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Abstract: We develop a 4 × 4-matrix model based on temporal coupled mode theory (TCMT) to
elucidate the intricate energy exchange within a non-Hermitian, resonant photonic structure, based
on the recently described infinity-loop micro-resonator (ILMR). We consider the structure to consist
of four coupled resonant modes, with clockwise and counterclockwise propagating optical fields, the
interplay between which gives rise to a rich spectral form with both overlapping and non-overlapping
resonances within a single free spectral range (FSR). Our model clarifies the precise conditions for
exceptional points (EPs) in this system by examining neighboring resonances over the device free
spectral range (FSR). We find that the system is robust to the conditions for observing an EP, despite
the presence of non-zero coupling of signals, or crosstalk, between the resonant modes.

Keywords: PT symmetry; exceptional point; non-hermition optics; micro-ring resonator

1. Introduction

Temporal Coupled-Mode Theory (TCMT) is a mathematical model widely used to
analyze the propagation and interaction of electromagnetic waves [1], e.g., in resonant
optical cavities [2–4] and photonic crystals [5]. TCMT can be derived either from Maxwell’s
Equations [6] or from the dynamical equations corresponding to the Hamiltonian of a cou-
pled system after linearization [7,8]. TCMT is ideally suited to the study of non-Hermitian
photonic systems, exhibiting Parity–Time (PT) symmetry [9,10], and can elucidate the
specific device characteristics leading to so-called exceptional points (EPs), where a unique
degeneracy of the eigenvalues and eigenvectors unveils a rich array of intriguing physical
phenomena. These systems are increasingly of interest owing to the fact that, in spite of the
non-Hermiticity, PT symmetric systems produce entirely real spectra leading to wide appli-
cation potential in areas such as extreme sensing, asymmetric transmission, mode-locked
lasing and nonlinear and topological photonics. Whilst most PT symmetric systems tend to
be realized using optical circuits with balanced loss and gain, the PT transition may also be
observed in purely passive systems, where there is a strong loss asymmetry. This opens up
an even richer field for studying the interplay between passive PT transitions and quantum
effects in purely dissipative photonic circuits [11]. One notable example of a purely passive
PT symmetry system is that in which two silica microtoroid resonators are coupled to
realize an optical isolator via Stimulated Brillouin Scattering (SBS) [12]. The ‘Taiji’-type
micro-resonator is another such implementation, in which unidirectional reflection has been
demonstrated [13] and which has also been proposed for sensing applications [14]. More
recently, the concept of an exceptional surface (ES) has arisen, whereby these rich spectral
properties may be observed over a wide range (or entirely independent) of device operating
characteristics [15,16]. Other recent examples are the Coupled-Ring Reflector (CRR) device
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incorporating a crisscrossing directional coupler [17] and the ILMR [16], which is comprised
of a bus waveguide coupled (at two points) to a continuous loop waveguide in the shape
of the infinity symbol, as shown in Figure 1.

Figure 1. Infinity loop micro-resonator (ILMR) structure (a) without and (b) with counter propagating
optical pathways within units, a1 and a2, which are coupled at the intersection, modified after [16].

The propagation of resonant signals at the intersections is considered to be ‘ideal’, im-
plying zero coupling or crosstalk with light circulating in the loops, as implied by Figure 1a.
However, this is difficult to realize in practice, and even very small degrees of crosstalk, e.g.,
due to fabrication imperfections, will result in clockwise and counterclockwise propagating
optical fields, leading to new resonances (and resonance splitting) in the transmission and
reflection spectra of such devices. Whilst this backward scattering of optical fields is dealt
with separately in [16], by considering the ILMR to consist of two intersecting loops, each
with clockwise (cw) and counterclockwise (ccw) mutually coupled resonant modes, as
shown in Figure 1b, we can account for this behavior within a robust TCMT model based
on a fourth-order matrix.

2. Temporal Coupled-Mode Theory Model

The entire resonant system is considered for single mode operation, and at resonance,
the propagating modes are denoted aCW

1 and aCCW
1 in the left loop and aCW

2 and aCCW
2

in the right loop. Since the system is symmetric, it is assumed that all resonant modes
exhibit the same angular frequency, ω0. The coupling rates for the two bus-to-resonator
coupled sections are denoted µL and µR for left and right sides, respectively, and for the
loss rates (for both cw and ccw modes), γ1,2 of each resonant unit can be calculated from
the following equations:

γ1 =
µ2

L
2

+ γi (1)

γ2 =
µ2

R
2

+ γi, (2)
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with γi the intrinsic loss rate in the loop structure. If φ is the phase shift accumulated
by an optical mode propagating along the bus waveguide, between the two bus-to-loop
coupling sections, then the resonant mode, aCCW

1 (aCW
2 ), will couple to aCCW

2 (aCW
1 ) via the

bus waveguide, with a coupling rate of −jµRµLejφ.
Within the ILMR, the coupling rate between modes, aCW

1 (aCCW
1 ) and aCW

2 (aCCW
2 )

is defined as µCW
a (µCCW

a ) and between modes, aCW
1 (aCCW

1 ) and aCCW
2 (aCW

2 ) as µ∞
a . The

coupling rate within a unit between aCW
1 (aCW

2 ) and aCCW
1 (aCCW

2 ) is µCW−CCW
i=1,2 . Assuming

the driving (input) optical field propagates from left to right in the bus waveguide, the
TCMT equation for the system may be written:

j
d
dt


aCCW

1
aCW

2
aCW

1
aCCW

2

 =


ω0 − jγ1 µ∞

a
µ∞

a ω0 − jγ2

µCW−CCW
1 µCCW

a
µCW

a µCW−CCW
2

µCW−CCW
1 µCW

a − jµRµLejφ

µCCW
a − jµLµRejφ µCW−CCW

2

ω0 − jγ1 µ∞
a

µ∞
a ω0 − jγ2




aCCW
1
aCW

2
aCW

1
aCCW

2

+


µL
0
0

µRejφ

ain (3)

The symmetry of the structure means that we can assume µCW−CCW
1 = µCW−CCW

2 ;
µCW

a = µCCW
a and γ1 = γ2. For ease of expression, we signify these loss rates, generally, as

γ0 from here on in. If the input optical mode (from left to right) is ain, then the transmittance
and reflectance of the system are obtained from the following equations:

|st|2 =

∣∣(ain − jµLaCCW
1

)
ejφ − jµRaCCW

2

∣∣2
|ain|2

(4)

|sr|2 =

∣∣(−jµRaCW
2

)
ejφ − jµLaCW

1

∣∣2
|ain|2

(5)

2.1. Eigenvalue Analysis

From Equation (3), we derive the non-Hermitian Hamiltonian of the system as:

Ĥ =


ω0 − jγ0 µ∞

a
µ∞

a ω0 − jγ0

µCW−CCW
1 µCW

a
µCW

a µCW−CCW
1

µCW−CCW
1 µCW

a − jµRµLejφ

µCW
a − jµLµRejφ µCW−CCW

1

ω0 − jγ0 µ∞
a

µ∞
a ω0 − jγ0

 (6)

Considering lossless coupling between units, then the coupling and loss rates are real
and positive, and all parameters in this matrix are >0. The eigenvalues of Ĥ are given in
Equations (7)–(10), with the real parts ℜ(λ1,2,3,4) representing the frequency of the spectral
resonances and the imaginary parts ℑ(λ1,2,3,4) their linewidths.

λ1 = ω0 − jγ0 − µ∞
a +

√
(µCW

a − µCW−CCW
1 )

2 − j(µCW
a − µCW−CCW

1 )µLµRejφ (7)

λ2 = ω0 − jγ0 − µ∞
a −

√
(µCW

a − µCW−CCW
1 )

2 − j(µCW
a − µCW−CCW

1 )µLµRejφ (8)

λ3 = ω0 − jγ0 + µ∞
a +

√
(µCW

a + µCW−CCW
1 )

2 − j(µCW
a + µCW−CCW

1 )µLµRejφ (9)

λ4 = ω0 − jγ0 + µ∞
a −

√
(µCW

a + µCW−CCW
1 )

2 − j(µCW
a + µCW−CCW

1 )µLµRejφ (10)

Figure 2 illustrates a three-dimensional view for the variation in the eigenvalues with
µCW−CCW

1 and φ. We find that there is a PT symmetry property of the system when φ = π
2

and φ = 3π
2 .
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Figure 2. (a) Real and (b) imaginary components of the Ĥ eigenvalues as a function of the coupling
rate, µCW−CCW

1 , and accumulated phase, φ, when µCW
a < µLµR.

For an accumulated phase, φ = π
2 , when µLµR > (µCW−CCW

1 − µCW
a ) > 0, ℜ(λ1) =

ℜ(λ2) and ℑ(λ1) ̸= (ℑ(λ2), representing the so-called broken PT symmetry state. For the
same accumulated phase, when (µCW−CCW

1 − µCW
a ) < 0 or (µCW−CCW

1 − µCW
a ) > µLµR,

then ℜ(λ1) ̸= ℜ(λ2) and ℑ(λ1) = ℑ(λ2), representing the unbroken PT symmetry state,
as shown in Figure 3.

Figure 3. (a) Real and (b) imaginary components of the Ĥ eigenvalues as a function of the coupling
rate, µCW−CCW

1 , for an accumulated phase, φ = π
2 between ILMR bus-to-loop coupling points.

Figure 4 shows that, for an accumulated phase, φ = 3π
2 , the relationship between λ1

and λ2 is similar to that for φ = π
2 for (µCW−CCW

1 + µCW
a ) < µLµR, ℜ(λ3) = ℜ(λ4) and

ℑ(λ3) ̸= ℑ(λ4), i.e., the broken PT symmetry state and for (µCW−CCW
1 + µCW

a ) > µLµR,
ℜ(λ3) ̸= ℜ(λ4) and ℑ(λ3) = ℑ(λ4), i.e., the unbroken PT symmetry state. It should be
noted that broken and unbroken PT symmetric states for this system will be difficult to
realize in practice because optical modes of different frequencies, propagating in the bus
waveguide, will experience different φ.

Figure 5 illustrates how the eigenvalues vary with φ for different coupling rates,
µCW−CCW

1 and µCW
a . When µCW

a = µCW−CCW
1 , λ1 = λ2 and their values are independent of

φ, meaning that the resonant system operates at an EP. On the other hand, the eigenvalues
λ3 and λ4 exhibit a strong dependence on φ.

Even where crosstalk exists between optical modes at the intersection of the ILMR,
the system can be made to work at an EP by ensuring µCW

a = µCW−CCW
1 . This is good

news from a practical perspective because it implies that an ‘ideal’ intersection is not a
fundamental requirement for observing EPs in such systems and that some degree of
fabrication tolerance can be acceptable.
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Figure 4. (a,c) Real and (b,d) imaginary components of the Ĥ eigenvalues as a function of the coupling
rate, µCW−CCW

1 , for accumulated phase φ = 3π
2 between ILMR bus-to-loop coupling points. The

upper (a,b) and lower (c,d) panels are for the case when µCW
a > µLµR and µCW

a < µLµR.

2.2. COMSOL Simulation of Coupling Coefficients between Modes

The coupling rates between resonant modes, as discussed so far for this device, are
expected to be a strong function of the crossing angle, θ. For a particular resonance
wavelength, e.g., 1550 nm, we can determine the effect of θ on the individual coupling rates.
Assuming the symmetry of the structure is preserved such that µCW−CCW

1 = µCW−CCW
2 and

µCW
a = µCCW

a , then the coupling rate between resonant modes may be written in terms of
the coupling coefficient κ and round-trip times t1, t2 [6] as:

µ =
κ√
t1t2

(11)

Since symmetry implies t1 = t2, the coupling rate is simply proportional to the cou-
pling coefficient and inversely proportional to the resonant unit round trip time. In order
to determine the effect of the crossing angle, θ on coupling (and loss) coefficients, we repre-
sented the intersection between resonant modes by a set of crossed straight waveguides
using the finite element method (FEM) Multiphysics package in COMSOL, as shown in
Figure 6a, the results of which are shown in Figure 6b.
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Figure 5. (a,c,e) Real and (b,d,f) imaginary components of the Ĥ eigenvalues as a function of φ. The
upper (a,b), middle (c,d) and lower (e,f) panels represent the cases; µCW−CCW

1 = µCW
a , µCW−CCW

1 <

µCW
a and µCW−CCW

1 > µCW
a , respectively.

Figure 6b reveals that the strict condition for operation at an EP, i.e., when
µCW

a = µCW−CCW
1 , is satisfied when the cross angle θ ≈ 60◦, 90◦ and 135◦. We also

note that the loss at the intersection is the minimum for θ = 92◦.
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Figure 6. (a) Model of the ILMR crossed-waveguide section and (b) corresponding COMSOL
simulation of the individual coupling and loss coefficients as a function of the ILMR crossing angle, θ,
at 1550 nm.

2.3. TCMT-Model-Derived Spectral Resonances

In [16], the transmission and reflection signals are reported to be independent of φ,
and so the system apparently always operates at an EP (or on an ES). From the above
analysis, we can see that, in reality, this is only the case for λ1 and λ2 under the strict
condition µCW

a = µCW−CCW
1 , which we consider in the subsequent discussion. When the

system is in the steady state, the following equations are obtained for resonant propagating
modes in either side of the ILMR:

daCCW
i
dt

= −jωaCCW
i (12)

daCW
i

dt
= −jωaCW

i (13)

Table 1 lists the parameters we employ in modeling the spectral response of the ILMR
for low loss operation at an EP.

Table 1. Coupling/loss parameters, derived from Figure 6 used to model the spectral response of the
ILMR for low loss operation at an EP.

Parameters The Coupling/Loss Rates [THz]

µ∞
a 5.8037

µCW
a 0.9431

µCW−CCW
1 0.9431

µL
2 0.8152

µR
2 0.8152

γ0 0.5421

According to Equations (3)–(5), (11) and (12) and using the parameters in Table 1, as
determined from our COMSOL simulations, the spectral response as a function of φ is
shown in Figure 7.

Figure 7 reveals the near-resonance (∆ω = ω − ω0) spectral response for the ILMR for
λ1,2(∆ω < 0) and λ3,4(∆ω > 0). Although λ1 = λ2, and the associated (lower-frequency)
resonances are independent of φ, we can see that there exists a doublet resonance, which is
due to the spectra being formed by the superposition of two optical modes, as revealed by
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Equations (3) and (4). The sum spectra |st|2 + |sr|2 faithfully reflect the eigenvalues, and in
Figure 8, we further illustrate how this varies with the coupling coefficient µCW−CCW

1 /µCW
a

for an accumulated phase, φ = π/2, with all other parameters fixed as per Table 1.

Figure 7. Transmission and reflection spectra, |st|2 and |sr|2 and |st|2 + |sr|2, for different values of
accumulated phase, φ.

Figure 8 shows that, when the coupling rates between the two resonant modes are
real and unequal, the eigenvalues of the system exhibit broken and unbroken symmetry
states and EPs, as predicted by Equation (6) when φ = π/2. This result is traditionally the
reserve of active PT symmetric systems, incorporating balanced gain and loss.

The low-frequency spectral peaks are similar to the results of [16], which were also
shown to be independent of φ. However, the higher-frequency peaks (i.e., > ω0) are
strongly dependent on φ, which is a departure from the general conclusions of [16]. Thus,
Using the 4 × 4 matrix model of the ILMR (and devices like it) to include crosstalk between
propagating optical fields, and by examining the resulting spectral response on both sides
of resonance, it is possible to show that there exists a complexity of peaks, only some of
which are independent of φ. In real systems, this might actually represent an expansion
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of potential applications, e.g., in sensing, filtering and other areas. Indeed, the TCMT
modeling approach is generally applicable to other types of resonator, e.g., micro-ring,
Fabry–Pérot and photonic crystal cavities, providing the resonant modes and coupling
rates between them are determined for the system under study.

Figure 8. 3D plots of (a) spectral response and (b) peak positions for |st|2 + |sr|2 as a function of the
coupling coefficient µCW−CCW

1 /µCW
a for an accumulated phase, φ = π/2.

3. COMSOL-Simulation-Derived Spectral Resonances

In this section, we extend our use of COMSOL to simulate the complete ILMR structure,
as shown in Figure 9a. This consists of two coupled circular waveguide sections, tangential
to an input (bus) waveguide. For simplicity, a 2D model based on TE mode is used to
avoid superposition of multiple modes, and the width of the waveguide core constrains
the system to operate in single mode.

Since we assume lossless coupling between resonant modes in our TCMT model, for
closest comparison, we built our COMSOL model around a device geometry that, again,
satisfies both minimum coupling loss, i.e., for a cross angle, θ = 92◦, from Figure 6, as well
as the condition required for operation at an EP, i.e., when µCW

a = µCW−CCW
1 . For this value

of θ, the total round trip length (perimeter) of our ILMR design is 62.1 µm.

Figure 9. (a) COMSOL ILMR model structure with crossing angle, θ = 92◦ and total round-trip
length (perimeter) = 62.1 µm and (b) corresponding spectral response (COMSOL (points) and TCMT
model (lines)). The accumulated phase, φ, is necessarily adjusted in our TCMT model (from ∼ 5π/4
to ∼ π) to account for the wide frequency range (>1 FSR, as indicated by the black dashed lines) of
the COMSOL simulation.
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Figure 9b illustrates the results of comparison between the FEM COMSOL simula-
tion and our TCMT model (using the parameters in Table 1) for two neighboring (split)
resonances (i.e., over a full FSR). Differences between the TCMT model spectra and those
derived from COMSOL simulations are largely due to spectral dependencies of the accu-
mulated phase, φ, and the parameters in Table 1, which were obtained for a fixed angular
frequency of 1215.2 THz (1550 nm). Agreement is therefore expected to diverge as the
spectral range increases, so we have necessarily adjusted φ to account for this, finding
excellent agreement around the lower-frequency resonance position when φ ∼ 5π/4 and
for the next, higher-frequency resonance, by using a slightly lower value, φ ∼ π.

4. Conclusions

In this paper, the recently described ILMR is considered as four mutually coupled
resonant modes, with cw and ccw propagating optical modes that interact via crosstalk.
The eigenvalues and associated transmission and reflection spectra are determined from a
4 × 4 matrix Hamiltonian using TCMT. The specific conditions required for the system to
operate at an EP are determined as µCW

a = µCW−CCW
1 . The system is also simulated using

COMSOL, which provides the key design parameters for effective operation at an EP for
wavelengths near 1550 nm. The spectra derived from this simulation for an ILMR with
a crossing angle θ = 92◦ (operating at an EP with minimal loss) are in good agreement
with those derived from our TCMT model. Both simulation and TCMT modeling show
that the ILMR has a complex resonance spectrum with ‘split’ peaks either side of the mode
resonance (ω0 ± ω) condition. The lower-frequency spectral peaks (ω < ω0) are found
to be rather independent of the accumulated phase, φ, in good agreement generally with
the model proposed in [16]. However, we find that the higher-frequency peaks (ω > ω0)
exhibit a strong dependence on φ. We also demonstrate that our TCMT model agrees
well with FEM COMSOL simulation of such devices over a full free spectral range (with
necessary adjustment of the accumulated phase). The rich spectral form for this and similar
devices, along with the type of modeling we have described, can aid the design of practical,
non-Hermitian nanophotonic integrated circuits for a whole host of exotic applications,
which are only beginning to come to light as this new field emerges.
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