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Abstract: As industrial processes grow increasingly complex, fault identification becomes challenging,
and even minor errors can significantly impact both productivity and system safety. Fault detection
and diagnosis (FDD) has emerged as a crucial strategy for maintaining system reliability and safety
through condition monitoring and abnormality recovery to manage this challenge. Statistical-based
FDD methods that rely on large-scale process data and their features have been developed for
detecting faults. This paper overviews recent investigations and developments in statistical-based
FDD methods, focusing on probabilistic models. The theoretical background of these models is
presented, including Bayesian learning and maximum likelihood. We then discuss various techniques
and methodologies, e.g., probabilistic principal component analysis (PPCA), probabilistic partial
least squares (PPLS), probabilistic independent component analysis (PICA), probabilistic canonical
correlation analysis (PCCA), and probabilistic Fisher discriminant analysis (PFDA). Several test
statistics are analyzed to evaluate the discussed methods. In industrial processes, these methods
require complex matrix operation and cost computational load. Finally, we discuss the current
challenges and future trends in FDD.

Keywords: statistical framework; fault detection and diagnosis; probabilistic models

1. Introduction

Modern industry has brought about more complex and high-dimensional industrial
processes. There is less tolerance for potential safety hazards, which means performance
degradation and productivity drawdown. FDD is a significant task to ensure product
quality and process reliability in modern industrial systems. Traditional FDD methods
are based on experiences and have met challenges with the expansion of plant scale and
large numbers of process variables. Methods based on statistical analysis become a trend
in industry applications. Recently, the probabilistic model based on statistical methods
broadened the industrial application in cases of high dimensionality, non-Gaussian distri-
bution, nonlinear relationships, and time-varying variables. This article aims to overview
the statistical analysis of FDD methods, especially under the probabilistic framework.

1.1. Background

Compared to passive fault-tolerant control, taking fault into account as a system per-
turbation, FDD is an active strategy for detecting and identifying potential abnormalities
and faults, providing early warning, and recommending corrective actions to prevent
failure occurrence. Compared to prognostics, dealing with fault prediction before it occurs,
diagnostics is a posterior event analysis and it is required after occurring a fault. In harsh
working environments, such as extreme temperatures, high pressure, and underwater,
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sensors are prone to faults, while the sensor is an essential component of data acquisition
systems, sensor faults, including incipient failure and abrupt failure, will affect the accuracy,
stability, and reliability. It has become essential for industrial applications, especially for
engineering systems such as mechanical engineering [1–4], electric vehicle dynamics [5,6],
power electronic systems [7–10], electric machines [11–14], and wind energy conversion sys-
tems [15–18]. The task of FDD is to spot process abnormalities promptly and identify their
early causes [19]. The elements of a general structure for fault diagnosis system and control
system are shown in Figure 1. It demonstrates different components in a control loop, and
failures could exist in actuators, dynamic plants, sensors, and feedback controllers.

Figure 1. A fault-diagnosis system is targeted for detecting failures from collected information and
improving robustness and accuracy.

1.2. Evolution of Fault Detection and Diagnosis

Generally, approaches to detecting and diagnosing faults can be divided into three
categories, as shown in Figure 2.

Figure 2. Classification of fault diagnosis methods.

1.2.1. Model-Based Methods

Model-based methods include state estimation, parameter estimation, and parity
space. The model-based methods utilize physical and mathematical knowledge and they
possess the explainability for making decisions in a transparent way rather than in a black
box [20–22]. However, the noisy operation environment hinders physics-based modeling
and degrades the accuracy of complex dynamic modeling [23,24].
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1.2.2. Knowledge-Based Methods

Knowledge-based methods include symptom-based methods and qualitative methods.
The knowledge-based methods are usually implemented by experts, and the fault diagnosis
relies on the accumulation of prior information and logical reference [25]. These methods are
efficient within the scope of existing knowledge and struggle to tackle unexpected failures.

1.2.3. Data-Driven Methods

Data-driven methods include statistical-based methods and transform-based meth-
ods. Compared to model-based methods and knowledge-based methods, data-driven
approaches are efficient when confronted with high-dimensional data. They require a
sufficient quantity of data and enhance accuracy by extracting information or features
from large-scale datasets [26,27]. Yet the lack of an accurate mathematical model makes it
inadequate for detecting incipient faults.

The Internet of Things era revolutionizes industrial processes by collecting a large
amount of information via a network of terminals, leading to a data explosion and the
rocketing complexity of model construction. Troubleshooting highly complex systems
involves multiple processes and multiple anomalies, making conventional physics-based
deterministic modeling more challenging. Moreover, implementing the knowledge-based
FDD methods relies heavily on expertise or prior information, which is time-consuming
and labor-intensive especially when dealing with a high-dimensional process. Data-driven
approaches are targeted for addressing large-scale data and extracting features from data.

The statistical approach is a branch of data-driven schemes, and extracts the process
information from measurement or observation. Its significant advantage is that it can
tackle many highly correlated variables without complex mathematical forms or costly
design efforts. Statistical methods [28] have gained popularity in practical applications
for their ability to directly analyze input and output data, particularly PCA [29–33] and
PLS [34–37]. PCA, PLS, and independent component analysis (ICA) are traditional statisti-
cal analysis methods based on deterministic models. The underlying theoretical foundation
of traditional multivariate analysis is linear algebra.

In practice, industrial process data are polluted by missing data and outliers, which
can significantly influence the accuracy of features and control thresholds. The probabilis-
tic extensions of traditional statistical methods employ distributions to describe states to
enhance their ability to process sampling data with disturbances, outliers, and missing
values. In addition, the probabilistic form of statistical analysis can employ non-linear data
and thus can be applied in industrial processes. Recently, the probabilistic counterparts
of PCA [38] and factor analysis (FA) [39] have been generated for fault diagnosis. Fur-
thermore, the extensions of their mixture form with multiple operation modes have been
generalized [40].

The study on statistical-based fault diagnosis methods draws remarkable research
attention. Due to their similarity in collecting, processing, and extracting information from
data, these strategies are viewed as statistical-based methods. In this context, these schemes
are mainly characterized as follows:

(1) Without a complex model construction, a statistical-based FDD design can extract the
information and make decisions directly on the sampling data.

(2) These strategies are designed to address FDD in static or dynamic systems in a stable
state with the flexible application of statistical tests and their mixed indices.

1.3. Motivation and Contribution

Statistical-based fault diagnosis has attracted attention in industrial applications and
the academic community. The sensor technology gives rise to a data explosion, and the
data quality significantly impacts the modeling of the process and thus influences the
performance of fault diagnosis. Probabilistic extensions of conventional statistical methods
spring up due to their robustness and advantages in treating outliers, disturbance, and
missing values. There is no comprehensive review of statistical FDD methods under a
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probabilistic framework. Therefore, statistical methods with a probabilistic model are an
unavoidable element that needs to be addressed in industrial applications and the academic
community. Different from other reviews on FDD [41–43], this review focuses on detailed
explanations to let readers understand the principle of each method and save some time
searching a lot of references. The purpose of this review is to provide theoretical background
and recent application instances of probabilistic-based statistical fault diagnosis.

1.4. Organization of This Paper

The remainder of this paper is organized as follows. The theoretical background
of the probabilistic model is presented in Section 2. Section 3 gives a brief overview of
the probabilistic extensions of statistical methods and their practical applications. The
challenges and perspectives are demonstrated in Section 4. Conclusions are finally drawn
in Section 5.

2. Theoretic Background

Maximum likelihood estimation (MLE) and Bayesian theory are employed when the
probabilistic model is introduced into statistical methods. This section will briefly introduce
the principles of MLE and Bayesian inference.

2.1. Maximum Likelihood Estimation

In statistics, MLE estimates the parameters of an assumed probability distribution
with observation measurement and maximizes the probability [44]. MLE is generated to
find the probability density function (PDF) that is most likely to produce a data sample
given the observation. The data y = (y1, y2, · · · , ym) is a random sample from an unknown
population. In practice, the model usually involves abundant parameters, and the likeli-
hood function is probably nonlinear, making it difficult to obtain an analytic solution. A
nonlinear model is established to estimate the remaining useful life of a system, where the
unknown parameters are estimated with the help of MLE [45].

The v = (v1, v2, · · · , vk) is a vector defined on a multi-dimensional parameter space.
p(y|v) denotes the probability of y given v. The likelihood function is defined by [46]

L(v|y) = p(y|v). (1)

The MLE estimate is obtained by maximizing the log-likelihood function. Assuming
that the log-likelihood ln L(v|y) is differentiable, if vMLE exists, it must satisfy Equation (2):

∂ log L(v|y)
∂vi

= 0. (2)

L(v|y) and p(y|v) are defined on different axes, that p(y|v) is a function of the data
given parameters, defined on the data scale, and L(v|y) is defined on the parameter scale.

2.2. Bayesian Learning

Bayesian learning provides a rigorous framework for complex nonlinear systems
whose internal state variables are inaccessible to direct measurement. Given a general
discrete-time state estimation equation and measurement function,

xk = g(xk−1) + ek, (3)

yk = h(xk) + vk, (4)

where xk ∈ Rn is the state at time step k, ek ∈ Rn is the process noise, and g : Rn → Rn

denotes the transition function. yk ∈ Rp is the measurement, vk ∈ Rp is the measurement
noise, and h : Rn → Rp. ek and vk are independent.

The Bayesian learning is to recursively estimate the PDF of xk given measurements
yk. The initial density is determined beforehand, and p(xk|xk−1) denotes the transition
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probability density. The inference of the state xk relies on the marginal density p(xk|y1:k).
The predictive function of xk at step k is estimated by [47]

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (5)

Then, the marginal filtering density is computed

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (6)

where p(yk|y1:k−1) is the normalizing parameter.
A Bayesian network is a probabilistic graphical model that illustrates the relationships

between variables.

p(a, b) = p(a|b) · p(b), (7)

and the joint probability distribution for a Bayesian network with nodes a = {a1, · · · , an}
is given by

p(a) =
n

∏
i=1

p(ai|parents(ai)), (8)

where parents(ai) is the parent set of node ai.
Research based on Bayesian learning has attracted huge attention in the field of fault

diagnosis. Zhao proposed advanced Bayesian estimation algorithms to monitor the faulty
sensors [48], then improved algorithms for online ability and correlated signals in nonlinear
processes, respectively, [49,50]. Bayesian network is adopted in fault diagnosis [51–61]. Mul-
tivariate statistical analysis has been combined with Bayesian inference for fault detection
and isolation [62]. A Bayesian maximum likelihood classifier is validated as accurate for
induction machine and stator short circuit fault diagnosis [63]. The probabilistic Bayesian
deep learning framework exploits the risk-aware model to identify unknown faults and
enhance the trustworthiness of the diagnostic results [64,65].

3. Probabilistic Statistical-Based Approaches

This section discusses different kinds of static statistical-based approaches. Four prob-
abilistic models applied in the field of FDD are illustrated, including probabilistic PCA,
probabilistic PLS, probabilistic ICA, probabilistic canonical correlation analysis (CCA), and
probabilistic Fisher discriminant analysis (FDA). PCA extracts the principal components
that are retained to explain the majority of the variability in the data by maximizing the
variance. Compared to PCA, the FDA maximizes the separation among classes while
minimizing the separation between classes. The components after PCA decomposition
are orthogonal and therefore irrelevant, but independence is not guaranteed. Compared
to PCA, ICA can find the original components in the observed mixtures, and it is a linear
transformation of the data in the original feature space. PCA involves only one set of
variables, while CCA extends to the interdependence between two sets of variables, mea-
suring the correlation between the two sets of variables. The probabilistic approaches of
traditional statistical analysis are shown in Figure 3. They differ in the variable distribution,
the application scenario, and whether the dataset is labeled. PPCA and PICA have the
same characteristics, they can deal with non-Gaussian distribution data and stationary
processes. PFDA and PPLS are supervised methods. PCCA excels in other methods of tack-
ling dynamic processes. The probabilistic extensions of traditional multivariate statistical
analysis still retain original characteristics and broaden the range of applications.
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Figure 3. Probabilistic approaches for processing monitoring.

3.1. Probabilistic Principal Component Analysis

PCA is a technique targeted for dimensionality reduction, and it has wide applica-
tions, including data compression, image processing, data analysis, and pattern recogni-
tion [66–69]. The probabilistic derivation of PCA is given by

y = Wt + m + ϵ, (9)

where y ∈ Rd, independent unobservable variable t ∈ Rq ∼ N (0, I), and q < d. The
transition matrix is W ∈ Rd×q, and the vector is m ̸= 0. The key assumption for PPCA is
that the noise in this probability model is likewise Gaussian ϵ ∼ N (0, Ψ) and the covariance
Ψ = σ2I is constrained to be a diagonal matrix, so that y are conditionally independent
given the values of t. The conditional PDF of y and the marginal PDF of t obtained by
integration are implied by

y|t ∼ N (Wt + m, σ2I), (10)

y ∼ N (m, A), (11)

where A = WWT + σ2I, then the log-likelihood function is

L = −N
2
{ln |A|+ tr(A−1S) + dln(2π)}, (12)

S =
1
N

N

∑
n=1

(yn − m)(yn − m)T . (13)

Estimates for W and σ2 is obtained by iteratively maximizing Equation (12) by em-
ploying the EM algorithm [70].

WML = Uq(Λq − σ2I)
1
2 R, (14)

σ2
ML =

1
d − q

d

∑
j=q+1

λj, (15)

where the first qth column vectors in Uq ∈ Rd×q are the qth principal eigenvectors of S, with
corresponding eigenvalues λi, · · · , λq in the diagonal matrix Λq ∈ Rq×q, and R ∈ Rq×q is
an arbitrary orthogonal matrix. Note that Uq and Λq can be obtained by performing the
singular value decomposition on S.

The conditional distribution of the latent variable t given the observed y is obtained
with the help of Bayesian inference

t|y ∼ N (B−1WT(y − m), σ2B−1), (16)
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where B = WTW + σ2I. From Equation (16), the point-wise technique can be employed
when the conditional distribution is generated

⟨t|y⟩ = B−1WT
ML(y − m). (17)

Then, the high-dimensional observed data y can be condensed into a new distribution
t which satisfies Gaussian.

The probabilistic PCA model has abundant modifications and extensions to be applied
for fault diagnosis. Choi et al. proposed a fault detection scheme based on a maximum-
likelihood PCA mixture model [40]. To address the challenge of separating several factors
that together cause a failure to occur, probabilistic PCA was created [71]. An aligned
mixture probabilistic PCA is proposed by Yang for fault detection of multimode chemical
processes [72]. Then, a reconstruction-based multivariate contribution analysis is applied
to the PPCA mixture model for fault isolation [73].

The robust version of probabilistic PCA is modified to deal with outliers and missing
data during the modeling stage [74]. In addition, a variational inference process based
on the Bayesian PCA model structure provides the foundation of a defect reconstruction
method [75]. Additionally, the hidden Markov model framework temporally extends the
static mixture probabilistic PCA model-based classifier to the dynamic form [76,77]. It was
suggested to use a hybrid framework that takes into account moving window PCA and
Bayesian networks to cope with barely accessible data in a fault state [78].

By thoroughly analyzing the principle and implementation of probabilistic PCA, the
significant advantages can be summarized as follows.

(1) Enhanced Robustness: In practical applications, disturbances are unavoidable in
a complex working environment. Probabilistic PCA disposes of the problem that
sampling data are mixed with outliers and missing values by using distribution
modeling of these data and enhancing robustness.

(2) Increased Complex Data: The introduced latent variables enable probabilistic PCA to
process non-linear data, improving the performance of dimensional reduction.

(3) Probability Inference: Probabilistic PCA is a dimensionality reduction method based
on probability models. It provides quantitative information on uncertainty and proba-
bilistic inferences to obtain more accuracy and effectiveness. Ultimately, the ability to
interpret data is substantially intensified.

3.2. Probabilistic Partial Least Squares

The core of the probabilistic PLS model is to use a part of the latent variables to explain
the observed data set. The probabilistic PLS model is formulated by [79]

x = mx + Jts + Qtb + ϵx, (18)

y = my + Kts + ϵy, (19)

where J ∈ Rm×qs , K ∈ Rr×qs and Q ∈ Rm×qb ; ts ∈ Rqs×1, tb ∈ Rqb×1; mx and my are the
mean of x and y; and ϵx and ϵy denotes measurement noises of x and y, respectively.

In the probabilistic PLS model, ts ∼ N (0, I), tb ∼ N (0, I), ϵx ∼ N (0, Σx), and
ϵy ∼ N (0, Σy). Different from the probabilistic PCA model that assumes the error covariance
matrix to be a diagonal matrix with a constant value, different noise variances have been
assumed for different variables Σx = diag{σ2

x,u}u=1,2,··· ,m and Σy = diag{σ2
y,v}v=1,2,··· ,r. Given

data sets X = [x1, x2, · · · , xn]T ∈ Rn×m and Y = [y1, y2, · · · , yn]T ∈ Rn×r, the log-likelihood
function can be determined by

L(X, Y|mx, my, J, Q, K, Σx, Σy)

= ln
n

∏
i=1

p(xi, yi|mx, my, J, Q, K, Σx, Σy). (20)
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The optimal values of parameters are determined by the EM algorithm:

Jnew =

[
n

∑
i=1

xiE
(
ts
i |
[xiyi

])T
][

n

∑
i=1

E
(

ts
i ts

i
T |
[xiyi

])]−1

, (21)

Qnew =

[
n

∑
i=1

xiE
(

tb
i |
[xiyi

])T
][

n

∑
i=1

E
(

tb
i tb

i
T |
[xiyi

])]−1

, (22)

Knew =

[
n

∑
i=1

yiE
(
ts
i |
[xiyi

])T
][

n

∑
i=1

E
(

ts
i ts

i
T |
[xiyi

])]−1

, (23)

Σnew
x =

1
n

diag

{
n

∑
i=1

[
xixT

i − [Jnew Qnew]E
(
ts
i
∣∣[xiyi

])
yT

i

]}
, (24)

Σnew
y =

1
n

diag

{
n

∑
i=1

[
yiyT

i − KnewE
(
ts
i
∣∣[xiyi

])
yT

i

]}
. (25)

The supervised model PPLS builds a regression model between two sets of variables.
For further applications, the probabilistic PLS model has been modified. On the basis
of this, the validity of the classification of an unknown item is assessed [80]. Zheng
adapted the probabilistic PLS model to the semi-supervised version for the creation of soft
sensors [81]. Data-driven fault identification and diagnosis techniques are proposed based
on a novel locally weighted probabilistic kernel PLS [82]. Botella described an improvement
to discriminant partial least squares that use the kernel trick and Bayes rule to implement
data classification [83]. To further decompose the PPLS model, a concurrent probabilistic
PLS approach is suggested, and monitoring statistics are created for assessment [84].

Compared with traditional PLS, probabilistic PLS treats independent and dependent
variables as random variables and assumes that they satisfy the Gaussian distribution. The
probabilistic model is capable of dealing with disturbance, outliers, and missing data and
then improving the stability and prediction accuracy of the model.

3.3. Probabilistic Independent Component Analysis

ICA separates the dataset into linear combinations of statistically independent non-
Gaussian sources. It is a significant application of the blind source separation method. The
probabilistic ICA model is [85]

xn = Asn + ϵn, (26)

where xn is the observation, sn is a statistically independent non-Gaussian source,
ϵ ∼ N (0, β−1I) denotes the noise vector, and A represent a linear transformation. The
likelihood can be given by

p(xn|sn, A, β) =

√
β

2π
e(

β
2 )(xn−Asn)T(xn−Asn). (27)

Due to the adaptive tails in the Student’s t probability model, the Student’s t distri-
bution can approach the distribution of non-Gaussian sources. The sources used by the
Student’s t might be described as

p(sj
n) = t(sj

n|0, σ2
j , νj)

=
Γ(

νj+1
2 )

Γ(
νj
2 )
√

νjπσ2
j

(
1 +

(sj
n)

2

νjσ
2
j

)−
(νj+1)

2

=
∫ ∞

0
N (sj

n|0, (uj
n)

−1σ2
j )Ga(uj

n|a
j
n, bj

n)duj
n, (28)
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where Ga(·) represent the Gamma distribution. To estimate the non-Gaussian variables,
one can use the variational Bayesian EM approach. Defining F ∼ {S, U} for latent variables,
the log-likelihood is given by

log p(X|θ) = log
p(F, X|θ)
p(F|X, θ)

. (29)

By introducing an auxiliary distribution q(F) as the approximation distribution,
we have

log
p(F, X|θ)
p(F|X, θ)

(30)

= log
∫

q(F)
p(F, X|θ)q(F)
p(F|X, θ)q(F)

dF (31)

≥
∫

q(F)
{

log
p(F, X|θ)

q(F)
− log

p(F|X, θ)

q(F)

}
dF (32)

= F(q(F), θ) + KL(q||p) (33)

≥ F(q(F), θ). (34)

For variational Bayesian, the latent distributions are assumed as independent q(F) ≈ q(S)q(U).
Then, taking the derivative of the lower bound with respect to q(S), q(U), q(A), q(β), and
q(νj).

∂F(q(F), θ)

∂q(S)
= − β

2
(xT

n xn − 2ATxnsn + ATAs2
n)−

1
2

diag(⟨un⟩)s2
n, (35)

where ⟨un⟩ =
[〈

u1
n
〉
,
〈
u2

n
〉
, · · · ,

〈
ud

n

〉]T
, on the basis of conjugate exponential distribution,

q(S) ∼
N
∏

n=1
(sn|s̄n, Σ̄n

s ), the parameters can be obtained as

Σ̄n
s =

[
diag(⟨un⟩) + βATA

]−1
, (36)

s̄n =βΣ̄n
s ATxn. (37)

Similarly, by defining q(U) =
d

∏
j=1

N
∏

n=1
Ga(uj

n|āuj
n
, b̄

uj
n
), we obtain

∂F(q(F), θ)

∂q(U)
=

(
νj − 1

2

)
log uj

n −
1
2

(〈
sj

n

〉2
+ νjσ

2
j

)
uj

n. (38)

We have

ā
uj

n
= νj + 1, (39)

b̄
uj

n
=

⟨sj
n⟩

2
+ νjσ

2
j

νj + 1
. (40)

Other parameters can be derived by taking the differentiation concerning A, β, and νj

A =

[
N

∑
n=1

⟨sn⟩xT
n

][
N

∑
n=1

⟨snsT
n ⟩
]−1

, (41)

β = ND

(
N

∑
n=1

D

∑
n=1

〈
(xi

n − aT
i sn)

2
〉)−1

, (42)
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where xi
n is the ith element of observation and ai is the ith column of A, while the degree of

freedom νj can be induced by solving the following nonlinear formula:

1+
N
2

log
νj

2
−ψ

(
νj

2

)
+log σ2

j +
1
2

N

∑
n=1

(
〈

log uj
n−σ2

j ⟨u
j
n⟩
〉
)=0. (43)

The expectations involved in Equation (43) are given by

⟨uj
n⟩ =

(
b̄

uj
n

)−1
, (44)

⟨sj
n⟩2 = ⟨snsn

T⟩jj =
(

s̄ns̄T
n + Σ̄n

s

)
jj

, (45)

⟨log uj
n⟩ = ψ(νj)− log

νj

2
− log b̄

uj
n
. (46)

Traditional ICA methods are limited in their ability to process non-Gaussian dis-
tributed signals, resulting in inaccurate decomposition results. Probabilistic ICA uses
probability distributions to solve the above-mentioned problem. Probabilistic ICA can
better process non-Gaussian signals because of its ability to model different probability
distributions. In addition, probabilistic ICA employs the variational Bayesian method
to estimate the uncertainty of the separation variable and improve the robustness and
interpretability of the model.

3.4. Probabilistic Canonical Correlation Analysis

Given two random vectors, canonical correlation analysis (CCA) is concerned with
finding projections such that the components within one set of projections are correlated
with components in the other set. The probabilistic extension of CCA is given by [86].

x1 =W1z + m1 + ϵ1, (47)

x2 =W2z + m2 + ϵ2, (48)

where variables x1 ∈ Rm1, x2 ∈ Rm1, the latent variables z ∈ Rd ∼ N (0, I), and
min{m1, m2} ≥ d ≥ 1. Then, the conditional distribution is supported by

x1|z ∼ N (W1z + m1, Ψ1), (49)

x2|z ∼ N (W2z + m2, Ψ2), (50)

The parameter set Θ = {W1, W2, m1, m2, Ψ1, Ψ2} can be determined by maximizing
the likelihood. After implementing the EM algorithm, the optimal solution of parameters
is given by

µ̂1 = m̃1, (51)

µ̂2 = m̃2, (52)

Ŵ1 = Σ̃11U1dM1, (53)

Ŵ2 = Σ̃22U2dM2, (54)

Ψ̂1 = Σ̃11 − Ŵ1ŴT
1 , (55)

Ψ̂2 = Σ̃22 − Ŵ2ŴT
2 , (56)

where M1, M2 ∈ Rd×d satisfy M1MT
2 = Jd, Jd is the diagonal matrix of the first d canon-

ical correlations, U1d and U2d are the first d canonical directions, m̃ denotes the sample

mean, and Σ̃ =

(
Σ̃11 Σ̃12
Σ̃21 Σ̃22

)
denotes sample covariance matrix obtained from data xj

1, xj
2

(j = 1, 2, · · · , d). The log-likelihood is given by
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L ∝
n
2

log|Σ|+ 1
2

tr
(

Σ−1(xj − m)(xj − m)T
)

, (57)

where m =

(
m1
m2

)
, Σ=

(
W1W1

T + Ψ1 W1W2
T

W2W1
T W2W2

T + Ψ2

)
.

According to Bayesian inference, the posterior expectations and variances of z given
x1 and x2 are

var(z|x1) = I − M1M1
T , (58)

var(z|x2) = I − M2M2
T , (59)

E(z|x1) = M1
TUT

1d(x1 − m̂1), (60)

E(z|x2) = M2
TUT

2d(x2 − m̂2), (61)

var(z|x1, x2) = I−
(

M1
M2

)T(
(I − J2

d)
−1 (I − J2

d)
−1Jd

(I − J2
d)

−1Jd (I − J2
d)

−1

)(
M1
M2

)
, (62)

E(z|x1, x2) =

(
M1
M2

)T(
(I − J2

d)
−1 (I − J2

d)
−1Jd

(I − J2
d)

−1Jd (I − J2
d)

−1

)(
UT

1d(x1 − m̂1)
UT

2d(x2 − m̂2)

)
. (63)

Unlike the sensitivity to noise and missing data in traditional CCA, the probabilistic
CCA employs probabilistic models to describe the data generation process, which can
naturally deal with noise and missing data, thus securing robustness.

3.5. Probabilistic Fisher Discriminant Analysis

FDA attempts to characterize or distinguish between two classes of objects by using a
linear combination of features. Many machine learning and pattern recognition applications
use this strategy [87–90]. To identify mixed errors, FDA was integrated with a hybrid kernel
extreme learning machine [91]. The criterion of Fisher discriminant is [92]

J(U) = tr((UtSWU)−1UtSBU), (64)

SW =
1
n

K

∑
k=1

∑
yi∈Ck

(yi − mk)(yi − mk)
T , (65)

SB =
1
n

K

∑
k=1

nk(mk − ȳ)(mk − ȳ)T , (66)

where SW is the covariance matrix within classes, and SB is the covariance matrix between
classes, nk is the number of observations in the kth class, the mean of the observed column

vector yi in the class k is denoted by mk =
1
nk

∑
i∈Ck

yi, and ȳ = 1
n

K
∑

k=1
nkmk is the mean column

vector of the observations. The probabilistic framework of the FDA is

x = m + Au, (67)

where u ∼ N (u|v, I), v ∼ N (v|0, Ψ), and v represents the class center. The corresponding
graphical model is displayed in Figure 4.
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Figure 4. In the latent space, which is the space where the variables are independent, PFDA models the
class center v and examples u. The transformation A links the example x to its latent representation.

In the PFDA model, m, Ψ, and A are unknown. The log-likelihood is given by

L(x1,··· ,n) =
n

∑
k=1

ln p(xi : i ∈ Cn), (68)

p(x1, · · · , xn) =
∫
N (y|0, Φb)N (x1|y, Φw) · · ·N (xn|y, Φw)dy, (69)

where p(x1 · · · xn) is the joint distribution of a set of n patterns, provided they belong to
the same class. By computing the integral, we have

L (x1,··· ,n) = − c
2
(ln | Φb +

1
n

Φw | +tr((Φb +
1
n

Φw)−1Sb) + (n − 1) ln | Φw | +ntr(Φ−1
w Sw)). (70)

If Φw and Φb are both positive definite and Φw and Φb are both positive semi-definite,
then we can maximize the value of L. Without these limitations, basic matrix calculus provides

Φw =
n

n − 1
Sw, (71)

Φb = Sb −
1

n − 1
Sw. (72)

The EM method is then used to update the parameters m, A, and Ψ to maximize the
PFDA model’s likelihood

m =
1
N

N

∑
i=1

xi, (73)

A = W−T
(

n
n − 1

Λw

) 1
2
, (74)

Ψ =max
(

0,
n − 1

n
(Λb/Λw)− 1

n

)
. (75)

4. Test Statistics

A fault diagnosis differs from a classification problem and should detect abnormalities
from sampling data. Test statistics construct a threshold for judgment.

4.1. T2 Test Statistic

The false alarm rate (FAR) is an elementary concept in fault detection, and it displays
the probability of a false alert signal, which is given by

FAR = P{J > Jth| f = 0}, (76)
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where J denotes a test statistic, Jth denotes the threshold, and Equation (76) means the
possibility that the decision logic may sound an alert for a malfunction even when one has
not occurred. Then, the general formulation of the defect detection issue is provided by

y = g + ε ∈ Rm, ε ∼ N (E(ε), Σ), (77)

where E(ε) and Σ are unknown, and assuming that sampling data y1, · · · , yi, (i = 1, · · · , N)
are available. Find a corresponding threshold Jth based on online measurement data
yk, · · · , yk+j with FAR ≥ α. Under the framework of model Equation (77), T2 test statistic
is defined by

ȳN =
1
N

N

∑
i=1

yi, (78)

Σ̂ =
1

N − 1

N

∑
i=1

(yi − ȳN)(yi − ȳN)T , (79)

J = (ȳN − yk)
T Σ̂−1(ȳN − yk), (80)

Jth,T2 =
m(N2 − 1)
N(N − m)

Fα(m, N − m). (81)

where the corresponding threshold is represented by Jth,T2 , and Fα(m, N − m) denotes
F -distribution with m and (N − m) degrees of freedom. After obtaining each new mea-
surement yk, the test statistics will be checked. After calculating the test statistic, the alarm
is triggered to indicate the fault by{

J ≤ Jth,Q −→ f ault − f ree
J > Jth,Q −→ f aulty and alarm

(82)

4.2. SPE or Q Statistic

The inverse matrix of Σ̂ is necessary for the T2 statistic, while numerical trouble may
incur in the computation by a high-dimensional or ill-conditioned Σ̂. Q statistic can be
alternatively chosen for detecting the fault

Q = yT y. (83)

The threshold Jth,Q can be computed offline with the process data y1, · · · , yN collected

ȳN =
1
N

N

∑
i=1

yi, (84)

g =
Q2 − Q̄2

2Q̄
, (85)

h =
2Q̄2

Q2 − Q̄2
, (86)

Q̄ =
1
N

N

∑
i=1

(yi − ȳN)T(yi − ȳN), (87)

Q2 =
1
N

N

∑
i=1

(
(yi − ȳN)T(yi − ȳN)

)2
. (88)

Then, set Jth,Q for a given significance level α

Jth,Q = gχ2
α(h). (89)
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4.3. KL Divergence

Kullback–Leibler divergence (KLD) is well-known for measuring the divergence
between two PDFs. The KL divergence of two continuous PDFs p(x) and q(x) is given by

KL(p(x), q(x)) =
∫

p(x) log
(

p(x)
q(x)

)
dx. (90)

The KL divergence is non-negative and zero if and only if p(x) equals q(x). For the
PDFs p(x) and q(x), assume the random variable x satisfies Gaussian, p(x) = N (µp, Σp),
and q(x) = N (µq, Σq), Equation (90) can be further written as

KL(p(x), q(x)) =
1
2

{
(µp − µq)

T Σq
−1(µp − µq) + log

( |Σq|
|Σp|

)
+ tr(Σq

−1Σp)

}
. (91)

Lei proposed a paper discussing the detection of an incipient fault condition in complex
dynamic systems using the KL distance [93]. This paper proposes a methodology that can
detect incipient anomalous behaviors based on KL divergence [94].

4.4. Hellinger Distance

The traditional statistical test cannot be effectively applied to detect the incipient fault.
Hellinger distance was first proposed [95] to measure the similarity of two probability
distributions. Assuming that p(x) and q(x) represent two continuous PDFs, the Hellinger
distance (HD) can be defined as

H(p, q) =

√
1
2

∫ (√
p(x)−

√
q(x)

)2
dx. (92)

HD is a symmetric bounded distance, and its possible values are between 0 and 1
as 0 ≤ HD(p, q) = HD(q, p) ≤ 1. Based on the Lebesgue metric, the square of HD is
expressed as

H2(p, q) = 1 −
∫ √

p(x)q(x)dx. (93)

Given two PDFs that obey the normal distributions such that p(x) ∼ N (µp, σ2
p) and

q(x) ∼ N (µq, σ2
q), HD2(p, q) of p(x) with respect to q(x) is given by

HD2 = 1 −
(

2σpσq

σ2
p + σ2

q

)1/2

exp

(
−

(µp − µq)2

4(σ2
p + σ2

q)

)
. (94)

This work combined HD, Bayesian inference, and ICA to monitor a multiblock plant-
wide process [96]. HD and KLD are combined to explore the isolation capability of an FDI
test by Palmer [97]. Chen introduced HD into a multivariate statistical analysis framework
to detect incipient faults for high-speed trains [98].

5. Recent Applications on Statistical Fault Diagnosis

Although statistical schemes for fault diagnosis have been widely applied, there
are still many challenges in their practical applications. Abundant modifications are
mounted on traditional statistical methods to ensure better performance in industrial
applications with harsh working environments. Recent work and applications of statistical
fault diagnosis are represented in several aspects in this section.

5.1. Approaches Targeted for Data with Outliers and Missing Values

The advanced sensor technique provides abundant information; however, the multi-
rate sampling can lead to incomplete data entries, and the disturbances or measurement
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errors shall induce outliers [99,100]. Although traditional statistical inference studies for
process modeling and monitoring assume no missing data or outliers, industrial process
data typically contain missing values, out-of-range values, and outliers. This greatly
influences the statistical FD strategies for process modeling and monitoring.

Traditional statistical analysis would assume that the process data is clean since
traditional statistics, such as mean and variance, are sensitive to outliers [101,102]. Addi-
tionally, the data gathered from industrial processes tends to not be distributed normally.
The representative methods of multivariate statistical analysis usually sink into poor per-
formance due to insufficient quality process data. As a result of the fact that the most
frequently used test statistics work under the presumption that the sample data meets
Gaussian distribution requirements, data quality also affects the determination of whether
a fault exists [103]. The improved weighted k neighborhood standardization (WKNS)-PCA
is applied to detect process outliers and its advantage lies in employing a single model for
multi-mode industrial processes [104]. Multi-PCA models are trained and integrated with
a modified exponentially weighted moving averages (EWMA) control chart to improve
robustness to outliers and sensitivity to small and sudden abnormalities [105]. A novel
dual robustness projection to latent structure method based on the L1 norm (L1-PLS) is
proposed and illustrates its insensitivity to outliers [106]. The robust mixture PPCA model
incorporates with a Bayesian soft decision fusion strategy for handling the missing data
problem. The mixture of probabilistic principal component analysis (MPPCA) models was
trained under multiple operational conditions, such as healthy conditions and anomalies
with missing measurement data [107].

5.2. Modifications Designed for Non-Gaussian and Nonlinear Processes

The retrieved latent variables are assumed to be Gaussian in traditional statistical meth-
ods like PCA and PLS. Additionally, they require a linear correlation between the variables.

While the multiple manufacturing phases or operating conditions often lead to non-
Gaussianity [108,109]. The control threshold and the boundary of normal operation may
not be correct in non-Gaussianity-related situations. Therefore, the non-Gaussianity of
industrial process data for traditional statistical analysis may cause false alarms [110].
ICA has been used to extract components that are non-Gaussian and statistically indepen-
dent [111,112], while this method is cumbersome for some practice applications due to a
number of drawbacks, including the unstable monitoring results and uncertain number
selection of retained independent components [110,113,114].

The nonlinearity of industrial processes is mostly shown in two aspects. On the
one hand, the nonlinearity is embodied in the relationship among time series xk−1 → xk.
On the other hand, the nonlinear relationship is in different variables xk → yk. With
the ubiquity of nonlinearity in practical applications, these two aspects deserve attention.
Compared with the technique for classifying a linear dataset [115], the feasibility of sup-
port vector machine [116] and proximal support vector machines [117] was illustrated.
Probabilistic ICA serves as a statistical method for blind source separation and constructs
a probabilistic model for uncertainty. It was extended to a variational Bayesian form to
improve simplicity and robustness [118]. A semi-supervised learning framework was
delivered for ICA [119]. Gaussian processes provided a probabilistic approach for dealing
with nonlinearity, the model was derived by Lawrence [120], and the process monitoring
was implemented by Ge and Song [121]. The support matrix machine, as an extension of
SVM, was developed under a probabilistic framework [122]. Weighted difference principal
component analysis (WDPCA) eliminates the multimodal and nonlinear characteristics
of the original data by using the weighted difference method [123]. As an extension of
CVA, the canonical variate analysis integrated with a dissimilarity-based index, for process
incipient fault detection in nonlinear dynamic processes under varying operating condi-
tions [124]. To overcome the poor prediction of PCA when inputs and outputs are nonlinear,
a formalism integrating PCA and generalized regression neural networks (GRNNs) is in-
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troduced, and it is a one-step procedure, which helps in faster development of nonlinear
input–output models [125].

5.3. Approaches for Non-Stationary Processes

PCA and CCA are two types of multivariate analysis that are commonly utilized on
processes with a single stationary condition. At the same time, their performance may
degrade when confronted with highly dynamic systems. When these methods are applied
in practice, the highly autocorrelated and time-dependent measurement data can influence
the troubleshooting accuracy.

For online operating systems, one should consider moderate adjustments because of
the sequential relationships in dynamic process data. Given that time-wise sample points
are auto-correlated, one of the most important qualities of industrial systems should be
their dynamic characteristics. As a result, extending statistical modeling from static to
dynamic representations is preferred [100]. The state-space definition presents discrete-
time dynamic systems to monitor dynamic processes [126]. The FIR-smoothing techniques
obtain satisfactory performance regarding measurement with time-delay [127,128]. The
methods [129–132] also improve immunity to disturbances using Bayesian inference. Dy-
namic independent component analysis (DICA) is applied to the augmenting matrix with
time-lagged variables to deal with dynamic processes [133]. By combining the advan-
tages of KPCA (Gaussian part) and KICA (non-Gaussian part), Zhang [134] developed a
nonlinear dynamic approach to detect fault online compared to other nonlinear approaches.

5.4. Work on Robustness

Industrial process data are often mixed with disturbance, and measurement dimen-
sions vary widely between scales. The data preprocessing involves data normalization
to adjust ranges of values, while preprocessing methods need a large computation load,
especially for voluminous industrial data. When processes are affected by disturbance, a
robust strategy can tolerate unstable measurement quality. Different robust mechanisms of
PCA have been researched as fundamental statistical tools for processing data and dimen-
sionality reduction. By combining the projection pursuit (PP) with robust scatter matrix
estimation, Hubert proposed a robust PCA [135]. Li and Chen created the robust PCA
with PP first [136], and the generalized simulated algorithm was carried out by Xie [137].
Furthermore, the improvement was implemented to obtain stable numerical accuracy for
the sake of high-dimensionality [138,139]. The methods mentioned above are deterministic,
and the Bayesian methods can be flexible and alternative. The modification of PCA under
a probabilistic framework can represent uncertainty and thus be a popular method [140].
To handle the heavy-tail distribution dataset, the Bayesian PCA employed Student’s t dis-
tribution [141] and Laplace distribution [142]. Recently, successful industrial applications
have been implemented [143–145].

5.5. Artificial Intelligence Approaches

The construction of system models and feature extraction can be replaced by network-
based strategies [146]. When it comes to coping with nonlinearity and non-Gaussianity,
neural networks (NN) excel. Besides being equipped with the ability to discover dynamic
behaviors, NNs will be promising in FD systems. This promising trend for FD techniques
is built firmly on NNs’ enhanced computational power and explicability. By altering
their weights based on input and output data, artificial NNs mimic the organization of
the human brain. The use of counter propagation NNs and recurrent NNs may be seen
in [147,148]. Convolutional NN combined with fractional Fourier transform and recurrence
plot transform is applied under variable working conditions [149]. A membrane learnable
residual spiking NN for autonomous vehicle sensor defects was proposed by Wang and
Li [150].
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6. Challenges and Open Problems

In practice, some challenges and problems like data preprocessing, real-time ability of
FDD methods, and multichannel data from multiple sensors need further research. The
existing methods also can be enhanced to deal with non-Gaussianity and non-linearity.

6.1. Preprocessing High-Dimensionality Data

The data sampled in a harsh working environment with disturbance, possibly of poor
quality, will reduce the accuracy and effectiveness of FDD schemes. The preprocessing of
sampling data to remove outliers will be beneficial for subsequent FDD steps. Modern
industrial processes consist of various components, and each part can have abundant
measured variables. This benefits real-time monitoring but is accompanied by problems
with storing, managing, and preprocessing big data. The statistical methods generally
use matrices to compute corresponding statistics, and the high-dimension of matrices
increases with burgeoning size data. The dimensional explosion problem will induce a
large computation load, demanding hardware facilities.

6.2. Statistical FD Schemes Developed without Real-Time Ability

Unlike a simple classification problem, the design of the FDD scheme needs to consider
the dynamic behaviors of practical application. For any online system, the FDD schemes
are ultimately designed to detect and diagnose faults in real time. The fast and effective
decision-making process of judging whether a fault is reflected in the collected data is
significant, especially for high-sample-frequency systems. Most methods reviewed in this
paper only applied to static processes and have no ability for online implementation. The
online implementation is a research gap for statistical FDD methods.

6.3. Enhancement on Existing Methods

Further enhancement on works presented in this review are suggested: (i) use different
statistical methods to improve fault diagnosis; (ii) enhancement of statistical methods not
explored by authors in their original works; and (iii) modification of methods to handle
non-Gaussian and non-linear data. These methods should confirm their robustness when
implemented in industrial processes (mainly chemical, mechanism, and bioengineering).

6.4. Development on Fault Diagnosis

Most methods reviewed in this paper focused on fault detection or isolation. That
points to the research niche of the development of fault diagnosis methods.

6.5. Processes with Multichannel Data from Multiple Sensors

Research on the monitoring and diagnosis of general multichannel profiles is still
limited in processing a single profile’s data. In industrial applications, product quality
is often characterized by profile data collected from multiple channels. By taking cross-
correlations among multichannel profiles into consideration, profile monitoring is expected
to become more sensitive to a variety of shifts.

7. Conclusions

Statistical methods have received increasing attention in recent years as an emerging
and active research area in fault detection and diagnosis. This paper has sketched the
probabilistic extensions of traditional statistical-based FDD schemes (such as PCA, ICA,
CCA, and FDA) along with the test statistics. A brief review of challenges and perspectives
on the statistical FDD strategy is presented. The review shows that each of the existing
probabilistic approaches has its own strengths and limitations. In addition, several key
open problems (such as non-Gaussian, non-linearity, non-stationary, and robustness) are
discussed to demonstrate potential future research.
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