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Abstract: Machine learning (ML) methods, particularly Reinforcement Learning (RL), have gained
widespread attention for optimizing traffic signal control in intelligent transportation systems. How-
ever, existing ML approaches often exhibit limitations in scalability and adaptability, particularly
within large traffic networks. This paper introduces an innovative solution by integrating decentral-
ized graph-based multi-agent reinforcement learning (DGMARL) with a Digital Twin to enhance
traffic signal optimization, targeting the reduction of traffic congestion and network-wide fuel con-
sumption associated with vehicle stops and stop delays. In this approach, DGMARL agents are
employed to learn traffic state patterns and make informed decisions regarding traffic signal control.
The integration with a Digital Twin module further facilitates this process by simulating and replicat-
ing the real-time asymmetric traffic behaviors of a complex traffic network. The evaluation of this
proposed methodology utilized PTV-Vissim, a traffic simulation software, which also serves as the
simulation engine for the Digital Twin. The study focused on the Martin Luther King (MLK) Smart
Corridor in Chattanooga, Tennessee, USA, by considering symmetric and asymmetric road layouts
and traffic conditions. Comparative analysis against an actuated signal control baseline approach
revealed significant improvements. Experiment results demonstrate a remarkable 55.38% reduction
in Eco_PI, a developed performance measure capturing the cumulative impact of stops and penalized
stop delays on fuel consumption, over a 24 h scenario. In a PM-peak-hour scenario, the average
reduction in Eco_PI reached 38.94%, indicating the substantial improvement achieved in optimizing
traffic flow and reducing fuel consumption during high-demand periods. These findings underscore
the effectiveness of the integrated DGMARL and Digital Twin approach in optimizing traffic signals,
contributing to a more sustainable and efficient traffic management system.

Keywords: multi-agent reinforcement learning; Digital Twin; graph neural network; intelligent
transportation systems; traffic signal optimization; fuel consumption; traffic congestion; actuated
signal control; asymmetric traffic conditions

1. Introduction

Urban centers worldwide are increasingly adopting Intelligent Transportation Sys-
tem (ITS) technologies to transform conventional corridors into smart and data-driven
transportation systems [1–5]. The deployment of smart corridors offers an opportunity to
harness high-resolution and high-frequency vehicle and infrastructure data. This, coupled
with advancements in machine learning, artificial intelligence, and high-performance com-
puting, presents a promising avenue for addressing safety, mobility, and environmental
challenges within transportation systems [6–10].
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Efforts to optimize and enhance transportation systems are exploring innovative
approaches, and one such solution under investigation is the application of Digital Twin-
assisted decentralized multi-agent Reinforcement Learning (RL). This approach involves
establishing a seamless connection between the Digital Twin representation of the phys-
ical system and the decentralized multi-agent Reinforcement Learning (RL) framework.
The primary goal is to demonstrate the successful integration of these components and
leverage the resulting application to optimize traffic signal timing.

This study presents an extended version of the work [11], focusing on a real-world
case study to demonstrate the practical application of the integrated Digital Twin and
decentralized graph-based multi-agent reinforcement learning. Our specific objective is to
optimize traffic signal timing, aiming to reduce a performance measure known as Eco_PI,
which comprehensively assesses the environmental and efficiency aspects of traffic man-
agement by capturing the impact of stops on fuel consumption and delay. The extended
methodology introduces red clearance and max green constraints, enhancing simulation
accuracy and pedestrian safety while optimizing traffic flow. Additionally, expanded exper-
imental analysis provides insights into traffic patterns, congestion, and overall performance,
resulting in notable enhancements in traffic flow optimization and congestion mitigation,
particularly during peak hours.

The integration of Digital Twin technology and decentralized graph-based multi-agent
reinforcement learning holds significant potential for addressing the complex dynamics of
urban traffic systems. By optimizing traffic signal timing through this integrated approach,
this study aims to contribute to the broader goal of creating more sustainable, efficient,
and intelligent transportation networks. Further insights into the Eco_PI performance
measure, including relevant references, can be found in [12–15].

2. Related Work

In the realm of urban traffic management, the optimization of traffic signal control has
become increasingly imperative due to the challenges posed by growing populations and
urbanization. Traditional traffic control methods often struggle to adapt to dynamic traffic
scenarios and efficiently coordinate diverse agents, including vehicles and pedestrians.
Recent advancements in Artificial Intelligence (AI) offer promising solutions to address
these challenges, with notable applications in domains such as healthcare [16–19], trans-
portation, etc. Deep learning frameworks have demonstrated effectiveness in tasks such
as vehicle tracking, visual speed estimation [20], and traffic estimation [21]. In particular,
Multi-Agent Reinforcement Learning (MARL) approaches [22,23] show particular potential
for intelligently optimizing traffic signals.

Multi-Agent Reinforcement Learning (MARL) involves collaborative decision-making
among agents, each relying on local observations and interactions within the environ-
ment. Decentralized graph-based MARL models, like Multi-Agent Advantage Actor-Critic
(MA2C) [22], have emerged as a breakthrough, effectively distributing control across lo-
cal agents while coordinating for efficient traffic signal management. MA2C addresses
scalability concerns in large-scale networks, enabling independent learning for agents
and facilitating quicker policy convergence. Coordinated actions enhance performance,
especially in cooperative or competitive scenarios. Advantage Actor-Critic (A2C) scales
effectively to larger environments [24], enabling parallelized learning and adaptation to
dynamic environments by continuously updating policies based on interactions with other
agents. Through A2C, agents refine policies through continual exploration and exploitation
of the environment, maximizing cumulative rewards for stable and efficient learning.

The study [25] underscores the critical importance of accurate simulation models in
urban transportation planning and optimization, and highlights the necessity of capturing
the complexity of city traffic for effective planning by utilizing real-world vehicle speed data
and integrating various sources. As the urban landscape evolves, the integration of Digital
Twins, inspired by Industry 4.0 principles [26–41], emerges as a transformative element in
modernizing systems and processes. Digital Twins offers a promising paradigm to enhance
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the performance of physical systems through virtual modeling [42–45]. The marriage
of Digital Twins with Multi-Agent Reinforcement Learning (MARL) for traffic signal
optimization marks a paradigm shift in urban traffic management. Digital Twins serve
as virtual representations of physical entities, providing real-time monitoring, analysis,
and decision-making capabilities. Studies such as [46] investigate the transformative
impact of Digital Twins, Internet of Things (IoT), and machine learning on data utilization,
underscoring the potential of Digital Twins in enhancing real-time data utilization for
enterprises. Continuously updated in real-time through sensor data and various sources,
the Digital Twins provides an accurate depiction of the current and historical state of the
physical entity, allowing for improved prediction, control refinement, and operational
optimization [47,48]. Diverse applications of Digital Twins, including transportation,
modeling techniques, and the benefits of integrating Digital Twins in system design, have
been discussed in [49,50].

In contrast to traditional simulation models based on assumptions, Digital Twins rely
on actual data, providing a more realistic representation of the physical entity. This attribute
proves particularly beneficial in industries like Intelligent Transportation System (ITS)
technologies, where the reliability and performance of complex systems are paramount [51].

Within transportation applications, Digital Twins simulations offer a realistic portrayal
of real-world transportation systems. Acting as a crucial testbed, Digital Twins facilitate the
development of real-time machine learning-based traffic operations applications, providing
a safe and economic environment for training and testing artificial intelligence/machine
learning (AI/ML) algorithms. Previous studies, exemplified by [52], utilized Digital Twins
for transportation systems, leveraging real-time smart corridor data to model current
traffic states and provide dynamic updates on traffic performance measures. AI/ML algo-
rithms encompass a range of techniques, including deep learning, reinforcement learning,
and other computational methods, to analyze complex transportation data, optimize traffic
signal timing, predict traffic congestion, and improve overall transportation efficiency.
By integrating Digital Twins with AI/ML algorithms, transportation researchers and prac-
titioners can gain valuable insights into traffic behavior, develop more effective traffic
management strategies, and enhance the performance of urban transportation systems.

Digital Twins in transportation systems offer significant advantages, including real-
time monitoring, improved coordination, and enhanced traffic efficiency [53]. The integra-
tion of Digital Twins with deep learning and reinforcement learning algorithms enhances
real-time adaptive, precision-centric, and predictive traffic monitoring [54]. Moreover,
Digital Twins assist reinforcement learning algorithms in understanding dynamic traffic
states, facilitating better real-time decisions through adaptive signal control [55].

Due to the Digital Twin’s ability to behave as a real-time environment with differ-
ent static and dynamic properties, it can be used to assist deep learning algorithms like
training autonomous cars [56], real-time adaptive, precision-centric, predictive traffic mon-
itoring [57], and Reinforcement Learning (RL) algorithms like edge task scheduling [58],
intelligent manufacturing systems [59], and in vehicular edge computing [54]. To learn
the dynamic traffic flow behavior and make better decisions in real-time through adaptive
signal control [55], reinforcement learning algorithms can have better assistance through
Digital Twin. The Digital Twin can use data from various transportation components,
including vehicle presence time in the detector zone which refers to the elapsed time
from when vehicles enter the detector zone until they leave, approaching vehicle counts,
and pedestrian recall, to create a comprehensive representation of the transportation sys-
tem. This enables Reinforcement Learning (RL) agents to learn traffic flow behavior and
perform various actions in the digital environment. Moreover, the ability of multiple agents
to interact with the same environment and coordinate with each other can lead to better
decisions and improved traffic flow. The use of Digital Twin with Reinforcement Learning
(RL) agents increases efficiency in decision-making and enables agents to observe their
performance for future decisions.
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Additionally, broadening signal optimization to encompass all directions, including
traffic approaching from various cardinal directions such as east, west, north, and south
bounds, and accounting for heterogeneous traffic conditions, enables the development of
a more comprehensive traffic management strategy. This approach, as demonstrated in
the study by Pandit et al. [60], ensures more efficient service for vehicles on side streets,
alleviates congestion on main thoroughfares and secondary routes, and reduces travel
times for all road users. While achieving a green wave for main streets is beneficial,
addressing diverse traffic demands across all directions is crucial for effective urban traffic
signal control. This inclusive approach ensures a more equitable distribution of traffic
flow and enhances overall network efficiency. Moreover, the effectiveness of a traffic
signal system lies in its ability to dynamically adjust the sequence of signal phases in
response to changing traffic conditions [61,62], rather than adhering rigidly to a predefined
or fixed sequence. Studies such as [63] dynamically generate phase schemes per cycle
based on traffic asymmetry to optimize traffic signal timing. However, being bound to the
cycle entails predetermined phase and cycle durations, which do not allow for dynamic
adjustments in phase durations based on real-time traffic demand.

Building upon this landscape, our prior work [11] introduces a novel approach by com-
bining Digital Twin assistance with decentralized graph-based multi-agent reinforcement
learning (DGMARL) [11] to learn dynamic traffic states. DGMARL agents, strategically
distributed at individual intersections, observe traffic state features from multi-directions.
DGMARL model considers traffic approaching from various cardinal directions, such as
east, west, north, and south bounds, necessitating the consideration of the dynamics of
vehicles approaching from each of these directions when optimizing signal timing. Conse-
quently, the model takes into account the diverse flow of traffic when optimizing signal
timing. Then the agents exchange information with neighboring agents to optimize in-
tersection signal timing along with dynamic phasing. This innovative method, known
as dynamic phasing, allows for dynamic adjustment of signal phases based on real-time
traffic conditions, rather than adhering to a predefined sequence. The proposed DGMARL
model is designed to handle heterogeneous data, including vehicle presence time in the
detector zone, approach-level vehicle count aggregates, pedestrian recall times, and current
signal states from current, upstream, and downstream intersections from all directions. The
integration leverages a Component Object Model (COM) interface of PTV-Vissim, a traffic
simulation software, to control signal timing through Digital Twins.

The proposed model boasts several key technical features that collectively enhance its
efficacy in optimizing traffic signal timing:

• Seamless Integration of Digital Twin and Decentralized Graph-based Multi-Agent
Reinforcement Learning (DGMARL): The integration of Digital Twins and DGMARL
allows for the dynamic optimization of traffic signal timing, leveraging real-time traffic
data and simulation capabilities to improve traffic flow and reduce congestion.

• Distributed Multi-Agent Reinforcement Learning: Multi-agent reinforcement learning
agents are deployed at individual intersections to observe traffic state features, includ-
ing vehicle presence time in the detector zone. They exchange this information with
neighboring agents to collectively determine an optimal policy for controlling traffic
signals. The implementation of actions is validated against rules and constraints, such
as minimum green time and pedestrian recall time, ensuring safe mobility for all users.
In a coordinated multi-agent environment, the optimal policy is derived through
reinforcement learning, where agents interact with the environment, learning from ex-
periences to maximize rewards over time. Through iterative exploration, agents adjust
policies to prioritize actions with higher rewards. Furthermore, agents engage in com-
munication and coordination with neighboring agents to enhance decision-making
and achieve better outcomes collectively.

• Consideration of All Directions of Traffic Demand: Unlike traditional approaches that
may focus solely on specific traffic flows, the DGMARL model considers the traffic
demands from all directions, ensuring a comprehensive approach to traffic signal
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optimization. This inclusion allows for more efficient management of traffic flow
across the entire network.

• Dynamic Phasing: The DGMARL model offers dynamic phasing, enabling flexible
adjustments to signal timing sequences based on evolving real-time traffic conditions.
This flexibility enhances adaptability and responsiveness to changing traffic patterns
and congestion levels.

• Handling Heterogeneous Data: The DGMARL model coordinates diverse data types,
including vehicle presence time, count aggregates, pedestrian recall times, and cur-
rent signal states, to optimize traffic flow efficiently. It achieves this through several
mechanisms: feature engineering for data preprocessing, message passing and commu-
nication among agents, neural network processing to learn complex patterns, reward
calculation based on coordinated data inputs, and policy optimization for dynamic
signal timing decisions. By integrating these data types into a unified framework,
the model performs comprehensive analysis and decision-making, enabling effective
traffic management across the transportation network.

• Utilization of Component Object Model (COM) Interface: Leveraging the COM inter-
face of PTV-Vissim, the proposed model can seamlessly take actions and control signal
timing through the Digital Twins. This integration streamlines the implementation of
optimized signal timing strategies in real-world traffic scenarios.

In this extended version, introduced crucial enhancements to the methodology. In-
corporated a red clearance constraint to ensure adequate time for vehicles crossing in-
tersections, thereby enhancing the accuracy of the simulations. Additionally, introduced
max green constraints to prioritize pedestrian safety while optimizing traffic flow. These
constraints ensure that when a pedestrian recall is enabled in the current green phase, the al-
gorithm switches to another phase with the highest traffic demand, thereby improving the
realism and effectiveness of the traffic signal control algorithm.

Furthermore, the experimental analysis expanded to include additional results focus-
ing on vehicles passing through intersections during green signal phases. This comprehen-
sive analysis provides valuable insights into traffic patterns and performance, enriching
our understanding of signal optimization effectiveness, traffic congestion, signal efficiency,
and overall transportation performance.

These improvements have yielded significant enhancements in traffic flow optimiza-
tion and congestion mitigation. Notably, both PM-peak hour and 24 h scenarios have
experienced notable increases in performance, demonstrating the effectiveness of the ex-
tended methodology in addressing complex traffic dynamics and optimizing traffic signal
timing for sustainable urban mobility.

3. Digital Twin System for Traffic Network
3.1. Physical Environment and Digital Twin
3.1.1. Digital Twin Architecture

Smart corridor Digital Twins are typically driven using real-time and historic vehicle
and infrastructure data from the corridor [52,55,64]. In this study, the Digital Twin is devel-
oped using vehicle real-time and historic volume count, turn count, and Signal Phasing
and Timing (SPaT) data available from approximately 2.1 miles of Martin Luther King
(MLK) Smart Corridor, Chattanooga, TN, USA, consisting of 11 signalized intersections.
A smart corridor Digital Twins model architecture typically includes four key components
as shown in Figure 1:
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Figure 1. Digital Twin Architecture.

Module 1: Raw Data Stream Processing Module—includes processing of raw data to
parse, format, and store the data in a database. From the physical MLK Smart Corridor,
using Python 3.8 scripts, 1 min aggregate by turn types (left, through, and right turn vehicle
counts) for each approach (Eastbound, Westbound, Northbound, and Southbound) of all
the intersections are calculated and stored in a MySQL relational database, to be used
in Module 2 dynamically. Furthermore, 10 Hz Signal Phase and Timing (SPaT) data are
obtained from the signal controllers in the corridor. SPaT data processing involved two key
steps. First, the raw data are parsed to only filter the phase indications corresponding to
each phase for each intersection. Next, the high-frequency raw SPaT data from the field
is processed to only filter out the records on changes in signal phase events. While the
SPaT data are received at high frequency, only the change in phase event data is required.
Hence, only that is stored in the database. Turn count aggregate and SPaT data are stored
in separate tables in the database that are queried to drive the simulation in Module 2.

Module 2: Dynamic Data-Driven Traffic Simulation Module—includes PTV-Vissim
microscopic traffic simulation model of the Smart Corridor, dynamically driven using
volume, turn movement ratios, and signal indications data (from Module 1). In this imple-
mentation intersection approach level, 1-min aggregate volume counts, 10-min aggregate
turn counts data, and signal timing are dynamically driven using PTV-Vissim’s Component
Object Model (COM) module. Using COM the signal indications can be driven using
external SPaT (Signal Phasing and Timing) data or PTV-Vissim’s internal Ring Barrier
Controller (RBC) module.

Module 3: Prediction and Optimization Module or Simulation Testbed Application
Module–consists of tools and algorithms to process simulation outputs based on the
requirements of the application. This module contains processes or algorithms that are
driven using outputs from the Digital Twins simulation. In this study, the outputs such
as vehicle presence time in the detector zone, each direction approach level vehicle count
aggregates, vehicle velocity, and current signal state, etc are generated from the PTV-Vissim
simulation model in the Dynamic Data Driven Traffic Simulation Module are used as inputs
for prediction and optimization for the signal timing plan.

Module 4: Real-Time Data Broker Module—handles real-time dynamic data transac-
tions between modules. This module consists of a Flask-based web service to handle data
transactions/communication between the other three modules.
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3.1.2. Muti-Tier Incremental Approach for Digital Twin Development

Smart corridor Digital Twins development requires integration and synchronization
of multiple components within the Digital Twins architecture described in the previous
section. This makes Digital Twins development a time-consuming process susceptible to
coding, integration, implementation, data processing, and other errors. To tackle this, in this
study a three-tier incremental approach is used that allows a parallel workflow. The Digital
Twins development process is broken into three tiers with increasing communication and
infrastructure integration complexity. Such an approach enables training and testing of
Machine Learning/Reinforcement learning-based (ML/RL) applications early on, on the
initial tiers, thus, reducing the wait time required for the development of a fully operational
real-time Digital Twins. Such an approach enables the training and testing of ML/RL-based
applications such as signal timing optimization developed in this paper, on initial tiers
rather than waiting for the completion of the full real-time Digital Twins, thereby expediting
the overall study timeline. A detailed description of the incremental approach for Digital
Twin development, as shown in Figure 2 is found in [65].

Figure 2. Three-tier Incremental Approach to Digital Twin Development for Application Testing.

The three-tier incremental approach includes the following simulation model versions:
Tier 1—Prepopulated model: traditional simulation model prepopulated with archived

data. This version includes automation of raw data extraction and ingestion of extracted
data by the PTV-Vissim model. Data extraction and ingestion are partially automated,
enabling the ability to efficiently test developed algorithms under different conditions on
different days (e.g., weekday vs. weekend, growth scenarios, etc.). Automation of data
handling in this level is critical to the overall usability and effectiveness of this version of
the model in training and testing the DGMARL model.

Tier 2—Pseudo Digital Twin: simulation model driven dynamically using archived
data. In this tier, the data is dynamically fed into the simulation as opposed to prepopu-
lating before the simulation runs in Tier 1. Several parts of the efforts of Tier 1 platform
development, such as data investigation, data extraction, and automation of ingestion of
input data into simulation are used in Tier 2 platform development. However, a significant
advance in Tier 2 is the development of the dynamic links between the modules shown in
Figure 1. Further, in this tier the signal indications are controlled using field received SPaT
messages, not the internal Vissim Ring Barrier Controller (RBC). Thus, the implemented
signal phase times will match the field directly, rather than relying on the accuracy of the
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simulation signal control emulator. This platform thus provides a test bed to develop the
interface that integrates the DGMARL optimization algorithm with data-driven Digital
Twins simulation.

Tier 3—Real-time Digital Twin: online simulation model driven dynamically using
real-time field data. In this tier, the simulation is driven using real-time data. The Tier 2
platform is modified and updated to stream real-time data. This platform will be used to
develop the interface between the physical system represented by the Digital Twins and
the optimization development algorithm.

In this study, the interface between the Reinforcement Learning (RL) optimization
algorithm and the physical system is initially developed using the Tier-1 platform. The de-
veloped Reinforcement Learning (RL) algorithm in the future will also be integrated with
the Tier-2 and Tier-3 platforms to test and further improve the algorithm.

4. Digital Twin and Reinforcement Learning (RL)

The seamless integration of the Digital Twins with the Decentralized Graph-based
Multi-Agent Reinforcement Learning (DGMARL) model, depicted in Figure 3, constitutes
a novel approach for training agents associated with each intersection. This integration
enables the agents to learn from the Digital Twins and make informed decisions to optimize
signal timings based on real-time observations of the traffic state from multi-direction.

Figure 3. Digital Twin assisted DGMARL Learning.

The integration process between the Digital Twins and the decentralized multi-agent
reinforcement learning algorithm is elaborated as follows:

• The decentralized multi-agent reinforcement learning algorithm leverages inputs such
as vehicle presence time in the detector zone, current phase state, pedestrian recall
time, etc., obtained from the Digital Twins. It then makes decisions, determining
whether to maintain the current signal phase or switch to a phase with anticipated
high traffic demand following a dynamic phasing approach. This decision is based on
the current state of the intersection and the desired objective, which is to minimize the
Eco_PI measure.

• The decision made by the decentralized multi-agent reinforcement learning algorithm
is fed back to the Digital Twins, prompting an update to its simulation based on the
decision. The updated simulation is subsequently utilized to provide new inputs to
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the decentralized multi-agent reinforcement learning algorithm. This iterative process
continues until the desired optimization objective is achieved.

This integration of the Digital Twins and DGMARL offers a compelling alternative to
the traditional method of field training the DGMARL model for signal timing optimization.
By learning from the Digital Twins, the model undergoes efficient and safe training and
testing, avoiding the challenges associated with tedious field training. The Digital Twins
data accumulation capability facilitates efficient visualization and in-depth analysis of the
traffic state. The outcome is a validated and reliable output and the offline training defines
the DGMARL neural network before deployment, ensuring a robust and optimized system.

5. Implementation of Intelligent Agents to Optimize the Global Transportation

Motivations for AI-Enabled Intelligent Agents in Transportation Networks: AI-
enabled intelligent agents represent a transformative force in enhancing transportation
networks, offering a myriad of benefits that span efficiency, reliability, safety, and societal
well-being. The motivations driving the integration of these agents are multifaceted and
include the following.

• Enhanced Efficiency, Reliability, and Safety: Intelligent agents leverage AI algo-
rithms to analyze transportation data [66], enabling them to make optimized de-
cisions. This results in increased efficiency, reliability, and safety within transportation
networks [67,68].

• Positive Impacts on Quality of Life, Environment, and Economic Growth: The deploy-
ment of intelligent agents has a direct positive impact on people’s quality of life by
reducing congestion and improving travel experiences. Environmental benefits are
realized through eco-friendly transportation practices promoted by optimized traffic
flow. Economic growth is fostered as efficient transportation networks contribute to
smoother logistics and infrastructure support

• Real-Time Traffic Optimization: Intelligent agents actively monitor real-time traffic
conditions, offering dynamic recommendations to drivers. This includes suggest-
ing alternate routes to avoid congestion, adjusting traffic signals for improved flow,
and predicting maintenance needs [69].

• Optimized Resource Allocation and Safety Monitoring: Resource allocation is opti-
mized for emergency vehicles, buses, trains, and other vehicles based on real-time
demands. Safety is paramount, with intelligent agents detecting potential prob-
lems early [70–72]. This proactive approach contributes to a safer transportation
environment.

Graph Representation of the Transportation Network: The utilization of graph repre-
sentation, coupled with intelligent agents, provides a powerful framework for comprehensive
situational awareness within transportation networks. This approach leverages graph theory
to model the network structure and facilitates advanced decision-making capabilities:

• Comprehensive Situational Awareness: Processing and analyzing the traffic data is
highly computationally costly and graph framework provides highly scalable strate-
gies. Graph representation, employing nodes for intersections and edges for routes,
provides a holistic view of the entire transportation network. Intelligent agents uti-
lize this graph to track vehicle trajectory [73,74], predict congestion, optimize traffic
states, and enhance overall situational awareness by efficiently monitoring the entire
network [75–77]. This approach enables precise monitoring and analysis of traffic
states within the transportation network, facilitating comprehensive situational aware-
ness. By representing the transportation network as a graph, agents can analyze
connectivity between intersections, assess traffic flow patterns, and identify potential
bottlenecks or congestion points. This graphical representation empowers agents to
make informed decisions regarding traffic signal control, route planning, and overall
network management, leading to improved situational awareness and enhanced traffic
management strategies.
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• Integration of Machine Learning Algorithms: Reinforcement learning algorithms are
seamlessly integrated, enabling agents to learn traffic patterns from both historical and
real-time data. This integration enhances their adaptability to dynamic traffic condi-
tions. By continuously observing and analyzing traffic data, the algorithm can respond
to different traffic conditions such as anomalies, allowing agents to adapt and optimize
traffic signal timing dynamically. This adaptability ensures that traffic management
strategies remain effective in response to changing traffic patterns and unforeseen
events, ultimately leading to improved traffic flow and congestion mitigation.

• Traffic Signal Control Optimization: Intelligent agents interact with local signal con-
trollers, leveraging graph-based insights to optimize traffic signal timings by analyzing
sensor data from key locations and communicating with local signal controllers [78,79].
This dynamic control mechanism helps in avoiding congestion and improving traf-
fic flow.

Scalability: Scalability is a pivotal consideration in optimizing traffic signal timings,
especially as transportation networks expand in size and complexity.

• Challenges in Single-Agent Architecture: Centralized agents face limitations in process-
ing, communication, and latency as the transportation network grows. Effectiveness
in smaller networks may not translate to larger networks due to increasing demands.

• Multi-Agent Architecture for Scalability: Multiple agents, operating independently,
optimize traffic signal timings at different intersections within the network. Asyn-
chronous communication protocols, including message passing and attention mech-
anisms, reduce communication overhead [80]. Distribution of workload and effi-
cient utilization of local data enhance scalability for larger volumes of data and
intersections [22,23,81].

Hence integration of AI-enabled intelligent agents, graph representation, and scalable
multi-agent architectures presents a holistic approach to transforming transportation net-
works. By distributing the workload and utilizing local data more efficiently, this approach
can handle larger volumes of data and more intersections.

5.1. Graph Neural Network Formulation of Traffic Network

The proposed approach adopts a graph neural network (GNN)-oriented formulation
to model the traffic environment as a network, providing a comprehensive representation
of the traffic network structure and dynamics. This section discusses the key compo-
nents of the formulation, including the graph representation, the infrastructure of the
Digital Twin-assisted DGMARL system, and the spatio-temporal multi-agent reinforcement
learning process.

Multi-agent reinforcement learning is employed to disclose the spatial and temporal
patterns of traffic. In this process, agents interact with their environment over both space
and time, learning from their actions and experiences to optimize their behavior. Spatial
information encompasses various configurations related to signal controllers, pedestrian
walk configurations, and intersection-specific timing parameters such as minimum and
maximum green times, red clearance times, and yellow times. This information delineates
the physical layout of the environment, including the arrangement of intersections and
road networks. Meanwhile, temporal information pertains to changes occurring over time,
such as fluctuations in traffic flow and congestion levels. By incorporating both spatial
and temporal dimensions, this approach enables agents to effectively learn and adapt to
dynamic traffic conditions, enhancing traffic management and optimization strategies.

The notations used in this paper are given in Tables 1 and 2.
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Table 1. Notation used for the Transportation network.

Notation Description

G = ⟨V , E⟩ Bi-directional graph specified by
set of intersections/agents (vertices) and set of links (edges)

i, j ID of intersections/agents/nodes
l ID of links/edges

eij ∈ E Link connecting intersections i and j
Ni Set of incoming neighbors of intersection i
δi Traffic flow status intersection i
ϕi Signal phases of intersection i

Table 2. Notations used for Decentralized Graph-based Multi-Agent Reinforcement Learning.

Notation Description

S , A, p, and r State space, Action sace, Agent’s Policy, and Reward
si,t ∈ S State of intersection i at time t
ai,t ∈ A Action taken by agent i at time t

ri,t = Eco_PI Eco_PI as reward r at time t
dl Average stop delay occurred in the link l
Nl Number of stops occurred in the link l
Kl Average stop penalty calculated for link l
Vπ Critic-State Value
Qπ Actor-Action Value

si,t ∼ p Initial policy p distribution of intersection i at time t
θi Policy network parameters of intersection i
ωi Value network parameters of intersection i

Graph Representation of Traffic Network

The traffic environment is represented as a bi-directional graph denoted as G(V , E),
where V represents a set of intersections modeled as agents, and E represents a set of roads
considered links, where ei,j ∈ E is a link that connects intersections i and j. Each intersection
i has static features such as approach links, signal controllers, signal phases, detectors,
the number of lanes, uncontrolled approaching links, and neighboring intersectionsN i ⊂ V .
The signal controller at each intersection is associated with signal phases ϕi, each having
static features like list of signal lights, minimum green serving time, yellow time, red
clearance time, pedestrian recall time, and priority phase.

5.2. Infrastructure of DGMARL

Figure 4 shows the architecture of a Digital Twins-assisted multi-agent reinforcement
learning empowered traffic environment.

Each intersection of the traffic network was designed as a local agent. The multi-
intersection traffic network signal timing optimization problem is addressed with decentral-
ized multi-agent reinforcement learning. The traffic signal control problem is formulated
as a Markov Decision Process (MDP): (S ,A, p, r) where S denotes the state space, A rep-
resents the action space, and r is the reward that measures the benefit brought about by
a specific action. The objective is to learn the optimal policy p that generates the best
action for the next step and maximizes the subsequent accumulative discounted rewards
produced by the action.

To enhance learning efficiency and inform optimal actions based on approaching traffic,
neighboring agents share local observations through communication graphs and knowl-
edge sharing through message passing, enabling agents to communicate and coordinate.
This function aggregates the current agent’s traffic state and recent policy, along with that
of its neighbors. The aggregated state undergoes processing through linear transformation
neural network layers and an LSTM (Long Short-Term Memory) layer, adept at capturing
long-term dependencies in sequential data. Subsequently, the ReLU (Rectified Linear
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Unit) activation function is applied to introduce non-linearity to the network, followed
by feeding the resulting output into the actor neural network for decision-making. Linear
transformation, a mathematical operation, manipulates input data through linear combina-
tions, with linear transformation layers in neural networks performing these operations to
produce output features.

Figure 4. Architecture of Digital Twin assisted DGMARL Learning.

5.2.1. State Space

Each intersection state is derived from the heterogeneous observations of traffic states
and traffic signal phase state from multi-direction, and is further refined using a spatial-
temporal graph neural network [82]. The state of the global traffic network at time t for the
traffic network is defined as

St = {si,t}
|V|
i=1. (1)

where {si,t} is the state of the intersection i at time t which is the heterogeneous observation
of traffic states and traffic signal phase state from multi-direction.

The state of agent i at time t, {si,t}, is formed by the observed traffic flow status ΥTF

and the traffic signal phase status ΨTS. Namely,

si,t = ⟨ΥTF
i,t , ΨTS

i,t ⟩ (2)

where
ΥTF

i,t = ⟨ ⟨δPT
l,i,t, δW

l,i,t, δD
l,i,t, V l,i,t⟩

Kϕ,i
l=1⟩

Fi
ϕ=1 (3)

and
ΨTS

i,t = ⟨ϕS
i,t, ϕD

i,t, ϕPS
i,t , ϕMinG

i,t , ϕMaxG
i,t ⟩. (4)

In Equation (3), Fi is the number of phases in the intersection i, and Kϕ,i is the number
of approaching links at phase ϕi; the observations of each approaching link l in each phase
ϕi include vehicle presence time in the detector zone δPT

l,i,t, average waiting time δW
l,i,t, average

delay δD
l,i,t, and vehicles average speed V l,i,t. In Equation (4), the variables ϕS

i,t, ϕD
i,t, and ϕPS

i,t
correspond to the current instant phase status, current phase duration, and pedestrian
serving status, respectively. The variable ϕMinG

i,t indicates whether the minimum green time
has been fulfilled in the current phase, while ϕMaxG

i,t indicates whether the current phase
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duration has reached the maximum green serving time. The system monitors the maximum
green serving time when pedestrian recall is enabled for the current phase ϕi. In such cases,
vehicles are served until the maximum green time is reached unless the agent decides to
switch to another phase based on the ongoing traffic condition, after which pedestrians
are served.

ϕMinG
i,t =

{
1, if ϕD

i,t ≥ max(ϕMinGT
i,t , ϕPST

i,t )

0, otherwise
(5)

where ϕMinGT
i,t represents the minimum green serving time, ϕD

i,t represents the current phase
duration, and ϕPST

i,t represent pedestrian serving time which is the sum of walk and flashing
don’t walk time.

ϕMaxG
i,t =

{
1, if ϕPR

i,t & (ϕD
i,t ≥ ϕMaxGT

i,t )

0, otherwise
(6)

where ϕPR
i,t represents the pedestrian recall flag, ϕD

i,t represents the current phase duration,
and ϕMaxGT

i,t represents the maximum green serving time.

5.2.2. Action Space

The initial action ai,t at intersection i is evaluated against physical constraints, namely
the minimum green serving time ϕMinGT

i,t , the maximum green serving time ϕMaxGT
i,t for

the current active phase ϕi at intersection i, and the pedestrian serving time ϕPS
i,t based

on the current phase duration ϕD
i,t. This evaluation ensures the safety of all users within

the transportation network. Subsequently, the final decision a′i,t is incorporated into the
intersection’s signal timing plan.

The decision-making process is expressed by the Equation (7), where a′i,t is determined
as follows

a′i,t =


ai,t, if ϕMinG

i,t
1, if (ϕMaxG

i,t & ϕPR
i,t )

0, otherwise

(7)

where ϕMinG
i,t the flag determines whether minimum green is served for the current phase

or not as defined in the Equation (5). In this context, a′i,t = 0 signifies that the agent refrains
from taking action, while a′i,t = 1 implies that the agent will transition the current phase
signal to yellow. If the current phase is configured with pedestrian recall ϕPR

i,t , and if the
current phase duration is greater than or equal to maximum green constraint ϕMaxG

i,t then
the action a′i,t = 1 is enforced to switch to another phase. After this transition, the current
phase will be ready to serve pedestrian walk plus flashing don’t walk time, following
the serving of yellow and red clearance timing. Subsequently, the phase ϕi,t with the
highest traffic demand will be switched to green. The next phase ϕi,t is determined by the
following equation,

ϕi,t = arg max
ϕ
⟨ΥTF

ϕ ⟩
Fi
ϕ=1 (8)

The proposed model follows a dynamic phasing approach, prioritizing the phase with
the highest traffic demand to minimize vehicle waiting delays.

Dynamic phasing, allowing dynamic adjustment of signal phases based on real-time
traffic conditions, significantly enhances adaptability and responsiveness to changing traffic
patterns and congestion levels. This flexibility enables real-time optimization, ensuring
traffic signals can adapt immediately to varying traffic conditions. It accommodates the
dynamic nature of traffic patterns, including fluctuations due to factors such as time of day,
events, accidents, and road construction. By dynamically adapting to traffic conditions,



Symmetry 2024, 16, 448 14 of 29

signals with dynamic phasing help reduce congestion, optimize signal timing to minimize
delays and queue lengths, and ultimately improve travel times for motorists. Moreover,
this adaptability contributes to enhanced safety on the roads by reducing the likelihood of
accidents associated with sudden stops and congested traffic conditions. Overall, dynamic
phasing plays a crucial role in promoting smoother traffic flow, reducing congestion,
shortening travel times, and enhancing safety for all road users.

5.2.3. Reward Based on Eco_PI

In Distributed Multi-Agent Reinforcement Learning, rewards are calculated based
on the collective performance of all agents in the environment. In a transportation envi-
ronment, where each intersection functions as an individual agent. In this study, rewards
are calculated locally for each agent. The reward for each agent is determined by a metric
called negative Eco_PI, which represents the cumulative impact of stop delays and pe-
nalized stops. This metric encapsulates the undesirable effects of traffic congestion and
inefficiencies at intersections, allowing agents to optimize their behavior to minimize these
negative outcomes. By incorporating stop delays and penalized stops into the reward
calculation, agents are incentivized to make decisions that improve traffic flow and reduce
congestion, ultimately leading to more efficient and sustainable transportation systems.

The reward function was formulated as Eco_PI by measuring the number of stops and
stop delays that occurred in every traffic approach, following an existing fuel consumption
model proposed in the study [12,13]. The number of stops a vehicle makes is calculated by
counting the number of times the vehicle is stopped in a queue while approaching from all
directions in the intersection. The stop delay is calculated as the amount of time a vehicle
is stationary in the queue before it reaches the intersection. For example, as shown in
Figure 5, at the Cater intersection in MLK Smart Corridor, vehicle stops and stop delays are
calculated on the eastbound, southbound, westbound, and northbound approaching links.
These metrics are then used to calculate the Eco_PI index, which serves as an indicator
of fuel consumption related to stopping. The immediate reward ri,t is calculated for each
traffic movement of intersection i as

ri,t = Eco_PIi = −(
Li

∑
l=1

δSD
i,l,t + (δSK

i,l,t ∗ δNS
i,l,t)) (9)

where δSD
i,l,t is the stop delays that occurred in link li, δNS

i,l,t is the number of stops, and δSK
i,l,t is

the stop penalty penalized for every stops [14,15]. The policy of each agent i is optimized
to maximize the global long-term return E[Rπ

0 ], where Rπ
i,t = ∑T

τ γτ−tri,t is the return at
time t, with a discount factor γ.

Figure 5. Vehicles Stops and Stop Delays at each approach.
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5.2.4. Spatio-Temporal Multi-Agent Reinforcement Learning

Each intersection’s behavior is modeled using a decentralized graph network and
state and action spaces. Agents use the Multi-Agent Advantage Actor-Critic (MA2C)
algorithm, with Actor and Critic designed using a graph neural network. Agents learn
spatial and temporal dependencies through asynchronous communication protocols and
make decisions based on their current state and policies. Policies are updated based on
optimal long-term return values and evaluated and updated based on physical constraints.
Each agent’s state, action, and reward are communicated to the neighbors through message
passing, and the reward is stored to measure the global return for each agent. Therefore,
the multi-agent Markov Decision Process (MDP) was updated as (G, S, A, M, p, r, S′) where
mji,t ∈ Mji is the message passed from agent j to agent i including the states, actions,
and rewards of the neighboring agent i at time t. Ni = {j ∈ V|ij ∈ E} represents the set of
neighboring agents that are connected to agent i by links li,j in the communication graph
(V , E). Then the local agent state is updated as s′ i,t ∈ S′ which is the joint state of the
agent’s current state and the neighbor’s state.

At time t, the state si,t of intersection i includes traffic state such as volume, vehicle
presence time in the detector zone, average waiting time, average delay, and vehicles aver-
age speed, as well as traffic signal state such as current phase state, duration, and pedestrian
recall time. The states of neighboring agents Ni are obtained through message passing,
including the aggregation of the agent’s state and policy.

mi,t = g(sj,t ∪ hj,t−1 ∪ πj,t−1, ∀ j ∈ Ni) (10)

Then the intersection i state is updated by the linear transformation with a rectified
linear function, with the dimensions of the traffic state and traffic signal state input varying
for each intersection. The hidden state of temporal traffic information is extracted by the
LSTM layer.

h′i,t = ξ(si,t ∪ hi,t−1 ∪ πi,t−1 ∪mi,t) (11)

Then a linear transformation with a rectified linear function is applied to the hidden
graphs to identify the optimal policy, πi. And the softmax function is applied to generate
actions a′i. The policy is evaluated and adjusted by considering mandatory physical constraints.

Advantage Actor-Critic (A2C) with a Graph Neural Network (GNN) stabilizes the
learning process and enhances the performance of the proposed model in identifying the
optimal policy for maximizing the expected cumulative discounted reward E[Rπ

i,0] over
time steps for intersection i. The advantage function Aπ

i (s
′
i,t, a′i,t) evaluates the benefit of

taking an action a′i,t in a state s′i,t compared to the average value at that state and serves
as a reference point for the action-value function Qπ

i (s
′
i,t, a′i,t). The state-value function

Vπ
i (s′i,t) defines the predicted cumulative discounted reward from a specific state under

a given policy and is calculated as the weighted sum of the action-value function for all
possible actions.

The policy distribution approximates the anticipated cumulative discounted reward
from taking an action in a state under the policy πi. The advantage function helps the critic
network reinforce the selection of the most suitable action by updating the policy distribu-
tion with policy gradients as directed by the critic, which in turn increases the probability
of actions proportional to the high expected return E[Rπ

i,0] = ∑s′i,t∈S′ p(s′i,t)V
π
i (s′i,t).

Learning from experiences: During each time step, the experience replay buffer D
stores the information including the initial state, the updated state with neighbor net-
works, updated policies and values, the new state after taking action, and the step reward
(si,t, a′i,t, mNi ,t, ri,t, s′′i,t, v′i,t, πθi,t).

In each subsequent time interval, the model learns the temporal dependency by
utilizing the batch of experiences B is {(s′i,τ , mNi ,t,τ , a′i,τ , ri,τ , s′′i,τ , v′i,τ , π′θi,τ

)}i∈V,τ∈B stored
in the replay buffer D and updates the graph neural network parameters based on the
calculated losses. Where {π′θi

}i∈V is stationary policy and value {V′ωi
}i∈V were updated

after physical constraints evaluation of intersection i. Actor loss incorporates the negative
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log probability of the action that was sampled under the current policy, and the actor is
updated based on the estimated advantage. And the Critic loss, which involves computing
the mean squared error between the sampled action-value and the estimated state-value, is
updated using the estimated state-value.

5.3. Digital Twin Assisted Method

Widely employed by traffic engineers and researchers, PTV-Vissim [83] is a microscopic
road traffic simulator with a user-friendly Graphical User Interface (GUI) for designing
road networks and setting up simulations. However, limitations arise when dynamically
manipulating objects during simulations. To overcome this challenge, PTV-Vissim provides
a solution through a Component Object Model (COM) interface. In this study, we utilize
Python 3.8 scripts to develop the COM interface, enabling programmable manipulation of
simulator functions and parameters.

To reduce congestion and improve Eco_PI, the PTV-Vissim COM interface was em-
bedded with Digital Twins which represents the decentralized graph-based multi-agent
reinforcement learning framework. The Digital Twins serve as a representation of the
physical transportation environment, with each intersection mapped to a corresponding re-
inforcement learning agent. These agents interact with the Digital Twins through the COM
interface, ensuring optimal policy maintenance and facilitating efficient decision-making
for controlling signal phases within a tolerable time frame, as illustrated in Figure 4.

The Digital Twins-assisted DGMARL algorithm, illustrated in Algorithm 1, maps
each intersection in the Digital Twins to a corresponding reinforcement learning agent i.
To facilitate seamless scaling and integration of multiple agents, each agent is associated
with a unique thread threadi, leveraging multi-threading. This approach enables the agents
to learn the global traffic state collectively and make optimal decisions at their respective
intersections, thereby improving the Eco_PI.

At time t the agent i observes various features through Digital Twins components as
shown in the algorithm in Table A1, such as the vehicle presence time in the detector zone,
each direction approach level vehicle count aggregates, vehicles average speed, and current
signal state (line-5). Then collaborates with its neighborsNi to share and receive their states
through message passing as described in Algorithm 1 line-6. Then the updated state s′i,t
of agent i is processed through a graph neural network to derive the optimal policy πi
and select actions to control the signal phase ϕi (line-7). Then agent i validates the actions
(line-8), against the physical constraints configured in the Digital Twins, the minimum
green serving time and pedestrian recall time, to ensure user safety. If the decision is to
stay in the current phase in green, then no actions are applied back to the Digital Twins;
otherwise, agent i validates the other phase’s vehicle presence time in the detector zone
and selects the phase ϕj that has a higher upcoming traffic demand, then applies the signal
phase change action to the signal controller in the Digital Twins (line-9) as shown in the
algorithm in Table A2, which updates the simulation. Once the decided action is applied,
each agent i estimates the current reward ri with the new observed traffic state si,t+1 (line-
10), and stores the experiences in the replay buffer (line-11). When the buffer size reaches
minimum batch size the agent starts to learn from the collection of experiences at every
time step to minimize the critic loss L(ωi) and actor loss Ĵ(θ) (lines 12–14). The agent i
repeats the above processes until it achieves the desired objective of identifying optimal
policy to choose the best actions for reducing congestion and Eco_PI.

Due to the distributed agent environment, each agent makes different decisions based
on their local and neighboring traffic state, so the convergence of an optimal policy is
different for each agent and the efficiency of learning is increased. Since agents continue to
interact with the real environment through the Digital Twins, the probability of arriving at
an optimal policy is faster. Hence, by using a Digital Twins and reinforcement learning,
the system can adapt to changing traffic conditions in real-time, leading to more efficient
signal control, and it can be further optimized to maximize its benefits.
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Algorithm 1 Digital Twin assisted DGMARL Learning

Require α learning rate, β entropy coefficient.
Ensure: Initialize PTV-Vissim objects Vissim, Net, Links, Signal Controllers, and Signal

Groups.
Ensure: Initialize graph G(V , E), agent i ∈ V , link li ∈ E , physical constraints ic, policy

network parameters θ, and value network parameters ω.
1: for e = 1 to episodes do
2: for t = 0 to T − 1 do
3: for agent i = 1 to V create thread threadi do
4: Thread threadi starts
5: Observe state si from Digital Twin.
6: Update state s′i,t ≈ si,t ∪ πNi,t−1 ∪ hNi,t−1 through message passing.
7: Select policy πθi,t , action ai,t ≈ π(a|s′i,t), and get value v(s′i,t|ω, ai,t).
8: Evaluate agent’s actions a′i,t = (ai,t|ic) and update value v′(s′i,t|ω, a′i,t) and policy

π′(a′i,t|v′i,t, s′i,t).
9: Take action a′i,t in Digital Twin

10: Observe reward ri,t and new state s′i,t+1.
11: Store the observations in replay buffer

D ← (s′i,t, π′θi,t
, a′i,t, ri,t+1, s′i,t+1, v′ω,i,t).

12: if t >= sample batch size B then
13: Sample random minibatch of B samples (sj, aj, rj, s′j j) from D ∀ j ∈ 1 . . . B.
14: Obtain target return yj

i = rj
i + γQπ′

i (s′j, a′1, . . . , a′N) where a′i = π′(s′ji ).

15: Update critic by minimizing the loss: L(ωi) =
1
B ∑j[y

j
i j−Qp

i i(s′j, aj
1, . . . , aj

N)]
2

and ωi = ωi − α∇L(ωi).
16: Update actor using sampled policy gradient descent along with entropy loss:

Adv′ji = yj
i −Qπ′

i (s′j, aj
1, . . . , aj

N).

17: Ĵ(θ) = 1
B ∑j∇− log πθi (a′ji |s

′j
i )Adv′ji + β ∑ πθi (a′ji |s

′j
i ) log πθi (a′ji |s

′j
i ).

18: θi = θi + α∇ Ĵ(θ).
19: end if
20: Thread threadi ends
21: end for
22: end for
23: end for

6. Experiments

This section provides the details of the experiment setup using a real-world dataset and
optimization results that show the efficiency of the Digital Twins-assisted DGMARL model.

6.1. Experiment Design

The experiment environment was set up using the real-world dataset collected by
the Department of Computer Science and Engineering at the University of Tennessee,
Chattanooga, TN, USA [84].

Real-world dataset: The dataset is composed of the corridor that connects
11 intersections on MLK Smart Corridor with bidirectional traffic in East-West, West-East,
North-South, and South-North directions and includes data for roadway network geome-
try, the traffic signal timing plan, camera and zone-detecting device, Signal Phasing and
Timing (SPaT), vehicle flow, vehicles speed, and vehicle presence time in the detector
zone, etc. The signal timing plan attained from the city for each intersection follows a
dual-ring NEMA controller protocol. In the developed DGMARL algorithm an adaptive
signal control strategy is adapted where the action has been designed with two decisions:
(1) Action 1: Stay in green in the current ongoing phase or (2) Action 2: Switch to the phase
that serves the lanes with the highest traffic demand. Before switching to the new phase,
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the current phase follows the yellow and red clearance times that are specific for each phase
at each intersection.

6.2. Digital Twin Setup

The Tier 1 Digital Twins platform is used in this experiment. The simulation model of
11 intersections of the MLK Smart Corridor in PTV-Vissim is developed following network
creation guidelines in [85], as shown in Figure 6. The developed model is populated with
archived 15 December 2022, one-minute volume counts at network entry edges, 10-min
turn percentages at each intersection approach, and signal timing plans received from
the city. Two versions of the simulation model are created: (1) the PM peak model that
simulates the 15 December 2022, 3:00 p.m.–6:00 p.m. scenario, and (2) the 24 h model that
simulates the 15 December 2022, 24 h scenario. This model is prepopulated with data and
runs faster than wall clock time.

Figure 6. MLK Smart Corridor in PTV-Vissim showing roadway network layout and vehicle volume
inputs per time interval.

6.3. Impact of the Application of the Proposed Model

Efficiency of Digital Twins-assisted DGMARL is measured using the number of stops
and stop delays at each intersection as the metrics. Also, Eco_PI is calculated to measure the
impact of fuel consumption related to stopping. DGMARL starts optimizing signal timing
after a non-stationary period of 120 s. At each time step, the graph neural network updates
each agent’s current state with Relu activation in the message passing layer. Then, the actor
and critic neural networks generate the value-assisted action probability. This process
continues until the initial batch size of experiences is gathered. Afterward, at each time
step, the model learns from experience with random samples and updates the graph neural
network parameters to arrive at the optimal policy distribution. The model decay rate is
customized based on the current learning episode. To achieve optimal results, the model
was trained for 100 episodes using the dataset from the first hour of MLK Smart Corridor
on Thursday, 15 December 2022. Each episode’s simulation step was 36,000 deciseconds,
and the model learned from 240 batch sizes of experience replay at every 240-time step.

6.4. Experiment Results

The developed DGMARL signal timing plan was tested on MLK Smart Corridor for 24
h and PM-peak hour scenarios of 15 December 2022. The performance of DGMARL signal
timing plan was compared with the baseline actuated MLK Smart Corridor vehicle actuated
signal timing plan. Baseline actuated signal timing is a traditional method for controlling
traffic signals at intersections, where signal timings are predetermined based on factors like
time of day and traffic volume patterns. The signal phases, including green, yellow, and red
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intervals, are fixed and not adjusted in real time. Comparing the signal optimization
method DGMARL against this baseline provides insights into potential improvements in
traffic management strategies.

6.4.1. 24-Hour Scenarios

Figure 7 shows the comparison of the Eco_PI index observed for every second from
DGMARL and baseline vehicle actuated signal timing plans. The overall Eco_PI improved
by 55.38%, with improvements ranging from 3.17% to 62.14% over the 10 intersections,
and 34.77% Eco_PI increased in the Douglas intersection.

Figure 7. 55.38% improvement of overall Eco_PI in one 24 h test duration.

6.4.2. PM-Peak Hour Scenario

The experiment results were obtained from ten replicate trials, each conducted with
different random seeds, during the PM-peak hour. These trials compared the Eco_PI perfor-
mance observed for every second from the DGMARL approach against the implementation
of a vehicle-actuated signal timing plan. Figure 8 illustrates the average Eco_PI over these
ten trials, showcasing an improvement of 38.94%. The Eco_PI reduction ranged from 3.17%
to 62.14% across the ten intersections analyzed. Notably, the Douglas intersection exhibited
a relatively higher Eco_PI than the actuated signal timing plan.

Figure 9 illustrates the average stop delay and the average number of stops observed
across ten test runs. On average, stop delays decreased by 42.78%, while the average
number of stops increased by 0.82%. In one of the tests using random seed value 32,
during the PM-peak hour scenario, a significant reduction in Eco_PI is evident in both
stops and stop delay. Specifically, compared to the baseline actuated signal timing scenario,
there was a 13% reduction in stops and a 43.29% reduction in stop delay, as illustrated in
Figure 10. Among the intersections, the Central St and Market intersections experienced the
most substantial improvement, with a 65.04% and 51.80% reduction in average stop delay
respectively, while the Pine intersection demonstrated the least improvement at 5.73%.
The trend of higher Eco_PI observed for Douglas for DGMARL compared to actuated in
Figure 8 above is reflected in stop and delay as well. The stops and stop delays in Douglas
intersection are slightly higher for DGMARL compared to the actuated scenario.
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Figure 8. 38.94% improvement in average of Eco_PI during PM-peak hour with 10 runs of tests.

Figure 9. 42.78% reduction in the average of stop delays and 0.82% increase in the average number of
stops during Pm-peak hour with 10 runs of tests.

Figure 10. 13% reduction in stops and 43.29% reduction in stop delays during PM-peak hour in one
run of the test.

A closer examination of specific intersections, such as Pine, Center, Market, and Dou-
glas, revealed interesting trends in Eco_PI improvements, as depicted in Figures 11 and 12.
These plots show the variation of Eco PI during the simulation period for both the actuated
and DMARL scenarios for one of the replicate trials.
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Figure 11. Variation of Eco PI during simulation period for Actuated and DGMARL.

Figure 12. Variation of Eco PI during simulation period for actuated and DGMARL.

As depicted in Figure 11, consistent improvement in Eco_PI at the Central intersection
demonstrates the effectiveness of the DGMARL approach in optimizing signal timing.
Additionally, notable reductions in Eco_PI at the Pine intersection (Figure 11) and the
Market intersection (Figure 12) during specific time intervals highlight the potential for
targeted signal control adjustments to alleviate congestion and enhance fuel efficiency.
However, the occasional instances of higher Eco_PI at the Douglas intersection (Figure 12)
compared to the actuated scenario suggest the need for further investigation into the factors
influencing signal optimization outcomes, particularly in complex traffic scenarios.

In this study, both the actuated and DGMARL approaches were subjected to the same
number of vehicle inputs, as illustrated in shown in Table A1 in Appendix B. However,
DGMARL demonstrated its effectiveness in optimizing traffic signal timing and improving
Eco_PI. These findings underscore the dynamic nature of traffic flow and highlight the
efficacy of DGMARL in mitigating congestion and promoting eco-friendly transporta-
tion practices.

In Figure 13, an analysis of traffic flow patterns reveals insights into the distribution
of vehicles crossing each intersection at green. Additionally, detailed information on the
cumulative sum of the count of vehicles crossing each intersection at green can be found in
the table provided in Table A2.

This analysis highlights specific trends observed at individual intersections. For in-
stance, at the Douglas intersection, there is a notable increase of 17.48% in the percentage of
vehicles arriving on green compared to the actuated signal plan. Similarly, at the Georgia,
Market, and Pine intersections, the DGMARL scenario shows increases of 7.94%, 4.02%,
and 0.77% respectively in the percentage of vehicles arriving on green compared to the
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actuated scenario. Conversely, at Central St, there is a reduction of 2.76% in vehicles
arriving on green compared to the actuated plan. It’s important to note that the arrival
on green percentage is calculated considering all signal phases and it’s all approaches of
the intersection.

In Figure 14, a closer examination is made of the traffic flow from approaching links
at Central St, Pine, Market, and Georgia intersections to analyze the number of stopped
vehicles at each intersection approach. At Central St, there is a notable 12.90% reduction in
the number of vehicles stopped compared to the actuated plan, indicating improved traffic
flow. Despite Central St having 2.28% fewer moving vehicles compared to the actuated
signal timing plan, there is still a reduction in Eco PI, primarily due to the significant
decrease in stopped vehicles. Conversely, at the Douglas Intersection, there is a 20.75%
increase in the number of stops compared to the actuated plan, leading to a higher Eco_PI,
despite a 2.23% increase in the number of moving vehicles during the simulation period.
This underscores the importance of considering the distribution and frequency of stopped
vehicles at intersection approaches in assessing the impact on Eco_PI.

Figure 13. PM-peak hour traffic throughput in the MLK Smart Corridor: Actuated vs DGMARL.

Figure 14. Stopped vs Moving Vehicles in PM-peak hour traffic.

An important consideration with DGMARL is its focus on addressing traffic demands
from all directions, including both main streets and side streets, while adhering to manda-
tory constraints such as minimum green time and pedestrian walk serving time. As a
consequence of this approach, the traffic density on certain approaches may increase,
reflecting the comprehensive optimization of traffic flow in a multi-directional environ-
ment. This heightened traffic density on specific approaches may have implications for the
Eco_PI, underscoring the complex interplay between traffic demand patterns and signal
optimization strategies.
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Overall, the results demonstrate the effectiveness of the DGMARL approach in man-
aging traffic demand across all directions and optimizing traffic signal timing to reduce
Eco_PI, while maintaining adherence to mandatory constraints at both corridor and inter-
section levels.

7. Discussion

The findings from the experiments shed light on the effectiveness of the Digital
Twin-assisted graph-based decentralized multi-agent reinforcement learning algorithm in
optimizing traffic network signal timing. These results warrant a thorough discussion to
interpret their significance in the context of previous studies and the underlying hypotheses,
as well as to explore their broader implications and potential future research directions.

Firstly, the observed improvements in learning efficiency and performance corroborate
with prior research that has emphasized the advantages of multi-agent reinforcement
learning in dynamic and complex environments. By allowing agents to interact with their
surroundings, exchange knowledge with neighboring agents, and explore multiple actions
simultaneously, our approach aligns with the principles outlined in previous studies on
traffic signal optimization.

Furthermore, the efficacy of the Digital Twin in assisting the algorithm highlights the
growing role of Digital Twin technology in optimizing real-world systems. By providing
a virtual representation of the physical transportation environment, the Digital Twin
enables more accurate observations and simulations, leading to enhanced decision-making
capabilities for the reinforcement learning algorithm.

In discussing the implications of these findings, it becomes evident that the proposed
approach holds promise for addressing traffic congestion and improving overall transporta-
tion efficiency on a larger scale. The ability to optimize traffic signal timing in real-time
based on evolving traffic conditions offers significant potential for reducing travel times,
minimizing delays, and enhancing the overall commuter experience.

Looking ahead, future research directions should focus on further validating and
refining the algorithm through extensive testing in real-road environments. This includes
deploying the algorithm in larger traffic networks, incorporating additional functionalities
such as adaptive learning mechanisms, and exploring variations in optimization frequen-
cies. Additionally, investigations into the algorithm’s robustness under diverse traffic
scenarios and its scalability to accommodate growing urban infrastructures are warranted.

In summary, the results of our experiments underscore the promising prospects of
leveraging Digital Twin-assisted multi-agent reinforcement learning for traffic signal opti-
mization. By engaging in discussions that contextualize these findings within the existing
literature, highlight their implications, and delineate future research avenues, we aim to con-
tribute to the ongoing dialogue on enhancing traffic management systems and mitigating
congestion in urban environments.

8. Conclusions

This paper has delved into the application of a Digital Twin-assisted graph-based
decentralized multi-agent reinforcement learning algorithm for real-time optimization
of traffic network signal timing. Through enabling interactions among multiple agents,
facilitating knowledge exchange among neighboring agents, and allowing simultaneous
exploration of multiple actions, this approach has exhibited notable enhancements in
learning efficiency and performance, all while maintaining lower latency.

The experiment results have underscored the effectiveness of leveraging Digital Twin
technology to assist the multi-agent reinforcement learning algorithm in optimizing traffic
network signal timing. Through extensive experimentation on the MLK Smart Corridor
in Chattanooga, Tennessee, USA, we observed significant improvements in traffic flow
and eco-friendly transportation practices compared to traditional vehicle-actuated signal
timing plans. Notably, our results demonstrate a substantial reduction in the Eco_PI index,
indicating enhanced fuel efficiency and reduced emissions.
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However, it’s important to acknowledge the disparities between our findings and
those reported in previous studies. While our approach showcases promising results
in managing traffic demand and optimizing signal timings, variations in traffic patterns,
infrastructure layouts, and environmental factors may contribute to differences in outcomes
across different contexts. Therefore, further investigation and comparative analysis are
warranted to elucidate the factors influencing these disparities and refine our understanding
of the DGMARL algorithm’s performance under diverse conditions. By engaging in such
discussions and continuously evaluating our findings in light of previous research, we can
gain deeper insights into the capabilities and limitations of MARL-based approaches for
traffic management.

In summary, this study charts a promising course for advancing traffic management
systems and alleviating congestion on a broader scale. The integration of Digital Twin
technology with multi-agent reinforcement learning provides a robust framework for
optimizing complex systems characterized by multiple agents and diverse interactions.
By continuing to explore and refine this approach through real-world testing and observa-
tion, we can unlock its full potential to revolutionize urban mobility and enhance overall
transportation efficiency.
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Abbreviations
The following abbreviations are used in this manuscript:

DT Digital Twin
DGMARL Decentralized Graph-Based Multi-Agent Reinforcement Learning
AI Artificial Intelligence
ML Machine Learning
IoT Internet of Things
RL Reinforcement Learning
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
A2C Advantage Actor-Critic
MA2C Multi-Agent Advantage Actor-Critic
GNN Graph Neural Network
LSTM (Long Short-Term Memory)
ReLU (Rectified Linear Unit)
ITS Intelligent Transportation System
SPaT Signal Phasing and Timing
RBC Ring Barrier Controller
GUI Graphical User Interface
COM Component Object Model
MLK Martin Luther King

Appendix A

Algorithm A1 Observing state si from Digital Twin by thread threadi

Require PTV-Vissim objects and agents initialized, time t, thread threadi
1: for signal group sgi do
2: if sgi is current phase signal group then
3: Observe current phase status ϕS

i,t, current phase duration ϕD
i,t, pedestrian recall

status ϕPR
i,t

4: Validate minimum green is served ϕMinG
i,t

5: if sgi has pedestrian recall enabled then
6: Validate maximum green is served ϕMaxG

i,t
7: end if
8: end if
9: for links l = 1 to K do

10: Observe traffic state δPT
l,i,t, δW

l,i,t, δD
l,i,t, and V l,i,t

11: end for
12: end for

Appendix B

Table A1. Vehicles Input.

Input Vehicles Generated Actuated DGMARL

Number of Vehicles 8788 8788
Unique Vehicle IDs [1, 2, 3, . . . , 8786, 8787, 8788] [1, 2, 3, . . . , 8786, 8787, 8788]
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Algorithm A2 Apply action a′i in Digital Twin by thread threadi

Require Time t, thread threadi, Current phase ϕi, Next phase ϕj
1: for signal group sgi do
2: if ϕi-current phase then
3: if ϕi is green then
4: Set ϕi to yellow
5: Continue simulation
6: else if ϕi is yellow and yellow served then
7: Set ϕi to red clearance phase
8: Continue simulation
9: else if ϕi is red and red clearance served then

10: Set status ϕi red clearance served
11: end if
12: end if
13: if ϕi is red clearance served then
14: Set ϕj to green
15: Continue simulation
16: end if
17: end for

Table A2. Cumulative sum of count of vehicles passed through each intersection at green.

Intersection Actuated DGMARL Increase in % of Vehicles Crossed the
Intersection at Green

Pine 6472 6522 0.77%
Carter 12,430 12,779 2.81%
Broad 10,217 10,628 4.02%

Market 12,282 12,528 2.00%
Georgia 6083 6566 7.94%
Lindsay 3886 4122 6.07%
Houston 3886 3956 1.80%
Douglas 2632 3092 17.48%
Peeples 1723 1733 0.58%

Magnolia 2280 2339 2.59%
Central St 7723 7510 −2.76%
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