
Citation: Podgorelec, D.;

Kolingerová, I.; Lovenjak, L.; Žalik, B.

AHiLS—An Algorithm for

Establishing Hierarchy among

Detected Weak Local Reflection

Symmetries in Raster Images.

Symmetry 2024, 16, 442. https://

doi.org/10.3390/sym16040442

Academic Editors: Changxin Gao and

Lorentz Jäntschi

Received: 16 January 2024

Revised: 8 March 2024

Accepted: 1 April 2024

Published: 6 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

AHiLS—An Algorithm for Establishing Hierarchy among
Detected Weak Local Reflection Symmetries in Raster Images
David Podgorelec 1,* , Ivana Kolingerová 2 , Luka Lovenjak 1 and Borut Žalik 1

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
SI-2000 Maribor, Slovenia; luka.lovenjak@student.um.si (L.L.); borut.zalik@um.si (B.Ž.)

2 Department of Computer Science and Engineering, University of West Bohemia, Technická 8,
306 14 Plzen, Czech Republic; kolinger@kiv.zcu.cz

* Correspondence: david.podgorelec@um.si

Abstract: A new algorithm is presented for detecting the local weak reflection symmetries in raster
images. It uses contours extracted from the segmented image. A convex hull is constructed on the
contours, and so-called anchor points are placed on it. The bundles of symmetry line candidates are
placed in these points. Each line splits the plane into two open half-planes and arranges the contours
into three sets: the first contains the contours pierced by the considered line, while the second and
the third include the contours located in one or the other half-plane. The contours are then checked
for the reflection symmetry. This means looking for self-symmetries in the first set, and symmetric
pairs with one contour in the second set and one contour in the third set. The line which is evaluated
as the best symmetry line is selected. After that, the symmetric contours are removed from sets
two and three. The remaining contours are then checked again for symmetry. A multi-branch tree
representing the hierarchy of the detected local symmetries is the result of the algorithm.

Keywords: computer science; algorithm; computer vision; computational geometry; shape features

1. Introduction

Symmetry is a fundamental and versatile concept with applications in mathematics [1–3],
natural sciences [4], architecture [5], arts [6], engineering [7–9], and elsewhere [10,11]. Through
evolution, symmetry perception has become an important integral part of an individual’s
perceptual organisation process [12]. It is mostly understood as a positive and desirable
property, which has been recognised in studies of mating and food choice habits of many
animal species already [13]. In humans, this concept is further generalised to broader per-
ceptions of aesthetics, health, safety, and stability. Symmetry applies to various abstractions,
but is most often associated with visual perception, which is characterised by the detection
and interpretation of distances (depth and size) and colours. Within the human’s visual
system, symmetries facilitate the segmentation of the seen scene, object analysis and repre-
sentation [14]. Unsurprisingly, computer applications of symmetries, once they have been
detected, also mostly address these tasks. In computing, the symmetry phenomenon may
play an important role in image processing [15], computer vision and computer graphics [16],
cryptography [17], and geometric modelling [18]. However, in contrast to natural, almost
self-evident symmetry perception processes in humans and several animal species, symmetry
detection is anything but a simple task for a computer [19].

An object or a system (a set of points in our case) is symmetric if there is a transforma-
tion, such as a translation, rotation, reflection, or a combination of these, that maps onto
itself [20]. Formally, if P denotes a set of points and T some geometric transformation, then
P is symmetric when

∀p ∈ P : T(p) ∈ P . (1)

Symmetry 2024, 16, 442. https://doi.org/10.3390/sym16040442 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16040442
https://doi.org/10.3390/sym16040442
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0701-9201
https://orcid.org/0000-0003-4556-2771
https://orcid.org/0009-0002-1644-8152
https://orcid.org/0000-0003-4372-5020
https://doi.org/10.3390/sym16040442
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16040442?type=check_update&version=2

Symmetry 2024, 16, 442 2 of 14

WhenP corresponds to the entire considered set of points, then Equation (1) represents
global symmetry. On the other hand, local symmetry addresses a subset of the input set of
points. It is also sometimes called partial symmetry [14].

In practice, however, Equation (1) is rarely satisfied exactly for all elements of P .
Any observation of the physical world is subject to error, whether by human vision or by
remote sensing. As a consequence, we can only expect an exact match between two points
in a symmetric pair in the case of synthetic or rounded data. Instead of perfect (exact,
strong) symmetry, we thus consider weak (or approximate) symmetry [21,22]. This can be
described formally by Equation (2).

∀p ∈ P , ∃p′ ∈ P : (T(p′) ∈ P) ∧ (∥T(p)− T(p′)∥ < ϵ), (2)

where ϵ is a small positive tolerance value. Note that Equation (2) does not require
T(p) ∈ P .

The distinction between weak and perfect symmetry concerns both global and local
symmetry. Local symmetries can contain patterns and repetitions that are often not identi-
fied easily by humans, in contrast to global symmetry, where humans are extremely skilful
at its detection [19,23]. Similarly, humans can easily detect and interpret local symmetries
of isolated objects and their exposed parts in a similar way to global symmetries. On the
other hand, no symmetry is trivial for a computer, but computer algorithms can use a lot
of processing power even in situations with a huge number of less noticeable symmetries,
which can also intersect, nest inside each other, or extend over individual tiny details.
The algorithm from [14], for example, detects more than 8500 local reflection symmetries
in a complex 3D scene of floor, buildings, and trees with more than 270,000 LiDAR points
in 3 min by using a single-threaded CPU processing on a regular personal computer. In a
slightly simpler scene with 125,000 points and no trees, it finds almost 25,000 symmetries
in less than half a minute, which of course drastically exceeds the capabilities of a human.
However, to use the detected symmetries in, e.g., scene segmentation or object analysis, it
is not enough for the algorithm to find as many symmetries as possible, but it also needs
to structure them appropriately. This is precisely the aim of this paper. The proposed
algorithm for detecting and establishing a hierarchy of the weak local symmetries in raster
images (the acronym AHiLS is used from here on), thus, also determines hierarchical
relationships among the found weak local reflection symmetries, if they exist. The aim of
this paper is not only to find weak local symmetries, but also hierarchical relationships
among them, if they exist. We consider weak symmetry when talking about symmetry
from here on.

To our knowledge, no methods in the past have addressed the same challenges as the
proposed approach. The main novelties introduced by AHiLS are the following:

• a new algorithm for weak local symmetry detection in raster images;
• performing symmetry detection on extracting contours previously extracted from the

raster image;
• using a convex hull of contours to determine the positions of potential symmetry

line candidates;
• representing hierarchical dependencies by a multi-branch tree for further processing.

This paper consists of five Sections. Section 2 gives an overview of the most similar
previous works. The proposed method is described in Section 3 and its results are given in
Section 4. A discussion and suggestions for future work are given in Section 5.

2. Related Works

Most of the previous work concentrates on perfect symmetry. Some methods compare
either two halves of the contours or skeletons of the object [24–27], or analyse halftone
images [28]. Zahn and Roskies [29] and Yip at al. [30] find symmetries in geometric objects
segmented from high-quality images. However, in real life, images can be undersam-
pled, which introduces additional errors. The algorithm by Loy and Eklundh [31] extracts

Symmetry 2024, 16, 442 3 of 14

feature points first from an image using SIFT transform [32], which is invariant on scal-
ing and rotation. SIFT also constructs a descriptor for each feature point. A reflected
image is generated after that, and SIFT is applied to it too. A new set of feature points
and their descriptors are obtained in this way. These descriptors are reflected after that,
and faced for matching against the descriptors obtained from the original, non-reflected
image. The matched descriptors form pairs. These pairs are used to define the symmetry
lines, which are accumulated into the Hough-style voting space [33]. The most dominant
symmetry lines are then selected. O’Mara and Owens in [34] present a method for the
detection of the dominant plane of symmetry in medical images of an arbitrary dimension
with the aim of measuring the degree of detected symmetries. Sun and Si published a
reflectional symmetry detection algorithm for greyscale images [35]. Axes of symmetry for
an object in the image are detected on the basis of the gradient information of the image
and the Fourier transformation. The algorithm described in [36] generates the candidates
for the axes of symmetry and then searches for the optimal axis by reflecting the candidates
against these axes. Hauagge and Snavely [37] extracted local features from images of
architectural scenes, based on local symmetries’ detection and extraction. They matched
pairs of photos of urban scenes according to these features. The features were based on the
measures of the local reflection and rotational symmetries, computed by the so-called local
image operations.

Van Gool et al., in [38], discuss the detection and usage of symmetry in planar shapes.
Symmetry is interpreted as repeated, coplanar shape fragments. These fragments are tested
on whether they are symmetric. The so-called arc length space is proposed, in which the
symmetric shape fragments correspond to straight-line segments, which are detected and
analysed easily. The algorithm proposed by Derrode and Ghorbel [39] uses the analytical
Fourier–Mellin transform to assess motion parameters between grey-level objects hav-
ing the same shape with distinct scales and orientations. Both rotational and reflection
symmetries can be detected and estimated in objects. Karkischenko and Mnukhin [28]
propose an algorithm for rotational symmetry detection in grey-level digital images, based
on the concept of Gaussian fields and a special log-polar representation of digital images.
Gnutti et al. [40] address the problem of reflection symmetry detection. A metric is de-
signed that extracts subsets of consistently oriented candidate segments. These segments
are ranked on the basis of the surrounding gradient orientation specularity. The used
operations are considered to be related to the way the human brain detects symmetry.

In comparison to the existing approaches, the proposed algorithm handles more
general types of input data and is simple to understand. Although it is demonstrated
on raster images, it can also be applied directly to geometric objects, whose borders are
represented by contours. In addition, it detects the hierarchies of the local symmetries
and returns this information explicitly in the multi-branch tree. Hierarchical dependencies
between symmetries have been considered less often. The algorithm in [41] combines
a continuous symmetry measure with a multiresolution scheme to detect hierarchical
symmetry and almost-symmetrical patterns. Ref. [42] presents a symmetry hierarchy
constructed from the initial graph via recursive graph contraction, which either groups parts
by symmetry or assembles connected sets of parts. The method is designed for meshed man-
made models. In [19], 2D or 3D objects with or without holes are found using the algorithm,
where a uniform grid and a symmetry estimation function are utilised. Li et al. [43] predict
poses of a 3D assembly by using a single 2D image with the assembly in a considered pose
and a set of point clouds of individual parts of the assembly. The reflection symmetry is
an important, but is not the only feature used to describe the poses. Paschalidou et al. [44]
address a similar problem of learning and predicting an unsupervised decomposition
of a 3D object, extracted from a single 2D image, into a hierarchical structure of parts.
Xue et al. [45] proposed a novel unsupervised approach to process urban LiDAR point
clouds to a hierarchy of objects based on their characteristic symmetric cross-sections.
The method, called Clustering Of Symmetric Cross-sections of Objects (COSCO), was
primarily used to detect and classify cars, which are then replaced by free 3D car models in

Symmetry 2024, 16, 442 4 of 14

a digital twin city. Villanueva et al. [46] use symmetries for compression of sparse voxel
grids. Originally, two subtrees could be merged on the basis of similarity or connectivity,
which they extended to the use of reflection symmetries as well. In this manner, the concept
of Sparse Voxel Directed Acyclic Graphs (SVDAGs) was upgraded into the Symmetry-
Aware Sparse Voxel Directed Acyclic Graphs (SSVDAGs), which were further analysed by
Madoš et al. [47]. Although all these methods use a similar concept of symmetry-aware
hierarchical organisation of spatial data, they were designed for different purposes, and
thus, none of them is directly comparable to AHiLS. Some allow only a hierarchical division
perpendicular to the symmetry axis or plane [19,45], some are designed from the bottom up
and use other principles of grouping subtrees together with symmetry [42–44], and some
are restricted to global symmetry detection [19].

3. Materials and Methods

In the following section, the elements of P correspond to pixels px,y in a colour raster
image, i.e., px,y ∈ P , 0 ≤ x < X, 0 ≤ y < Y, where X and Y define the image resolution,
while the transformation T is restricted to the reflection/mirroring. AHiLS executes several
steps to determine the hierarchy among the weak local reflection symmetries. The pseu-
docodes in Algorithms 1 and 2 give the sequence of these steps, which are explained
afterwards.

Algorithm 1 The main algorithm of the AHiLS

1: function AHILS(P)
2: ▷ Function accepts a colour image P and returns the multi-branch tree T representing

the weak local symmetries.
3: InitialiseParameters(Rc, t, b, d);
4: S = ApplyColourSegmentation(Rc);
5: S = Filter(S);
6: C = ExtractsContours(S);
7: level = 0;
8: T = NIL;
9: repeat

10: (Γ, T) = DFS(C, level, b, d, T);
11: C = C − Γ;
12: until Γ = ∅;
13: return T ;
14: end function

AHiLS accepts P (for example, the image shown in Figure 1a) and performs the
initialisation steps within lines 3–8 in Algorithm 1 as follows:

(a) (b) (c)

Figure 1. (a) Input raster image (credit: Paul Reeves Photography/https://www.shutterstock.com,
accessed on 7 March 2024); (b) segments of interest; (c) detected contours.

1. The necessary parameters, explained in the following, are set in line 3.
2. P is segmented based on colours (line 4 in Algorithm 1), where a user specifies

the range Rc of the desired colours. Pixels with colours outside Rc are set to black.
The segmented image S , suitable for further processing, is obtained in this way (see
Figure 1b). The segment consists of a set of four connected pixels and should be large

https://www.shutterstock.com,

Symmetry 2024, 16, 442 5 of 14

enough. In our implementation, the segment is accepted when it contains at least 1%
of all pixels in S .

3. S is converted into greyscale, filtered to reduce the noise, and smoothed in line 5. For
this, Gaussian blur and morphological erosion are applied [48].

4. The set C of contours Ci, 0 ≤ i < |C|, bordering the segments, is extracted from S
using a 5× 5 kernel [48] in line 6. Fifty contours were obtained in our case (Figure 1c).

5. The level of the hierarchy and the multi-branch tree T are initialised in lines 7 and 8.

Algorithm 2 A depth-first search investigation of contours

1: function DFS(C, level, b, d, Γ, T)
2: H = DetermineConvexHull(C);
3: A = PlaceAnchorPointsOnHull(H, d);
4: Γ = ∅; ΓA = ∅; ΓB = ∅; ΓP = ∅;
5: for a← 0 to |A| − 1 do ▷ for all bundles of lines
6: L = PlaceBundleOfLinesInAnchorPoint(pa, b);
7: for s← 0 to b− 1 do ▷ for all lines in a bundle
8: (CA, CB, CP) = ClassifyContours(C, ls ∈ L);
9: if CA ̸= ∅ and CB ̸= ∅ then

10: CR
B = Reflect(CB, ls);

11: (ListO f Pairs, ListO f Coverages) = FindSymmetricPairs(CA, CR
B , t);

12: ΓP = ΓP∪ StorePairsAndCoverages(ListO f Pairs, ListO f Coverages);
13: end if
14: end for ▷ for all lines in a bundle
15: for q← 0 to |CP| − 1 do ▷ for all contours in CP
16: cq = CalculateSelfSymmetricCoverage(Cq ∈ CP);
17: if cq > t then
18: (Γ, T) = StoreSelfSymContourAndAddItToTree(cq, ls, Γ, T);
19: end if
20: end for ▷ for all contours in CP
21: end for ▷ for all bundles of lines
22: lbest = SelectBestLineFromStorage(ΓP);
23: if lbest ̸= NIL then
24: (Γ, T) = FormPairsAndAddThemToTree(lbest, level, Γ, T);
25: (CA, CB, CP) = ClassifyContours(C, lbest);
26: (ΓA, T) = DFS(CA, level + 1, b, d, T);
27: (ΓB, T) = DFS(CB, level + 1, b, d, T);
28: end if
29: return (Γ ∪ ΓA ∪ ΓB, T)
30: end function

The algorithm enters the main loop after that. Function DFS (line 10) finds in the depth-first
search order the symmetric contours and returns them in set Γ, together with the constructed
multi-branch tree T . The found symmetric pairs of contours are removed from C in line 11 and
the whole process repeats with the reduced set of contours. The loop terminates when DFS
returns an empty Γ. The multi-branch tree is returned at the end (line 13).

The core of AHiLS is realised in the recursive function DFS, shown in Algorithm 2.
Figure 2a is used to clarify the explanation.

Symmetry 2024, 16, 442 6 of 14

(a) (b)

Figure 2. (a) Set of contours and (b) their convex hull with the anchor points.

1. Convex hull H [49] is constructed from contours Ci, 0 ≤ i < |C| at first (line 2 in
Algorithm 2). The set A of so-called anchor points pa is placed along the convex
hull’s edges uniformly (line 3), as shown in Figure 2b. The distance d between the
consecutive anchor points on H is specified heuristically (in our case d = 5 was used
as a default) or entered by the user. The number of anchor points is reduced drastically
by placing them on H instead of, for example, distributing them uniformly inside the
whole S .

2. A bundle L of potential symmetry lines ls, 0 ≤ s < 180/b, b ∈ {1, 2, 4, 5, 10},
with slopes α = b · s, is laid through pa (see Figure 3a) in line 6. b is set by default to 5,
resulting in |L| = 36 lines.

l s

pa

1 2 3 5

7

9

8

4

6

10

11

12

13 14

15

(a) (b)

Figure 3. (a) Bundle of potential lines of symmetry placed in an anchor point; (b) considered line of
symmetry ls passes through an anchor point pa ∈ A and splits C into three sets: CA = {1, 2, 3, 6, 7},
CB = {5, 9, 10, 11, 13, 14, 15}, and CP = {4, 8, 12}.

3. The contours in C are classified according to ls ∈ L. Namely, ls determines two half-
planes, and (in some cases) splits C into three sets (see Figure 3b):

• set CA contains contours being located completely in the first half-plane;
• set CB includes contours from the opposite half-plane;
• set CP stores those contours that are pierced by ls.

Symmetry 2024, 16, 442 7 of 14

Those sets are obtained by the function in line 8. If one of the sets CA or CB is empty, ls
is not the line of symmetry for any pairs of contours. Otherwise, CA and CB must be
tested additionally as follows.

• Contours from CB are reflected over ls to obtain set CR
B in line 10 (see Figure 4a).

• The similarity of the contours in CA and CR
B is checked. The coverage percentage

of the two considered contours is calculated for this. The two contours are
paired and returned in the ListO f Pairs in line 11 if the coverage percentage is
greater than the threshold t. The percentage of coverage is returned in the list
ListO f Coverages. The threshold t is set at 90% in our implementation. However,
t can be determined interactively by the user. Its effect is demonstrated later in
Section 4.

• This information is then stored in a temporal storage ΓP in line 12 of Algorithm 2.

l s

l s

12

8

4

(a) (b)

Figure 4. (a) Contours from CB (plotted in red) are reflected according to ls and checked for matching
with the contours from CA. (b) Contours in CC are checked for self-symmetry with regards to ls.

4. The algorithm selects the best line of symmetry lbest in line 22 after processing all
ls candidates from all pa ∈ A. The criterion for selection is the highest number of
reflection contour pairs determined by this line. The line with the highest percentage
of contour coverage is selected if more lines have the same number of pairs.

5. The contours in CP are checked for self-symmetry (see Figure 4b) in lines 15–20. Those
that are symmetric are stored in Γ and inserted into T .

6. If lbest exits, the DFS is called recursively with sets CA and CB in lines 26 and 27 in
Algorithm 2.

7. The information about the found symmetries stored in Γ is, together with the multi-
branch tree, returned to the main part of the algorithm at the end. The multi-branch
tree for our example is shown in Figure 5.

Symmetry 2024, 16, 442 8 of 14

1 3

4

5

6

7

8

9

10 11

12

13 14

15

2

0

1
2
3

6
7

9
1011

13
1412

4

8

5

2 1 3

6
7

9
11

13 14

10
8

5

6

1

11

14

1

2

3

Figure 5. The obtained multi-branch tree of detected local symmetries.

4. Results

Figure 6 shows AHiLS’s results when varying the parameter t, which represents the
coverage percentage. This is the most important of the three user-defined parameters
in AHiLS. Setting it would require intensive study from the human-sense perspective to
obtain the most expected results. Namely, humans are not very skilful at determining local
symmetries in contrast to global ones. The other two parameters, b and d, were set as a
compromise between AHiLS’s accuracy and its spent CPU time, as they directly affect
the number of symmetry line candidates in each bundle and the number of anchor points
along the convex hull, respectively. They are set to b = 2 and d = 5 in the test example in
Figure 6. Only one symmetry line was detected when t = 50%. The symmetric contours are
plotted in red while the others are in grey (see Figure 6a). However, there were more lines
of symmetry discovered by increasing t, as seen in Figure 6b. Different colours are used to
show which contours and axes of symmetry belong together. In addition, some contours
were also detected as being self-symmetric when t was further increased (Figure 6c,d).

Symmetry 2024, 16, 442 9 of 14

(a) (b)

(c) (d)

Figure 6. The found symmetric contours are plotted with the same colour in regards to varying t:
(a) 50%, (b) 70%, (c) 80%, (d) 90%.

Figure 7 shows the multi-branch tree obtained for t = 70%. Note that the symmetry
lines at level 1 are similar, but not exactly the same. Consequently, three branches were
obtained instead of a single one, which corresponds to Figure 6b.

Figure 7. Butterfly example reflection hierarchy.

Finally, a comparison was made with the method proposed by Loy and Eklundh [31].
As already mentioned, we have not found any comparable method that would hierarchi-
cally organise the detected symmetries in a 2D image in a similar way as AHiLS. Therefore,
we were looking for a method that would at least pre-segment and filter the image, or oth-
erwise incorporate some semantic relations in the symmetry detection rather than pixel
colours alone. Thus, the Loy and Eklundh (L&E in continuation) method was chosen, which
bases the detection on a prior identification of feature points. However, this approach
does not filter out the background, which often appears dominant in at least one of the
detected symmetries. Since the L&E method does not build a hierarchical structure but only
finds a selected number of the strongest symmetries, we used only the topmost level in the

Symmetry 2024, 16, 442 10 of 14

multi-branch tree in AHiLS to make the comparison fairer. The numbers of symmetries in
the L&E method were set to the number of tree nodes considered in AHiLS (increased by 1
for the strongest background symmetry). Different colours in Figure 8b,d,f are used to bind
the symmetry lines to the corresponding contours.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Results of L&E [31] (a,c,e) and AHiLS (b,d,f) methods, where t = 70%, b = 2, and d = 5.
(credit: Paul Reeves Photography/https://www.shutterstock.com, accessed on 7 March 2024, for (a,b),
and https://www.pexels.com/, accessed on 7 March 2024, for (e,f)).

The symmetries found in the butterfly example (Figure 8a,b) are quite similar for both
methods. Here, the background is highly asymmetrical (predominantly blue in the left half
of the image and green in the right half), so the strongest symmetries are dominated by
parts of the butterfly even in the L&E method. In the case of dandelion flowers, however,
the L&E algorithm detected two strong symmetries with the vertical axes near the centre
of Figure 8c. The left one refers to the symmetry of the green leaves, while the right one
additionally takes into account the soil. The least steep symmetry axis also refers to the
green leaves and the soil, while the fourth, steeper, axis roughly bisects the flower on the
bottom left and the stone below it. On the other hand, AHiLS, where Rc was restricted
to shades of yellow, first found symmetry through the two flowers on the left, indicated
by magenta, and then found the self-symmetry of the third flower, indicated by cyan in
Figure 8d. If AHiLS was not a hierarchical algorithm, it would also find the symmetries
through the remaining two pairs of the trio of flowers. In the third example, showing three

https://www.shutterstock.com
https://www.pexels.com/

Symmetry 2024, 16, 442 11 of 14

seagulls flying under blue sky, the L&E algorithm detected two strong symmetries nearly
through the centre of Figure 8e, where the vertical one corresponds to the background,
while the oblique one considers both the sky and the birds. The third symmetry axis
considers the rightmost seagull and its local surroundings. Note that this and the leftmost
seagull are two identical copies, but the local symmetry of the latter is only at the tenth
position due to the higher influence of the middle bird. As expected, AHiLS found here the
local self-symmetries of the two identical seagull copies, highlighted in magenta and light
green in Figure 8f. It should be noted that the light green axis is not identical to the third
red axis of symmetry from the L&E algorithm, as the latter is also affected by the adjacent
seagull and the background.

As can be seen, AHiLS not only found more meaningful lines of symmetries, but it
was also able to define the exact regions of the symmetry in S . However, the price for this
is a much slower performance. The L&E method needs 0.69 s, 1.19 s, and 0.40 s for the
results in Figure 8a, Figure 8c, and Figure 8e, respectively. On the other hand, AHiLS needs
825.22 s, 189.13 s, and 166.88 s for the results in Figure 8b,d,f. Deeper levels of the tree in
principle take less time, as we no longer have to deal with objects pierced by the axis of
symmetry at a higher level. Also, the convex hulls are becoming shorter, which means far
fewer anchor points. Nevertheless, run times are increased by a further factor of 2 to 3
when DFS is performed recursively.

The tests were run on a laptop computer with an 11th Gen Intel(R) Core(TM) i7-1165G7
processor @ 2.80 GHz, 2803 MHz, with four cores, eight logical processors, and with 16.0 GB
RAM, under the Microsoft Windows 11 Home operating system. The software was written
in Python. The resolution of the butterfly image was 1600× 915 pixels, while the other two
test images had resolutions of 1200× 900 pixels.

5. Conclusions

This paper introduces a novel method for determining weak local reflection symme-
tries and their hierarchical dependencies in raster images and returns the information about
them in a multi-branch tree. Although the method was tested on raster images, it can
also be applied without any changes to non-rasterised cases, when the geometry of the
presented shapes is described by their boundaries (by contours in AHiLS terminology).
The obtained multi-branch tree allows a comprehensive analysis of the detected symmetries
in the later post-processing phases.

In addition to the original idea to hierarchically detect and organise symmetries
from top to bottom, the main advantage of AHiLS is its flexibility. Three user-defined
parameters t, b, and d play an important role in the symmetry detection. Furthermore,
a user can also set the colour range Rc for filtering and segmentation of the image prior
to symmetry detection. However, with so many parameters, the challenge for future
work is to automatically recommend their values based on image and user characteristics.
An obvious weakness of AHiLS is its slowness. The method can, however, be parallelised
easily. A divide and conquer approach, as suggested in [19], should thus also be tried
within AHiLS. Furthermore, calculation of coverages could be avoided if the two contours
already differ in length by more than the set threshold t. Note that a coverage between the
same pair of contours is calculated separately for every symmetry line candidate through
each anchor point. Testing the anchor points is also highly time consuming, therefore
a smarter anchor point selection could significantly improve the performance. Finally,
the AHiLS methodology should also be adapted for other types of symmetries, first of all
for rotational symmetry.

Author Contributions: Conceptualisation, B.Ž. and I.K.; methodology, B.Ž. and L.L.; software, L.L.;
validation, B.Ž. and D.P.; investigation, B.Ž., I.K., L.L. and D.P.; resources, I.K.; writing—original draft
preparation, L.L. and I.K.; writing—review and editing, B.Ž. and D.P.; visualisation, L.L.; supervision,
B.Ž.; project administration, I.K.; funding acquisition, I.K. All authors have read and agreed to the
published version of the manuscript.

Symmetry 2024, 16, 442 12 of 14

Funding: This research was funded by the Slovene Research and Innovation Agency under Research
Project N2-0181 and Research Programme P2-0041, and the Czech Science Foundation under Research
Project 21-08009K.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations and symbols are used in this manuscript:

α Slope angle of a considered ls, i.e., α = b · s, 0 ≤ s < 180◦/b
Γ Set of symmetric contours
ΓA Output set of symmetric contours from the recursive call DFS(CA,...)
ΓB Output set of symmetric contours from the recursive call DFS(CB,...)
ΓP Temporal storage of symmetric pairs and coverage values
ϵ Small positive tolerance value
a Loop index for anchor points
A Set of anchor points along the convex hull H
AHiLS Algorithm for establishing hierarchy of weak local symmetries in raster images
b User parameter for setting the slope step (180◦/b) for lines ls in a bundle
C The set of contours (borders of segments from S ; formal parameter of DFS)
CA Set of contours completely in one half-plane defined by line ls
CB Set of contours from the opposite half-plane to the one containg CA
Ci Contours from the set C, 0 ≤ i < |C|
COSCO Clustering of Symmetric Cross-Sections of Objects
CP Set of contours being pierced by ls
CPU Central processing unit
cq Self-symmetry coverage percentage of the contour Cq (line 16 of Algorithm 2)
Cq Contour from CP, 0 ≤ q < |CP| (line 16 of Algorithm 2)
CR

B Set of contours obtained by reflecting CB over ls
d User parameter for the distance step between two consecutive anchor points
DFS Depth-first search
H Convex hull created from the contours of C (input parameter of DFS)
L Bundle of potential symmetry lines through a considered anchor point
L&E method The Loy and Eklundh method
level Index of the considered level in the multi-branch tree T
lbest Best symmetry line of all ls from all pa ∈ A
LiDAR Light detection and ranging
ListO f Pairs List of symmetric pairs of contours from CA and CB
ListO f Coverages List of coverage percentage values of pairs of contours from CA and CR

B
ls Line in a bundle through a considered pa, 0 ≤ s < 180◦/b
p Point
P Set of points (raster image)
p′ Point (close to p in the weak symmetry definition)
pa Anchor point
px,y Pixel in the x-th column and y-th row of the raster image P
q Loop index for contours in CP
Rc Range of colours
s Loop index for lines in a bundle
S Segmented (and filtered) image
SIFT Scale-invariant feature transform
SSVDAG Symmetry-Aware Sparse Voxel Directed Acyclic Graph
SVDAG Sparse Voxel Directed Acyclic Graph
t User-defined coverage percentage threshold for pairing two contours
T Geometric transformation
T Multi-branch tree of week local symmetries
X, Y Image resolution (numbers of columns and rows)

Symmetry 2024, 16, 442 13 of 14

References
1. Barker, W.H.; Howe, R. Continuous Symmetry: From Euclid to Klein; American Mathematical Society: Providence, RI, USA, 2007.
2. Jäntschi, L.; Bolboacã, S.D. Symmetry in Applied Mathematics; MDPI: Basel, Switzerland, 2020.
3. Dias G.; Liberti, L. Exploiting symmetries in mathematical programming via orbital independence. Ann. Oper. Res. 2021, 298, 1–34.

[CrossRef]
4. Evans, C.S; Wenderoth, P.; Cheng, K. Detection of Bilateral Symmetry in Complex Biological Images. Perception 2000, 29, 31–42.

[CrossRef] [PubMed]
5. Mehaffy, M.W. The Impacts of Symmetry in Architecture and Urbanism: Toward a New Research Agenda. Buildings 2020, 10, 249.

[CrossRef]
6. McManus, I.C. Symmetry and Asymmetry in Aesthetics and the Arts. Eur Rev. 2005, 13, 157–180. [CrossRef]
7. Glowacz, A.; Królczyk, G.; Antonino-Daviu, J.A. Symmetry in Mechanical Engineering; MDPI: Basel, Switzerland, 2020.
8. Modrea, A.; Munteanu, V.M; Pruncu, I. Using the Symmetries in the Civil Engineering. An overview. Procedia Manuf. 2020,

46, 906–913. [CrossRef]
9. Montoya, F.G.; Navarro, R.B. Symmetry in Engineering Sciences; MDPI: Basel, Switzerland, 2019.
10. Qui, W.; Yuan, J.; Ukwatta, E.; Sun, Y.; Rajchl, M.; Fenster, A. Prostate Segmentation: An Efficient Convex Optimization Approach

With Axial Symmetry Using 3-D TRUS and MR Images. IEEE Trans. Med. Imaging 2014, 33, 947–960.
11. Wu, Y.; He, F.; Han, S. Collaborative CAD Synchronization Based on a Symmetric and Consistent Modeling Procedure. Symmetry

2017, 9, 59. [CrossRef]
12. Tyler, C.W. Human Symmetry Perception and its Computational Analysis; Psychology Press: Abingdon, UK , 1996.
13. Bertamini, M., Makin, A.D. Brain activity in response to visual symmetry. Symmetry 2014, 6, 975–996. [CrossRef]
14. Podgorelec, D.; Lukač, L.; Žalik, B. Reflection symmetry detection in Earth observation data. Sensors 2023, 23, 7426. [CrossRef]
15. Wang, Z.; Tang, Z.; Zhang, X. Reflection Symmetry Detection Using Locally Affine Invariant Edge Correspondence. IEEE Trans.

Image Process. 2015, 24, 1297–1301. [CrossRef]
16. Mitra, N.J.; Pauly, M.; Wand, M.; Ceylan, D. Symmetry in 3D Geometry: Extraction and Applications. Comput Graph Forum. 2013,

32, 1–23. [CrossRef]
17. Abu-Faraj, M.; Al-Hyari, A.; Alqadi, Z. A Complex Matrix Private Key to Enhance the Security Level of Image Cryptography.

Symmetry 2022, 14, 664. [CrossRef]
18. Chen, Y.; Zhan, S.; Xu, W.; Martin, R.R.; Cheng, Z.-Q. Parametric 3D modeling of a symmetric human body. Comput Graphic. 2019,

81, 52–60. [CrossRef]
19. Žalik, B.; Strnad, D.; Kohek, Š.; Kolingerová, I.; Nerat, A.; Lukač, N.; Podgorelec, D. A Hierarchical Universal Algorithm for

Geometric Objects’ Reflection Symmetry Detection. Symmetry 2022, 14, 1060. [CrossRef]
20. Petitjean, M. A definition of symmetry. Symmetry Cult. Sci. 2007, 18, 99–119.
21. Prantl, M.; Váša, L.; Kolingerová, I. Symmetry-aware Registration of Human Faces. In Proceedings of the 14th International

Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), Prague,
Czech Republic, 25–19 February 2019; Cláudio, A.P., Bouatouch, K., Braz, J., Eds.; Science and Technology Publications: Setúbal,
Portugal, 2019; pp. 185–192.

22. Hruda, L.; Kolingerová, I.; Lávička, M.; Mañak, M. Rotational symmetry detection in 3D using reflectional symmetry candidates
and quaternion-based rotation parameterization. Comput Aided Geom D. 2022, 98, 102138. [CrossRef]

23. Zhang, D.; Lu, G. Review of shape representation and description techniques. Pattern Recogn. 2004, 37, 1–19. [CrossRef]
24. Van Otterloo, P.J. A Contour Oriented Approach to Shape Analysis; Pearson Education Limited: London, UK, 1991.
25. Sheynin, S.; Tuzikov, A.; Volgin, D. Computation of symmetry measures for polygonal shapes. In Proceedings of the 8th

International Conference on Computer Analysis of Images and Patters (CAIP’99), Ljubljana, Slovenia, 1–3 September 1999;
Lecture Notes in Computer Science 1689; Solina, F.; Leonardis, A., Eds.; Springer: Berlin, Germany, 1999; pp. 183–190.

26. Yang, X.; Adluru, N.; Latecki, L.; Bai, X.; Pizlo, Z. Symmetry of shapes via self-similarity. In Proceedings of the 4th International
Symposium on Advances in Visual Computing (ISVC 2008), Las Vegas, NV, USA, 1–3 December 2008; Lecture Notes in Computer
Science 5359; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun,
Y.K., et al., Eds.; Springer: Berlin, Germany, 2008; pp. 561–570.

27. Kushnir, O.; Fedotova, S.; Seredin, O.; Karkishchenko, A. Reflection symmetry of shapes based on skeleton primitive chains. In
Proceedings of the 5th International Conference on Analysis of Images, Social Networks and Text (AIST 2016), Yekaterinburg,
Russia, 7–9 April 2016; Communications in Computer and Information Science 661; Ignatov, D.I., Khachay, M.Y., Labunets, V.G.,
Loukachevitch, N., Nikolenko, S.I., Panchenko, A., Savchenko, A.V., Vorontsov, K., Eds.; Springer: Cham, Switzerland, 2016;
pp. 293–304.

28. Karkischenko, V.; Mnukhin, V. Fourfold symmetry detection in digital images based on finite Gaussian fields. In Proceedings of
the First International Scientific Conference Intelligent Information Technologies for Industry (IITI’16), Sochi, Russia, 16–21 May
2016; Advances in Intelligent Systems and Computing 451; Abraham, A., Kovalev, S., Tarassov, V., Snášel, V., Eds.’; Springer:
Cham, Switzerland, 2016; pp. 153–162.

29. Zahn, C.T.; Roskies, R.Z. Fourier descriptors for plane closed curves. IEEE Trans. Comput. 1972, C-21, 269–281. [CrossRef]
30. Yip, R.; Tam, P.; Leung D. Application of elliptic Fourier descriptors to symmetry detection under parallel projection. IEEE Trans.

Pattern Anal. 1994, 16, 277–286. [CrossRef]

http://doi.org/10.1007/s10479-019-03145-x
http://dx.doi.org/10.1068/p2905
http://www.ncbi.nlm.nih.gov/pubmed/10820589
http://dx.doi.org/10.3390/buildings10120249
http://dx.doi.org/10.1017/S1062798705000736
http://dx.doi.org/10.1016/j.promfg.2020.05.007
http://dx.doi.org/10.3390/sym9040059
http://dx.doi.org/10.3390/sym6040975
http://dx.doi.org/10.3390/s23177426
http://dx.doi.org/10.1109/TIP.2015.2393060
http://dx.doi.org/10.1111/cgf.12010
http://dx.doi.org/10.3390/sym14040664
http://dx.doi.org/10.1016/j.cag.2019.03.013
http://dx.doi.org/10.3390/sym14051060
http://dx.doi.org/10.1016/j.cagd.2022.102138
http://dx.doi.org/10.1016/j.patcog.2003.07.008
http://dx.doi.org/10.1109/TC.1972.5008949
http://dx.doi.org/10.1109/34.276127

Symmetry 2024, 16, 442 14 of 14

31. Loy, G.; Eklundh, J.-O. Detecting Symmetry and Symmetric Constellations of Features. In Proceedings of the Computer Vision
(ECCV 2006), Graz, Austria, 7–13 May 2006; Lecture Notes in Computer Science 3952; Leonardis, A., Bischof, H., Pinz, A., Eds.;
Springer: Berlin, Germany, 2006; pp. 508–521.

32. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 2004, 60, 91–110. [CrossRef]
33. Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Comm ACM. 1972, 15, 11–15.

[CrossRef]
34. O’Mara, D.; Owens, R. Measuring bilateral symmetry in digital images. In Proceedings of Digital Processing Applications

(TENCON ’96), Perth, Australia, 26–27 November 1996; IEEE: Piscataway, NJ, USA, 1996; pp. 151–156.
35. Sun, C.; Si, D. Fast reflectional symmetry detection using orientation histograms. Real-Time Imaging 1999, 5, 63–74. [CrossRef]
36. Mestetskiy, L.M.; Zhuravskaya, A. Mirror symmetry detection in digital images. In Proceedings of the 15th International Joint

Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications–VISIGRAPP 2020 (4: VISAPP),
Valletta, Malta, 27–29 February 2020; ; Farinella, G.M., Radeva, P., Braz, J., Eds.; Science and Technology Publications: Setúbal,
Portugal, 2020 pp. 331–337.

37. Hauagge, D. C.; Snavely, N. Image matching using local symmetry features. In Conference on Computer Vision and Pattern
Recognition (CVPR 2012), Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 206–213.

38. van Gool, L.; Moons, T.; Ungureanu, D.; Pauwels, E. Symmetry from shape and shape from symmetry. Int. J. Robot Res. 1995,
14, 407–424. [CrossRef]

39. Derrode, S.; Ghorbel, F. Shape analysis and symmetry detection in gray-level objects using the analytical Fourier–Mellin
representation. Signal Process. 2004, 84, 25–39. [CrossRef]

40. Gnutti, A.; Guerrini, F.; Leonardi, D. Combining appearance and gradient information for image symmetry detection. IEEE Trans.
Image Process. 2021, 30, 5708–5723. [CrossRef] [PubMed]

41. Zabrodsky, H.; Peleg, S.; Anvir, D. Hierarchical symmetry. In Proceedings of the 11th IAPR International Conference on Pattern
Recognition, The Hague, The Netherlands, 30 August–1 September 1992; IEEE: Piscataway, NJ, USA, 1992; Volume III Conference
C: Image, Speech and Signal Analysis, pp. 9–12.

42. Wang, Y.; Xu, K.; Li, J.; Zhang, H.; Shamir, A.; Liu, L.; Cheng, Z.; Xiong, Y. Symmetry hierarchy of man-made objects. Comput
Graph Forum. 2011, 30, 287–296. [CrossRef]

43. Li, Y.; Mo, K.; Shao, L.; Sung, M.; Guibas, L. Learning 3d part assembly from a single image. In Proceedings of the Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings Part VI 16; Springer International
Publishing: New York, NY, USA; pp. 664–682.

44. Paschalidou, D.; Gool, L.V.; Geiger, A. Learning unsupervised hierarchical part decomposition of 3d objects from a single rgb
image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 23–29 June
2020, Curran Associates, Inc.: Red Hook, NY, USA, 2020; pp. 1060–1070.

45. Xue, F.; Lu, W.; Chen, Z.; Webster, C.J. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt
principles. ISPRS J. Photogramm. Remote Sens. 2020, 167, 418–431. [CrossRef]

46. Villanueva, A.J.; Marton, F.; Gobetti, E. Symmetry-aware Sparse Voxel DAGs (SSVDAGs) for compression-domain tracing of
high-resolution geometric scene. J. Comput. Graph. Tech. (JCGT) 2017, 6, 1–30.

47. Madoš, B.; Chovancová, E.; Chovanec, M.; Ádám, N. CSVO: Clustered Sparse Voxel Octrees—A Hierarchical Data Structure for
Geometry Representation of Voxelized 3D Scenes. Symmetry 2022, 14, 2114. [CrossRef]

48. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018.
49. De Berg, M.; van Kreveld, M.; Overmars, M.; Schwarzkopf, O. Computational Geometry: Algorithms and Applications, 2nd ed.;

Springer: Berlin, Germany, 2000.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1006/rtim.1998.0135
http://dx.doi.org/10.1177/027836499501400502
http://dx.doi.org/10.1016/j.sigpro.2003.07.006
http://dx.doi.org/10.1109/TIP.2021.3085202
http://www.ncbi.nlm.nih.gov/pubmed/34138706
http://dx.doi.org/10.1111/j.1467-8659.2011.01885.x
http://dx.doi.org/10.1016/j.isprsjprs.2020.07.020
http://dx.doi.org/10.3390/sym14102114

	Introduction
	Related Works
	Materials and Methods
	Results
	Conclusions
	References

