
Citation: Liu, J.; Qin, Z.; Yuen, M.

Formation of Singularity for

Isentropic Irrotational Compressible

Euler Equations. Symmetry 2024, 16,

454. https://doi.org/10.3390/

sym16040454

Academic Editor: Christodoulos

Sophocleous

Received: 4 March 2024

Revised: 24 March 2024

Accepted: 27 March 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Formation of Singularity for Isentropic Irrotational
Compressible Euler Equations
Jianli Liu 1,† , Ziyi Qin 1,† and Manwai Yuen 2,*

1 Department of Mathematics, Shanghai University, Shanghai 200444, China; jlliu@shu.edu.cn (J.L.);
zyqin@shu.edu.cn (Z.Q.)

2 Department of Mathematics and Information Technology, The Education University of Hong Kong,
Hong Kong, China

* Correspondence: yuenmw@eduhk.hk
† These authors contributed equally to this work.

Abstract: The domain of science and engineering relies heavily on an in-depth comprehension of
fluid dynamics, given the prevalence of fluids such as water, air, and interstellar gas in the universe.
Euler equations form the basis for the study of fluid motion. This paper is concerned with the Cauchy
problem of isentropic compressible Euler equations away from the vacuum. We use the integration
method with the general test function f = f (r), proving that there exist the corresponding blowup
results of C1 irrotational solutions for Euler equations and Euler equations with time-dependent
damping in Rn (n ≥ 2), provided the density-independent initial functional is sufficiently large. We
also provide two simple and explicit test functions f (r) = r and f (r) = 1 + r, to demonstrate the
blowup phenomenon in the one-dimensional case. In particular, our results are applicable to the
non-radial system.

Keywords: Euler equations; blowup; irrotational solutions; time-dependent damping; initial value
problem; test function

1. Introduction

The compressible Euler equations are used to describe the motion of an ideal fluid,
incorporating the conservation laws of mass, momentum, and energy. These equations
play a significant role in various applications such as analyzing aircraft engine thrust and
examining fluid states at engine inlet and exhaust [1]. Readers can refer to [2–4] for a more
in-depth discussion of physical background. The isentropic compressible Euler equations
in Rn (n ≥ 2) are expressed as{

ρt +▽ · (ρu) = 0,

ρ[ut + (u ·▽)u] +▽P = 0,
(1)

where unknown functions ρ(t, x) and u(t, x) = (u1, u2, . . . , un)(t, x) with x = (x1, . . . , xn)
represent the density and velocity of the fluid. The pressure P = Kργ with constants K > 0
and γ > 1.

As the classical system in the fields of aerodynamics and mathematics, Euler equations
have been the subject of extensive study. Given that Euler equations can be rephrased
as first-order quasilinear hyperbolic systems, there exist local existence and uniqueness
theorems for classical solutions, as can be found in [5,6]. In [7], Chen gave the local existence
of smooth solutions for three-dimensional Euler equations with initial conditions away
from the vacuum. The local well-posedness for Euler equations is also be included in [8,9].
Particularly, the investigations of singularities and life span estimation of solutions for
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Euler equations have captivated numerous mathematicians and physicists. In this paper,
we focus on the blowup phenomenon of solutions for Euler Equation (1) with initial data{

(ρ(0, x), u(0, x)) = (ρ0(x) := ρ̄ + ρ0x), u0(x)),

supp(ρ0, u0) ⊆ {x : |x| ≤ R},
(2)

with some positive constants ρ̄ and R. For the Cauchy problem with non-vacuum initial
values and compact support, Sideris [10] initially proposed the integral functional

F(t) =
∫
R3

ρx · udV (3)

and established the finite-time singularity of solutions for three-dimensional non-isentropic
Euler equations with sufficiently large F(0). Subsequently, in [11], Zhu, Tu, and Fu further
derived the corresponding blowup results with a less restraining condition for this system.
Then, Yuen delved into the lifespan of two-dimensional projected C2 solutions of Euler
Equation (1) in [12] by employing a new density-independent functional

F(t) =
∫
Rn

x · udx. (4)

Those interested can find more comprehensive studies on the blowup phenomena of Euler
equations in [13–20].

Then, we proceed to consider irrotational solutions of Euler Equation (1), namely, the
velocity satisfies

▽× u = 0. (5)

By employing the extended vector analysis formula

(u ·▽)u =
1
2
▽(|u|2)− u ×▽× u, (6)

rotational Euler Equation (1) can be written in following form.
ρt +▽ · (ρu) = 0,

ρ[ut +
1
2
▽(|u|2)] +▽P = 0,

(7)

where |u| = (
n
∑

i=1
u2

i )
1
2 . Equation (7) denotes the irrotational Euler equations, also known as

potential flows [8]. In radial symmetry, Euler Equation (1) can be written asρt + Vρr + ρVr +
n − 1

r
ρV = 0,

ρ(Vt + VVr) + Pr = 0,
(8)

where

ρ = ρ(t, r), u =
x
r

V :=
x
r

V(t, r) and r = |x| = (
n

∑
i=1

x2
i )

1
2 . (9)

Therefore, the solutions of Equation (8) are irrotational solutions. In [21], by concerning
the preserved total mass and energy, as well as the degenerate total pressure, Suzuki
investigated the non-existence of global-in-time, irrotational solutions for Euler equations
in R3 with a vacuum state. In [22], Yuen improved the previous results with functional (4),
providing the blowup proof of multi-dimensional irrotational solutions for Euler equations
in non-radial symmetry.

Nevertheless, it is essential to acknowledge that Euler Equation (1) exhibits inherent
constraints, being solely applicable to ideal fluids and disregarding the viscous effects.
Consequently, it becomes imperative to incorporate more intricate and precise models,
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such as adding damping terms, for practical applications. Describing the movement of
compressible fluid through a porous medium involves employing the compressible Euler
equations with time-dependent damping, represented by

ρt +▽ · (ρu) = 0,

ρ[ut + (u ·▽)u] +▽P = − µ

(1 + t)λ
ρu, (10)

where µ > 0 and λ ∈ [−1, 1). When λ ∈ [0, 1), the damping effect − µ

(1+t)λ ρu weakens with

time t, denoted as the underdamping case. Conversely, for λ ∈ [−1, 0), the damping effect
intensifies with time t, termed the overdamping case. When µ = 0, system (10) reduces
to the original Euler Equation (1). For further insights, we refer readers to [23,24] and the
references therein.

The isentropic Euler equations with the friction term can also be viewed as a model
of hyperbolic conservation laws with damping. In [25], Kato proved that solutions of the
Cauchy problem for full quasilinear symmetric hyperbolic systems exist only for a small
time interval. For the initial data around the constant states, Pan [26,27], Hou, and Yin [28]
gave the global existence and blowup of smooth solutions to Equation (10) in one, two,
and three dimensions, respectively. Liu’s work in [29] imparted a detailed account of the
boundary singular and time-asymptotic behaviors of Euler equations with linear damping
near vacuum. In [30], Cheung and Wong explored the blowup of radial solutions for the
initial-boundary value problem of multi-dimensional Equation (10) with µ > 0, λ ≥ 0.
Readers can refer to [31–33] for pertinent studies of Euler equations with damping.

Similarly, articulating irrotational Euler equations with time-dependent damping is
encapsulated in the following formulations.

ρt +▽ · (ρu) = 0,

ρ[ut +
1
2
▽(|u|2)] +▽P = − µ

(1 + t)λ
ρu.

(11)

In [34], building upon the same functionals as in [19], Liu, Wang, and Yuen expanded the
corresponding blowup theory to irrotational solutions for multi-dimensional Equation (11)
in a vacuum setting.

2. Materials and Methods

In the study of the blowup for solutions, the integration functional method is fre-
quently employed, with the objective of demonstrating that the singularity of solutions will
inevitably develop within a finite time if the initial data of the functional are sufficiently
large. In the following research, we shall use the integration method with the test function
to illustrate the blowup conditions of solutions for Equations (7) and (11).

There are certain blowup findings regarding Euler equations obtained through the
utilization of the integral functional with test functions. In [19], Lei, Du, and Zhang
utilized test functions 1

rer and the modified Bessel function associated with the radius r,
establishing that solutions for Euler equations in R2 and R3 must undergo blowup in finite
time when initial values exhibit radial symmetry and involve vacuum conditions. Then,
Wong and Yuen [35] discovered a non-negative and strictly increasing C1 test function f (r)
and applied the functional

F(t) =
∫ ∞

0
f (r)V(t, r)dr, (12)

to derive new blowup conditions of solutions for multi-dimensional Euler Equation (8).
Their findings indicated that singular solutions with radial symmetry must occur in finite
time when F(0) reaches a sufficient value. Additionally, Cheung, Wong and Yuen con-
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structed a test function f = f (r) that represents an increasing C1 property on [0,+∞) and
vanishes at r = 1 in [36]. They used the functional

F(t) =
∫

Ω
f ρx · udx, (13)

to address the initial-boundary value problem with u · n||x|=1 = 0 and Ω := {x : |x| > 1}
of three-dimensional non-isentropic Euler equations. Recently, Wu and Wang formulated
the functional

F(t) =
∫ ∞

0
e−rρV(t, r)dr (14)

with an exact test function f (r) = e−r in [37], to demonstrate the blowup phenomena of
spherically symmetric solutions for non-isentropic Euler equations, without requiring the
initial velocity to have a compact support and the initial density and entropy to be equal to
a constant outside the support of the initial velocity.

In this article, we discover two general test functions f1 = f1(r) for γ > 1 and
f2 = f2(r) for γ ≥ 2 with r = |x|, where f1(r) is a strictly increasing C1 function on [0,+∞)
satisfying f1(0) = 0 and f2(r) is a strictly increasing C1 function on [0,+∞) satisfying
f2(0) ≥ 1

n . By utilizing density-independent functionals

F1(t) =
∫
Rn

f1x · udx (15)

and
F2(t) =

∫
Rn

f2x · udx, (16)

we examine the blowup behavior of irrotational C1 solutions for n-dimensional compress-
ible Euler Equation (7) and Euler equations with time-dependent damping (11) within the
setting of initial conditions (2). For enhanced comprehension, the corresponding blowup cri-
teria of the one-dimensional case with two simple test functions f1(r) = r and f2(r) = 1+ r
are also included. Our results further expand the conclusions presented in [22] and remain
applicable for the non-radial system.

3. Results

In this section, we shall present our research results and furnish detailed proofs.

3.1. Main Theorems

In this part, we introduce the main theorems unveiled through our investigation. For
Euler Equation (7), the theorems are as follows.

Theorem 1. Fix T ∈ [0,+∞) and a ∈ (0, n). Consider the C1 solutions of system (7) and (2)
with γ > 1 in Rn. If F1(0) is sufficient such that

F1(0) ≥
√

2 f1(R + σT)K1(T)
a

(R + σT)V(T) (17)

and

F1(0) ≥
2

n − a

(∫ T

0

dt

(R + σt)2 f1(R + σt)V(t)

)−1

, (18)

where

K1(t) :=
Kγ

γ − 1
ρ̄γ−1

[
n f1(R + σt) + (R + σt) max

r≤R+σt
f ′1(r)

]
(19)

and

V(t) :=
π

n
2 (R + σt)n

Γ
( n

2 + 1
) , (20)
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with Gamma function Γ(η) =
∫ +∞

0
sη−1

es ds (η > 0) and σ =
√

Kγρ̄γ−1, then solutions will blow
up on or before time T.

Theorem 2. Fix T ∈ [0,+∞). Consider the C1 solutions of system (7) and (2) with γ = 2 in Rn.
Let V(t) be defined by (20),

M(0) :=
∫
Rn
(ρ0 − ρ̄)dx (21)

and

K2(t) := 2Kρ̄

[
n f2(R + σt) + (R + σt) max

r≤R+σt
f ′2(r)

]
. (22)

1. For M(0) ≥ K2(T)V(T)
2K : If F2(0) is sufficient such that

F2(0) ≥
2
n

(∫ T

0

dt

(R + σt)2 f2(R + σt)V(t)

)−1

, (23)

then solutions will blow up on or before time T.
2. For M(0) < K2(T)V(T)

2K : Fix b ∈ (0, n). If F2(0) is sufficient such that

F2(0) ≥
√

2 f2(R + σT)C1(T)V(T)
b

(R + σT) (24)

and

F2(0) ≥
2

n − b

(∫ T

0

dt
(R + σt)2 f2(R + σt)V(t)

)−1

, (25)

where
C1(t) := −(2KM(0)− K2(t)V(t)), (26)

then solutions will blow up on or before time T.

Theorem 3. Fix T ∈ [0,+∞) and c ∈ (0, n). Consider the C1 solutions of system (7) and (2) with
γ > 2 in Rn. If F2(0) is sufficient such that

F2
2 (0) ≥

2C2(R + σT)2 f2(R + σT)V(T)
c

(27)

and

F2(0) ≥
2

n − c

(∫ T

0

dt
(R + σt)2 f2(R + σt)V(t)

)−1

, (28)

where

C2 := −
[

Kγ

γ − 1
min

t∈[0,T]
(M(0) + ρ̄V(t))γ−1V2−γ(t)− K3(T)V(T)

]
, (29)

K3(t) :=
Kγ

γ − 1
ρ̄γ−1

[
n f2(R + σt) + (R + σt) max

r≤R+σt
f ′2(r)

]
, (30)

V(t) is defined by (20) and M(0) is defined by (21), then solutions will blow up on or before time T.

Remark 1. If M(0) ≥ ( γ−1
Kγ K3(T))

1
γ−1 V(T), we have M(0) > 0 and

Kγ

γ − 1
min

t∈[0,T]
(M(0) + ρ̄V(t))γ−1V2−γ(t) >

Kγ

γ − 1
min

t∈[0,T]
Mγ−1(0)V2−γ(t) (31)

≥ Kγ

γ − 1
Mγ−1(0)V2−γ(T) (32)

≥ K3(T)V(T). (33)



Symmetry 2024, 16, 454 6 of 19

Then, C2 < 0. Therefore, the condition (27) in Theorem 3 can be removed.

For Euler equations with time-dependent damping (11), the theorem is outlined as
follows.

Theorem 4. Fix T ∈ [0,+∞) and d ∈ (0, n). Consider the C1 solutions of system (11) and (2)
with γ > 1 in Rn. Let K1(t) and V(t) be defined by (19) and (20),

A =:
d

2(R + σT)2 f1(R + σT)V(T)
(34)

and
C =: K1(T)V(T). (35)

1. For the underdamping case: If F1(0) is sufficient such that

F1(0) ≥
µ +

√
µ2 + 4AC
2A

(36)

and

F1(0) ≥
2

n − d

(∫ T

0

dt

(R + σt)2 f1(R + σt)V(t)

)−1

, (37)

then solutions will blow up at or before time T.
2. For the overdamping case: If F1(0) is sufficient such that

F1(0) ≥
B +

√
B2 + 4AC
2A

(38)

and inequality (37) is satisfied, where

B =:
µ

(1 + T)λ
, (39)

then solutions will blow up at or before time T.

3.2. Preliminaries

In this part, we give several important conclusions, and the subsequent research is
based on them. The first two lemmas both imply that solutions of Euler equations will
always be in the non-vacuum over time in the support of velocity if initial values are in the
non-vacuum.

Lemma 1 (Proposition 1.1 in [10]). Let (ρ, u) be the C1 solutions of the n-dimensional Euler
Equation (7) with initial conditions (2) and a life span T > 0. Then, we have

(ρ, u) = (ρ̄, 0) (40)

for t ∈ [0, T] and |x| ≥ R + σt, where σ =
√

Kγρ̄γ−1 > 0.

Lemma 2. If (ρ, u) are the C1 solutions of Euler Equation (7) and ρ(0, x) > 0 for all x ∈ Rn, then
ρ(t, x) > 0 for all t ≥ 0 and x ∈ Rn.

Proof. Along the characteristic curve x = x(t; x0) that passes through any fixed point (0, x0)
on the initial axis t = 0, the first one of Equation (7) becomes

Dρ

Dt
+ ρ▽ · u = 0 (41)
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with the material derivative D
Dt =

∂
∂t + u ·▽.

Through this integration, we obtain

ρ(t, x) = ρ(0, x0) exp
(
−
∫ t

0
▽ · u(s, x)

)
ds > 0. (42)

The proof is completed.

In order to further advance the process of proof for Theorems 2 and 3, we need the
following lemmas.

Lemma 3. For the C1 solutions of Euler Equation (7) with initial data (2), the total mass function
is conserved, namely,

M(0) = M(t) =
∫
Rn
(ρ − ρ̄)dx. (43)

Proof. Combining the first one of Equation (7) and Green’s formula, we have

d
dt

M(t) =
∫
Rn

ρtdx = −
∫
Rn

▽(ρu)dx = −
∫
|x|≤R+σt

▽(ρu)dx = −
∫
|x|=R+σt

ρu · ndS = 0 (44)

with Lemma 1, where n is the unit outward normal to S := {x : |x| = R + σt}. This means
that M(t) = M(0).

Then, we obtain the following corollaries immediately.

Corollary 1. For the C1 solutions of Euler Equation (7) with initial data (2), we have∫
|x|≤R+σt

ρdx = M(0) + ρ̄V(t), (45)

where V(t) := π
n
2 (R+σt)n

Γ( n
2 +1)

is the volume of an n-dimensional sphere of radius R + σt and Γ(η) =∫ +∞
0

sη−1

es ds (η > 0) is the Gamma function.

Proof. According to Lemma 3, it follows that∫
|x|≤R+σt

(ρ − ρ̄)dx =
∫
Rn
(ρ − ρ̄)dx =

∫
Rn
(ρ0 − ρ̄)dx = M(0). (46)

Therefore, we have∫
|x|≤R+σt

ρdx = M(0) +
∫
|x|≤R+σt

ρ̄dx = M(0) + ρ̄V(t). (47)

The proof is completed.

Corollary 2. For the C1 solutions of Euler Equation (7) with initial data (2) and γ ≥ 2, we have∫
|x|≤R+σt

ργ−1dx ≥ (M(0) + ρ̄V(t))γ−1V2−γ(t). (48)

Proof. In fact, the Hölder inequality can be applied to confirm that(∫
|x|≤R+σt

ρdx
)γ−1

≤
(∫

|x|≤R+σt
ργ−1dx

)(∫
|x|≤R+σt

1dx
)γ−2

(49)

= Vγ−2(t)
∫
|x|≤R+σt

ργ−1dx (50)
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for γ ≥ 2. This means that

∫
|x|≤R+σt

ργ−1dx ≥
(∫

|x|≤R+σt
ρdx

)γ−1
V2−γ(t).

The conclusion is obviously true with Corollary 1.

3.3. Integration Methods with Test Functions

In this part, we shall give the proof of our main results to show the formation of
singular solutions by using the integration method. We first demonstrate the blowup
phenomenon of irrotational solutions of ideal compressible Euler Equation (7).

Proof of Theorem 1. For γ > 1, we consider the second one of Equation (7), which can be
written as

ut +
1
2
▽(|u|2) + Kγ

γ − 1
▽
(

ργ−1 − ρ̄γ−1
)
= 0. (51)

Multiplying the above equation by x and f1 and integrating over Rn, by the solutions (ρ, u)
for |x| ≥ R + σt in Lemma 1, we obtain∫

Rn
f1x · utdx = −

∫
Rn

f1x ·
[

1
2
▽(|u|2) + Kγ

γ − 1
▽
(

ργ−1 − ρ̄γ−1
)]

dx (52)

= −
∫
|x|≤R+σt

f1x ·
[

1
2
▽(|u|2) + Kγ

γ − 1
▽
(

ργ−1 − ρ̄γ−1
)]

dx. (53)

Combined with Green’s formula, we have

d
dt

∫
Rn

f1x · udx =
∫
|x|≤R+σt

[
1
2
|u|2 + Kγ

γ − 1

(
ργ−1 − ρ̄γ−1

)]
▽ · ( f1x)dx (54)

=
∫
|x|≤R+σt

[
1
2
|u|2 + Kγ

γ − 1

(
ργ−1 − ρ̄γ−1

)](
n f1 +

n

∑
i=1

xi
∂ f1

∂xi

)
dx (55)

=
∫
|x|≤R+σt

[
1
2
|u|2 + Kγ

γ − 1

(
ργ−1 − ρ̄γ−1

)](
n f1 + f ′1|x|

)
dx. (56)

Because f1 is strictly increasing and f1(0) = 0, it is easily known that f1 ≥ 0 and f ′1 > 0.
Then, we have

d
dt

∫
Rn

f1x · udx =
1
2

∫
|x|≤R+σt

|u|2
(
n f1 + f ′1|x|

)
dx +

Kγ

γ − 1

∫
|x|≤R+σt

(
ργ−1 − ρ̄γ−1

)(
n f1 + f ′1|x|

)
dx (57)

≥n
2

∫
|x|≤R+σt

f1|u|2dx +
Kγ

γ − 1

∫
|x|≤R+σt

(
ργ−1 − ρ̄γ−1

)(
n f1 + f ′1|x|

)
dx. (58)

By Lemma 2 and the continuity of the first derivative of f1(r), it follows that

Kγ

γ − 1

∫
|x|≤R+σt

(
ργ−1 − ρ̄γ−1

)(
n f1 + f ′1|x|

)
dx (59)

>− Kγ

γ − 1

∫
|x|≤R+σt

ρ̄γ−1(n f1 + f ′1|x|
)
dx (60)

≥− Kγρ̄γ−1

γ − 1

[
n f1(R + σt) + (R + σt) max

r≤R+σt
f ′1(r)

]
V(t) (61)

≥− Kγρ̄γ−1

γ − 1

[
n f1(R + σT) + (R + σT) max

r≤R+σT
f ′1(r)

]
V(T) (62)

= : −K1(T)V(T), (63)
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where V(t) := π
n
2 (R+σt)n

Γ( n
2 +1)

is the volume of an n-dimensional sphere with the radius of

R + σt and Γ(η) is the Gamma function with η > 0.
Moreover, by the Hölder inequality, we hold

F2
1 (t) =

(∫
Rn

f1x · udx
)2

(64)

=

(∫
|x|≤R+σt

f1x · udx
)2

(65)

≤
(∫

|x|≤R+σt
f1|x|2dx

)(∫
|x|≤R+σt

f1|u|2dx
)

(66)

≤ f1(R + σt)(R + σt)2
(∫

|x|≤R+σt
1dx

)(∫
|x|≤R+σt

f1|u|2dx
)

(67)

=
π

n
2 (R + σt)n+2

Γ
( n

2 + 1
) f1(R + σt)

∫
|x|≤R+σt

f1|u|2dx. (68)

Thus, we have ∫
|x|≤R+σt

f1|u|2dx ≥
Γ
( n

2 + 1
)

π
n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t). (69)

Fix T > 0. Then, for any 0 ≤ t ≤ T, inequality (58) can be converted to

Ḟ1(t) >
nΓ
( n

2 + 1
)

2π
n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t)− K1(T)V(T) (70)

=
(n − a)Γ

( n
2 + 1

)
2π

n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t) +

aΓ
( n

2 + 1
)

2π
n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t)− K1(T)V(T) (71)

≥
(n − a)Γ

( n
2 + 1

)
2π

n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t) +

[
aΓ
( n

2 + 1
)

2π
n
2 (R + σT)n+2 f1(R + σT)

F2
1 (t)− K1(T)V(T)

]
(72)

= :
(n − a)Γ

( n
2 + 1

)
2π

n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t) + G1(t), (73)

where a is a positive constant, such that 0 < a < n.
Obviously, we can obtain G1(0) ≥ 0 from inequality (17), which implies G1(t) ≥ 0 for

t ∈ [0, T] and

Ḟ1(t) >
(n − a)Γ

( n
2 + 1

)
2π

n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t) ≥ 0 for t ∈ [0, T]. (74)

When condition (18) is satisfied, F1(t) is a strictly increasing function such that

F1(t) > F1(0) ≥
2π

n
2

(n − a)Γ
( n

2 + 1
)(∫ T

0

dt

(R + σt)n+2 f1(R + σt)

)−1

> 0 for t ∈ (0, T]. (75)

Then, for 0 < t ≤ T, we take integration of inequality (74) with respect to time over (0, t),
yielding

1
F1(0)

− 1
F1(t)

>
(n − a)Γ

( n
2 + 1

)
2π

n
2

∫ t

0

1

(R + σs)n+2 f1(R + σs)
ds. (76)

That is,

0 <
1

F1(t)
<

1
F1(0)

−
(n − a)Γ

( n
2 + 1

)
2π

n
2

∫ t

0

1

(R + σs)n+2 f1(R + σs)
ds. (77)
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The right term of the inequality (77) is less than or equal to 0 on t = T under the condition
of (18) in Theorem 1, which leads to a contradiction. Therefore, solutions will blow up on
or before T.

The proof is completed.

Therefore, we have the following corollary for one-dimensional Euler Equation (7)
with an exact test function f1(r) = r = |x|.

Corollary 3. Fix T ∈ [0,+∞) and e ∈ (0, 1). Consider the C1 solutions of system (7) and (2)
with n = 1 and γ > 1. If F1(0) is sufficient such that

F1(0) ≥ 2

√
2Kγρ̄γ−1

e(γ − 1)
(R + σT)3 (78)

and

F1(0) ≥
12σR3(R + σT)3

(1 − e)(σ3T3 + 3Rσ2T2 + 3R2σT)
, (79)

then solutions will blow up on or before time T.

Proof of Corollary 3. The 1-dimensional Euler Equation (7) can be written as
ρt + ux = 0,

ut +
1
2

∂x(u2) +
Kγ

γ − 1
∂x(ρ

γ−1 − ρ̄γ−1) = 0.
(80)

As before, multiplying Equation (80) by |x| and x on both sides and taking the integration
with respect to x, we have∫ +∞

−∞
|x|xutdx = −

∫ +∞

−∞
|x|x

[
1
2

∂x(u2) +
Kγ

γ − 1
∂x(ρ

γ−1 − ρ̄γ−1)

]
dx (81)

=
∫ R+σt

−R−σt
2|x|

[
1
2

u2 +
Kγ

γ − 1
(ργ−1 − ρ̄γ−1)

]
dx (82)

>
1
2

∫ R+σt

−R−σt
|x|u2dx − 2Kγρ̄γ−1

γ − 1

∫ R+σt

−R−σt
|x|dx (83)

=
1
2

∫ R+σt

−R−σt
|x|u2dx − 2Kγρ̄γ−1

γ − 1
(R + σt)2. (84)

On the other hand, by Lemma 1, we have

F2
1 (t) =

(∫ R+σt

−R−σt
|x|xudx

)2

(85)

≤
(∫ R+σt

−R−σt
|x|u2dx

)(∫ R+σt

−R−σt
|x|x2dx

)
(86)

≤ 2(R + σt)4
∫ R+σt

−R−σt
|x|u2dx. (87)

Thus, we have

Ḟ1(t) >
1

4(R + σt)4 F2
1 (t)−

2Kγρ̄γ−1

γ − 1
(R + σt)2 (88)

≥ 1 − e
4(R + σt)4 F2

1 (t) +
[

e
4(R + σT)4 F2

1 (t)−
2Kγρ̄γ−1

γ − 1
(R + σT)2

]
(89)

=:
1 − e

4(R + σt)4 F2
1 (t) + Ḡ1(t), (90)
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where 0 < e < 1.
Based on our previous analysis, we have Ḡ1(t) ≥ 0 with Equation (78) for t ∈ [0, T].

Therefore,

Ḟ1(t) >
1 − e

4(R + σt)4 F2
1 (t). (91)

The conclusion can be obtained accordingly with Equation (79).

Then, we exploit Corollary 1 to certify Theorem 2.

Proof of Theorem 2. Because f2 is strictly increasing and f2(0) ≥ 1
n , we have n f2 ≥ 1 for

r ∈ [0,+∞). From (57) and (61) in the proof of Theorem 1, there are the same conclu-
sions that

Ḟ2(t) =
d
dt

∫
Rn

f2x · udx (92)

=
1
2

∫
|x|≤R+σt

|u|2
(
n f2 + f ′2|x|

)
dx +

Kγ

γ − 1

∫
|x|≤R+σt

(
ργ−1 − ρ̄γ−1

)(
n f2 + f ′2|x|

)
dx (93)

>
n
2

∫
|x|≤R+σt

f2|u|2dx +
Kγ

γ − 1

∫
|x|≤R+σt

ργ−1dx − Kγ

γ − 1

∫
|x|≤R+σt

ρ̄γ−1(n f2 + f ′2|x|
)
dx (94)

and

− Kγ

γ − 1

∫
|x|≤R+σt

ρ̄γ−1(n f2 + f ′2|x|
)
dx (95)

≥− Kγρ̄γ−1

γ − 1

[
n f2(R + σt) + (R + σt) max

r≤R+σt
f ′2(r)

]
V(t) (96)

≥− Kγρ̄γ−1

γ − 1

[
n f2(R + σT) + (R + σT) max

r≤R+σT
f ′2(r)

]
V(T) (97)

= : −K3(T)V(T). (98)

Similarly, by the Hölder inequality, we obtain

∫
|x|≤R+σt

f2|u|2dx ≥
F2

2 (t)

(R + σt)2 f2(R + σt)V(t)
. (99)

For γ = 2, according to Corollary 1, we have

Kγ

γ − 1

∫
|x|≤R+σt

ργ−1dx = 2K
∫
|x|≤R+σt

ρdx = 2K(M(0) + ρ̄V(t)) > 2KM(0) (100)

and

− Kγ

γ − 1

∫
|x|≤R+σt

ρ̄γ−1(n f2 + f ′2|x|
)
dx (101)

≥− 2Kρ̄

[
n f2(R + σt) + (R + σt) max

r≤R+σt
f ′2(r)

]
V(t) (102)

≥− 2Kρ̄

[
n f2(R + σT) + (R + σT) max

r≤R+σT
f ′2(r)

]
V(T) (103)

= : −K2(T)V(T). (104)

Therefore, inequality (94) can be estimated by

Ḟ2(t) >
nF2

2 (t)

2(R + σt)2 f2(R + σt)V(t)
+ 2KM(0)− K2(T)V(T). (105)
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If M(0) ≥ K2(T)V(T)
2K > 0, we have

2KM(0)− K2(T)V(T) ≥ 0. (106)

Thus, inequality (105) becomes

Ḟ2(t) >
nF2

2 (t)

2(R + σt)2 f2(R + σt)V(t)
≥ 0, (107)

which means F2(t) is a strictly increasing function. If inequality (23) is satisfied, we have

F2(t) > F2(0) > 0 for t ∈ (0, T]. (108)

Then, for 0 < t ≤ T, we have

0 <
1

F2(t)
<

1
F2(0)

− n
2

∫ t

0

1

(R + σs)2 f2(R + σs)V(s)
ds. (109)

More precisely, we have

F2(0) <
2
n

(∫ T

0

1

(R + σt)2 f2(R + σt)V(t)
dt

)−1

, (110)

which contradicts the condition given by inequality (23). Hence, solutions will blow up
before or on T.

If M(0) < K2(T)V(T)
2K , we have

2KM(0)− K2(T)V(T) < 0. (111)

Thus, inequality (105) becomes

Ḟ2(t) >
(n − b)F2

2 (t)

2(R + σt)2 f2(R + σt)V(t)
+

[
bF2

2 (t)

2(R + σt)2 f2(R + σt)V(t)
+ 2KM(0)− K2(T)V(T)

]
(112)

≥ (n − b)F2
2 (t)

2(R + σt)2 f2(R + σt)V(t)
+

[
bF2

2 (t)

2(R + σT)2 f2(R + σT)V(T)
+ 2KM(0)− K2(T)V(T)

]
(113)

= :
(n − b)F2

2 (t)

2(R + σt)2 f2(R + σt)V(t)
+ G2(t), (114)

where b is a constant, such that 0 < b < n.
From inequality (24), we have G2(t) ≥ 0 for t ∈ [0, T], which means

Ḟ2(t) >
(1 − b)F2

2 (t)

2(R + σt)2 f 2
2 (R + σt)V(t)

≥ 0. (115)

Then, for 0 < t ≤ T, if we have inequality (25), it follows that

0 <
1

F2(t)
<

1
F2(0)

− (n − b)
2

∫ t

0

1

(R + σs)2 f2(R + σs)V(s)
ds (116)

and

F2(0) <
2

n − b

(∫ T

0

1

(R + σt)2 f2(R + σt)V(t)
dt

)−1

. (117)

An argument arises and the solutions must blow up in finite time.
The proof is completed.
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Then, we give a corresponding corollary for one-dimensional Euler Equation (7) with
a explicit text function f2(r) = 1 + r = 1 + |x|.

Corollary 4. Fix T ∈ [0,+∞). Consider the C1 solutions of system (7) and (2) with n = 1 and
γ = 2. Let

M(0) =
∫ +∞

−∞
(ρ0 − ρ̄)dx. (118)

1. For M(0) ≥ 2ρ̄(R + σT)(1 + R + σT): If F2(0) is sufficient such that

F2(0) ≥ 4
(∫ T

0

dt
(R + σt)3(1 + R + σt)

)−1

, (119)

then solutions will blow up on or before time T.
2. For M(0) < 2ρ̄(R + σT)(1 + R + σT): Fix f ∈ (0, 1). If F2(0) is sufficient such that

F2(0) ≥ 2(R + σT)

√
2K(R + σT)(1 + R + σT)[2ρ̄(R + σT)(1 + R + σT)− M(0)]

f
(120)

and

F2(0) ≥
4

1 − f

(∫ T

0

dt
(R + σt)3(1 + R + σt)

)−1

, (121)

then solutions will blow up on or before time T.

Proof of Corollary 4. For γ = 2, the second one of Equation (80) becomes

ut +
1
2

∂x(u2) + 2K∂x(ρ − ρ̄) = 0. (122)

As before, we multiply the equation above by 1 + |x| and x on both sides and take the
integration with respect to x, yielding

∫ +∞

−∞
(1 + |x|)xutdx = −

∫ +∞

−∞
(1 + |x|)x

[
1
2

∂x(u2) + 2K∂x(ρ − ρ̄)

]
dx (123)

=
∫ R+σt

−R−σt
(1 + 2|x|)

[
1
2

u2 + 2K(ρ − ρ̄)

]
dx (124)

>
1
2

∫ R+σt

−R−σt
(1 + |x|)u2dx + 2K

∫ R+σt

−R−σt
ρdx − 2Kρ̄

∫ R+σt

−R−σt
(1 + 2|x|)dx (125)

=
1
2

∫ R+σt

−R−σt
(1 + |x|)u2dx + 2K

∫ R+σt

−R−σt
ρdx − 4Kρ̄(1 + R + σt)(R + σt). (126)

Moreover, we have

F2
2 (t) =

(∫ R+σt

−R−σt
(1 + |x|)xudx

)2

(127)

≤
(∫ R+σt

−R−σt
(1 + |x|)u2dx

)(∫ R+σt

−R−σt
(1 + |x|)x2dx

)
(128)

≤ 2(R + σt)3(1 + R + σt)
∫ R+σt

−R−σt
(1 + |x|)u2dx. (129)

By Lemma 3, we obtain ∫ R+σt

−R−σt
ρdx = M(0) + 2ρ̄(R + σt), (130)



Symmetry 2024, 16, 454 14 of 19

where

M(0) =
∫ +∞

−∞
(ρ0 − ρ̄)dx. (131)

Therefore,

Ḟ2(t) ≥
1

4(R + σt)3(1 + R + σt)
F2

2 (t) + 2KM(0)− 4Kρ̄(R + σt)(1 + R + σt). (132)

If M(0) ≥ 2ρ̄(R + σT)(1 + R + σT), it is evident that

Ḟ2(t) >
1

4(R + σt)3(1 + R + σt)
F2

2 (t). (133)

Then, we can derive a contradiction from Equation (119).

If M(0) < 2ρ̄(R + σT)(1 + R + σT), we have

Ḟ2(t) >
1 − f

4(R + σt)3(1 + R + σt)
F2

2 (t)

+

[
f

4(R + σT)3(1 + R + σT)
F2

2 (t) + 2KM(0)− 4Kρ̄(R + σT)(1 + R + σT)
]

(134)

= :
1 − f

4(R + σt)3(1 + R + σt)
F2

2 (t) + Ḡ2(t), (135)

where 0 < f < 1.

Thus, Ḡ2(t) ≥ 0 with Equation (120) for t ∈ [0, T]. Then,

Ḟ2(t) >
1 − f

4(R + σt)3(1 + R + σt)
F2

2 (t). (136)

A contradiction arises from Equation (121).

Next, we prove Theorem 3 by using Corollary 2.

Proof of Theorem 3. For γ > 2, by Corollary 2, inequality (94) becomes

Ḟ2(t) >
(n − c)

2(R + σt)2 f2(R + σt)V(t)
F2

2 (t) +

[
c

2(R + σT)2 f2(R + σT)V(T)
F2

2 (t)

+
Kγ

γ − 1
min

t∈[0,T]
(M(0) + ρ̄V(t))γ−1V2−γ(t)− K3(T)V(T)

]
(137)

= :
(n − c)

2(R + σt)2 f2(R + σt)V(t)
F2(t) + G3(t), (138)

where c is a constant, such that 0 < c < n.
It is easy to obtain G3(t) ≥ 0 on [0, T] with condition (27). Therefore, we have

Ḟ2(t) >
(n − c)F2

2 (t)

2(R + σt)2 f2(R + σt)V(t)
. (139)

As before, for 0 < t ≤ T, we have

0 <
1

F2(t)
<

1
F2(0)

− n − c
2

∫ T

0

1

(R + σt)2 f2(R + σt)V(t)
dt, (140)

provided that condition (28) is satisfied. It follows that the solutions blow up before or
on T.

The proof is completed.
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Therefore, for γ > 2, we also have the corresponding corollary for one-dimensional
Euler Equation (7) with a explicit text function f2(r) = 1 + r = 1 + |x|.

Corollary 5. Fix T ∈ [0,+∞) and g ∈ (0, 1). Consider the C1 solutions of system (7) and (2)
with n = 1 and γ > 2. If F2(0) is sufficient such that

F2
2 (0) ≥

16KC̄2(R + σT)3(1 + R + σt)
g

(141)

and

F2(0) ≥
4

1 − g

(∫ T

0

dt
(R + σt)3(1 + R + σt)

)−1

, (142)

where

C̄2 := ρ̄(R + σT)(1 + R + σT)− γ

(γ − 1)2γ
min

t∈[0,T]
(R + σt)2−γ[M(0) + 2ρ̄(R + σt)]γ−1, (143)

then solutions will blow up on or before time T.

Proof of Corollary 5. Multiplying the second one of Equation (80) by 1+ |x| and x on both
sides and taking the integration with respect to x, we have∫ +∞

−∞
(1 + |x|)xutdx =−

∫ +∞

−∞
(1 + |x|)x

[
1
2

∂x(u2) +
Kγ

γ − 1
∂x(ρ

γ−1 − ρ̄γ−1)

]
dx (144)

=
∫ R+σt

−R−σt
(1 + 2|x|)

[
1
2

u2 +
Kγ

γ − 1
(ργ−1 − ρ̄γ−1)

]
dx (145)

>
1
2

∫ R+σt

−R−σt
(1 + |x|)u2dx

+
Kγ

γ − 1

∫ R+σt

−R−σt
ργ−1dx − Kγρ̄γ−1

γ − 1

∫ R+σt

−R−σt
(1 + 2|x|)dx (146)

=
1
2

∫ R+σt

−R−σt
(1 + |x|)u2dx

+
Kγ

γ − 1

∫ R+σt

−R−σt
ργ−1dx − 2Kγρ̄γ−1

γ − 1
(R + σt)(1 + R + σt). (147)

For n = 1, from Corollary 2, we have∫ R+σt

−R−σt
ργ−1dx ≥ 22−γ(R + σt)2−γ[M(0) + 2ρ̄(R + σt)]γ−1. (148)

Therefore, combined with inequality (129),

Ḟ2(t) >
1 − g

4(R + σt)3(1 + R + σt)
F2

2 (t) +
[

g
4(R + σT)3(1 + R + σT)

F2
2 (t)

+
22−γKγ

γ − 1
min

t∈[0,T]
(R + σt)2−γ[M(0) + 2ρ̄(R + σt)]γ−1 − 4Kρ̄(R + σT)(1 + R + σT)

]
(149)

= :
1 − g

4(R + σt)3(1 + R + σt)
F2

2 (t) + Ḡ3(t), (150)

where 0 < g < 1.
Then, we have Ḡ3(t) ≥ 0 for t ∈ [0, T] with (141). Thus,

Ḟ2(t) >
1 − g

4(R + σt)3(1 + R + σt)
F2

2 (t). (151)

We can obtain a contradiction by Equation (142).
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Finally, we use the same idea to consider the solutions of Euler equations with time-
dependent damping.

Proof of Theorem 4. For γ > 1, the second one of Equation (11) can be written as

u +
1
2
▽(|u|2) + Kγ

γ − 1
▽
(

ργ−1 − ρ̄γ−1
)
= − µ

(1 + t)λ
u. (152)

Multiplying the above equation by x and f1 and integrating over Rn, we have

∫
Rn

f1x · utdx = −
∫
Rn

f1x ·
[

1
2
▽(|u|2) + Kγ

γ − 1
▽
(

ργ−1 − ρ̄γ−1
)]

dx − µ

(1 + t)λ

∫
Rn

f1u · xdx. (153)

Combining Equations (58), (63) and (69), we have

Ḟ1(t) =
∫
|x|≤R+σt

[
1
2
|u|2 + Kγ

γ − 1

(
ργ−1 − ρ̄γ−1

)]
▽ · ( f1x)dx − µ

(1 + t)λ

∫
|x|≤R+σt

f1u · xdx (154)

>
nΓ
( n

2 + 1
)

2π
n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t)− K1(T)V(T)− µ

(1 + t)λ
F1(t) (155)

≥
(n − d)Γ

( n
2 + 1

)
2π

n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t)

+

[
dΓ
( n

2 + 1
)

2π
n
2 (R + σT)n+2 f1(R + σT)

F2
1 (t)−

µ

(1 + t)λ
F1(t)− K1(T)V(T)

]
(156)

= :
(n − d)Γ

( n
2 + 1

)
2π

n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t) + G4(t), (157)

where d is a constant and satisfies 0 < d < n.
In fact, if F1(0) ≥ 0 and G4(t) ≥ 0 for t ∈ [0, T], we have

Ḟ1(t) >
(n − d)Γ

( n
2 + 1

)
2π

n
2 (R + σt)n+2 f1(R + σt)

F2
1 (t) for t ∈ [0, T]. (158)

Hence, F1(t) is an increasing function and F1(t) > F1(0) ≥ 0.

For the underdamping case: Because µ > 0 and λ ∈ [0, 1), it is clear that
− µ

(1+t)λ F1(t) ≥ −µF1(t). It follows that

G4(t) ≥
dΓ
( n

2 + 1
)

2π
n
2 (R + σT)n+2 f1(R + σT)

F2
1 (t)− µF1(t)− K1(T)V(T) (159)

:= AF2
1 (t)− µF1(t)− C (160)

:= G5(F1(t)). (161)

Apparently, G5(F1(t)) is a quadratic equation about F1(t) and F1(t) ∈ [F1(0), F1(T)] for
t ∈ [0, T]. We have G5(F1(t)) ≥ 0 if F1(0) ≥ µ

2A and G5(F1(0)) ≥ 0. Thus, by (36), we obtain
G4(t) ≥ G5(F1(t)) ≥ 0 for t ∈ [0, T]. From condition (37) and inequality (158), we have

0 <
1

F1(t)
<

1
F1(0)

−
(n − d)Γ

( n
2 + 1

)
2π

n
2

∫ T

0

1

(R + σt)n+2 f1(R + σt)
dt (162)

and

F(0) <
2π

n
2

(n − d)Γ
( 2

2 + 1
)(∫ T

0

1

(R + σt)n+2 f1(R + σt)
dt

)−1

. (163)

There is a contradiction between inequality (37) and the inequality above.
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For the overdamping case: As before, if F1(0) ≥ 0 and G4(t) ≥ 0 for t ∈ [0, T], we
have − µ

(1+t)λ F1(t) ≥ − µ

(1+T)λ F1(t) with µ > 0 and λ ∈ [−1, 0). Therefore,

G4(t) ≥
dΓ
( n

2 + 1
)

2π
n
2 (R + σT)n+2 f1(R + σT)

F2
1 (t)−

µ

(1 + T)λ
F1(t)− K1(T)V(T) (164)

:= AF2
1 (t)− BF1(t)− C (165)

:= G6(F1(t)). (166)

We have G6(F1(t)) ≥ 0 if F1(0) ≥ B
2A and G6(F1(0)) ≥ 0. When (38) is satisfied,

G4(t) ≥ G6(F1(t)) ≥ 0 is true for t ∈ [0, T]. Hence, the process of obtaining inequalities
(158) and (163) is smooth with (37), which is the desired contradiction.

The proof is completed.

4. Discussion

As observed in [36], the functional (15) has potential applications in exploring three-
dimensional non-isentropic rotational solutions of Euler equations. The formation of
singularity of irrotational solutions for compressible Euler equations with general time-
dependent damping in Rn {

ρt +▽ · (ρu) = 0,

ρ[ut + (u ·▽)u] +▽P = −a(t)ρu,
(167)

could be analyzed using a similar approach, where a(t) > 0. If a(t) is a constant,
Equation (167) represents the Euler equations with linear damping. Then, a(t)

∫
Rn f x · udx

must be estimated. There may hold a form similar to

Ḟ(t) ≥ A(t)F2(t) + C(t)F(t) + D(t) (168)

with A(t) > 0. Furthermore, the conditions that A(t), C(t), and D(t) should satisfy have
to be considered.

5. Conclusions

This paper primarily discusses the singularity formation of irrotational solutions for
n-dimensional compressible Euler equations with non-vacuum initial data. We find the
general test function f1(r) to consider Euler equations and Euler equations with under-
damping and overdamping for γ > 1 and the general test function f2(r) for γ ≥ 2. By
constructing novel functionals related to the test functions, we demonstrate that solutions
always blow up in finite time. Moreover, we utilize the integration method with two exact
test functions to yield the homologous blowup results of irrotational solutions for Euler
equations in one dimension.
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