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Abstract: The past few years have witnessed a wider adoption of Internet of Things (IoT) devices.
Since IoT devices are usually deployed in an open and uncertain environment, device authentication
is of great importance. However, traditional device fingerprint (DF) extraction methods have several
disadvantages. First, existing DF extraction methods need private information from devices to
compute DFs, which puts the privacy of devices at stake. Second, the manually designing features-
based methods suffer from poor performance. To tackle these limitations, we propose a Linear
Residual Neural Network-based DF extraction method, Res-DFNN, which utilizes network packet
data in the pcap file to generate DF. The key block is designed according to symmetry, and it is
verified by simulation that our method achieves better performance in both non-private and privacy-
preserving scenarios.

Keywords: device fingerprint; IoT devices; deep neural networks; behavior features

1. Introduction

The Internet of Things (IoT) is an emerging technology that utilizes network connec-
tivity to link physical objects, providing users with real-time monitoring, control, and man-
agement services [1]. In recent years, the development of IoT has accelerated, leading to
widespread adoption worldwide. According to the latest statistics, the global count of
IoT devices has surpassed 1.5 billion, with active deployments in commercial, industrial,
government, and various other sectors [2]. Notably, some IoT applications are critical in
sectors such as military, healthcare, transportation, and manufacturing, raising significant
security concerns [3].

IoT Device Fingerprint (DF) identification technology aims to improve the identifica-
tion and tracking capabilities of IoT devices by assigning them unique fingerprints. This
enhancement ensures secure and reliable network connections and effective system man-
agement. Due to its potential to assist enterprises in establishing robust security systems
and mitigating security risks, DF extraction technology has gained significant attention as
a research hotspot in recent times [4].

In this paper, we introduce a novel method for extracting DF, known as RES-DFNN. It
plays a crucial role in identifying devices based on their network packet data, serving as the
initial and essential step in the detection of anomalous behaviors. This method classifies
device behaviors at the individual packet level by utilizing generalizable features. Conse-
quently, it possesses the capability to detect various types of devices without encountering
transfer-related challenges [5]. The key contributions of this work are as follows:

• We propose a novel DF extraction method, RES-DFNN, which utilizes network packet
data to uniquely identify IoT devices. Our method does not depend on a MAC/IP
address, which means it is more generalizable. As demonstrated in Section 5, RES-
DFNN achieves better performance compared to previous DF extraction methods.
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The feature extraction block of RES-DFNN embodies the concept of symmetry, a crucial
aspect as demonstrated in Section 5.6;

• We construct a system model with two scenarios based on the presence of private
data and conduct experiments for each scenario. The results consistently show that
RES-DFNN outperforms other methods in both scenarios, indicating its ability to
maintain device privacy while delivering excellent performance;

• Due to the well-designed residual connections, RES-DFNN offers highly customizable
model depth. This adaptability allows for a more generalized model structure, making
RES-DFNN better suited to accommodate changes in feature sets and datasets;

• We rigorously evaluate the effectiveness of RES-DFNN through a series of diverse
experiments. We strictly segregate the training and test datasets and repeat the
experiments 20 times. Consequently, the results presented in this paper are realistic
and precise.

The remainder of this paper is structured as follows. Section 3 provides preliminaries
of this work. Section 4 presents the proposed method for DF extraction. The evaluation
results are presented in Section 5. Section 2 introduces related work. Finally, Section 6
draws a conclusion of this work.

2. Related Work

With the rapid development of Internet of Things (IoT) technology and the continu-
ous expansion in the adoption of IoT devices, device fingerprinting (DF) technology has
garnered significant attention from both the research and industrial communities. This
section will review existing methods for generating DF, primarily categorizing them into
behavior-based DF extraction methods and non-behavior-based DF extraction methods.

Behavior-based DF extraction methods employ information from the header and pay-
load data of network packets to simulate device behavior, thereby achieving DF extraction.
In contrast, non-behavior-based DF extraction methods distinguish between devices by
exploiting variations in various attributes within network traffic. This paper falls into
the former category, but with some distinctions. The method proposed in this paper is
tested in two different scenarios, depending on whether payload information is utilized,
as described in Section 4.1. In the Semi-knowledge scenario, device privacy is well preserved.
Meanwhile, our method uses only a single network packet to extract DF, which is suitable
for data scarcity in practical applications

2.1. Behavior-Based DF Extraction Methods

Mazhar et al. [6] comprehensively describe IoT traffic, considering time patterns,
quantities, and destination endpoints, while addressing security and privacy concerns to
extract DF. Miettinen et al.’s IoTSentinel system [4] identifies vulnerable devices through
network traffic analysis, creating unique fingerprints for each device based on 23 features
extracted from the initial 12 data packets of 31 devices, resulting in 276-value fingerprints
used for device recognition. Bezawada et al. introduced the IoTSense [7] model, which
incorporated 17 protocol-based features from IoTSentinel research and added three payload-
related features. This model forms fingerprints with 100 members by applying this feature
list to five data packets for each device. More recently, Kostas et al. [5] presented a machine
learning-based IoT device identification method known as IoTDevID. They employed a
rigorous ensemble of feature selection techniques and a genetic algorithm to eliminate
redundant features and select the most relevant feature set. From a broader and more
practical perspective, IoTDevID achieves high identification accuracy for IoT devices at the
packet level.

2.2. Non-Behavior-Based DF Extraction Methods

Aneja et al. [8] collected data packets using a packet sniffer application and generated
Inter-Arrival Time (IAT) graphs for each packet. They extracted features from these IAT
graphs using convolutional neural networks to create DF. Noguchi et al. [9] introduced an
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automatic device recognition architecture that identifies devices based on time-varying pat-
terns of feature quantities extracted from device-transmitted signals, serving as identifiers
for individual data packets. Guo et al. [10] identified devices of the same type from network
traffic by observing server IP addresses or server names in DNS requests from specific IoT
devices. Samuel et al.’s AuDI method [11] initially extracted periodic features from device
network traffic and then employed K-nearest neighbors (KNN) for IoT device classification.
Sivanathan et al. [12] used a multi-stage classifier for IoT device classification, training
the classifier with data from 28 IoT devices over 1 to 16 days. Fan et al.’s AutoIoT [13]
employed a semi-supervised learning approach to design a classifier, creating compact
clusters for each class with limited labeled data. They updated the model based on traffic
features of new device types for self-updating in an open environment. Franklin et al. [14]
proposed a passive fingerprint recognition technique that generated fingerprints based on
the statistical analysis of the rate of common 802.11 data link layer frames transmitted by
wireless devices. Charyyev et al. [15] introduced a device fingerprint generation method
using Nilsimsa hashing to produce a hashed output for network data packets. Aksoy et al.’s
SysID method [16] determined significant feature subsets in device fingerprints for de-
vice identification. They used a genetic algorithm based on a single data packet from the
device, followed by deploying various machine learning algorithms for host device type
classification through feature selection using an analytical genetic algorithm.

3. Background
3.1. Behavior Data

Device behavior data can be collected through various methods. Depending on
whether there is an external device to monitor the device’s behavior, we can categorize
the sources of behavior into two main categories: externally collected behavior data and
in-device behavior data [17]. Our work falls into the former category. More specifically,
network communications and emitted electromagnetic signals are the primary sources
that are utilized as externally collected behavior data. Our primary focus is on network
communication data, particularly packet capture (pcap) files.

From the network communications perspective, a wide range of behavioral features
can be extracted through the monitoring of network packets. These features depend on
the granularity of traffic inspection and the TCP/IP layers that are collected. The primary
advantage of this approach lies in its universality, as nearly every device is equipped
with network interfaces, and it offers the potential to monitor multiple devices through a
single gateway.

Another essential feature is payload information. Following [5], payload information
could be introduced by two features: payload length and payload entropy. Payload length
represents the length of the payload carried within a TCP/UDP message. This feature
varies significantly between different devices and is more distinctive than packet length.
Payload entropy provides an indication of the information carried within a packet, which
correlates with message types and sizes. It is defined using Shannon entropy, where the
payload entropy of an m-byte sequence with a symbol length of 8 bits is calculated using
the following formula:

hm =
256

∑
i=1

pi · log2 pi (1)

Here, pi represents the probability of the occurrence of byte value i in the m bytes, i.e., count i
m .

This feature characterizes the nature of the data rather than the data itself. Nevertheless,
payload information is linked to device privacy and is typically safeguarded through
encryption methods.

MAC/IP address: A MAC address is a unique identifier assigned to a network in-
terface controller for communications at the data link layer of a network segment, also
known as a hardware address or physical address. An IP address, on the other hand, is
a numerical label assigned to each device connected to a computer network that uses the
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Internet Protocol for communication. While they serve as unique identifiers for devices,
there are some inherent issues with them [5]:

• In practical applications, IoT devices utilizing low-energy protocols (e.g., Bluetooth,
ZigBee, or ZWave.) often connect to a gateway where data are collected through other
devices. Consequently, these devices lack individual identifying features such as their
own MAC/IP addresses, instead utilizing the IP/MAC addresses of the devices they
communicate through. Thus, MAC/IP addresses are no longer able to identify these
devices.

• MAC/IP addresses function as source-destination-based identifying features. Al-
though they uniquely identify the source and destination devices, they are not pre-
dictable and generalizable. They do not provide information about device behaviors.
For instance, two devices exhibiting the same behavior may possess different MAC
and IP addresses.

As a result, recent research in DF [5] has excluded MAC/IP addresses from their feature
sets. Subsequent analysis has revealed additional benefits to excluding MAC/IP addresses
from the behavior feature set:

• By analyzing deeper behavioral characteristics beyond MAC/IP addresses, DF meth-
ods can help detect and mitigate risks associated with spoofed or cloned devices in
the network.

• MAC/IP addresses are subject to change due to network reconfigurations, dynamic IP
assignment, or network address translation. DF techniques that do not rely on these
identifiers offer more robust and persistent device identification, even in dynamic
network environments.

• Removing IP and MAC information from DF processes enhances user privacy and
data security, ensuring compliance with privacy regulations like GDPR [18]. This is
particularly important in environments where user consent and data protection are
paramount.

Excluding MAC/IP addresses will thus result in a more generalized DF method. Moreover,
in scenarios where MAC/IP addresses can uniquely identify devices, our method can still
effectively detect whether those devices have been spoofed or cloned.

3.2. Residual Network

The task of fingerprint extraction necessitates a model with robust feature extraction
capabilities. Deeper networks tend to outperform shallow ones, but they also face issues
such as gradient vanishing and gradient explosion. To address these challenges, the concept
of residual connections was introduced.

Residual connections were first proposed by He et al. [19]. Each residual block consists
of a convolutional layer followed by batch normalization, a ReLU activation, a second con-
volutional layer, and a second batch normalization. Subsequently, a second ReLU function
is applied after adding this block back to the primary representation. This architecture is
referred to as ResNet v1. He et al. [20] explored various variations of residual architectures,
including options where processing could be applied along the skip connection or after
the two branches had recombined. Their findings indicated that neither of these variations
were necessary, resulting in the development of the pre-activation residual block, which
forms the backbone of ResNet v2. Over time, new techniques for regularization, optimiza-
tion, and data augmentation have emerged, and Wightman et al. [21] incorporated these
advancements into a more contemporary training pipeline for the ResNet architecture.

Residual networks undoubtedly enable the training of deeper networks, presumably
by mitigating the issue of shattered gradients [22] at the outset of training and creating a
smoother loss surface near the minima. Residual connections alone (i.e., without batch nor-
malization) approximately double a network’s trainable depth [23]. When combined with
batch normalization, it becomes feasible to train extremely deep networks. One possible
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explanation for this phenomenon is that residual connections can eliminate singularities,
which are locations on the loss surface where the Hessian matrix becomes degenerate [24].

In our work, we leverage residual connections to construct a deep network; the details
will be discussed in Section 4.

3.3. Deep Embedding

Many research areas leverage deep embedding techniques to create fingerprints, such
as voiceprints [25–27] in speaker verification and faceprints [28,29] in face recognition. Typ-
ically, the general workflow involves the development of a feature extractor and a classifier.
Subsequently, a suitable objective function is designed to classify samples of different types.
After extensive training, the network becomes proficient at correctly classifying samples,
and the embedding obtained before the classifier serves as the fingerprint.

The effectiveness of a neural network is heavily reliant on the chosen objective func-
tion (loss function). Fingerprint extraction systems typically employ classification-based
objective functions. Before delving into these objective functions, it is helpful to conceptual-
ize the fingerprint extraction system as a multi-class classification problem, which can be
summarized as follows:

Let X = {(xi, yi)|n = 1, 2, . . . , N} represent the training samples within a batch, where
xi denotes the input at the last fully connected layer, yi ∈ {1, 2, . . . , J} denotes the class label
of xi, with J representing the number of class labels in the training set, and N indicating the
batch size. Additionally, W = [w1, w2, . . . , wJ ] and b = [b1, b2, . . . , bJ ] denote the weight
matrix and bias vector of the last fully connected layer, respectively.

The softmax loss [30] is the most commonly used objective function for multi-class
classification and can be defined as follows:

Lso f tmax = − 1
N

N

∑
i=1

log
exp

(
wT

yi
xi + byi

)
∑J

j=1 exp
(

wT
j xi + bj

) (2)

However, the softmax loss is primarily focused on maximizing the between-class
distance and lacks an explicit constraint on minimizing within-class variance [31]. This
limitation makes it suboptimal for fingerprint extraction systems. To address this issue,
the additive angular margin (AAM) loss [32] has been proposed, which explicitly increases
the distance between classes.

In our work, we follow a similar workflow to develop device fingerprints. The detailed
model structure and objective function will be discussed in Section 4.

4. Materials and Methods
4.1. System Model

We assume that the detector is presented with a single network packet and aims to
derive a unique Device Fingerprint (DF) from it, which can assist in identifying the brand
and model of the sender. Since payload information is typically protected using encryption
methods, we will investigate the following two scenarios separately, taking into account
the varying capabilities of the detector:

• Full-knowledge. In this scenario, the detector has complete access to the network packet
and can extract information from the payload data.

• Semi-knowledge. In this scenario, the detector does not have access to the payload data.
Instead, they can only extract a DF based on the information available in the packet
header. This approach ensures the sender’s private data remains intact.

4.2. IoT Dataset

The UNSW IoT Traffic Traces dataset [12] continually logs the network activities of
28 IoT devices over a span of 26 weeks. However, it is important to note that the current
open-source version of this dataset only includes logs spanning 60 days. To create a more
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realistic representation of real-world IoT scenarios, we have expanded the device categories
by incorporating data from another study [33] recorded in a similar manner. The resulting
dataset, which we refer to as the UNSW dataset, comprises a total of thirty-two IoT devices
and seven non-IoT devices. This dataset serves as the basis for evaluating and comparing
our DF extraction methods. Consistent with previous research [5,12], we have grouped
these non-IoT devices into a single category. Consequently, the dataset now encompasses a
total of 33 labels.

4.3. Model Structure
4.3.1. Overview

As shown in Figure 1, the Device Fingerprint Extraction model, RES-DFNN, is com-
prised of three key blocks:

𝟏𝟐𝟖×𝟏

N×1

Device Fingerprint

AAM-Softmax

Output Label

BN + FC

Res-Linear Block (d=7)

…

Res-Linear Block (d=7)

Network Packet: 𝐱

2!×1

Vectorized ModuleData
preprocessing

①

Feature
extraction
②

Fingerprint 
enhancement

③

Dropout(p=0.2)

BN

2!×1

2!×1

2!×1

2!×1

2!×1

FC
N×1

Figure 1. An overview of RES-DFNN model structure (BN is short for Batch Normalization layer,
and FC is short for Fully Connected layer).

• Data preprocessing ➀. The data preprocessing block takes a single network flow packet
file as input. It extracts relevant information for subsequent processing and then
converts it into a vectorized form.

• Feature extraction ➁. The feature extraction block harnesses the advantages of a resid-
ual network structure to extract a Device Fingerprint (DF) representation from the
input vector.



Symmetry 2024, 16, 443 7 of 21

• Fingerprint enhancement ➂. The fingerprint enhancement block plays a crucial role in
reducing the gap between the generated DF and the ground-truth DF, while simulta-
neously increasing the dissimilarity between the generated DF and other DFs. This
enhancement process enhances the discriminative capability of device fingerprint
extraction systems.

The training algorithm of RES-DFNN is presented in Algorithm 1.

Algorithm 1: Training algorithm of RES-DFNN
Input: Model: M, Dataset: P = {p1, p2, ..., pk}, Test set: test, Hyper-parameters:

Number of Res-Linear blocks: n, Number of epochs: E, Initial learning rate:
lr, Annealing rate: ar, Threshold: δ

Output: output result
1 Set the number of Res-Linear blocks in M to n;
2 t← 0;
3 for j in E do
4 for i in k do
5 Use data pi to update M by minimizing Equation (3) with stochastic

gradient descent;
6 t← t + 1;
7 lr ← lr · e−t·ar;
8 end
9 Compute Loss according to Equation (3) on test;

10 if Loss ≤ δ then
11 break;
12 end
13 end
14 return M

4.3.2. Data Preprocessing

The data preprocessing block is responsible for extracting a normalized feature vector
from pcap files.

The initial component of this block is the vectorized module, designed to extract
essential features from network packet headers. We have successfully extracted a total of
92 features, encompassing aspects such as packet size, IP flags, ICMP length, and more—all
of which can be commonly found in packet headers. As discussed in Section 3.1, MAC and
IP addresses serve as distinctive identifiers based on source and destination. While they
excel at uniquely identifying the source and destination devices, they fall short in providing
insights into device behaviors; we have made a deliberate choice to exclude them from our
feature set. In addition to the packet header information, in the Full-knowledge scenario, we
also include payload data.

The second component of this block comprises a batch normalization (BN) layer and
a fully connected (FC) layer. The purpose of this design is to standardize the vector for
subsequent blocks. This is particularly crucial because the ranges of different features
can vary significantly. For instance, while the IP flags fall within the range of [1, 3], TCP
sequence numbers span a range of [0, 232 − 1]. These substantial variations in range can
inadvertently bias the network towards features with larger ranges, prompting the need
for normalization at this stage.

4.3.3. Feature Extraction

This block has been crafted to extract a valuable feature representation from the data
vector. After training, its output will serve as the DF. As elucidated in Section 3.2, we
commence by employing a sequence of Res-Linear blocks, incorporating a residual skip
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connection. Subsequently, we introduce a dropout layer to prevent model overfitting,
and ultimately, a BN layer is applied to obtain a standardized DF.

The design details of the Res-Linear block are illustrated in Figure 2, which is a
pre-activation residual structure. Additionally, a BN layer is positioned before the ReLU
activation to ensure that the vector is rescaled to a magnitude of 1 before proceeding to the
functional components of this block, thereby averting gradient explosions. For example,
when d = 7, the input data has a size of 128× 1. It will be processed sequentially by the
BN, ReLU, and FC layer. Subsequently, the input itself will be added to the results to obtain
the output, which also has a size of 128× 1.

Input

Batch Normalization

ReLU Activation

Fully Connected Layer

2!×1

2!×1

2!×1

2!×1

Output
Figure 2. Res-Linear Block model structure.

The overall block structure is built on the principle of symmetry, where the micro-
structure of the Res-Linear block mirrors the macro-structure of the feature extraction block.
As for the hyperparameter, we have set the exact number of Res-Linear blocks to 10, and we
will provide a rationale for this choice later in our discussion.

4.3.4. Device Fingerprint Enhancement

As discussed in Section 3.3, it has been established that training using the conventional
softmax loss alone cannot generate distinct embeddings, i.e., fingerprints of different IoT
devices should be as different as possible. This limitation hinders the deep learning model’s
ability to effectively distinguish between various classes. Inspired by ArcFace [32] and
ECAPA-TDNN [25], we choose to employ the additive angular margin (AAM) loss instead
of the softmax loss as the output layer. This decision is motivated by the explicit aim of
making devices from the same class exhibit similar fingerprints, while ensuring that devices
from different classes have significantly different fingerprints. The objective function is
defined as follows:

LAAM = − 1
N

N

∑
i=1

log
exp

(
s(cos(θyi + m))

)
exp

(
s(cos(θyi + m))

)
+ ∑l

j=1,j ̸=yi
exp

(
s(cos(θj))

) (3)

where θj represents the angle between the weight wj and the input xi, with s serving as the
rescaling parameter, and m acting as the angular margin penalty.

5. Results and Discussions
5.1. Setup
5.1.1. Prototype

We have implemented a prototype of the RES-DFNN using Pytorch [34] and trained it
according to the Algorithm 1, utilizing four NVIDIA 3090 GPUs. The model was configured
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with a depth of 10, resulting in a total of 10 Res-Linear Blocks within the feature extraction
block. Further investigation into the impact of varying the model depth will be presented
in Section 5.5 to demonstrate the optimality of this particular setup. The specific parameters
of the model’s blocks can be found in Table 1.

During the training phase, we employed an Adam optimizer [35] to update the model’s
parameters until achieving a satisfactory validation loss or reaching a point where the loss
no longer decreases. Our initial learning rate was set to 1 × 10−3 and a batch size of 256.
To prevent the model from getting stuck in local optima, we utilized an annealing algorithm
to dynamically adjust the learning rate, with an annealing rate of 0.3.

Table 1. The detailed implementation of RES-DFNN in the Full-knowledge scenario.

Module Block Output Size #Params

Data
preprocessing

Vectorized Module (1, 94) –
BN+FC (1, 128) 12,348

Feature
extraction

Res-Linear Block × 10 (1, 128) 16,768 × 10
Dropout (1, 128) –

BN (1, 128) 256

Block summary (1, 128) 167,936

Fingerprint
enhancement

FC (1, 128) 12,160
AAM-softmax (1, 33) 4224

Model
summary

Input: pcap file→ Output: (1, 33)
Total params: 196,668

5.1.2. Evaluation Metrics

According to different classification situations, samples can be divided into four
categories:

• True Positive (TP): samples that are correctly judged to be positive;
• True Negative (TN): samples that are correctly judged to be negative;
• False Positive (FP): samples that are judged to be positive but are actually negative;
• False Negative (FN): samples that are judged to be negative but are actually positive.

Based on the categories above, we have four metrics that are used to evaluate the
extracted DF of RES-DFNN:

• Accuracy (Acc) is the proportion of the number of truly correct results returned after
retrieval to the total result;

• Precision (P) describes how many of the predicted positive examples are actually
positive;

• Recall (R) describes the percentage of all positive cases that can be detected;
• F1 Score (F1) is the harmonic mean of P and R, which is high only when both Acc and

R are high.

The four metrics are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
; P =

TP
TP + FP

; R =
TP

TP + FN
; F1 =

2PR
P + R

. (4)

5.1.3. Baseline

To ensure a fair and comprehensive comparison, we have selected as baselines three of
the most advanced DF extraction methods available, namely IoTSentinel [4], IoTSense [7]
and IoTDevID [5].

• IoTSentinel [4] was among the pioneering studies to employ network packet data
for creating DFs for devices. In this approach, they extracted 23 distinct features from
each packet, with none of them relying on packet payload;
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• IoTSense [7] took a further step by building upon IoTSentinel’s work. They selected
17 features from IoTSentinel’s approach based on their own design assessment and
introduced payload-related features, particularly payload length and payload entropy;

• IoTDevID [5] employed 30 features from network packets to identify IoT devices,
with the inclusion of payload information;

In the Semi-knowledge scenario, it is important to note that the payload information
will be excluded from the input data.

5.2. Overall Effectiveness

In this section, we assess the effectiveness of RES-DFNN in generating DFs for device
identification purpose according to Equation (4). To enhance the robustness and precision
of our results, we employ 10-fold cross validation. Meanwhile, to ensure consistency in our
evaluations, we applied identical dataset segmentation and optimized model parameters
across all methods and folds during the training phase. The outcomes of the cross validation
process are illustrated in Tables A1 and A2, while the comprehensive effectiveness is
summarized in Table 2. The results demonstrate that RES-DFNN consistently outperforms
the other methods across various scenarios. In both scenarios evaluated, RES-DFNN
exhibits superior performance, underscoring its effectiveness and potential as a leading
choice for DF generation.

Table 2. Overall effectiveness of RES-DFNN and other baselines.

Scenario Study Acc P R F1

Full-knowledge

IoTSentinel [4] 0.8058 0.8040 0.7817 0.7813
IoTSense [7] 0.8427 0.8650 0.8276 0.8359
IoTDevID [5] 0.9175 0.9310 0.8931 0.9011

Ours 0.9354 0.9539 0.9062 0.9125

Semi-knowledge

IoTSentinel [4] 0.8011 0.8007 0.7767 0.7789
IoTSense [7] 0.6963 0.7139 0.6625 0.6624
IoTDevID [5] 0.8982 0.8967 0.8620 0.8696

Ours 0.9279 0.9172 0.8957 0.9015
The aforementioned experimental results represent the average of 10-fold cross-validation outcomes. The bold
and underline indicate the best performance.

In the Full-knowledge scenario, RES-DFNN attains an average Acc of 0.9354, surpassing
IoTDevID by 1.80% and showcasing remarkable superiority over other available alterna-
tives. This satisfactory performance can be attributed to our method’s inherent ability
to autonomously discern valuable information from a wide array of features and assign
them greater significance. This autonomy effectively circumvents the shortcomings asso-
ciated with manual feature selection, further reinforcing the effectiveness and promise of
RES-DFNN.

In the Semi-knowledge scenario, as a result of limited payload information, the average
Acc of RES-DFNN has slightly declined to 0.9279. However, it still maintains its position as
the top-performing method compared to others. Moreover, the performance gap between
our approach and alternative methods has widened, with a substantial 2.97% lead over
IoTDevID. These results suggest that RES-DFNN is still trustworthy in privacy-limited
situation.

If not explicitly mentioned, the remainder of the evaluation will be conducted on fold
#1 in the Full-knowledge scenario. As depicted in Figures 3 and A1, we have included con-
fusion matrices to enhance the clarity of RES-DFNN’s performance assessment. In these
visual representations, the intensity of color corresponds to the proportion of devices
classified into specific labels, with squares along the diagonal signifying correct classifica-
tions. A closer examination of the results reveals that the majority of devices have been
accurately categorized.
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Figure 3. Confusion matrix of devices in the Full-knowledge scenario.

5.3. Visualization

As illustrated in both Figures 4 and A2, we have reduced the original 128-dimensional
Device Fingerprint (DF) to a 2-dimensional representation using t-SNE [36]. This enables
us to visually examine the distribution of DFs extracted by RES-DFNN under various
scenarios, with IoT devices of each class represented by distinct colors. The results clearly
demonstrate that data samples from different classes form tight clusters and exhibit well-
defined boundaries between them. This observation underscores the model’s ability to
effectively extract a distinguish DF of various IoT devices, thus providing strong validation
for our proposed approach.

Comparing the outcomes of two distinct scenarios, namely, Full-knowledge and Semi-
knowledge, we observe a slight drop in performance when payload information is missing.
This finding aligns with the results presented in Table 2.

5.4. Data Proportions

During the evaluation phase, we have observed that RES-DFNN tends to make
incorrect predictions, particularly on specific devices. To gain a deeper understanding of
this issue, we conducted a thorough analysis of the training dataset. As shown in Table 3,
it is evident that the majority of devices have approximately 9601 packets, accounting for
approximately 2.95% of the dataset. The Non-IoT class constitutes 18.31% of the dataset
but includes seven different devices. Therefore, we do not consider this to be an imbalance.
However, there are instances where the proportion is considerably lower, as low as 0.02%
and 0.03%, as observed in devices such as the Blipcare Blood Pressure Meter with 78 packets
and Hello Barbie with 98 packets.
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Figure 4. Distribution (visualized using t-SNE) of the device fingerprint extracted by RES-DFNN in
the Full-knowledge scenario.

Table 3. The effect of the data proportion on the classification results.

Device Acc * Number of Packets Proportion (%)

Amazon Echo 0.9847 9601 2.95
August Doorbell Cam 0.8302 9601 2.95

Awair Air Monitor 0.9948 9601 2.95
Belkin Camera 0.9611 9601 2.95

Belkin Wemo Switch 0.8972 9601 2.95
Belkin Motion Sensor 0.7558 9601 2.95

Blipcare BPM 0.7391 78 0.02
Canary Camera 0.9126 9601 2.95

Dropcam 0.9974 9601 2.95
Google Chromecast 0.9770 9601 2.95

HP Printer 0.9923 9601 2.95
Hello Barbie 0.0588 98 0.03

Insteon Camera 0.9922 9601 2.95
LiFX Smart Bulb 0.9948 9601 2.95

NEST Smoke Alarm 0.8802 3729 1.14
Nest Dropcam 0.9974 9601 2.95

Netatmo Welcome 0.8560 9601 2.95
Netatmo W-station 1.0000 9601 2.95

Non-IoT 1 0.9632 59648 18.31
PIX-STAR PF 0.7320 9601 2.95

Phillip Hue Lightbulb 1.0000 9601 2.95
Ring Door Bell 0.8187 9601 2.95

Samsung SmartCam 0.9510 9601 2.95
Smart Things 0.9974 9601 2.95

TP-Link Day camera 0.9870 9601 2.95
TP-Link Smart plug 0.8811 9601 2.95

TPLink RB LAN 0.9820 9601 2.95
Triby Speaker 0.9256 9601 2.95

Withings slp sensor 0.9974 9601 2.95
Withings SBM 0.9948 9601 2.95

Withings Smart scale 0.9459 2716 0.83
iHome 0.9437 9601 2.95

Unknown Cam 0.8539 214 0.07
1 There are seven different non-IoT devices in total. * Experimental results are obtained by averaging 20 repetitions.
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Our investigation revealed that the dataset suffers from a natural imbalance in data
proportions, where the number of packets varies significantly across different devices. Con-
sequently, we conducted an experiment to assess the impact of this data proportion disparity.

The experimental results are presented in Table 3. It is noteworthy that devices with
lower data proportions tend to exhibit poorer performance, e.g., Blipcare Blood Pressure
Meter with an Acc of 0.7391 and Hello Barbie with an Acc of 0.0588. This outcome is
expected since models generally perform better when they have more training data to
understand the class distribution. However, there are exceptions, such as the Belkin Motion
Sensor, which has a data proportion of 2.95% yet achieves an Acc of only 0.7558. We
attribute this discrepancy to certain devices with highly entangled network flow charac-
teristics, which can influence the model’s ability to make accurate predictions for these
particular devices.

5.5. Model Depth

In this section, we will discuss how model depth affects performance. In our experi-
ments, we varied the number of Res-Linear Blocks from 3 to 20. It is worth mentioning that
the overall feature extraction block architecture remains unchanged—only the number of
Res-Linear Blocks varies. The results are presented in Figure 5, and we can observe that as
the depth increases, the performance initially improves and then starts to decline.

3 5 7 10 12 15 20
Number of layers

0.926

0.927

0.928

0.929

0.930

0.931
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0.933
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Accuracy
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0.902

0.904

0.906

0.908

0.910

F1
 S

co
re

Figure 5. Effect of model depth.

This phenomenon is reasonable. Initially, the Res-Linear Blocks we designed are
similar to ResNet. As analyzed in Section 3.2, deeper models tend to perform better.
The reason why deep models work is due to the presence of residual connections. However,
since the dataset contains a limited amount of data, a model with too many parameters
may struggle to fit the data adequately.

The best performance is achieved when the depth is set to 10, resulting in an Acc
of 0.9333 and an F1 Score of 0.9108. For the remainder of this paper, we will use a model
depth of 10 for our evaluations.

5.6. Ablation Study

In this section, we perform ablation experiments to demonstrate the effectiveness of
every component in the RES-DFNN design. To be specific, we systematically eliminate the
feature extraction block and residual connections, one at a time, to assess their impact on
performance. The experimental results are presented in Table 4.
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Table 4. Results of ablation study.

Ablation Part Acc P R F1

None 0.9333 0.9522 0.9046 0.9108
FEB 1 0.6947 0.6464 0.6413 0.6241
RC 2 0.9197 0.9106 0.8877 0.8936

1 Refers to feature extraction block. 2 Refers to residual connections. The above experimental results are obtained
by averaging 20 repetitions. The bold and underline indicate the best performance.

We observe a significant drop in performance when the feature extraction component
is omitted. The Acc plunges to a mere 0.6974, rendering it unacceptable as the device
fingerprint can no longer be effectively discerned. To vividly illustrate the subpar results,
we have included visual representations in Figures 6 and 7. The confusion matrix reveals
that the hot spot is not predominantly on the diagonal, indicating a considerable number
of samples being misclassified. Simultaneously, the distributions of the device fingerprints
fail to form a distinct boundary line and instead appear jumbled, signifying inadequate
feature extraction.

-100 -75 -50 -25 0 25 50 75 100

-100

-75

-50

-25

0

25

50

75

100

Figure 6. Distribution (visualized using t-SNE) of the device fingerprint extracted by RES-DFNN
(without feature extraction block).

On the other hand, in the absence of residual connections, we observed a slight
decrease in Acc, specifically by 0.0136. This decline can be attributed to the crucial role that
residual connections play in deep neural networks. Their primary function is to address
the issues of gradient vanishing and exploding, which are common challenges in training
deep networks. Additionally, they facilitate faster convergence of the model. Notably,
as the neural network becomes deeper, the impact of residual connections becomes even
more pronounced. Furthermore, without residual connections, the structure no longer
satisfies the concept of symmetry, leading to a notable performance drop, thus proving the
effectiveness of symmetry.To further illustrate this point, we have included visualization
results in Figures A3 and A4. These visualizations clearly demonstrate that residual
connections significantly contribute to the overall effectiveness of the RES-DFNN design.
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Figure 7. Confusion matrix of devices (without feature extraction block).

6. Conclusions

In this paper, we introduce RES-DFNN, a Device Fingerprint (DF) extraction method
based on neural networks using network packet data. RES-DFNN consists of three key
blocks: a data preprocessing block, a feature extraction block, and a fingerprint enhance-
ment block. After training with AAM loss, RES-DFNN is capable of extracting DF through
a single pacp file, enabling the unique identification of the sender’s brand and model.

We utilize cross validation to validate the effectiveness of RES-DFNN on the UNSW
dataset in both non-private and privacy-preserving scenarios, yielding Acc of 0.9354 and
0.9279, respectively. Notably, RES-DFNN consistently outperforms all baseline methods,
demonstrating advancements compared to previous studies. Particularly, RES-DFNN
exhibits a lead of 1.80% and 2.97% over the state-of-the-art DF work [5]. Moreover, we
visually represent the distribution of DF and conduct experiments revealing a positive
correlation between performance and data proportions.

Additionally, we establish the model depth as 10 based on experiments indicating its
superiority over other depths. Nevertheless, optimal model depth may vary due to dis-
crepancies in dataset size and feature sets. To address this, we carefully design the residual
connections of RES-DFNN, providing a highly customizable model structure. Finally, we
perform an ablation study to emphasize the significance of the feature extraction block and
residual connections, revealing a decrease in Acc of 23.59% and 1.54%, respectively, when
these components are omitted.

In future work, our plan is to explore the possibility of using DF to further identify
individual IoT devices. We aim to enhance the efficiency of fingerprint generation and
identification, particularly when dealing with a large number of connected IoT devices.
Additionally, we plan to improve the robustness of RES-DFNN in open environments.
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Appendix A

Table A1. 10-fold cross validation results in the Full-knowledge scenario.

Fold
Number Study Acc P R F1

1

IoTSentinel [4] 0.8068 0.8068 0.7837 0.7866
IoTSense [7] 0.8428 0.8653 0.8291 0.8370
IoTDevID [5] 0.9158 0.9304 0.8894 0.8994

Ours 0.9333 0.9522 0.9046 0.9108

2

IoTSentinel [4] 0.8172 0.8083 0.7851 0.7873
IoTSense [7] 0.8514 0.8775 0.8363 0.8453
IoTDevID [5] 0.9306 0.9433 0.9087 0.9200

Ours 0.9404 0.9607 0.9097 0.9178

3

IoTSentinel [4] 0.8178 0.8166 0.7947 0.7820
IoTSense [7] 0.8581 0.8807 0.8425 0.8507
IoTDevID [5] 0.9349 0.9452 0.9137 0.9243

Ours 0.9475 0.9618 0.9139 0.9201

4

IoTSentinel [4] 0.8150 0.8111 0.7929 0.7830
IoTSense [7] 0.8501 0.8712 0.8381 0.8469
IoTDevID [5] 0.9288 0.9375 0.9010 0.9125

Ours 0.9371 0.9557 0.9086 0.9149

5

IoTSentinel [4] 0.7870 0.7865 0.7636 0.7664
IoTSense [7] 0.8223 0.8437 0.8087 0.8162
IoTDevID [5] 0.9063 0.9205 0.8801 0.8797

Ours 0.9336 0.9722 0.9052 0.9112

6

IoTSentinel [4] 0.7966 0.7963 0.7714 0.7723
IoTSense [7] 0.8322 0.8567 0.8203 0.8270
IoTDevID [5] 0.8955 0.9127 0.8692 0.8684

Ours 0.9177 0.9422 0.8932 0.8994
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Table A1. Cont.

Fold
Number Study Acc P R F1

7

IoTSentinel [4] 0.8122 0.8116 0.7899 0.7953
IoTSense [7] 0.8478 0.8689 0.8333 0.8411
IoTDevID [5] 0.9259 0.9406 0.8993 0.9090

Ours 0.9405 0.9576 0.9142 0.9197

8

IoTSentinel [4] 0.7981 0.7984 0.7754 0.7780
IoTSense [7] 0.8405 0.8635 0.8262 0.8345
IoTDevID [5] 0.9144 0.9294 0.8882 0.8982

Ours 0.9322 0.9514 0.9035 0.9097

9

IoTSentinel [4] 0.8017 0.8006 0.7787 0.7808
IoTSense [7] 0.8391 0.8575 0.8136 0.8244
IoTDevID [5] 0.9049 0.9198 0.8887 0.8987

Ours 0.9327 0.9518 0.9041 0.9103

10

IoTSentinel [4] 0.8074 0.8071 0.7840 0.7869
IoTSense [7] 0.8425 0.8650 0.8281 0.8359
IoTDevID [5] 0.9166 0.9308 0.8897 0.8899

Ours 0.9388 0.9526 0.9049 0.9113

Average

IoTSentinel [4] 0.8058 0.8040 0.7817 0.7813
IoTSense [7] 0.8427 0.8650 0.8276 0.8359
IoTDevID [5] 0.9175 0.9310 0.8931 0.9011

Ours 0.9354 0.9539 0.9062 0.9125
The above experimental results are obtained by averaging 20 repetitions. The bold and underline indicate the best
performance.

Table A2. 10-fold cross validation results in the Semi-knowledge scenario.

Fold
Number Study Acc P R F1

1

IoTSentinel [4] 0.8046 0.8036 0.7813 0.7837
IoTSense [7] 0.7018 0.7176 0.6651 0.6625
IoTDevID [5] 0.8977 0.8886 0.8600 0.8654

Ours 0.9275 0.9169 0.8956 0.9014

2

IoTSentinel [4] 0.8155 0.8143 0.7922 0.7946
IoTSense [7] 0.7055 0.7210 0.6683 0.6685
IoTDevID [5] 0.9116 0.9298 0.8799 0.8923

Ours 0.9331 0.9235 0.9043 0.9088

3

IoTSentinel [4] 0.8110 0.8122 0.7880 0.7912
IoTSense [7] 0.7054 0.7228 0.6667 0.6701
IoTDevID [5] 0.9167 0.9347 0.8848 0.8978

Ours 0.9373 0.9263 0.9077 0.9112

4

IoTSentinel [4] 0.8078 0.8039 0.7816 0.7836
IoTSense [7] 0.7033 0.7198 0.6658 0.6679
IoTDevID [5] 0.9111 0.9241 0.8763 0.8887

Ours 0.9309 0.9237 0.9012 0.9009

5

IoTSentinel [4] 0.7829 0.7833 0.7601 0.7627
IoTSense [7] 0.6878 0.7077 0.6574 0.6514
IoTDevID [5] 0.8875 0.8784 0.8498 0.8553

Ours 0.9276 0.9170 0.8959 0.9015

6

IoTSentinel [4] 0.7965 0.7980 0.7638 0.7668
IoTSense [7] 0.6664 0.6897 0.6443 0.6437
IoTDevID [5] 0.8767 0.8676 0.8391 0.8445

Ours 0.9121 0.8964 0.8752 0.8809
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Table A2. Cont.

Fold
Number Study Acc P R F1

7

IoTSentinel [4] 0.8024 0.8025 0.7790 0.7820
IoTSense [7] 0.7033 0.7208 0.6683 0.6706
IoTDevID [5] 0.8974 0.8880 0.8597 0.8652

Ours 0.9339 0.9272 0.9103 0.9146

8

IoTSentinel [4] 0.7973 0.7962 0.7736 0.7762
IoTSense [7] 0.6999 0.7153 0.6623 0.6637
IoTDevID [5] 0.8983 0.8891 0.8605 0.8660

Ours 0.9284 0.9176 0.8969 0.9026

9

IoTSentinel [4] 0.7955 0.7952 0.7716 0.7704
IoTSense [7] 0.6877 0.7074 0.6588 0.6573
IoTDevID [5] 0.8879 0.8788 0.8502 0.8557

Ours 0.9206 0.9068 0.8865 0.8919

10

IoTSentinel [4] 0.7979 0.7975 0.7754 0.7780
IoTSense [7] 0.7022 0.7169 0.6684 0.6681
IoTDevID [5] 0.8970 0.8880 0.8594 0.8648

Ours 0.9272 0.9168 0.8957 0.9013

Average

IoTSentinel [4] 0.8011 0.8007 0.7767 0.7789
IoTSense [7] 0.6963 0.7139 0.6625 0.6624
IoTDevID [5] 0.8982 0.8967 0.8620 0.8696

Ours 0.9279 0.9172 0.8957 0.9015
The above experimental results are obtained by averaging 20 repetitions. The bold and underline indicate the best
performance.
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Figure A1. Confusion matrix of devices in the Semi-knowledge scenario.
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Figure A2. Distribution (visualized using t-SNE) of the device fingerprint extracted by RES-DFNN
in the Semi-knowledge scenario.
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Figure A3. Distribution (visualized using t-SNE) of the device fingerprint extracted by RES-DFNN
(without residual connections).
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Figure A4. Confusion matrix of devices (without residual connections).
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