance comprehension of the complex realm of
life and tap into its extraordinary capacity for creativity and progress.

The remaining parts of this paper are structured as follows. Section 2 delves into
conventional methods for network analysis of the various types of biological networks and
their diverse applications. Section 3 explores the methodologies for network reconstruction
and their experimental validation. Section 4 analyzes and interprets biological networks,
highlighting their applications in various domains, such as drug discovery and personalized
medicine. Section 5 addresses the challenges and future directions of biological network
research. Finally, Section 6 concludes this review by summarizing the key insights and
emphasizing the potential of these analytical methods in advancing our comprehension of
the intricate world of biological networks.

2. Conventional Methods for Network Analysis

The exploration of the molecular terrain begins with a foundational understanding of
network structure and function. Traditional network analysis methods, rooted in graph
theory and visualization techniques, provide valuable tools for navigating and deciphering
the intricate relationships within biological networks [4,17]. Figure 2 presents a landscape
of the conventional approaches to network analysis. In Figure 2, the background images
are sourced from [18]. It categorizes and visually represents the different methods based
on their key characteristics and functionalities [3]. This allows for easy comparison and
understanding of the strengths and weaknesses of each approach, guiding the selection
of the most suitable technique for a specific research question or application. The fig-
ure typically includes different categories like project management techniques—such as
the critical path method (CPM) [19] and the program evaluation and review technique
(PERT) [20]; centrality measures—such as degree centrality, betweenness centrality, close-
ness centrality, and eigenvector centrality [21]; community detection—such as modularity,
the Girvan–Newman algorithm [22], and the Louvain modularity algorithm [23]; and
flow and diffusion analysis—such as betweenness centrality [24], PageRank, and Katz
centrality [25,26].
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2.1. Analytic Perspective on Network Architecture with Graph Theory

Graph theory serves as the cornerstone of traditional network analysis, offering a
robust mathematical framework for representing biological networks [27]. In this frame-
work, individual molecules are depicted as nodes, and their interactions are represented as
edges [28]. This approach allows researchers to leverage various graph-theoretic tools to
quantitatively analyze network structure and identify key network features [29]. Central to
this analysis are centrality measures, which quantify the importance of a node within the
network. Common centrality measures include the following:

• Degree centrality: this metric simply counts the number of connections a node has,
indicating its overall connectivity within the network [17].

• Betweenness centrality: this measure reflects a node’s role as a bridge between different
network communities, highlighting its potential to influence information flow within
the network [30].

• Closeness centrality: this metric signifies how quickly information can propagate from
a particular node to all other nodes in the network [31].

By analyzing these centrality measures, researchers can identify crucial nodes that play
central roles in network function and communities of interconnected nodes that potentially
represent distinct functional modules within the network [32].

2.2. Network Reconstruction

The foundation of biological network analysis is network reconstruction. There are sev-
eral methods for determining the nodes (molecules) and edges (interactions) in a network,
each having advantages and disadvantages [33]. High-throughput experimental tech-
niques include mass spectrometry, yeast two-hybrid experiments, co-immunoprecipitation,
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and other techniques that allow for the direct identification of molecular interactions [32].
Although these methods provide high-confidence data, they are frequently costly and
labor-intensive [34]. Methods based on the literature and text mining are techniques that
make use of the large body of scientific literature to extract interaction information from
published articles using text-mining algorithms. Although this method is economical, it
could be inaccurate because of possible mistakes in the literature [34].

In silico prediction techniques are techniques that use computer algorithms to forecast
interactions in light of physical characteristics, sequence homology, and other molecular
characteristics [35]. These techniques are scalable and have high throughput, but they need
to be carefully validated and might not be as accurate for all kinds of interactions.

Cytoscape is a widely used network analysis and visualization platform [35,36], but it
is not the only option. Other popular tools include Gephi version 0.10.1 [37], NetworkX
requires Python 3.9 [38], Igraph version 0.10.11 [39], and VisANT version 3.5 [40]. These
tools offer a variety of features for network manipulation, analysis, and the creation of
high-quality visualizations, making them suitable for rebuilding and exploring networks
in various fields. A simple overview of the steps for rebuilding a network with network
visualization using the Cytoscape tool [35] is presented in Figure 3.
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Figure 3. An example of a rebuilding network with network visualization using Cytoscape.

Step 1: The preparation of data involves the creation of two separate tables. The nodes
table should contain information about each individual in the network, with each row
representing a person and each column representing an attribute about that person. Unique
identifiers (IDs) for each individual should be included in the first column [41]. The edges
table defines the connections between individuals, typically comprising three columns:
“Source”, “Target”, and potentially an additional column for attributes of the connection
(e.g., relationship type). The “Source” and “Target” columns should reference the IDs from
the nodes table.

Step 2: The data are imported into Cytoscape. Upon opening Cytoscape, the “Import
Network” button is clicked. The nodes table is selected and imported, resulting in the
creation of nodes representing each individual. This process is repeated for the edges table,
wherein connections between the nodes are established based on the information in the
“Source” and “Target” columns.
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Step 3: Customization of the network visualization is optional. Various features
of Cytoscape can be utilized to customize the appearance of the network. Node shape
and color can be adjusted to represent different attributes, such as gender or nationality.
Similarly, edge style and color can be modified to reflect the type of connection between
individuals. Layout algorithms provided by Cytoscape can be employed to arrange nodes
in a clear and informative manner.

Step 4: Exploration and analysis of the network can be conducted. The search bar in Cy-
toscape enables the identification of specific individuals or groups. Filtering of the network
based on node or edge attributes is facilitated by Cytoscape [42]. Additionally, built-in anal-
ysis tools can be utilized to calculate network metrics and identify important connections.

2.3. Visualizing Network Patterns

The human brain is wired to excel at processing visual information. Network visualiza-
tion tools, such as Cytoscape [36], Gephi [37], NetworkX [38], Igraph [39], and VisANT [40],
leverage this inherent human capability by transforming complex network data into in-
tuitive graphical representations [43]. These visual representations allow researchers to
perform the following actions:

• Explore the overall network structure: by observing the layout and distribution of
nodes and edges, researchers can gain a holistic understanding of a network’s organi-
zation and identify potential patterns or anomalies.

• Identify key network features: visualization tools facilitate the identification of densely
connected clusters, isolated nodes, and central hubs, offering valuable insights into
potential functional modules and critical players within the network.

• Communicate network insights: visual representations act as powerful communication
tools, enabling researchers to effectively share their findings with collaborators and
the broader scientific community.

While traditional methods provide a valuable foundation for understanding network
structure and function, they are not without limitations. As networks become increasingly
complex, limitations in scalability and the lack of dynamic considerations necessitate the
exploration of more advanced analytical approaches. The following sections will delve into
these cutting-edge approaches, exploring their capabilities and potential to unlock further
secrets of the molecular terrain.

Table 1 provides an overview of some conventional approaches used for analyzing
biological networks. It categorizes different methods based on their focus and offers a
brief description of each approach, along with examples of their applications in biological
research. This table serves as a quick reference guide for researchers interested in select-
ing appropriate network analysis techniques for their specific biological questions and
network types.

Table 1. Conventional network analysis tools for biological networks.

Category Approach Description Application Examples

N
et

w
or

k
D

es
cr

ip
ti

on
an

d
V

is
ua

liz
at

io
n

Degree Centrality Measures the number of
connections a node has.

Identifying important genes, proteins, or
metabolites in a network [44].

Betweenness Centrality Identifies nodes that act as
bridges between different
network regions.

Identifying potential bottlenecks, key
regulators, or drug targets [17].

Closeness Centrality Measures how quickly
information can flow from one
node to others.

Identifying central players in information
dissemination or regulatory processes [17].

Community Detection Identifies clusters of nodes with
dense connections.

Discovering functional modules,
co-regulated genes, or pathways [45].
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Table 1. Cont.

Category Approach Description Application Examples

N
et

w
or

k
Fu

nc
ti

on
an

d
D

yn
am

ic
s

Shortest Path Analysis Identifies the most efficient
pathway for
information/material flow.

Understanding signal transduction,
metabolic pathways, or drug action [46].

Network Motif Analysis Detects recurring patterns
of interactions.

Identifying fundamental regulatory units,
signaling modules, or potential drug
targets [44].

Differential
Network Analysis

Compares networks under
different conditions.

Identifying network alterations in disease,
drug treatment, or environmental
changes [47].

Network Diffusion Analysis Models information/influence
propagation through the network.

Simulating drug or signal spread, studying
disease progression, or understanding
information flow in cellular processes [1].

In
te

gr
at

io
n

w
it

h
O

th
er

D
at

a

Gene Co-expression Analysis Overlaps gene expression data
with interaction networks.

Identifying co-expressed genes potentially
involved in the same biological
process [48].

Network Enrichment
Analysis [49]

Identifies statistically
overrepresented
pathways/functions within
network modules.

Linking network structure to known
biological functions or disease
mechanisms [50].

Network-Based Disease
Gene Prioritization

Prioritizes candidate genes for
disease association based on
network connections.

Identifying novel disease genes or
therapeutic targets [51].

3. Advanced Network Analysis Techniques

Recent developments have resulted in the creation of sophisticated network analysis
tools that go deeper into the intricacies of biological networks, even though traditional
methodologies still offer insightful knowledge of the structure and function of networks.
These methods provide a deeper comprehension of underlying patterns, predictive powers,
and network dynamics.

3.1. Network Inference

The explosion of data from high-throughput technologies like gene expression pro-
filing, protein–protein interaction assays, and metabolic pathway mapping presents both
opportunities and challenges. While these datasets offer a wealth of information on molec-
ular interactions, they often lack complete coverage, leading to gaps in our understanding
of biological networks. Network inference techniques address this challenge by leveraging
existing data to predict missing interactions and reconstruct comprehensive biological
networks [52]. Common methods include the following:

- Mutual information: this technique measures the statistical dependence between
two variables, helping identify potential interactions between entities based on their
co-occurrence patterns in the data.

- Correlation analysis: by calculating the correlation coefficients between different
data points, this approach can reveal co-regulations or associations between entities,
suggesting potential interactions within the network.

Table 2 shows an overview of methods commonly used for network inference in
biological systems. These methods leverage existing data to predict missing interactions and
reconstruct comprehensive biological networks, offering valuable insights into molecular
interactions and biological systems.
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Table 2. Methods for network inference.

Technique Description Application Strengths Limitations
Mutual information Measures statistical

dependence between
variables, suggesting
potential interactions.

Identifying co-expressed
genes potentially
involved in the same
biological process.
Discovering
protein–protein
interactions based on
co-localization data [53].

Simple and
computationally
efficient.
Less sensitive to noise
compared to
correlation [54].

May miss weak or
non-linear relationships.
Requires careful selection
of appropriate
dependence
measures [55].

Correlation analysis Calculates correlation
coefficients to reveal
associations between
entities, suggesting
potential interactions.

Identifying co-regulated
genes in gene
expression networks.
Uncovering potential
links between
metabolites based on
their abundance
profiles [56].

Easy to interpret and
implement.
Suitable for linear
relationships [49].

Sensitive to outliers and
data scaling.
May not capture
non-linear
dependencies [57].

Boolean networks Represents biological
systems as logical rules
governing interactions
between entities.

Simulating network
dynamics and identifying
critical regulatory points.
Modeling cellular
differentiation or signal
transduction
pathways [57].

Intuitive
and interpretable.
Enables qualitative
analysis of
network behavior.

Limited to discrete states
and Boolean logic,
potentially
oversimplifying
complex systems.
Can become
computationally
expensive for
large networks.

Bayesian networks Probabilistic graphical
models capture
conditional
dependencies between
variables, allowing for
the integration of prior
knowledge and
reasoning about the
likelihood of specific
network configura-
tions.

Predicting gene
expression levels based
on regulatory
network structure.
Inferring missing links in
protein–protein
interaction networks [58].

Incorporates prior
knowledge
and uncertainty.
Enables probabilistic
reasoning about
network interactions.

Computational
complexity can increase
with network size.
Relies on accurate prior
knowledge, which may
not always be
available [59].

Matrix factorization Decomposes network
data matrices into
lower-dimensional
matrices, revealing
hidden patterns and
facilitating the
identification of
potential interactions.

Identifying functionally
related genes or proteins
based on
co-occurrence patterns.
Discovering hidden
communities within
biological networks [60].

Reduces data
dimensionality for
efficient analysis.
Uncovers hidden
patterns in complex
networks [61].

Can be sensitive to noise
and outliers in the data.
Interpretation of the
decomposed factors can
be challenging.

Network inference allows researchers to extract valuable insights from incomplete
datasets, providing a more holistic view of the biological system under study.

3.2. Network Dynamics

Biological networks are not static structures but, rather, dynamic entities that exhibit
temporal changes throughout various cellular processes. These changes can involve alter-
ations in the strength of interactions, the addition or removal of nodes/edges, and even
complete network reconfiguration depending on the cellular context. Network dynamics
approaches aim to capture these temporal changes and identify key events in various
biological phenomena [62]. Some common techniques include the following:
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✓ Differential network analysis is a method that compares networks under different
conditions (e.g., healthy vs. diseased state) to identify changes in network topology
and connectivity patterns, revealing potential mechanisms underlying biological
transitions [63].

✓ Time-series analysis is the approach that analyzes network data collected over time
points, allowing researchers to track the evolution of the network and identify dynamic
changes in network structure and function [64].

Table 3 presents an analysis of the dynamic behavior within biological networks, shed-
ding light on how interactions evolve and influence the overall system dynamics. The table
explores critical aspects of network dynamics, providing insights into the temporal changes,
strengths, limitations, and regulatory mechanisms that govern biological processes.

Table 3. Dynamics of biological networks.

Technique Description Application Strengths Limitations
Differential
network analysis

Compares networks
under different
conditions to identify
changes in
connectivity patterns.

Identifying
differentially expressed
genes and their
interactions in disease
vs. control samples.
Unveiling alterations in
protein–protein
interaction networks
upon drug
treatment [65].

Reveals changes in
network structure and
function under
different conditions.
Helps identify potential
disease drivers or drug
targets [66].

Requires comparable
network data from
different conditions.
Statistical significance
testing can be complex
for large networks.

Time-series analysis Analyzes network data
collected over time
points to track
network evolution.

Studying the dynamic
reconfiguration of
metabolic networks
during
cellular processes.
Monitoring the
temporal changes in
gene regulatory
networks during cell
cycle progression [67].

Captures dynamic
network changes at a
high resolution.
Provides insights into
network remodeling
and adaptation.

Requires extensive
time-series network
data, which can be
expensive and
time-consuming
to collect.
Data analysis can be
computationally
intensive [68].

The dynamics of networks record time variations and pinpoint important occurrences
in biological networks. Comparing the tissue networks in healthy and sick states is neces-
sary to understand how a disease progresses—this method examines how gene regulatory
networks have changed over time; simulates how stimuli affect signal transduction path-
ways dynamically [69]; offers perceptions of the long-term functioning of networks; and
captures momentary alterations and essential occasions. However, it needs time-series net-
work data, which can be challenging to find, and is sensitive to problems with data quality
and noise. By studying network dynamics, researchers can gain a deeper understanding of
how biological systems adapt and respond to internal and external stimuli.

3.3. Machine Learning in Network Analysis

The field of machine learning (ML) has significantly impacted network analysis by
providing powerful tools for extracting hidden patterns, classifying different network
types, and predicting missing interactions [70]. Popular ML techniques employed in
network analysis include Support vector machines (SVMs) [71], Random forests [72],
Nearest neighbors [73], and Naive Bayes [74] techniques. Support vector machines (SVMs)
can be used to classify network modules based on specific features, enabling researchers
to identify functionally distinct groups of nodes within the network [71]. Random forests
are used by constructing multiple decision trees; random forests can predict missing
interactions within a network with high accuracy, further refining the understanding of
network structure [72].
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Table 4 showcases the diverse applications of machine learning techniques in net-
work analysis. By leveraging advanced algorithms and computational methods, machine
learning is crucial in extracting meaningful patterns, predicting interactions, and uncov-
ering hidden relationships within complex biological networks. This table highlights the
intersection of machine learning and network analysis, illustrating how these approaches
enhance our understanding of biological systems. Figure 4 illustrates the transformative
impact of deep learning in biological network analysis. In Figure 4, the background images
are sourced from [18]. By harnessing the power of deep neural networks, researchers can
uncover hidden patterns, predict interactions, classify network types, and model temporal
dynamics within complex biological systems.

Table 4. Machine learning applications in network analysis.

Technique Description Application Strengths Limitations
Support vector
machines (SVMs)

Classify network
modules based on
specific features to
identify functionally
distinct groups.

Clustering genes into
co-expressed modules
based on their
network interactions.
Classifying protein
complexes based on their
network topology [75].

Effective for
high-dimensional data
and non-linear
relationships.
Relatively robust to
noise and outliers [71].

May require careful
parameter tuning to
achieve optimal
performance.
Can be computationally
expensive for large
datasets [76].

Random Forests Predict missing
interactions within a
network with
high accuracy.

Filling gaps in
protein–protein
interaction networks to
improve their coverage.
Predicting missing
metabolic reactions to
complete pathway
maps [77].

Handles data
heterogeneity well.
Provides ensemble
learning for improved
accuracy and
stability [78].

Less interpretable
compared to some
other techniques.
Feature selection and
parameter tuning can
be crucial.

Nearest neighbors Classify data points
based on their
similarity to their
nearest neighbors.

Link prediction, node
classification [73].

Simple to implement,
interpretable results.

Sensitive to noise, suffers
from the curse
of dimensionality.

Naive Bayes Probabilistic classifier
based on
Bayes’ theorem.

Spam filtering, social
network analysis [74].

Efficient for large
datasets, handles
categorical data well

Assumes independence
of features, may not be
suitable for
complex relationships.

Deep learning Utilizes deep neural
network architectures
to learn complex
relationships from
network data.

Identifying potential
drug targets by analyzing
protein–protein
interaction networks.
Classifying different
disease subtypes based
on their gene regulatory
network properties [44].
Predicting the temporal
evolution of
biological networks.

Capable of capturing
intricate non-linear
relationships and
hidden features.
Can handle
high-dimensional and
complex network data.

Requires large amounts
of data for training,
which may not always be
available [79].
Interpretability and
explainability can
be challenging.

Graph neural
networks (GNNs)

Specialized deep
learning models
designed specifically
for analyzing
graph-structured data,
like networks.

Identifying communities
of functionally related
genes within
co-expression networks.
Predicting drug–target
interactions based on
protein–protein
interaction networks.
Classifying different cell
types based on their gene
regulatory network
features [44].

Tailored for network
data, incorporating
node features and
network topology.
Can capture complex
dependencies and
relationships within
networks [80].

Relatively new area with
ongoing development.
May require specialized
hardware and software
for training
and implementation.
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Deep learning has emerged as a powerful tool in biological network analysis, offering
exciting possibilities for understanding complex biological processes [50]. By leveraging
deep neural networks with their ability to learn intricate non-linear relationships from
vast datasets, researchers can extract hidden patterns within biological networks, revealing
previously unknown connections and functionalities. They can also predict missing interac-
tions with high accuracy, enhancing the completeness and reliability of network models [49].
Furthermore, deep learning enables the classification of different network types based on
their structure and function, aiding in disease diagnosis, drug discovery, and understand-
ing cellular processes. Additionally, it allows researchers to model the temporal evolution
of networks, providing insights into dynamic changes and critical events within biological
systems. While deep learning offers immense potential, challenges remain, including the
need for large datasets, the “black-box” nature of some models hindering interpretability,
and the requirement for specialized expertise and computational resources. As research in
this field advances, deep learning holds significant promise for further revolutionizing our
ability to analyze and understand the intricate world of biological networks.

Graph neural networks (GNNs) are a specialized type of deep learning model designed
specifically for analyzing graph-structured data, like biological networks [81]. Unlike tradi-
tional deep learning models that struggle with the non-linear relationships and complex
structures inherent in networks, GNNs excel in this domain due to their unique capabilities.
GNNs can incorporate node features and network topology, allowing them to learn from
both the features associated with individual nodes (e.g., gene expression levels) and the
connections between those nodes within the network [82]. By considering the network
structure, GNNs can effectively capture intricate interactions and dependencies between
nodes, leading to more accurate and informative insights. This tailored approach allows
GNNs to be particularly valuable in biological network analysis, enabling researchers to
leverage the strengths of deep learning to extract meaningful patterns, predict interactions,
classify network types, and model dynamic changes within biological systems.

Figure 5 showcases the diverse applications of GNNs in biological network analysis.
In Figure 5, the background images are sourced from [18]. By leveraging the unique capa-
bilities of GNNs, researchers can identify communities of functionally related genes within
co-expression networks, predict drug–target interactions in protein–protein interaction
networks, and classify different cell types based on gene regulatory network features. These
applications demonstrate how GNNs play a crucial role in uncovering hidden relationships,
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making predictions, and enhancing our understanding of complex biological systems.
Despite being a relatively new and quickly developing discipline, GNNs have the potential
to significantly advance our understanding of biological networks and spur discoveries
in a variety of biological and medical fields. The integration of ML into network analysis
opens exciting avenues for exploring complex biological questions and making data-driven
predictions about network behavior.
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3.4. Topological Analysis

Once a network is reconstructed, various topological features can be analyzed to
gain insights into its organization and function. Key metrics include degree distribution,
the clustering coefficient, and shortest paths. Degree distribution reveals the distribution
of connections among nodes, shedding light on the network’s connectivity patterns [83].
The clustering coefficient measures the degree to which nodes tend to cluster together,
indicating the network’s tendency for local interconnectedness. Shortest paths represent the
minimum number of steps between two nodes, offering valuable insights into information
flow dynamics and identifying potential bottlenecks within the network [84]. Topological
analysis is delved into in Figure 6, and is a powerful tool for dissecting the intricate
organization of networks. In Figure 6, the background images are sourced from [18].
Following the construction of a network, various features are examined by this approach
that shed light on its inner workings and functionality. Through the analysis of these
topological properties, a deeper understanding is gained of how nodes within the network
interact with and influence each other.

The figure highlights several key metrics used in topological analysis: Degree distri-
bution is a metric which unveils the connectivity patterns within the network, revealing
how many connections each node possesses. By analyzing these distribution patterns, re-
searchers can identify central hubs—highly connected nodes critical for network function—
and peripheral nodes with specialized roles. The clustering coefficient is a metric that
quantifies the tendency of nodes to form tightly knit communities within the network. A
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high clustering coefficient indicates a network with well-defined modules, suggesting a
high degree of interconnectedness within these specific groups.
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Shortest paths represent the most efficient routes for information flow between any
two nodes within the network. By identifying the shortest paths, researchers can pinpoint
potential bottlenecks that hinder communication and information exchange [84].

By examining these topological features, researchers can better understand the struc-
tural characteristics and functional properties of biological networks. These topological
features can be used to identify key players, predict functional associations, and classify
different network types.

4. Applications of Biological Network Analysis

Network analysis has become an indispensable tool across various areas of biological
research, offering valuable insights into complex biological systems. In this section, we
explore some key applications.

4.1. Understanding Disease Mechanisms

Network analysis plays a crucial role in deciphering the intricate mechanisms under-
lying disease progression. It is a potent tool for figuring out the complex processes that
underlie the development of disease [85]. Researchers can learn a great deal about the
important players, interrelated processes, and dynamic changes that contribute to the onset
and progression of different diseases by studying disease-associated networks. This section
looks at how researchers can be empowered by network analysis.

Figure 7 provides a visual representation of how network analysis techniques can
be utilized to understand disease mechanisms at a molecular level. By examining the
interactions between genes, proteins, and other biological entities within intricate net-
works, researchers can identify the key players, pathways, and dysregulations associated
with various diseases. This figure highlights the power of network analysis in eluci-
dating the underlying mechanisms of diseases, offering valuable insights for precision
medicine, drug discovery, and therapeutic interventions [86]. Researchers can find illness
modules, investigate network dynamics, and identify important drivers by examining
disease-associated networks.
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• Identify key drivers: One crucial application of network analysis lies in pinpointing
key drivers of disease progression. These drivers are often highly connected nodes
or critical pathways within the network that exert a significant influence on the
disease state. By identifying these key drivers, researchers can prioritize potential
therapeutic targets. Molecules or pathways identified as key drivers become prime
candidates for therapeutic interventions. Disrupting their function or targeting them
with specific drugs could potentially halt or reverse disease progression. Moreover,
unraveling disease etiology is another critical outcome of identifying key drivers [87].
Understanding the identity and role of key drivers sheds light on the root causes of the
disease, providing valuable insights into disease development and progression. This
deeper understanding can inform future research directions, personalized treatment
strategies, and ultimately contribute to improved patient outcomes.

• Uncover disease modules: Network analysis allows researchers to identify disease
modules, which are clusters of interconnected nodes (e.g., genes, proteins) within the
network that are functionally associated with the disease [88]. Studying these modules
provides valuable insights into coordinated molecular processes: By analyzing the
interactions and functions within a disease module, researchers can understand how
different molecules within the module work together to contribute to the disease
phenotype. This reveals the coordinated molecular processes underlying the disease
state. Novel therapeutic strategies: Identifying the components and functions of
disease modules opens avenues for the development of novel therapeutic strategies.
Instead of targeting individual molecules, these strategies could potentially disrupt
entire pathways or processes orchestrated within the disease module, leading to
more effective therapeutic interventions. Furthermore, studying disease modules
can lead to the discovery of novel therapeutic strategies. Identifying the components
and functions of disease modules can pave the way for the development of novel
therapeutic strategies that target not just individual molecules but entire pathways or
processes contributing to the disease [89]. This holistic approach to targeting disease
modules can potentially lead to more effective treatments with fewer side effects and
improved outcomes for patients.

• Explore network dynamics: Diseases are rarely static entities but, rather, evolve over
time. Network analysis allows researchers to study the dynamics of disease-associated
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networks, revealing how the network structure and function change throughout
disease progression [90]. This information can be crucial for understanding disease
progression. By tracking changes in network connections and properties over time,
researchers can gain a deeper understanding of how the disease progresses from its
early stages to more advanced forms. Moreover, analyzing network dynamics can help
pinpoint critical junctures in disease progression where targeted interventions might be
most effective in halting or reversing the course of the disease. By analyzing changes in
network structure and function over time, researchers can gain a deeper understanding
of how the disease progresses and identify potential points for intervention.

4.2. Drug Discovery

Network analysis has become an indispensable tool throughout the entire drug dis-
covery pipeline, offering valuable insights for identifying potential targets, predicting
interactions, and repurposing existing drugs [90]. Figure 8 shows a biological network
analysis in drug discovery. In Figure 8, the background images are sourced from [8]. Biolog-
ical networks represent interactions among various biological molecules, such as proteins,
genes, and metabolites.
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By constructing these networks, researchers gain insights into the complex web of cel-
lular processes. This aids in identifying potential drug targets by analyzing protein–protein
interaction networks, allowing researchers to pinpoint crucial proteins associated with
diseases. These proteins become promising candidates for drug development. Predictive
algorithms analyze network topology to forecast novel interactions. For example, inte-
grating drug-related data and protein networks allows researchers to predict which drugs
might bind to specific protein targets, helping avoid adverse effects or enhance therapeutic
efficacy. Networks also guide the exploration of biological pathways, enabling researchers
to identify critical pathways influenced by drug targets for targeted interventions. Addi-
tionally, by examining drug–protein interaction networks, scientists anticipate potential
side effects, which informs drug safety assessments [91].

The power of network analysis extends throughout the entire drug discovery pipeline.
For instance, it can be used to identify potential drug targets by uncovering network
modules or pathways associated with the disease of interest, allowing researchers to
prioritize molecules with high potential for therapeutic intervention. Moreover, network-
based approaches can predict potential interactions between a drug candidate and various
molecules within the biological network, helping identify potential targets for the drug and
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predict potential side effects. Furthermore, by analyzing existing drug–target networks
and disease networks, researchers can identify existing drugs that may be effective in
treating new diseases, offering a more efficient and potentially cost-effective approach to
drug discovery.

4.3. Personalized Medicine

The burgeoning field of personalized medicine, focusing on individual-specific data,
finds network analysis instrumental in its approach. By analyzing patient-specific molecular
networks, researchers can gain deeper insights into individual disease etiology and tailor
therapeutic interventions based on the unique network profile of each patient [92]. Figure 9
illustrates the concept of dynamic tailoring in personalized medicine and showcases how
real-time network data can empower clinicians to customize treatment plans based on
individual responses and emerging resistance patterns. In Figure 9, the background images
are sourced from [18]. The ability to make prompt adjustments in treatment strategies is
crucial to enhancing the efficacy of personalized medicine approaches.
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Individual-specific data are utilized by the expanding field of customized medicine,
and network analysis is essential in following areas:

Patient stratification: By analyzing individual patient’s molecular networks (e.g., gene
expression networks), researchers can identify unique network patterns associated with
disease progression or drug response. This allows for the stratification of patients into
subgroups with similar network profiles, enabling tailored therapeutic interventions [93].

Predicting patient response: Network analysis can be used to predict a patient’s
response to a specific treatment based on their individual network profile. This information
can guide personalized treatment decisions and improve clinical outcomes [94].

Identifying biomarkers: Network analysis can help identify potential biomarkers
associated with disease or treatment response by analyzing the network properties of
specific nodes or pathways. These biomarkers can be used for early diagnosis, disease
monitoring, and personalized treatment strategies [95].

Analyzing network dynamics: Efficacy assessments allow us to observe how a treat-
ment impacts disease-related pathways. If the network stabilizes or shifts toward a healthier
state, treatment is deemed effective.

Early warning signs can reveal potential drug resistance mechanisms by dynamic
changes. For instance, resistance might be indicated by altered protein interactions [96].
Personalized adjustments as treatment plans can be tailored by clinicians armed with
real-time network data. If resistance emerges, adjustments can be made promptly.

4.4. Additional Applications

Network analysis extends its reach beyond disease and drug discovery, contributing
to various other areas of biological research:
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✓ Evolutionary biology: Understanding the evolution of biological systems by analyzing
changes in network structure and function across different species [97].

✓ Systems biology: Integrating diverse biological datasets (e.g., genomics, proteomics)
into network models to gain a holistic understanding of complex biological pro-
cesses [98].

✓ Ecology and environmental biology: Analyzing the interactions between species and
their environment using network approaches to understand ecosystem dynamics and
environmental impacts [96,98].

These examples showcase the diverse and impactful applications of network analysis
in various domains of biology and medicine. As the field continues to evolve, network
analysis holds immense potential for driving discoveries, advancing our understanding of
complex biological systems, and ultimately improving human health.

Table 5 presents a comprehensive overview of the varied applications of biological
network analysis. From understanding complex biological systems to identifying funda-
mental biomolecular interactions, this table highlights how network analysis is utilized
in biology. By showcasing these applications, researchers and practitioners can gain in-
sights into the broad impact and potential of leveraging network analysis techniques in
biological research.

Table 5. Diverse applications of biological network analysis.

Application Description Examples
Understanding Disease Mechanisms Identify key drivers and pathways.

Uncover disease modules. Explore
network dynamics.

Identifying key genes involved in cancer
progression by analyzing cancer
gene networks.
Discovering co-expressed genes
potentially contributing to
Alzheimer’s disease.
Studying the temporal changes in
protein–protein interaction networks
during viral infection [99].

drug discovery Identify potential drug targets.
Predict drug–target interactions.
Repurpose existing drugs.

Prioritizing candidate drug targets based
on their network connectivity in disease
networks [2].
Predicting the potential side effects of a
drug candidate by analyzing its
interactions within the network.
Identifying existing drugs that may be
effective for treating a new disease based
on network analysis.

personalized medicine Stratify patients based on
network profiles.
Predict patient response to treatment.
Identify biomarkers.

Grouping patients with similar network
patterns associated with a specific disease
for targeted therapy [100].
Predicting an individual’s response to
chemotherapy based on their tumor gene
expression network.
Identifying potential biomarkers for early
diagnosis of a disease by analyzing the
network properties of relevant genes.

Additional Applications Evolutionary biology: Studying network
evolution across species.
Systems biology: Integrating diverse
data into network models.
Ecology and environmental biology:
analyzing species interactions
using networks.

Understanding the evolution of
protein–protein interaction networks in
different primates [101].
Building a network model integrating
gene expression, protein–protein
interaction, and metabolic data to study
cellular processes.
Analyzing the network of interactions
between predator and prey species to
understand ecosystem dynamics.
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5. Future Directions

Biological network analysis stands at the forefront of scientific inquiry, constantly
evolving to meet the challenges and opportunities presented by emerging technologies
and data intricacies. Figure 10 serves as a guide to navigating the ever-changing terrain of
network analysis. In Figure 10, the background images are sourced from [18]. With the field
constantly evolving and expanding, it is crucial to stay informed about new trends, methods,
and uses. The figure provides a sneak peek into the upcoming directions of network
analysis, highlighting essential areas of growth and potential paths for exploration [1].
By following this map, researchers and professionals can more effectively navigate the
intricacies of network analysis and leverage its full capabilities to tackle diverse real-
world problems.
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network analysis. In Figure 10, the background images are sourced from [18]. With the 
field constantly evolving and expanding, it is crucial to stay informed about new trends, 
methods, and uses. The figure provides a sneak peek into the upcoming directions of net-
work analysis, highlighting essential areas of growth and potential paths for exploration 
[1]. By following this map, researchers and professionals can more effectively navigate the 
intricacies of network analysis and leverage its full capabilities to tackle diverse real-world 
problems. 
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Figure 10. Mapping the way forward: exploring the future of network analysis.

As we navigate the future landscape, several key directions hold immense potential to
unlock the full potential of this powerful approach:

5.1. Embracing the Multi-Omics Revolution

The field is poised to experience a significant paradigm shift fueled by the integration
of multi-omics data [5]. By incorporating diverse datasets encompassing genomics, tran-
scriptomics, proteomics, metabolomics, and beyond, researchers can create richer network
models that capture the intricate interplay between various biological entities [21]. This
comprehensive approach promises to the following:

✓ Unveil hidden connections: by bridging the gap between different data layers, multi-
omics network analysis can reveal previously unseen connections and dependencies,
offering a holistic understanding of biological processes.

✓ Enhance disease understanding: integrating data from multiple omics sources can
provide deeper insights into disease mechanisms, identifying key drivers and potential
therapeutic targets with greater accuracy and specificity.
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5.2. Advancing Network Inference Methods

The ever-growing volume and complexity of biological data necessitate the develop-
ment of sophisticated network inference methods [2]. Existing techniques may struggle to
handle the intricacies of large-scale, high-dimensional datasets. Future advancements lie in
the following:

• Machine learning and deep learning algorithms are used by leveraging the power
of these techniques; they can enable the development of more robust and accurate
methods for inferring network structures and dynamics, especially in the context of
multi-omics integration.

• Network dynamics and temporal modeling are applied by developing methods that
capture the temporal evolution of networks; they will be crucial for understanding
how biological systems change over time, offering insights into disease progression
and cellular response to stimuli.

5.3. Personalized Medicine: A Network-Based Approach

Personalized medicine represents a transformative approach to healthcare, aiming to
tailor treatments to individual patient profiles. Network analysis, with its ability to capture
individual network variations, offers a powerful tool in this domain [14]. By analyzing
patient-specific molecular networks, researchers can perform the following:

✓ Predict individual responses: understanding the unique network characteristics of
each patient can enable the prediction of their response to specific treatments, guiding
personalized therapeutic decisions and improving clinical outcomes.

✓ Identify novel biomarkers: network analysis can help identify potential biomarkers
associated with disease progression or drug response, facilitating early diagnosis,
personalized treatment strategies, and improved patient monitoring.

5.4. Exploration of Dynamic and Spatial Aspects of Biological Networks

Biological networks are dynamic and spatially organized entities that undergo con-
stant changes in response to internal and external stimuli. Future research directions will
focus on exploring the dynamic and spatial aspects of biological networks, including the
regulation of gene expression, protein–protein interactions, and signaling pathways in both
temporal and spatial dimensions [62]. By developing innovative experimental techniques,
imaging technologies, and computational models, researchers can gain insights into the
spatiotemporal dynamics of biological networks, unraveling the complex interplay between
molecular components and cellular processes in health and disease.

5.5. Ethical Considerations

As the field of network analysis continues to evolve, it is crucial to acknowledge and
address the associated ethical considerations [102]. These include the following:

Data privacy and security: ensuring the privacy and security of the individual-specific
data used in network analysis is paramount. Robust data protection measures and respon-
sible data sharing practices are essential.

Algorithmic bias: mitigating the potential for bias in network inference algorithms
that could lead to inaccurate or discriminatory outcomes is crucial. Careful development
and validation of these algorithms are essential to ensure fairness and inclusivity.

Table 6 highlights the emerging trends and potential advancements in the field of
biological network analysis.

The table provides insights into the evolving techniques, tools, and methodologies
that are shaping the future of network analysis in biological research. By exploring these
future directions, researchers can gain a better understanding of the innovative approaches
that hold promise for unraveling complex biological networks and driving new discoveries
in the field [103].
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Table 6. Future directions in biological network analysis.

Direction Description Potential Impact
Embracing the
Multi-Omics Revolution

Integrate data from various sources (genomics,
transcriptomics, proteomics, etc.) into
network models.

Unveil hidden connections
and dependencies.
Enhance disease understanding and identify
novel therapeutic targets [104].

Advancing Network
Inference Methods

Develop sophisticated methods (machine
learning, deep learning) to handle large and
complex datasets.

Infer network structures and dynamics more
accurately, especially for multi-omics
data [105].
Capture the temporal evolution of networks
to understand dynamic biological
processes [106].

Personalized Medicine: A
Network-Based Approach

Analyze patient-specific molecular networks to
guide personalized treatment strategies.

Predict individual responses to treatments
and improve clinical outcomes [107].
Identify novel biomarkers for early diagnosis,
treatment selection, and patient monitoring.

Exploration of Dynamics Organized entities that undergo constant
changes in response to internal and
external stimuli.

Developing innovative experimental
techniques, imaging technologies, and
computational models [108].
Gain insights into the spatiotemporal
dynamics of biological networks, unraveling
the complex interplay between
molecular components.

Ethical Considerations Address data privacy, security, and algorithmic
bias concerns.

Ensure responsible data practices and
mitigate potential biases in network
analysis [109].
Promote fairness and inclusivity in the
application of network analysis.

By embracing these future directions and addressing the associated ethical consid-
erations, network analysis can continue to revolutionize our understanding of biological
systems, contributing to advancements in disease diagnosis, drug discovery, and, ultimately,
personalized medicine [110]. The journey forward promises to be one of exploration, inno-
vation, and ethical responsibility, leading to a future where the power of networks unlocks
unparalleled insights into the complexities of life.

6. Conclusions

The intricate tapestry of biological systems is woven from a network of interactions,
and network analysis has emerged as a powerful tool for unraveling its hidden language.
This survey has delved into the diverse analytical methods employed in this field, high-
lighting their strengths, limitations, and potential for advancing our understanding of life.
From deciphering disease mechanisms to identifying potential drug targets and paving
the way for personalized medicine, network analysis has demonstrably impacted various
domains of biological research. As the field continues to evolve, embracing the opportu-
nities presented by multi-omics data integration, developing novel and robust network
inference methods, and prioritizing ethical considerations will be crucial for unlocking the
full potential of this approach. Continuing to explore the molecular terrain through the lens
of network analysis holds the promise of groundbreaking discoveries in the years to come.
This journey is poised to unveil novel therapeutic strategies, refine our understanding of
complex biological processes, and ultimately contribute to a future where healthcare is
tailored to the unique molecular language of each individual.

Author Contributions: Conceptualization, T.-T.N. and T.-K.D.; methodology, T.-T.N.; software,
D.-T.P.; validation, D.-T.P., T.-K.D. and T.-H.D.; formal analysis, T.-K.D.; investigation, T.-T.N.; re-
sources, T.-K.D.; writing—original draft preparation, D.-T.P.; writing—review and editing, T.-T.N.;



Symmetry 2024, 16, 462 21 of 24

visualization, D.-T.P.; supervision, T.-H.D.; project administration, D.-T.P.; funding acquisition, D.-T.P.
and T.-K.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the Fujian Provincial Department of Science and
Technology under Grant No. 2023J01347 and Hanoi University of Industry’s scientific research
support fund.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Salem, M.S.Z. Biological networks: An introductory review. J. Proteom. Genom. Res. 2018, 2, 41–111. [CrossRef]
2. Ji, X.; Freudenberg, J.M.; Agarwal, P. Integrating biological networks for drug target prediction and prioritization. Comput.

Methods Drug Repurposing 2019, 203–218.
3. Junker, B.H.; Schreiber, F. Analysis of Biological Networks; Wiley Online Library: Hoboken, NJ, USA, 2008; Volume 2,

ISBN 0470253460.
4. Serban, M. Exploring modularity in biological networks. Philos. Trans. R. Soc. B 2020, 375, 20190316. [CrossRef] [PubMed]
5. Wuchty, S.; Ravasz, E.; Barabási, A.-L. The architecture of biological networks. In Complex Systems Science in Biomedicine; Springer:

Boston, MA, USA, 2006; pp. 165–181.
6. Zhu, X.; Gerstein, M.; Snyder, M. Getting connected: Analysis and principles of biological networks. Genes Dev. 2007, 21,

1010–1024. [CrossRef]
7. Kenhub Human Anatomy Diagram with Illustration of Human Anatomy. Available online: https://www.kenhub.com/ (accessed

on 14 March 2024).
8. NIH Graphic Explaining Health Information. Available online: https://newsinhealth.nih.gov/2023/12 (accessed on 14

March 2024).
9. Kepes, F. Biological Networks; World Scientific: Singapore, 2007; Volume 3, ISBN 9812772367.
10. Somvanshi, P.R.; Venkatesh, K.V. A conceptual review on systems biology in health and diseases: From biological networks to

modern therapeutics. Syst. Synth. Biol. 2014, 8, 99–116. [CrossRef]
11. Bertamini, M.; Makin, A.D.J. Brain activity in response to visual symmetry. Symmetry 2014, 6, 975–996. [CrossRef]
12. Beisser, D.; Klau, G.W.; Dandekar, T.; Müller, T.; Dittrich, M.T. BioNet: An R-Package for the functional analysis of biological

networks. Bioinformatics 2010, 26, 1129–1130. [CrossRef]
13. Geppert, T.; Koeppen, H. Biological networks and drug discovery—Where do we stand? Drug Dev. Res. 2014, 75, 271–282.

[CrossRef]
14. Gonzalez-Angulo, A.M.; Hennessy, B.T.J.; Mills, G.B. Future of personalized medicine in oncology: A systems biology approach.

J. Clin. Oncol. 2010, 28, 2777. [CrossRef]
15. Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 2012, 1, 514–525. [CrossRef]
16. McCarty, N.S.; Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol.

2019, 37, 181–197. [CrossRef] [PubMed]
17. Wang, M.; Wang, H.; Zheng, H. A mini review of node centrality metrics in biological networks. Int. J. Netw. Dyn. Intell. 2022, 1,

99–110. [CrossRef]
18. Artwork, C. A Piece of Creative Artwork. Available online: https://in.pinterest.com/pin (accessed on 14 March 2024).
19. Shankar, N.R.; Rao, P.P.B.; Siresha, S.; Madhuri, K.U. Critical path method in a project network using ant colony optimization. Int.

J. Comput. Intell. Res. 2011, 7, 7–16.
20. Cottrell, W.D. Simplified program evaluation and review technique (PERT). J. Constr. Eng. Manag. 1999, 125, 16–22. [CrossRef]
21. Bansal, S.; Khandelwal, S.; Meyers, L.A. Exploring biological network structure with clustered random networks. BMC Bioinform.

2009, 10, 405. [CrossRef]
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110. Green, S.; Şerban, M.; Scholl, R.; Jones, N.; Brigandt, I.; Bechtel, W. Network analyses in systems biology: New strategies for
dealing with biological complexity. Synthese 2018, 195, 1751–1777. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-021-86207-0
https://www.ncbi.nlm.nih.gov/pubmed/33758323
https://doi.org/10.1093/bib/bbaa043
https://www.ncbi.nlm.nih.gov/pubmed/32363401
https://doi.org/10.1016/j.physa.2024.129618
https://doi.org/10.1016/j.drudis.2014.10.012
https://www.ncbi.nlm.nih.gov/pubmed/25448759
https://doi.org/10.5551/jat.52407
https://www.ncbi.nlm.nih.gov/pubmed/31723086
https://doi.org/10.1136/bmjopen-2021-053674
https://www.ncbi.nlm.nih.gov/pubmed/34873011
https://doi.org/10.1101/070490
https://doi.org/10.3934/mbe.2021443
https://doi.org/10.1002/wsbm.1352
https://www.ncbi.nlm.nih.gov/pubmed/27599643
https://doi.org/10.1038/nrg1272
https://www.ncbi.nlm.nih.gov/pubmed/14735121
https://doi.org/10.1016/j.neuropharm.2023.109802
https://doi.org/10.3390/cancers15153837
https://www.ncbi.nlm.nih.gov/pubmed/37568653
https://doi.org/10.1038/nrm2787
https://doi.org/10.1177/0276146715607620
https://doi.org/10.1016/j.jtbi.2018.11.034
https://www.ncbi.nlm.nih.gov/pubmed/30502409
https://doi.org/10.59543/ijmscs.v2i.8703
https://doi.org/10.1128/aem.00092-24
https://doi.org/10.3390/biomimetics9010035
https://doi.org/10.1109/TMBMC.2023.3308689
https://doi.org/10.1109/JBHI.2020.2991043
https://www.ncbi.nlm.nih.gov/pubmed/32609615
https://doi.org/10.1016/j.jksuci.2023.101675
https://doi.org/10.1007/s11229-016-1307-6

	Introduction 
	Conventional Methods for Network Analysis 
	Analytic Perspective on Network Architecture with Graph Theory 
	Network Reconstruction 
	Visualizing Network Patterns 

	Advanced Network Analysis Techniques 
	Network Inference 
	Network Dynamics 
	Machine Learning in Network Analysis 
	Topological Analysis 

	Applications of Biological Network Analysis 
	Understanding Disease Mechanisms 
	Drug Discovery 
	Personalized Medicine 
	Additional Applications 

	Future Directions 
	Embracing the Multi-Omics Revolution 
	Advancing Network Inference Methods 
	Personalized Medicine: A Network-Based Approach 
	Exploration of Dynamic and Spatial Aspects of Biological Networks 
	Ethical Considerations 

	Conclusions 
	References

